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Abstract. We determine the representation dimension of exterior algebras.
This provides the first known examples of representation dimension > 3. We
deduce that the Loewy length of the group algebra over F2 of a finite group is
strictly bounded below by the 2-rank of the group (a conjecture of Benson).
A key tool is the use of the concept of dimension of a triangulated category.

1. Introduction

In his 1971 Queen Mary College notes [Au], Auslander introduced an
invariant of finite dimensional algebras, the representation dimension. It
was meant to measure how far an algebra is to having only finitely many
classes of indecomposable modules. Whereas many upper bounds have
been found for the representation dimension, lower bounds were missing.
In particular, it wasn’t known whether the representation dimension could
be greater than 3. A proof that all algebras have representation dimension at
most 3 would have led for example to a solution of the finitistic dimension
conjecture [IgTo].

We prove here that the representation dimension of the exterior algebra
of a non-zero finite dimensional vector space is one plus the dimension
of that vector space – in particular, the representation dimension can be
arbitrarily large. Thus, the representation dimension is a useful invariant of
finite dimensional algebras of infinite representation type, confirming the
hope of Auslander. The case of algebras with infinite global dimension is
particularly interesting.

As a consequence of our results, we prove the characteristic p = 2 case
of a conjecture of Benson asserting that the p-rank of a finite group is less
than the Loewy length of its group algebra over a field of characteristic p.

The main idea is to use a recently defined notion of dimension for
a triangulated category [Rou]. In Sect. 3, we show how this relates to the
representation dimension, when applied to the derived category or its stable
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quotient. The dimension of the derived category is related at the same time
to the Loewy length and to the global dimension.

In Sect. 4, we compute these dimensions for the exterior algebra of
a finite dimensional vector space, using a reduction to a commutative algebra
problem, via Koszul duality. We show that dim Λ(kn)− mod = n − 1 and
that the representation dimension of Λ(kn) is n + 1 (Theorem 4.1). This
enables us to settle the characteristic 2 case of a conjecture of Benson
(Theorem 4.11).

Preliminary results have been obtained and exposed at the conference
“Twenty years of tilting theory” in Fraueninsel in November 2002. I wish
to thank the organizers for giving me the opportunity to report on these
early results and the participants for many useful discussions, particularly
Thorsten Holm for introducing me to Auslander’s work.

2. Notations and terminology

Let C be an additive category. We denote by Kb(C) the homotopy category
of bounded complexes of objects of C. Given F a family of objects of C,
we denote by add(F ) the smallest full subcategory of C containing the
objects of F and closed under taking direct summands. We denote by C◦
the opposite category to C.

Let T be a triangulated category. A thick subcategory � of T is a full
triangulated subcategory closed under taking direct summands.

Let A be an algebra over a field k. We denote by A-mod the category of
finitely generated left A-modules and by A-proj the category of finitely gen-
erated projective A-modules. We denote by gldim A the global dimension
of A. We denote by A◦ the opposite algebra to A and we put Aen = A⊗k A◦.

Assume A has finite dimension over k. We denote by J(A) the Jacobson
radical of A and we denote by ll(A) the Loewy length of A, i.e., the minimal
integer r such that J(A)r = 0. We denote by Db(A) the derived category
of bounded complexes of finitely generated A-modules and we denote by
A-perf the thick subcategory of Db(A) of objects isomorphic to bounded
complexes of finitely generated projective A-modules.

3. Dimensions

3.1. Auslander’s representation dimension.

3.1.1. Let A be an abelian category.

Definition 3.1. The (Auslander) representation dimension repdim A is the
smallest integer i ≥ 2 such that there is an object M ∈ A with the property
that given any L ∈ A,

(a) there is an exact sequence

0 → M−i+2 → M−i+3 → · · · → M0 → L → 0
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with M j ∈ add(M) such that the sequence

0 → HomA(M, M−i+2) → HomA(M, M−i+3) → · · ·
→ HomA(M, M0) → HomA(M, L) → 0

is exact
(b) there is an exact sequence

0 → L → M′0 → M′1 → · · · → M′i−2 → 0

with M′ j ∈ add(M) such that the sequence

0 → HomA(M′i−2
, M) → · · · → HomA(M′1, M) → HomA(M′0, M)

→ HomA(L, M) → 0

is exact.

