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ABSTRACT

This paper focuses on the nature of representations in connectionist models.
It addresses two issues: (1) Can connectionist models develop representa-
tions which possess internal structure and which provide the basis for produc-

tive and systematic behavior;, and (2) Can representations which are funda-
mentally context-sensitive support grammatical behavior which appears to be
abstract and general? Results from two simulations are reported.. The simu-
lations address problems in the distinction between type and token, the repre-
sentation of lexical categories, and the representation of grammatical struc-
ture. The results suggest that connectionist representations can indeed pos-
sess internal structure and enable systematic behavior, and that a mechanism
which is sensitive to context is capable of capturing generalizations of varying
degrees of abstractness.

INTRODUCTION representational apparatus they make avail-
able. Our current understanding of connec-
tionist representations is at best partial, andConnectionist models appear to pro- there is considerable diversity of opinion

vide a new and different framework for un- th osew are aively expingoh

derstanding cognition. It is therefore natural among those who are actively exploring the

to wonder how these models might differ topic (cf. Dolan & Dyer, 1987; Dolan &

from traditional theories, and what their ad- Hanso r, 1988; mc&illan 1982;

vantages or disadvantages might be. Re- Hanson & Burr, 1987; McMillan & Smolen-

cent discussion has focussed on a number of sky, 1988; Hinton, 1988; Hinton,
McClelland, & Rumelhart (1986);

topics, including the treatment of regular and McClelland, S Jon,& ara (1989);

productive behavior (rules vs. analogy), the
Pollack, 1988; Ramsey, 1989; Rumelhart,form of knowledge (explicit vs. implicit), Hinton, & Williams, 1986; Shastri &

ontogeny of knowledge (innate vs. ac- Ajjanagadde, 1989; Smolensky, 1987a,
quired), and the nature of connectionist rep- 1987b, 1987c, 1988; Touretzky & Hinton,
resentations. 1985; Touretzky, 1986, 1989; van Gelder, in

This latter issue is particularly impor- press).
tant because one of the critical ways in
which cognitive theories may differ is in the
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some of the specific questions raised by pursued: What is the nature of connection-
Fodor & Pylyshyn (1988). Fodor & Pyly- ist representations? Are they necessarily
shyn express concern that whereas Classi- atomistic or can they possess internal struc-
cal theories (e.g., the Language of Thought, ture? Can that structure be used to account
Fodor, 1976) are committed to complex for behavior which reflects both general and
mental representations which reflect combi- ideosyncratic patterning? Can connectionist
natorial structure, connectionist representa- representations with finite resources pro-
tions seem to be atomic, and therefore vide an account for apparently open-ended
(given the limited and fixed resources avail- productive behavior? How might connec-
able to them) finite in number. And this ap- tionist representations differ from those in
pears to be at odds with what we believe to the Language of Thought? One strength of
be necessary for human cognition in general, connectionist models that is often empha-
and human language in particular. sized is their sensitivity to context and abili-

ty to exhibit graded responses to subtle dif-
I believe that Fodor and Pylyshyn ferences in stimuli (e.g., McClelland,

are right in stressing the need for represen- St John, & Taraban, 1989). But sometimes
tations which support complex and system- language behavior seems to be character-
atic patterning, which reflect both the com- ized by abstract patterns which are less
binatorics and compositionality of thought, sensitive to context. So another question is
and which enable an open-ended produc- whether models which are fundamentally
tions. What their analysis does not make context-sensitive are also able to arrive at
self-evident is that these desiderata can generalizations which are highly abstract.
only be achieved by the so-called Classical
theories, or by connectionist models which In ts paper Tpese sultsimpl men thoe teori s. odor & P ly- two sets of simulations. These simulations

implement those theories. Fodor & Pyly- were designed to probe the above issues,
shyn present a regrettably simplistic picture were goal o probi she anove into

of current linguistic theory. What they call with the goal of providing some insight into
the Classical theory actually encompasses a the representational capacity of connection-
heterogeneous set of theories, not all of s models. The paper is organized in two
which are obviously compatible with the sections. The first section reports empirical
Language of Thought. Furthermore, there reults T wo c net bst n trks twrehave in recent years been well-articulated taught tasks in which an abstract structure
linguistic theories which do not share the underlay the stimuli and task. The intent
basic premises of the Language of Thought was to create problems which would encour-
(e.g., Chafe, 1970; Fauconnier, 1985; age the development of internal representa-
Fillmor, Chafe,1982 ; von,198;o pper 1 ; tions which reflected that abstract struc-
Thompson, 1980; Kuno, 1987; Lakoff, 1987; ture. Both the performance of the networks
Langacker, 1987). Thus the two alternatives as well as the analysis of their solutions il-'or
pented by87). Fousor e ad Pylyhn(tatis lustrates the development of internal repre-presented by Fodor and Pylyshyn (that s n ai n h c r i h y sr c u e .

connectionism must either implement the sentations which are richly structured. -
of Thought or fail as a cognitive These results are discussed at greater 0

Language ughteoril ak a dognot length in the second section, and related to
model) are unnecessarily bleak and do not the broader question of the usefulness of
exhaust the range of possibilities, the connectionist framework for modeling

Still, it is possible to phrase the cognitive phenomena, and possible differenc-

questions posed by Fodor & Pylyshyn in a es from the Classical approach. Cd e/r-'

more general way which might be profitably .

-2- '
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Network Architecture

Part 1 SIMULATIONS Time is an important element in lan-

guage, and so the question of how to repre-

Language is structured in a number sent serially ordered inputs is crucial. Vari-
ous proposal have been advanced (for re-

of ways. One important kind of structure

has to do with the structure of the catego-
ries of language elements (e.g., words). Figure 1.
The first simulation addressed the question 00 OUTPUT UNITS
of whether a connectionist model can induce
the lexical category structure underlying a / •
set of stimuli. A second way in which lan-
guage is structured has to do with the possi- I!
ble ways in which strings can be combined
(e.g., the grammatical structure). The sec-
ond simulation addresses that issue.

000000 HIDDEN UNITS
LEXICAL CATEGORY STRUCTURE

Words may be categorized with re- 1.01.0

spect to many factors. These include tradi-
tional notions such as noun, verb, etc.; the
argument structure they are associated
with; and their semantic features. One of
the consequences of lexical category struc-

ture is word order. Not all classes of words 000 000000
may appear in any position. Furthermore,
certain classes of words, e.g., transitive INPUT UNITS CONTEXT UNITS

verbs, tend to cooccur with other words (as

we shall see in the next simulation, these
cooccurrence facts can be quite complex). views, see Elman, in press; Mozer, 1988.

