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We demonstrate in this note that the occurrence of spontaneous sym- 

metry breaking[11[21 - depends on the representation chosen for the physical 

states. Thus, it may happen that spontaneous symmetry breaking occurs in 

one representation but does not show up in another, although both repre- 

sentations are physically equivalent. 

A transformation U(a) depending on a continuous parameter CX is a 

spontaneously broken symmetry if it leaves the action integral invariant 

(up to boundary terms) but changes the ground state. r31 It is assumed that 

the U(G) constitute a one-parameter group. We now adopt the symmetry 

breaking conditionL3' 

& < 0 ( U+ (a) A U (a) ; 0 > f 0 

A is an operator and 0 > is the ground state (A may I 

operators properly smeared. For more details see [3 

(1) 

be a product of field 

). It can be shown 

that whenever the left hand side of (1) vanishes identically for any A, 

the transformation 

A -+A (a) =u+ (a) A U (a) (2) 

may be achieved by a symmetry operation, namely by a unitary transformation 

in the separable Hilbert space of physical states which conserves the 
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I 

ground state r31 (For a proof in axiomatic field theory see [4]). In cases 

where (1) is utilized, the transformation (2) may not be unitarily imple- 

mentable in a separable space. We then regard it as a unitary trans- 

formation in a non-separable Hilbert space. 
r31 

The infinitesimal generator Q of the transformation (2) is identified 

i s A (a> = [Q, A (@I _ 

From this and (1) we get 

< 0 ( [Q, A @>I 1 0 > f 0 

(3) 

(4) 

which makes contact with 
r11PlW 

the frequently used symmetry breaking condition. 

Consider now Haag's treatment c71 of the BCS model PI for a super- 

conductor. Letfa>-U (a)lO>b e the translationally invariant states 

of well defined phaser7', namely 

< Q * (z) $ (0) ia > = cpo (z> e I 
2iCX 

(5) 

where $ (z) is a Fermi field (field operators in this example are taken 

at time z = 0 0 and we suppress the spin indices) and (p,(z) is a non-trivial 

function. Hence 

< a ; IIN, JI (z) $ (0)] ; CI > = - 2 cpo (z) e2ia 

N is the generator of phase transformations, 

N = d3 x ($+ (x) q (x) - n) 

(6) 

(7). 
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n= 0 > being the particle density in the ground state. 

Eq. (6) is the symmetry breaking condition for the superconductor case, 

and may be used in proofs on the Goldstone theorem. [II [*I 

However, we may choose another representation for the physical states, 

that of "sharp particle number". [71 As the ground state we may take the 
8 

state I 
R >, for which 

(8) 

The right hand side is obviously independent of 0~ Now: in this case 

d 
-gjj < ~2 \U+ (QI) A U (a) / R > = 0 

for any A. It thus follows that in the representation of 'sharp particle 

numberlt no symmetry breaking is realized, and the phase transformations 

constitute an unbroken symmetry. This is not surprising, since breakdown 

of phase symmetry is not expected to appear in a representation where the 

"particle number' is diagonal. 

However, since all representations should lead to the same physical 

consequences, it follows that if the symmetry breaking condition (6) 

leads to the appearance of massless excitations [91 , such excitations are 

present also in the case of the t(sharp particle number' representation. 

It is thus convenient to find an analogue of condition (6) for the latter 

case. Such may be achieved by use of the translationally invariant state 
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I .Q2 >, defined by [73 

) 4f+ (x+z )d3x .Q> 
I (10) 

ifi > is orthogonal to!R >, 
I 2 I 

and may be equally acceptable as a ground 

state. The representation of 'sharp particle number' is a reducible 

representation of the operator algebra. [71 Here 

< Q 1 [N, ‘k(x) $(x+z)l j R* > = - 2 < R j $(O) q(z) ‘i R2 > # 0 O-1) 

Eq. (11) now replaces the usual symmetry breaking condition (6) in proofs 

of the Goldstone 
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ref. [33. Let us mention here the condition [N,H] = 0, H the 

Hamiltonian. This does not necessarily follow from the invariance 

of H under finite phase transformations. 