An object M that realizes the minimal i is called an Auslander generator.
Note that either condition (a) or (b) implies that gldim EndA(M) ≤ i,

and gldim EndA(M) = repdim A if M is an Auslander generator (cf.
e.g. [ErHoIySc, Lemma 2.1]). Note also that if condition (a) (resp. (b))
holds for every L in a subcategory � of A such that every object of A is
a direct summand of an object of � , then, it holds for every object of A.

Note that repdim A = 2 if and only if A has only finitely many iso-
morphism classes of indecomposable objects. Note also that repdim A =
repdim A◦.

3.1.2. Take A = A-mod, where A is a finite dimensional algebra over
a field. We write repdim(A) for repdim(A-mod).

Let M ∈ A and i ≥ 2. If M satisfies (a) of Definition 3.1, then it contains
a projective generator as a direct summand (take L = A). More generally,
the following are equivalent

• M satisfies (a) of Definition 3.1 and M contains an injective cogenerator
as a direct summand

• M satisfies (b) of Definition 3.1 and M contains a projective generator as
a direct summand

• M satisfies (a) and (b) of Definition 3.1.

So, the definition of representation dimension given here coincides with
Auslander’s original definition (cf [Au, §III.3] and [ErHoIySc, Lemma 2.1])
when A is not semi-simple. When A is semi-simple, Auslander assigns the
representation dimension 0 whereas we define it to be 2 here. Iyama has
shown [Iy] that the representation dimension of a finite dimensional algebra
is finite.

Various classes of algebras with representation dimension 3 have been
found: algebras with radical square zero [Au, §III.5, Proposition p. 56],
hereditary algebras [Au, §III.5, Proposition p. 58] and more generally stably
hereditary algebras [Xi, Theorem 3.5], special biserial algebras [ErHoIySc],
local algebras of quaternion type [Ho].
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3.1.3. One can weaken the requirements in the definition of the represen-
tation dimension as follows:

Definition 3.2. The weak representation dimension of A, denoted by
wrepdim(A), is the smallest integer i ≥ 2 such that there is an object
M ∈ A with the property that given any L ∈ A, there is a bounded complex
C = 0 → Cr → · · · → Cs → 0 of add(M) with

• L isomorphic to a direct summand of H0(C)
• Hd(C) = 0 for d �= 0 and
• s − r ≤ i − 2.

Note that wrepdim A = wrepdim A◦ and repdim A ≥ wrepdim A.
In order to obtain lower bounds for the representation dimension of

certain algebras, we will actually construct lower bounds for the weak
representation dimension.

Remark 3.3. One could also study intermediate versions, left (resp. right)
weak representation dimension, by requiring Cd = 0 for d > 0 (resp. d < 0)
in the definition.

Remark 3.4. Note that the representation dimension as well as the invariants
of Definition 3.2 are not invariant by derived equivalence (consider for
instance a derived equivalence between an algebra with finite representation
type and an algebra with infinite representation type, cf. for example [Ha,
§III.4.14]).

Remark 3.5. All the definitions given here for abelian categories make sense
for exact categories.

3.2. Dimension of a triangulated category.

3.2.1. We recall the definition of the dimension of a triangulated category,
following [Rou]. The notion of finite-dimensionality corresponds to Bondal-
Van den Bergh’s notion of strong finite generation [BoVdB], which was
introduced in order to obtain representability Theorems of Brown type.

Let T be a triangulated category. Let M ∈ T . Let us define inductively
a family of full additive subcategories of T .

We put 〈M〉1 = add({M[i]}i∈Z). For i ≥ 2, we define 〈M〉i as the full
subcategory of T whose objects are direct summands of objects L such that
there is a distinguished triangle M1 → L → M2 � with M1 ∈ 〈M〉1 and
M2 ∈ 〈M〉i−1. We write 〈M〉T ,i when there is a possible ambiguity on the
ambient triangulated category.

Definition 3.6. The dimension dim T of T is the smallest integer d ≥ 0
such that there is M ∈ T with T = 〈M〉d+1.

If T → T ′ is a triangulated functor such that every object of T ′ is
a direct summand of the image of an object of T , then dim T ′ ≤ dim T .
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3.2.2. Let k be a field and A be a finite dimensional k-algebra.
The dimensions of Db(A) and Db(A)/A-perf are related both to the

Loewy length and to the global dimension (none of these two are invariant
under derived equivalence, while the dimensions are preserved).

Proposition 3.7. We have the inequalities dim Db(A)/A-perf ≤ ll(A) − 1
and dim Db(A)/A-perf ≤ wrep(A) − 2. If k is perfect, then dim Db(A) ≤
inf(gldim A, repdim(A)).