The goal of the first simulation was The approach taken here involves treating
to see if a network could learn the lexical the network as a simple dynamical system
category structure which was implicit in a in which previous states are made available
language corpus. The overt form of the lan- as an additional input (Jordan, 1986). In
guage items was arbitrary, in the sense that Jordan's work the prior state was derived
the form of the lexical items contained no in- from the output units on the previous time
formation about their lexical category. How- cycle. In the work here, the prior state
ever, the behavior of the lexical comes from the hidden unit patterns on the
item-defined in terms of cooccurrence re- previous cycle. Because the hidden units are
strictions-reflected their membership in im- not taught to assume specific values, this
plicit classes and subclasses. The question means that they can develop representa-
was whether or not the network could in- dons, in the course of learning a task, which
duce these classes. encode the temporal structure of the task.

In other words, the hidden units learn to be-

-3-
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come a kind of memory which is very task- Stimuli and Task
specific. A lexicon of 29 nouns and verbs was

The type of network used in the first chosen. Words were represented as 31-bit
simulation is shown in Figure 1. This net- binary vectors (two extra bits were re-
work is basically a 3-layer network with the served for another purpose). Each words
customary feed-forward connections from in- was randomly assigned a unique vector in
put units to hidden units, and from hidden which only one bit was turned on. A sen-
units to output units. There are an additional tence-generating program was then used to
set of units, called context units, which pro- create a corpus of 10,000 2- and 3-word
vide for limited recurrence (and so this may sentences. The sentences reflected certain
be called a simple recurrent network).
These context units are activated on a one- properties of the words. For example, only

for-one basis by the hidden units, with a animate nouns occurred as the subject of the

fixed weight of 1.0. verb eat, and this verb was only followed

by edible substances. Finally, the words in
successive sentences were concatenated,

The result is that at each time cycle so that a stream of 27,354 vectors was cre-
the hidden unit activations are copied into ated This formed the input set.

the context units; on the next time cycle, the

context combines with the new input to acti- The task was simply for the network
vate the hidden units. The hidden units to take successive words from the input

therfor tae o th jo ofmapingnewin-stream and to predict the subsequent word
therefore take on the job of mapping new in- (by producing it on the output layer). After
puts and prior states to the output. Because each word was input, the output was com-

they themselves constitute the prior state, pared with the actual next word, and the
they must develop representations which fa- backpropagation of error learning algorithm

cilitate this input/output mapping. The sim- (Rumelhart, Hinton, & Williams, 1986) was
ple recurrent network has been studied in a used to adjust the network weights. Words
number of tasks (Elman, in press; Hare, were presented in order, with no breaks be-

Corina, & Cottrell, 1988; Servan-Schreiber, tween sentences. The network was trained

Cleeremans, & McClelland, 1988). In this on 6 passes through the corpus.

first simulation, there were 31 input units, The prediction task was chosen for
150 hidden and context units, and 31 output several reasons. First, it makes minimal

units. assumptions about special knowledge re-

quired for training. The teacher function is

simple and the information provided avail-
able in the world at the next moment in
time. Thus, there are no a priori theoretical
commitments which might bias the out-
come. Second, although the task is simple
and should not be taken as a model of com-
prehension, it does seem to be the case that
much of what listeners do involves anticipa-
tion of future input (Grosjean, 1980;
Marslen-Wilson & Tyler, 1980; Salasoo
& Pisoni, 1985).
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which reflecm, the context-dependent expec-

Results tations given the training base (where con-
text is defined as extending from the begin-

Because the sequence is non-deter- ning of the sentence to the input). Note that
ministic, short of memorizing the sequence, it is appropriate to use these likelihood vec-
the network cannot succeed in exact predic- tors only for the evaluation phase. Training
tions. That is, the underlying grammar and must be done on the actual successor words
lexical category structure provides a set of because the point is to force the network to

constraints on the form of sentences, but the learn the context-dependent probabilities for
sentences themselves involve a high degree itself.
of optionality. Thus, measuring the perfor-
mance of the network in this simulation is Evaluated in this manner, the error on
not straightforward. Root mean squared er- the ang s et is 0eco-
ror at the conclusion of training had dropped sine of the angle between output vectors and
to 0.88. However, this result is not impres- likelihood vectors provides another measure
siv 8. Howhven , outht veultos ae sparses- of performance (which normalizes for lengthsive. W hen output vectors are sparse, as d f e e c s i h e t r) h e n c s n
those used in this simulation were (only 1 differences in the vectors); the mean cosine

out of 31 output bits was to be turned on), is 0.916 (sd: 0.123), indicating that the two
the network quickly learns to reduce error vectors on average have very similar

dramatically by turning all the output units shapes. Objectively, the performance ap-

off. This drops error from the initial random pears to be quite good.
value of -15.5 to 1.0, which is close to the fi-
nal rmse value of 0.88. Lexical categories

Although the prediction task is non- The question to be asked now is how
deterministic, it is also true that word order this performance has been achieved. One
is not random or unconstrained. For any giv- way to answer this is to see what sorts of in-
en sequence of words there are a limited temal representations the network develops
number of possible successors. Under these in order to carry out the prediction task. This
circumstances, it would seem more appropri- is particularly relevant, given the focus of the
ate to ask whether or not the network has current paper. The internal representations
learned what the class of valid successors is, are instantiated as activation patterns across
at each point in time. We therefore might ex- the hidden units which are evoked in re-
pect that the network should learn to acti- sponse to each word in its context. These
vate the output nodes to some value propor- patterns were saved during a testing phase
tional to the probability of occurrence of each during which no learning took place. For each
word in that context. of the 29 unique words a mean vector was

Therefore, rather than evaluating final then computed which averaged across all oc-

network performance using the rms error cal- currences of the word in various contexts.

culated by comparing the network's output These mean vectors were then subjected to

with the actual next word, we can compare hierarchical clustering analysis. Figure 2

the output with the probability of occurrence shows the tree constructed from the hidden

of possible successors. These values can be unit patterns for the 29 lexical items.

derived empirically from the training data The tree in Figure 2 shows the simi-
base (for details see Elman, in press); such larity structure of the internal representations
calculation yields a "likelihood output vector" of the 29 lexical items. The form of each item
which is appropriate for each input, and is randomly assigned (and orthogonal to all
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Figure 2

other items), and so the basis for the simi- transitive; and for which a direct object is op-
larity in the internal representations is the tional. The noun category is divided into ma-
way in which these words "behave" with re- jor groups for animates and inanimates. An-
gard to the task. imates are divided into human and non-hl-

man; the non-humans are sub-divided into
The network has discovered that large animals and small animals. Inanimates

there are several major categories of words. the divided into breakables, edibles, and

One large category corresponds to verbs; an- miscellaneous.

other category corresponds to nouns. The
verb category is broken down into groups This category structure reflects facts
which require a direct object; which are in- about the possible sequential ordering of the
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inputs. The network is not able to predict Type-token distinctions
the precise order of specific words, but it
recognizes that (in this corpus) there is a t he tree shownin pFigure s con-
class of inputs (viz., verbs) which typically structed from activation patterns averaged
follow other inputs (viz., nouns). This across context. It is also possible to cluster
knowledge of class behavior is quite de- activation patterns evoked in response to

tailed; from the fact that there is a class of words in the various contexts in which they

items which always precedes chase, occur. When the context-sensitive hidden

break, and smash, it infers a category of units patterns are clustered, it is found that

large animals (or possibly, aggressors). the large-scale structure of the tree is iden-
tical to that shown in Figure 2. However,

Several points should be empha- each terminal leaf is now replaced with fur-
sized. First, the category structure ap- ther arborization for all occurrences of the
pears to be hierarchical. Dragons are word (there are no instances of lexical items
large animals, but also members of the appearing on inappropriate branches).
class [-human, +animate] nouns. The hier-
archical interpretation is achieved through This finding bears on the type/token

the way in which the spatial relations of the problem in an important way. In this simula-

representations are organized. Representa- tion, the context makes up an important part

tions which are near one another in repre- of the internal representation of a word. In-

sentational space form classes, and higher- deed, it is somewhat misleading to speak of

level categories correspond to larger and the hidden unit representations as word rep-

more general regions of this space. resentations in the conventional sense,
since these patterns also reflect the prior

Second, it is also the case that the context. As a result, it is literally the case
hierarchicality and category boundaries are that every occurrence of a lexical item has a
"soft". This does not prevent categories separate internal representation. We can-
from being qualitatively distinct by being far not point to a canonical representation for
from each other in space with no overlap. John; instead there are representations for
But there may also be entities which share John1 , John2 , ... Johnn. These are the to-

properties of otherwise distinct categories, kens of John, and the fact that they are dif-

so that in some cases category membership ferent is the way the system marks what
may be marginal or ambiguous. may be subtle but important meaning differ-

Finally, the content of the categories ences associated with the specific token.
is not known to the network. The network The fact that these are all tokens of the
has no information available which would same type is not lost, however. These to-
ground the structural information in the real kens have representations which are ex-
world. This is both a plus and a minus. Ob- tremely close in space - closer to each oth-
viously, a full account of language process- er by far than to any other entity. Even
ing needs to provide such grounding. On the more interesting is that the spatial organiza-
other hand, it is interesting that the evi- tion within the token space is not random
dence for category structure can be inferred but reflects differences in context which are
so readily on the basis of language-internal also found among tokens of other items.

evidence alone. The tokens of boy which occur in subject
position tend to cluster together, as distinct
from tokens of boy which occur in object po-
sition. This distinction is marked in the

-7-
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same way for tokens of other nouns. Thus, be manifest, time. The clustering technique

the network has learned not only about types used in the previous simulation informs us
and tokens, and categories and category of the similarity relations along spatial di-

members; it also has learned a grammatical mensions. The technique tells us nothing
role distinction which cuts across lexical about the patterns of movement through

items. space. This is unfortunate, since the net-

This simulation has involved a task in works we are using are dynamical systems

which the category structure of inputs was whose states change over time. Clustering

an important determinant of their behavior, groups states according to the metric of Eu-

The category structure was apparent in their clidean distance but in so doing discards the

behavior only; their external form provided no information about whatever temporal rela-

useful information. We have seen that the tions may hold between states. This infor-

network makes use of spatial organization in mation is clearly relevant if we are con-

order to capture this category structure. cerned about grammatical structure. Con-
sider the sentences

We turn next to a problem in which
the lexical category structure provides only
one part of the solution, and in which the net- (la) The man saw the car.
work must learn abstract grammatical struc- (lb) The man who saw the car called the
ture.

cops.

Representation of grammatical On the basis of the results of the previous

structure simulation, we would expect that the repre-

In the previous simulation there was sentations for the word car in these two

little interesting structure of the sort that re- sentences would be extremely similar. Not

lated words to one another. Most of the rel- only are they the same lexical type, but they

evant information regarding sequential be- both appear in clause-final position as the

havior was encoded in terms of invariant object of the same verb.

properties of items. Although lexical infor- But we might also wish to have their

mation plays an important role in language, it representations capture an important struc-

actually accounts for only a small range of tural difference between them. Car in sen-

facts. Words are processed in the contexts tence (la) occurs at the end of the sen-

of other words; they inherit properties from tence; it brings us to a state from which we

the specific grammatical structure in which should move into another class of states

they occur. This structure can be quite com- that are associated with the onsets of new

plex, and it is not clear that the kind of cate- sentences. In sentence (lb), car is also at

gory structure supported by the spatial distri- the end of a clause, but occurs in a matrix

bution of representations is sufficient to cap- sentence which has not yet been complet-
ture the structure which belongs, not to ed. There are grammatical obligations

individual words, but to particular configura- which remain unfulfilled. We would like the

tions of words, state that is associated with car in this

As we consider this issue, we also context to lead us to the class of states

note that till now we have neglected an im- which might conclude the main clause.

portant dimension along which structure may The issue of how to understand the
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temporal structure of state trajectories will (a) Agre.em..n
thus figure importantly in our attempts to Subject nouns agree with their verbs.
understand the representation of grammati- Thus, tor example, (2a) is grammatical but
cal structure. not (2b) (the training Corpus consisted of

positive examples only; thus the starred ex-
amples below did not occur).