Proof. Let n = wrepdim A. There is N ∈ A-mod with the property that
given L ∈ A-mod, there is a bounded complex C = 0 → Cr → · · · →
Cs → 0 of add(N) with Hi(C) = 0 for i �= 0, L is a direct sum-
mand of H0(C) and s − r ≤ n − 2. Then, L ∈ 〈N〉s−r+1. Every object
of Db(A)/A-perf is isomorphic to an object L[r] for some L ∈ A-mod
and r ∈ Z. Consequently, Db(A)/A-perf = 〈N〉n−1. We have also L ∈
〈A/JA〉ll(A), hence Db(A)/A-perf = 〈A/JA〉ll(A).

Let 0 → P−r → · · · → P0 → A → 0 be a minimal projective
resolution of A as an Aen-module. Then, r = gldim A, since ExtiAen(A,

Homk(T, S))
∼→ Exti

A(T, S) for S, T two simple A-modules (note that since
k is perfect, every simple Aen-module is isomorphic to a module of the form
Homk(T, S)). Given C ∈ Db(A), then Pi ⊗A C ∈ 〈A〉1 since Pi ∈ add(Aen),
so C ∈ 〈A〉r+1. We have shown that Db(A) = 〈A〉1+gldim A.

Let M be an Auslander generator for A-mod. Let C be a bounded
complex of objects of add(M). Let L ∈ A-mod and let D be a bounded
complex of add(M) together with a map f : D → L such that Hom•

A(M, f )
is a quasi-isomorphism between the complexes Hom•

A(M, D) and
Hom•

A(M, L) (in particular, f is a quasi-isomorphism). Then, Hom•
A(C, f ) :

Hom•
A(C, D) → Hom•

A(C, L) is a quasi-isomorphism, hence Hom(C, f ) :
HomKb(A)(C, D) → HomKb(A)(C, L) is an isomorphism.

It follows by induction that every bounded complex of A-mod is quasi-
isomorphic to a bounded complex of add(M), i.e., the canonical functor
Kb(add(M)) → Db(A) is essentially surjective. We have canonical equiv-
alences Kb(EndA(M)-proj)

∼→ Db(EndA(M)) and Kb(EndA(M)-proj)
∼→

Kb(add(M)). We know that dim Db(EndA(M)) ≤ gldim EndA(M). So,
dim Db(A) ≤ repdim(A). �
Remark 3.8. The proof of Proposition 3.7 shows that the assumption that
k is perfect can be weakened. If Z(A/JA) is a product of fields that are
separable extensions of k, then dim Db(A) ≤ gldim A.

3.3. Stable categories of self-injective algebras. Let k be a field. Let A
a self-injective finite dimensional k-algebra. Given M an A-module, we
denote by ΩM the kernel of a surjective map from a projective cover of M
to M and by Ω−1M the cokernel of an injective map from M to an injective
hull of M.

We denote by A− mod the stable category of A. This is the quotient
of the additive category A-mod by the additive subcategory A-proj. It has
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a triangulated category structure where the distinguished triangles come
from short exact sequences of modules and where the translation functor
is Ω−1. The canonical functor A-mod → Db(A-mod) induces an equiva-
lence of triangulated categories A− mod

∼→ Db(A-mod)/A-perf ([KeVo,
Example 2.3], [Ri, Theorem 2.1]).

Proposition 3.9. Let A be a non-semisimple self-injective k-algebra. Then,

ll(A) ≥ repdim A ≥ wrepdim A ≥ 2 + dim A− mod.

Proof. The first inequality is [Au, §III.5, Proposition p. 55] (use M =
A⊕ A/J(A)⊕ A/J(A)2 ⊕· · · ). Note that Auslander’s result only claims that
repdim A ≤ ll(A) + 1, but the proof actually shows the stronger inequality
(in the proof of the Theorem p. 45, the case m = n does not occur if C
has no projective indecomposable summand, for A is self-injective). The
second inequality is trivial (cf. Sect. 3.1.3). The last inequality is given by
Proposition 3.7. �

4. Exterior algebras

4.1. Dimension. The aim of Sect. 4.1 is the proof of the following theo-
rem, which gives the first known examples of algebras with representation
dimension > 3.

Theorem 4.1. Let n ≥ 1 be an integer. Then, dim Λ(kn) − mod =
repdim Λ(kn) − 2 = n − 1 and dim Db(Λ(kn)-mod) = n.