Stimuli and Task

The stimuli in this simulation were (2a) John feeds dogs.
based on a lexicon of 23 items. These in-
cluded 8 nouns, 12 verbs, the relative pro-
noun who, and an end-of-sentence indica-

tor, "." Each item was represented by a Words are not marked for number
randomly assigned 26-bit vector in which a (singular/plural), form class (verb/noun, etc.),
single bit was set to 1 (3 bits were reserved or grammatical role (subject/object, etc.).
for another purpose). A phrase structure The network must learn first that there are
grammar, shown in Table 1, was used to items which function as what we would call
generate sentences. The resulting sentenc- nouns, verbs, etc.; then it must learn which
es possessed certain important properties. items are examples of singular and plural;
These include the following, and then it must learn which nouns are

S -* NP VP ""

NP -- PropN IN I N RC

VP -ý V (NP)

RC ---) who NP VP I who VP (NP)

N -ý boy I girl I cat I dog I boys I girls I cats I dogs

PropN -- John I Mary

V -4 chase I feed I see I hear I walk I live I chases I
feeds I sees I hears I walks I lives

Additional restrictions:
"• number agreement between N & V within clause, and
(where appropriate) between head N & subordinate V

"* verb arguments:
hit, feed -+ require a direct object

see, hear -* optional allow a direct object
walk, live -- preclude a direct object

(observed also for head/verb relations In relative
clauses)

Table 1
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subjects and which are objects (since (4b) Dog who cat chases sees girl.
agreement only holds between subject
nouns and their verbs).

(b) Verb argument structure

Verbs fall into three classes: those Sentence (4c), which seems to conform to the
that require direct objects, those that permit pattern established in (3), is ungrammatical.
an optional direct object, and those that pre-
clude direct objects. As a result, sentences
(3a-d) are grammatical, whereas sentences (4c) *Dog who cat chases dog sees girl.
(3e, 3f) are ungrammatical.

Similar complications arise for the
(3a) Girls feed dogs. (D.o. required) agreements facts. In simple sentences

(3b) Girls see boys. (D.o. optional) agreement involves NI - Vi. In complex

(3c) Girls see. (D.o. optional) sentences, such as (5a), that regularity is vi-
olated, and any straightforward attempt to

(3d) Girls live. (D.o.precluded) generalize it to sentences with multiple

(3e) *Girls feed. clauses would lead to the ungrammatical (5b).

(30 *Girls live dogs.

Again, the type of verb is not overtly
marked in the input, and so the class (5a) Dog who boys feed sees girl.
membership needs to be inferred at the
same time as the cooccurrence facts are
learned.

(5b) *Dog who boys feeds see girl.

(c) Interactions with relative clauses

Both the agreement and the verb ar-
gument facts are complicated in relative (d)Recursion
clauses. While direct objects normally fol- The grammar permits recursion
low the verb in simple sentences, some rela- through the presence of relative clause
tive clauses have ýh direct object as the (which expand to noun phrases which may in-
head of the clause, in which case the net- troduce yet other relative clauses, etc.). This
work must learn to recognize that the direct leads to sentences such as (6) in which the
object has already been filled (even though grammatical phenomena noted in (a-c) may
it occurs before the verb). T1hus, the normal be extended over a considerable distance.
pattern in simple sentences (3a-d) appears
also in (4a), but contrasts with (4b), (6) Boys who girls who dogs chase see hear.

(4a) Dog who chases cat sees girl.
S~(e) Viable sentences

One of the literals inserted by the grammar is

-10-
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"which occurs at the end of sentences. The training data were generated

This end-of-sentence marker can of course from the phrase structure grammar given in
potentially occur anywhere in a string where Table 1. At any given point during training,
a sentence is viable (in the sense that it is the training set consisted of 10,000 sentenc-
grammatically well-formed and may at that es which were presented to the network 5
point be terminated). Thus in sentence (7), times. (As before, sentences were concate-
the arrows indicate positions where a " nated so that the input stream proceeded
might legally occur. smoothly without breaks between sentenc-

es.) However, the comrosition of these

sentences varied over time. The following
(7) Boys see dogs who see girls who hear. training regimen was used in order to pro-

1 • vide for incremental training. The network
, , , was trained on 5 passes through each of the

following 4 corpora.
The data in (4-7) are examples of Phase 1: The first training set con-

the sorts of phenomena which linguists ar- sisted exclusively of simple sentences.
gue cannot be accounted for without ab- This was accomplished by eliminating all
stract representations; it is these represen- relative clauses. The result was a corpus of
tations rather than the surface strings on 34,605 words forming 10,000 sentences
which the correct grammatical generaliza- (each sentence includes the terminal ".").

tions are made.
Phase 2: The network was then ex-

A network of the form shown in Fig- posed to a second corpus of 10,000 sentenc-
ure wastraned n te prdicion ask es which consisted of 25% complex sentenc-

(layers are shown as rectangles; numbers es and 75%sis entences5(complex sen-
indiatethenumer f ndesin achlayr). es and 75% simple sentences (complex sen-

indicate the number of nodes in each layer). tences were obtained by permitting relative

clauses). Mean sentence length was 3.92
(minimum 3 words, maximum 13 words).

26 1 OUTPUT Phase 3: The third corpus increased
the percentage of complex sentences to
50%, with mean sentence length of 4.38

10 (minimum: 3 words, maximum: 13 words).

Phase 4: The fourth consisted of

10,000 sentences, 75% complex, 25% sim-

70 HIDDEN ple. Mean sentence length was 6.02

.1 ~., (minimum: 3 words, maximum: 16 words).

This staged learning strategy was
_ _developed in response to results of earlier

10 701 pilot work. In this work, it was found that
_A CONTEXT the network was unable to learn the task

26 when given the full range of complex data

INPUT from the beginning of training. However,
when the network was permitted to focus on
the simpler data first, it was able to learn

Figure 3 the task quickly and then move on success-
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fully to more complex patterns. The impor- that the next word may be the relative pro-
tant aspect to this was that the earlier train- noun who. Conversely, when the input is
ing constrained later learning in a useful the word boys, the expectation is that a

way; the early training forced the network verb in the plural will follow, or else the rela-
to focus' on canonical , ersions of the prob- tive pronoun. Similar expectations hold for

lems which apparently ;rep.ed a good basis the other nouns in the lexicon.
for then solving the more difficult forms of
the same problems.

Results s boy ...

At the conclusion of the fourth phase tE "

of training, the weights were frozen at their

final values and network performance was

tested on a novel set of data, generated in
the same way as the last training corpus. VIN (a)

The technique described in the previous sim- M
ulation was used; context-dependent likeli- N

hood vectors were generated for each word

in every sentences. These vectors repre-
sented the empirically derived probabilities 0 .o 6.4 ds 0.5

of occurrence for all possible predictions, x,ým 0
given the sentence context up to that point.
The rms error of network predictions, com-
pared against the likelihood vectors, was boys ...
0.177 (sd: 0.463); the mean cosine of the b
angle between the vectors was 0.852 ,
(sd: 0.259). Although this performance is UN

not as good as in the previous simulation, it %M

is still quite good. And the task is obvious- Iff
ly much more difficult. w (b)

These gross measures of perfor- w
mance however do not tell us how well the FN

network has done in each of the specific e
problem areas posed by the task. Let us

look at each area in turn. 0o 62 6.4 6r. 6.5 1'o

(a) A greement in simle sentences
Agreement in simple sentences is Figure 4

(a) Graph of network predictions following presentaon

shown in Figures 4a and 4b. of the word boy. Predicbins are shown as activations

The network's predictions following for words grouped by category. S stands for end-of-
sentence (*.'); W stands for who; N and V represent

the word boy are that either a singular verb nouns and verbs; 1 and 2 indicates singular or plura;

will follow (words in all three singular verb and type of verb is indicated by N, R, 0 (direct object
not possible, required, or optional). (b) Graph of

categories are activated, since it has no ba- network predctions fofowing presetation of the word

sis for predicting the type of verb), or else boys.
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nally, the verb chases requires a direct ob-

(b) _Verb argument structure in simple ject, and the network learns to expect a
sentences noun following this and other verbs in the

Figure 5 shows network predictions same class.

following an initial noun and then a verb
from each of the three different verb types.

When the verb is lives, the net- (c) Interactions with relative clauses
work's expectation is that the following The examples so far have all in-
item will be "." (which is in fact the only volved simple sentences. The agreement

successor permitted by the grammar in this and verb argument facts are more complicat-
context). The verb sees, on the other ed in complex sentences. Figure 6 shows
hand, may either be followed by a ".", or op- the network predictions for each word in the
tionally by a direct object (which may be a sentence boys who mary chases feed
singular or plural noun, or proper noun). Fi- cats. If the network were generalizing the

pattern for agreement found in the simple
sentences, we might expect the network to
predict a singular verb following ...mary

boy lives ... chases... (insofar as it predicts a verb in
-/ this position at all; conversely, it might be

confused by the pattern Ni N2 VI). But in
fact, the prediction (6d) is correctly that the

S4next verb should be in the singular in order
n to agree with the first noun. In so doing, it
"4" has found some mechanism for representing

the long-distance dependency between the
0.0 6.2 0.,4 0.6 6.8 1.0 main clause noun and main clause verb, de-

vt, , r13

boy sees ... spite the presence of an intervening noun

_S _ _ •.,NrI and verb (with their own agreement rela-
,, tions) in the relative clause.

,•R Note that this sentence also illus-

%V4 trates the sensitivity to an interaction be-
"VIR tween verb argument structure and relative

" 4clause structure. The verb chases takes
an obligatory direct object. In simple sen-

o.0 02 6.4 0.6 06 1.0 tences the direct object follows the verb im-
0,-= a mediately; this is also true in many complex

boy chases ... sentences (e.g., boys who chase mary

feed cats). In the sentence displayed,
however, the direct object (boys) is the
head of the relative clause and appears be-

fore the verb. This requires that the net-
work learn (a) there are items which func-

"4"
tion as nouns, verbs, etc..; (b) which items

0.0 0.2 CA 0.,0. 6 L.o

Figure 5
-13-
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fall into which classes; (c) there are sub-
classes of verbs which have different cooc-
currence relations with nouns, correspond- boys who mary
ing to verb-direct object restrictions; (d)
which verbs fall into which classes; and (e) (C)

when to expect that the direct object will fol-
low the verb, and when to know that it has
already appeared. The network appears to
have learned this, because in panel (d) we

see that it expects that chases will be fol- -

lowed by a verb (the main clause verb, in
this case) rather than a noun.

An even subtler point is demonstrat-
ed in (6c). The appearance of boys fol- boys who mary chases
lowed by a relative clause containing a dif-
ferent subject (who Mary...) primes the
network to expect that the verb which fol-

(d)

Cl"-r o 6.0 6.2 6.4 6,s 61g .0

Figure 6 0.0 02 0An OB 2

S boys ... 5 boys who mary chases feed ...

"4(a) (e)

vvi

0.0 62 6.-$ 6S 6.8 . . d.2 6.A dJ, 6.8 i.0

S boys who ... boys who mary chases feed cats.

,CR (b) Mf)

vvii
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lows must be of the class that requires a di- evoked at the hidden unit layer as a network
rect object, precisely because a direct object processes a given sentence.
filler has already appeared. In other words, Phase-state portraits of this sort are
the network correctly responds to the pres- commonly limited to displaying not more
ence of a filler (boys) not only by knowing than a few state variables at once, simply
where to expect a gap (following chases), because movement in more than three di-
it also learns that when this filler corre- mensions is difficult to graph. The hidden
sponds to the object position in the relative unit activation patterns in the current simu-
clause, C verb is required which has the ap- lation take place over 70 variables. These
propriate argument structure, patterns are distributed, in the sense that

none of the hidden units alone provides use-

ful information; the information instead lies

Network analysis along hyperplanes which cut across multiple
units.

The natural question to ask at this

point is how the network has learned to ac- However, it is possible to identify
complish the task. It was initially assumed these hyperplanes using principle compo-
that success on this task would constitute nent analysis. This involved passing thing
prima facie evidence for the existence of in- training set through the trained network

temal representations which possessed ab- (with weights frozen) and saving the hidden
stract structure. That is, it seemed reason- unit pattern for produced in response to each

able to believe that in order to handle agree- new input. The covariance matrix of the set
ment and argument structure facts in the of hidden unit vectors is calculated, and then

presence of relative clauses, the network the eigenvectors for the covariance matrix
would be required to develop representa- are found. The eigenvectors are ordered by

tions which reflected constituent structure, the magnitude of their eigenvalues, and are

argument structure, grammatical category, used as the new basis for describing the
grammatical relations, and number, original hidden unit vectors. This new set of

Having achieved success on the dimensions has the effect of giving a some-

task, we now would like to test this as- what more localized description to the hid-

sumption. In the previous simulation, hier- den unit patterns, because the new dimen-

archical clustering was used to reveal the sions now correspond to the location of

use of spatial organization at the hidden unit meaningful activity (defined in terms of vari-

level for categorization purposes. However, ance) in the hyperspace. Furthermore,
since the dimensions are ordered in terms of

the clustering technique makes it difficult to
see patterns which exist over time. Some variance accounted for, we can now look at

states may have significance not simply in phase state portraits of selected dimen-

terms of their similarity to other states, but sions, starting with those with largest

with regard to the ways in which they con- eigenvalues.

strain movement into subsequent state
space (recall the examples in (1)). Because A
clustering ignores the temporal information,
it hides this information. What would be The sentences in (8) were presented
more useful would be to look at the trajecto- to the network, and the hidden unit patterns
ries through state space over time which captured after each word was processed in
correspond to the internal representations sequence.