In Sect. 4.1.1, we give an elementary and triangulated category-free
proof of the bound repdim Λ(kn) ≥ 4 if n ≥ 3 and k is uncountable. This
gives a direct proof that repdim Λ(k3) = 4, via Proposition 3.9. Note that
Sect. 4.1.1 is not used for the proof of the general case, which requires the
more sophisticated Koszul duality equivalence.

4.1.1. Let A = Λ(V ) with V a finite dimensional vector space of di-
mension ≥ 3 over an uncountable field k. Given z ∈ P(V ), we put
X(z) = A/(Az) where we view z as a line in V .

Proposition 4.2. Let M, N ∈ A-mod. Let Y be a subset of P(V ) such that
for every y ∈ Y, there is an exact sequence

0 → M → N → X(y) → 0.

Then, Y is contained in a proper closed subvariety of P(V ).

Proof. We have a canonical isomorphism S(V ∗) ∼→ Ext∗A(k, k). Consider

an exact sequence 0 → M
fy−→ N → X(y) → 0. Let φy = Ext∗A(k, fy) :
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Ext∗A(k, M) → Ext∗A(k, N), a morphism between two graded finitely gen-
erated S(V ∗)-modules. We have an exact sequence

Ext∗−1
A (k, X(y)) → Ext∗A(k, M)

φy−→ Ext∗A(k, N) → Ext∗A(k, X(y)).

It follows that the supports of ker φy and coker φy are contained in the line y,
and the support of ker φy ⊕ coker φy is thus exactly y, since the support of
Ext∗A(k, X(y)) is y. The proposition follows now from Lemma 4.3 below. �
Lemma 4.3. Let M and N be two finitely generated graded S(V ∗)-modules.
Let Y be a subset of P(V ) such that for every y ∈ Y, there is φy : M → N
a graded morphism of S(V ∗)-modules with the property that the support of
ker φ ⊕ coker φy is y. Then, Y is contained in a proper closed subvariety
of P(V ).

Proof. Let Mtor be the torsion submodule of M (elements whose support is
distinct from V ). Replacing M and N by M/Mtor and N/Ntor , one can assume
that M and N are torsion-free and the maps φy are injective. Let now M0
(resp. N0) be a free graded sumodule of M (resp. N) such that M/M0 (resp.
N/N0) is a torsion module. There is a non-zero homogeneous Q ∈ S(V ∗)
such that QN ⊂ N0. Now, replacing φy : M → N by Qφy : M0 → N0 and
removing to Y its intersection with the union of Q = 0 and the support of
M/M0, we are reduced to the case where M and N are free and non-zero.
Consider a non-zero injective map φ : M → N with torsion cokernel. Then,
M and N have the same rank and the support of φ is the zero locus of det φ,
a hypersurface. We get a contradiction, since dim V ≥ 3. �
Corollary 4.4. Let M ∈ A-mod. Then, there is z ∈ P(V ) such that there is
no exact sequence 0 → M1 → M0 → X(z) → 0 with M0, M1 ∈ add(M).
In particular, repdim A ≥ 4.

Proof. There are only countably many M0 and M1’s (up to isomorphism).
For each of them, the X(z) that can resolved corresponding to points z
in a strict closed subvariety of P(V ) (Proposition 4.2). Since P(V ) is not
a countable union of strict closed subvarieties, the corollary follows. �

4.1.2. We need to consider derived categories of differential modules. The
theory of such derived categories mirrors that of the usual derived category
of complexes of modules (forget the grading). We state here the needed
constructions and results.

Let A be a k-algebra. A differential A-module is an (A ⊗k k[ε]/(ε2))-
module. We view a differential A-module as a pair (M, d) where M is an
A-module and d ∈ EndA(M) satisfying d2 = 0 is given by the action of ε.
The cohomology of a differential A-module is the A-module ker d/ im d.

The category of differential A-modules has the structure of an ex-
act category, where the exact sequences are those exact sequences of
(A ⊗k k[ε]/(ε2))-modules that split by restriction to A. This is a Frobe-
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nius category and its associated stable category is called the homotopy
category of differential A-modules.

A morphism of differential A-modules is a quasi-isomorphism if the
induced map on cohomology is an isomorphism. We now define the derived
category of differential A-modules, denoted by Ddiff(A), as the localization
of the homotopy category of differential A-modules in the class of quasi-
isomorphisms. These triangulated categories have a trivial shift functor.

We have a triangulated forgetful functor D(A) → Ddiff(A). Let X, Y
be two A-modules and i ≥ 0. Then, the canonical map ExtiA(X, Y )

∼→
HomD(A)(X, Y [i]) → HomDdiff(A)(X, Y ) is injective and we have an iso-
morphism

∏
n≥0 ExtnA(X, Y )

∼→ HomDdiff(A)(X, Y ).

4.1.3. A more general but less explicit treatment of the next two lemmas
is given in [Rou, Lemmas 7.12 and 7.13, Proposition 7.14].

Lemma 4.5. Let V be a finite dimensional vector space over k. Let A be
the localisation of the algebra k[V ] of polynomial functions on V at the
maximal ideal of functions vanishing at 0.

Then, the functor (A ⊗ k) ⊗Aen − : Aen-mod → A-mod induces a sur-
jective morphism Ext•Aen(A, A) → Ext•A(k, k). Furthermore, Ext•A(k, k) is
generated by Ext1

A(k, k) as an algebra.

Proof. Let I be the kernel of the multiplication map A ⊗ A → A. Then,
the canonical map HomAen(I, A) → Ext1Aen(A, A) induces an isomorphism
HomA(I/I 2, A)

∼→ Ext1Aen(A, A) (note that the left and right actions of A
on I/I 2 coincide). Furthermore, the canonical map Λ•

A HomA(I/I 2, A) →
Ext•Aen(A, A) is an isomorphism.

Letm be the maximal ideal of A. We have canonical isomorphisms V
∼→

HomA(m, k) → Ext1
A(k, k). This gives rise to an isomorphism Λ•

k V
∼→

Ext•A(k, k).
We have a canonical surjective map HomA(I/I 2, A) → V sending f to

V ∗ ξ �→ξ⊗1−1⊗ξ−−−−−−−→ I/I 2 f−→ A
can−→ k.

The functor (A⊗ A/m)⊗Aen − : Aen-mod → A-mod gives a morphism
Ext•Aen(A, A) → Ext•A(k, k) and we have a commutative diagram

Λ•
A HomA(I/I 2, A) �� ��

��

∼

Λ•
k V

��

∼

Ext•Aen(A, A) �� Ext•A(k, k) .

In particular, the canonical map Ext•Aen(A, A) → Ext•A(k, k) is surjective. �
Lemma 4.6. Let V be a finite dimensional vector space over k. Let A be
the localisation of the algebra k[V ] of polynomial functions on V at the
maximal ideal of functions vanishing at 0.
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Let d be the smallest integer such that k ∈ 〈A〉Ddiff(A),d. Then, d =
1 + dim V.

Proof. Since k has a projective resolution with 1 + dim V terms, it follows
that k ∈ 〈A〉Ddiff(A),1+dim V .

Let m = dim V . Let n be an integer with k ∈ 〈A〉Ddiff(A),n . We apply
now Lemma 4.5. Let ζ1, . . . , ζm ∈ Ext1

Aen(A, A) whose image in Ext1A(k, k)
is a base over k. The image of ζ1 · · · ζm in ExtmA(k, k) is not zero. One sees
by induction on r that ζ1 · · · ζr gives the 0 endomorphism of the identity
functor of 〈A〉Ddiff(A),r . It follows that n > m. �
Proof of Theorem 4.1. Let A = Λ(kn) and B = k[x1, . . . , xn]. Consider
the derived category of differential graded B-modules. Let T be its smallest
thick subcategory containing B and let � be the smallest thick subcategory
of T containing k. Koszul duality [Ke, §10.5, Lemma “The ‘exterior’ case”]
provides an equivalence

R Hom•(k,−) : Db(Λ(kn))
∼→ T .

Since the functor sends A to k, it restricts to an equivalence A-perf
∼→ �

and passing to quotients, it gives an equivalence A− mod
∼→ T /� .

Denote by F : T → T /� the quotient functor. Let M ∈ T such that
T /� = 〈F(M)〉T /� ,r+1. Up to isomorphism, we can assume M is finitely
generated and projective as a B-module. Let F be the sheaf over Pn−1

corresponding to the graded B-module M. The differential on M gives a map
d : F → F (1). Let G = ker d(1)/ im d, a coherent sheaf on Pn−1. Let x be
a closed point of Pn−1 such that Gx is a projective Ox-module. Then, there is
a projective Ox-module R such that ker dx = im dx ⊕ R. We have an exact
sequence 0 → R → Fx → Fx/R → 0 of differential Ox-modules. Since
Fx/R is acyclic, it follows that R → Fx is an isomorphism in Ddiff(Ox), the
derived category of differential Ox-modules. Let I(x) be the prime ideal of B
corresponding to the line x of An. Note that the differential graded B-module
B/I(x) (the differential is 0) is in T . So, F(B/I(x)) ∈ 〈F(M)〉T /� ,r+1, hence
kx ∈ 〈Fx〉Ddiff(Ox),r+1, and finally kx ∈ 〈Ox〉Ddiff(Ox),r+1. By Lemma 4.6, we
get r ≥ n−1. Hence, dim A−mod ≥ n−1 = ll(A)−2. Now, Proposition 3.9
gives the conclusion.