-15-
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(8a) boys hear boys. paths are similar and diverge only during the
first word, indicating the difference in the

(8b) boy hears boys. number of the initial noun. The difference is

(8c) boy who boys chase chases boy. slight and is eliminated after the main (i.e.,

(8d) boys who boys chase chase boy. second chase) verb has been input. This is

(These sentences were chosen to minimize apparently because, for these two sentenc-

differences due to lexical content and to es (and for the grammar), number informa-
non does not have any relevance for this

make it possible to focus on differences to task oe thave as beenceived.

grammatical structure. (8a) and (8b) were

contained in the training data; (8c) and (8d) It is not difficult to imagine sentenc-
were novel and had never been presented to es in which number information may have to
the network during learning.) be retained over an intervening constituent;

By examining the trajectories sentences (8c) and (8d) are such exam-

through state space along various dimen- ples. In both these sentences there is an

sions, it was apparent that the second prin- identical relative clause which follows the

ciple component played an important role in initial noun (which differs with regard to
marking number of the main clause subject. number in the two sentences). This materi-Figure 7 shows the trajectories for ( .a) and al, who boys chase, is irrelevant as far as(8b); the trajectories are overlaid so that the agreement requirements for the mainthe differences are more readily seen, The clause verb. The trajectories through statespace for these two sentences have been

overlaid and are shown in Figure 8; as can
be seen, the differences in the two trajecto-

ries are maintained until the main clause

OV

a-* • -J -1 U

Figure 7
Trajectories through state space for sentences (8a) and
(8b). Each point marks the position along the second
principle component of hidden unit space, after the indi- _ - U- - ,
cated word has been input. Magnitude of the second
principle component is measured along the ordinate; time Figure 8
(Le., order of word in sentence) is measured along the Trajectories through state space for sentences (8c)
abscissa. In this and subsequent graphs the sentence- and (Sd).
final word is marked with a ]S.
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verb is reached, at which point the states appear in the upper right portion of the
converge. space, and object nouns appear below them.

Verb argument structure (Principal component 4, not shown here, en-
codes the distinction between verbs and

The representation of verb argument nouns, collapsing across case.) Verbs are

structure was examined by probing with differentiated with regard to their argument
sentences containing instances of the three structure. Chases requires a direct object,
different classes of verbs. Sample sentenc- sees takes an optional direct object, and
es are shown in (9). walks precludes an object. The difference

(9a) boy walks. is reflected in a systematic displacement in
the plane of principal components 1 and 3.(9b) boy sees boy. Rltv lue

Relative clauses(9c) boy chases boy. The presence of relative clauses in-
The first of these contains a verb which may troduces a complication into the grammar, in
not take a direct object; the second takes an that the representations of number and verb
option direct object; and the third requires a argument structure must be clause-specific.
direct object. The movement through state It would be useful for the network to have
space as these three sentences are pro- some way to represent the constituent
cessed are shown in Figure 9. structure of sentences.

This figure illustrates how the net- The trained network was given the
work encodes several aspects of grammati- following sentences.

cal structure. Nouns are distinguished by
role; subject nouns for all three sentences (l0a) boy chases boy.

(10b) boy chases boy who chases boy.

(10c) boy who chases boy chases boy.

(10d) boy chases boy who chases boy who
chases boy.

The first sentence is simple; the other three
are instances of embedded sentences. Sen-

tencel0a was contained in the training data;
sentences 10c, 10d, and l0e were novel and

IhelS had not been presented to the network dur-
ing the learning phase.

The trajectories through state space

for these four sentences (principal compo-
nents 1 and 11) are shown in Figure 10.

Panel (10a) shows the basic pattern associ-

ated with what is in fact the matrix sentenc-

Figure 9 es for all four sentences. Comparison of this

Trajectories through state space for sentences (9a), figure with panels (10b) and (10c) shows

(9b), and (9c). Principal component 1 is plotted along the that the trajectory for the matrix sentence
abscissa; principal component 3 is plotted along the appears to follow the same for, the matrix
ordinate, subject noun is in the lower left region of

state space, the matrix verb appears above
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KJLXN -4 -X- Z b-w- I* I- LKI -Z X -X-I d

Figure 10

Movement through state space for sentences (1Oa-d). Principal component 1 is displayed along the
abscissa; principal component 11 is displayed along the ordinate
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it and to the left, and the matrix object noun relevant for the task (i.e., does not affect
is near the upper middle region. (Recall that agreement or verb argument structure in any
we are looking at only 2 of the 70 dimen- way).
sions; along other dimensions the noun/verb Figure 10d is interesting in another
distinction is preserved categorically.) The respect. Given the nature of the prediction
relative clause appears involve a replication task, it is actually not necessary for the net-

of this basic pattern, but displaced toward work to carry forward any information from
the left and moved slightly downward, rela- prior clauses. It would be sufficient for the
tive to the matrix constituents. Moreover, network to represent each successive rela-
the exact position of the relative clause ele- tive clause as an iteration of the previous
ments indicates which of the matrix nouns pattern. Yet the two relative clauses are
are modified Thus, the relative clause modi- differentiated. Similarly, Servan-Schreiber,
fying the subject noun is closer to it, and the Cleeremans, & McClelland (1988) found
relative clause modifying the object noun are that when a simple recurrent network was
closer to it. This trajectory pattern was taught to predict inputs that had been gener-
found for all sentences with the same gram- ated by a finite state automaton, the net-
matical form; the pattern is thus systematic. work developed internal representations

Figure (10d) shows what happens which corresponded to the FSA states;
when there are multiple levels of embed- however, it also redundantly made finer-
ding. Successive embeddings are repre- grained distinctions which encoded the path
sented in a manner which is similar to the by which the state had been achieved, even
way that the first embedded clause is distin- though this information was not used for the
guished from the main clause; the basic pat- task. It thus seems to be a property of
ter ,for the clause is replicated in region of these networks that while they are able to
state space which is displaced from the ma- encode state in a way which minimizes con-
trix material. This displacement provides a text as far as behavior is concerned, their
systematic way for the network to encode nonlinear nature allows them to remain sen-

the depth of embedding in the current state. sitive to context at the level of internal rep-
However, the reliability of the encoding is resentation.
limited by the precision with which states
are represented, which in turn depends on
factors such as the number of hidden units Part Ih Discussion
and the precision of the numerical values. In
the current simulation, the representation
degraded after about three levels of embed- The basic question addressed in this
ding. The consequences of this degradation paper is whether or not connectionist mod-
on performance (in the prediction task) are els are capable of complex representations
different for different types of sentences. which possess internal structure and which
Sentences involving center embedding (e.g., are productively estensible. This question
8c and 8d), in which the level of embedding is of particularly of interest with regards to a
is crucial for maintaining correct agreement, more general issue: How useful is the con-
are more adversely affected than sentences nectionist paradigm as a framework for cog-
involving so-called tail-recursion (e.g., nitive models? In this context, the nature
10d). In these latter sentences the syntac- of representations interacts with a number
tic structures in principle involve recursion, of other closely related issues. So in order
but in practice the level of embedding is not to understand the significance of the present
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results, it may be useful first to consider plicitness does not belong to data structures
briefly two of these other issues. The first alone. One must also take into account the
is the status of rules (whether they exist, nature of the processing system involved,
whether they are explicit or implicit); the since information in the same form may be
second is the notion of computational power easily accessible in one processing system
(whether it is sufficient, whether it is appro- and inaccessible in another.
priate). IUnfortunately, our understanding of

It is sometimes suggested that con- the information processing capacity of neural
nectionist models differ from Classical mood- networks is quite preliminary. There is a

els in that the latter rely on rules whereas stron t e in pr alyzingr such e r ks
conectonit mdel ar tyicaly ot ule strong tendency in analyzing such networks

connectionist models are typically not rule to view them through traditional lenses.

systems. Although at first glance this ap- We suppose that if information is not con-

pears to be a reasonable distinction, it is not tained in the same form as more familiar

actually clear that the distinction gets us computational systems, that information is
very f. somehow buried, inaccessible, and implicit.

The basic problem is that it is not ob- For instance, a network may successfully
vious what is meant by a rule. In the most learn some complicated mapping - say,
general sense, a rule is a mapping which from text to pronunciation (Sejnowski &
takes an input and yields an output. Clear- Rosenberg, 1987 - but on inspecting the re-
ly, since many (although not all) neural net- sulting network, it is not immediately obvi-
works function as input/output systems in ous how to explain how the mapping works
which the bulk of the machinery implements or even to characterize what the mapping is

some transformation, it is difficult to see in any precise way. In such cases, it is
how they could not be thought of as rule- tempting to say that the network has
systems. learned an implicit set of rules. But what

But perhaps what is meant is that we really mean is just that the mapping is

the form of the rules differs in Classical "complicated", "difficult to formulate", or

models and connectionist networks? One "unknown". In fact, this may be a descrip-

suggestion has been that rules are stated tion of our own failure to understand the

explicitly in the former, whereas they ae mechanism rather than a description of theexmechanismiitself.oWhatishneedsdtare new

only implicit in networks. This is a slippery mechanism itself. What is needed are new

issue, and there is an unfortunate ambiguity techniques for network analysis, such as the

in what is meant by implicit or explicit. principal component analysis used in the
present work, contribution analysis (Sanger,

One sense of explicit is that a rule is 1989), weight matrix decomposition
physically present in the system in its form (McMillan & Smolensky, 1988), or skele-
as a rule; and furthermore, that that physical tonization (Mozer & Smolensky, 1989).
presence is important to the correct function-
ing of the system. However, Kirsh (1989) If successful, these analyses of con-
points out that our intuitions as to what nectionist networks may provide us with a
counts as physical presence are highly unre- new vocabulary for understanding informa-
liable and sometimes contradictory. What tion processing. We may learn new ways
seems to really be at stake is the speed in which information can be explicit or implic-
with which information can be made avail- it, and we may learn new notations for ex-
able. If this is true, and Kirsh argues the pressing the rules that underlie cognition.
point persuasively, then the quality of ex- The notation of these new connectionist
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rules may look very different than that used functions which can be mapped; it is an im-
in, for example, production rules. And we portant empirical question whether these
may expect that the notation will not lend it- constraints explain the specific form of hu-
self to describing all types of regularity with man cognition.
equal facility. It is in this context that the question

Thus, the potential important differ- of the appropriateness of the computational
ence between connectionist models and power becomes interesting. Given limited
Classical models will not be in whether one resources, it is relevant to ask whether the
or the other systems contains rules, or kinds of operations and representations
whether one system encodes information which are naturally made available are
explicitly and the other encodes it implicitly; those which are likely to figure in human
the difference will lie in the nature of the cognition. If one has a theory of cognition
rules, and in what kinds of information count which requires sorting of randomly ordered
as explicitly present. information, e.g., word frequency lists in

This potential difference brings us to Forster's (1979) model of lexical access,
the second issue: computational power. then it becomes extremely important that

The issue divides into two considerations. the computational framework provide effi-

Do connectionist models provide sufficient cient support for the sort operation. On the

computational power (to account for cogni- other hand, if one believes that information

tive phenomena); and do they provide the is stored associatively, then the ability of

appropriate sort of computational power? the system to do a fast sort is irrelevant.

The first question can be answered Instead, it is important that the model pro-

affirmatively with an important qualification. vide for associative storage and retrieval1 .

It can be shown that multilayer feedforward Of course, things work in both directions.

networks with as few as one hidden layer, The availability of certain types of opera-

with no squashing at the output and an arbi- tions may encourage one to build models of

trary nonlinear activation function at the hid- a type which are impractical in other frame-

den layer, are capable of arbitrarily accurate works. And the need to work with an iap-

approximation of arbitrary mappings. They propriate computational mechanism may

thus belong to a class of universal approxi- blind us from seeing things as they really

mators (Hornik, Stinchcombe, & White, in are.

press; Stinchcombe & White, 1989). Put * * * *

simplistically, they are effectively Turing Let us return now to the current
machines. In principle, then, such networks work. I would like to discuss first some of
are capable of implementing any function the ways in which the work is preliminary
that the Classical system can implement. and limited. Then I will discuss what I see