The proof of the inequality dim Db(Λ(kn)-mod) ≥ n is similar (and
easier). Proposition 3.7 (cf also Remark 3.8) gives the inequality
dim Db(Λ(kn)-mod) ≤ n. �
4.2. Applications.

We assume here that k is a field of characteristic p > 0.

Proposition 4.7. Let G be a finite group and B a block of kG. Let D
be a defect group of B. Then, dim B − mod = dim(kD) − mod and
dim Db(B-mod) = dim Db((kD)-mod).
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Proof. Recall that a defect group D of B is a (smallest) subgroup such
that the identity functor of B-mod is a direct summand of IndG

D ResG
D. So,

every object of B − mod is a direct summand of an object in the image
of B ⊗kD − : kD− mod → B − mod. It follows that dim B − mod ≤
dim kD−mod. Also, kD is a direct summand of B as a (kD, kD)-bimodule,
hence dim kD− mod ≤ dim B − mod. The case of derived categories is
similar. �

Given P a finite p-group and Q a maximal subgroup of P, we denote
by βQ ∈ H2(P, Z/p) the class of the exact sequence

0 → Z/p → IndP
Q Z/p

x−1−−→ IndP
Q Z/p → Z/p → 0

where x ∈ P − Q.
The following proposition gives a recursive bound for the dimension of

the stable category.

Proposition 4.8. Let G be a finite group and B a block of kG. Let D be
a defect group of B. Let D1, . . . , Dn be a family of maximal subgroups
of D such that βD1 · · · βDn = 0 (such a family exists and one can assume
n ≤ p+1

p2 |D : Φ(D)|).
Then, dim B−mod < 2

∑
i(1+dim kDi−mod) and dim Db(B-mod) <

2
∑

i(1 + dim Db(kDi-mod)).

Proof. By Proposition 4.7, it is enough to consider the case where G = D.
Then, [Ca, Lemma 3.9] asserts that there is a kG-module M which has k as
a direct summand and has a filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ M2n = M with
M2i−1/M2i−2 � IndG

Di
Ωti k and M2i/M2i−1 � IndG

Di
Ωt ′i k for some integers

ti, t′i . Let Xi ∈ Db(kDi-mod) such that Db(kDi-mod) = 〈Xi〉ri . Consider
now L ∈ Db(kG-mod). We have L⊗(M2i−1/M2i−2) ∈ 〈kG⊕IndG

Di
Ωti Xi〉ri

and L ⊗ (M2i/M2i−1) ∈ 〈kG ⊕ IndG
Di

Ωt ′i Xi〉ri . The result about the derived
category follows. The proof for the stable category is similar.

The existence of the family is Serre’s Theorem on product of Bockstein’s,
cf e.g. [Ben, Theorem 7.4.3]. �
Theorem 4.9. Let G be a finite group, B a block of kG over a field k of
characteristic 2. Let D be a defect group of B. Then, repdim B ≥ 2 +
dim B− mod > r and dim Db(B-mod) ≥ r, where r is the 2-rank of D.

Proof. The first inequality is given by Proposition 3.9. By Proposition 4.7,
it suffices to prove the theorem for G = D and B = kD. Let P be an
elementary abelian 2-subgroup of D with rank the 2-rank of D. Then,
dim kP− mod ≤ dim kD− mod, since kD is a direct summand of kP as
a (kD, kD)-bimodule. Now, kP � Λ(kr) and the theorem follows from
Theorem 4.1. The derived category assertion has a similar proof. �
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Let us recall a conjecture of D. Benson:

Conjecture 4.10 (Benson). Let G be a finite group, B a block of kG over
a field k of characteristic p with defect group D. Then, ll(B) > p-rank(D).

From Theorem 4.9 and Proposition 3.9, we deduce:

Theorem 4.11. Benson’s conjecture 4.10 holds for p = 2.
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