The important qualification to the as the positive contributions of the work.
above result is that sufficiently many hidden Finally, I would like to relate this work to
units be provided. What is not currently other connectionist research and to the gen-
known is effect of limited resources on com- eral question raised at the outset of this dis-
putational power. Since human cognition is cussion: How viable are connectionist mod-
carried out in a system with relatively fixed els for understanding cognition?
and limited resources, this question is of
paramount interest. These limitations pro- t This example was suggested to me by Dan
vide critical constraints on the nature of the Norman.
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The results are preliminary in a num- writers (e.g., Fodor & Pylyshyn, 1988) have
ber of ways. First, one can imagine a num- expressed concern regarding the ability of
ber of additional tests that could be per- connectionist representations to encode
formed to test the representational capacity compositional structure and to provide for

of the simple recurrent network. The memo- open-ended generative capacity. The net-
ry capacity remains unprobed (but works used in the simulations reported here
see Servan-Schreiber, Cleeremans, & have two important properties which are
McClelland, 1988). Generalization has relevant to these concerns.
been tested in a limited way (many of the First, the networks make possible
tests involved novels sentences), but one the development of internal representations
would like to know whether the network can winferentially extend what it knows about the which are distributed (Hinton, 1988; Hinton,
inferentypes ofxnund phrase ekncou e i the McClelland, Rumelhart, 1986). While not
types of noun phrases encountered in the unbounded, distributed representations are
second simulation (simple nouns and rela- less rigidly coupled with resources than lo-
tive clauses) to noun phrases with different calist representations, in which there is a
structures. strict mapping between concept and individ-

Second, while it is true that the ual nodes.. There is also greater flexibility
agreement and verb argument structure in determining the dimensions of importance
facts contained in the present grammar are for the model.
important and challenging., we have barely Second, the networks studied here
scratched the surface in terms of the rich- build in a sensitivty to context. Ite impor-ness of linguistic phenomena which charac- bidi estvyt otx.Teipr
terize natural languages. tant result of the current work is to suggest

that the sensitivity to context which is char-
Third, natural languages not only acteristic of many connectionist models, and

contain far more complexity with regard to which is built-in to the architecture of the
their syntactic structure, they also have a networks used here, does not preclude the
semantic aspect. Indeed, Langacker (1987) ability to capture generalizations which are
and others have argued persuasively that it at a high level of abstraction. Nor is this a
is not fruitful to consider syntax and se- paradox. Sensitivity to context is precisely
mantics as autonomous aspects of lan- the mechanism which underlies the ability to
guage. Rather, the form and meaning of lan- abstract and generalize. The fact that the
guage are closely entwined. Although there networks here exhibited behavior which
may be things which can be learned by was highly regular was not because they
studying artificial languages such as the learned to be context-insensitive. Rather,
present one which are purely syntactic, nat- they learned to respond to contexts which
ural language processing is crucially an at- are more abstractly defined. Recall that
tempt to retrieve meaning from linguistic even when these networks' behavior seems
form. The present work does not address to ignore context (e.g., Figure 10d; and
this issue at all, but there are other PDP Servan-Schreiber, Cleeremans, &
models which have made progress on this McClelland, 1988), the internal representa-
problem (e.g., St. John & McClelland, in tions reveal that contextual information is
press). still retained.

What the current work does contrib- This behavior is in striking contrast
ute is some notion of the representational to that of most Classical models. Represen-
capacity of connectionist models. Various tations in Classical models are naturally
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context-insensitive. This insensitivity ing mental structures is not unlike the pro-
makes it possible to express generaliza- cess of building any other physical structure,
tions which are fully regular at the highest such as bridges or houses. Words (and

possible level of representation (e.g., purely whatever other representational elements
syntactic), but they require additional appa- are involved) play the role of building
ratus to account for regularities which reflect blocks. As is true of bridges and houses,
the interaction of meaning with form and the building blocks are themselves unaffect-
which are more contextually defined. Con- ed by the process of construction.
nectionist models on the other hand begin A different image is suggested in
the task of abstraction at the other end of the approach taken here. As words are pro-
the continuum. They emphasize the impor- cessed there is no separate stage of lexical
tance of context and the interaction of form reteval There are no representations of
with meaning. As the current work demon- words in isolation. The representations of
strates, these characteristics lead quite nat- words (the internal states following input of
urally to generalizations at high level of ab- a word) always reflect the input taken to-
straction where appropriate, but the behav- gether with the prior state. In this scenar-
ior remains ever-rooted in representations io, words are not building blocks as much as
which are contextually grounded. The simu- they are cues which guide the network

lations reported here do not capitalize on through different grammatical states.
subtle distinctions in context, but there are Words are distinct from each other by virtue
ample demonstrations of models which do or are distint f romea ther t
(e.g., Kawamoto, 1988; McClelland & of having different causal properties.
Kawamoto, 1986; Miikkulainen & Dyer, A metaphor which captures some of
1989; St. John & McClelland, in press). the characteristics of this approach is the

combination lock. In this metaphor, the role
Firrentapproally sh s sto pontoul tat te of words is analogous to the role played by

current approach suggests a novel way of tenmesi h obnto.Tenm

thinking about how mental representations bers have causal properties; they advance

are constructed from language input, the lock into different states. The effect of a

Conventional wisdom holds that as number is dependent on its context. En-
words are heard, listeners retrieve lexical tered in the correct sequence, the numbers
representations. Although these represen- move the lock into an open state. The open
tations may indicate the contexts in which state may be said to be functionally compo-
the words acceptably occur, the represen- sitional (van Gelder, in press) in the sense
tations are themselves context-free. They that it reflects a particular sequence of
exist in some canonical form which is con- events. The numbers are "present" insofar
stant across all occurrences. These lexical as they are responsible for the final state,
forms are then used to assist in constructing but not because they are still physically
a complex representation into which the present.
forms are inserted. One can imagine that The limitation of the combination lock
when complete, the result is an elaborate is of course that there is only one correct
structure in which not only are the words combination. The networks studied here
visible, but which also depicts the abstract are more complex. The causal properties of
grammatical structure which binds those the words are highly structure-dependent
words. and the networks allow many "open" (i.e.,

In this account, the process of build- grammatical) states.
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This view of language comprehen-

sion emphasizes the functional importance

of representations and is similar in spirit to
the approach described in Bates & REFERENCES
MacWhinney, 1982; McClelland, St. John, &

Taraban, 1989; and many others who have Bates, E., & MacWhinney, B. (1982).

stressed the functional nature of language. Functionalist approaches to grammar. In E.

Representations of language are construct- Wanner, & L. Gleitman (Eds.), Language
acquisition: The state of the art. New York.

ed in order to accomplish some behavior Cambridge University Press.
(where, obviously, that behavior may range Chafe, W. (1970). Meaning and the Structure of

from day-dreaming to verbal duels, and Language. Chicago: University of Chicago

from to asking directions to composing poet- Press.

ry). The representations are not proposi- Dolan, C., & Dyer, M.G. (1987). Symbolic
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