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Abstract

We give an algorithm which represents the radical J of a
finitely generated differential ideal as an intersection of rad-
ical differential ideals. The computed representation pro-
vides an algorithm for testing membership in J . This al-
gorithm works over either an ordinary or a partial differ-
ential polynomial ring of characteristic zero. It has been
programmed. We also give a method to obtain a character-
istic set of J , if the ideal is prime.

Keywords. Differential Algebra. Radical differential ide-
als. Characteristic sets.

1 Introduction

Let Σ be a finite subset of a differential polynomial ring1

K{y1, . . . , yn}, where K denotes a differential field, ordinary
or with partial derivatives, of characteristic zero. Let R be
a ranking of the set of derivatives of these yi.

We present an algorithm, called Rosenfeld–Gröbner,
which represents the least radical differential ideal contain-
ing Σ as a finite intersection of radical differential ideals Ji:

{Σ} = J1 ∩ · · · ∩ Js.

Each radical differential ideal Ji is described by a differential
system of polynomial equations and inequations Ωi and a
(non-differential) Gröbner basis Bi satisfying:

1. Ωi andBi provide an algorithm for testing membership
in Ji, through simple reductions,

2. Bi depends only on the differential ideal Ji and the
ranking R.

∗The authors would like to thank the participants of the Special
Year in Differential Algebra and Algebraic Geometry for their help
and their comments, in particular Pr. William Sit and Raymond T.
Hoobler.

†This research was partially supported by EC contract ESPRIT
B.R.A. n◦ 6846 POSSO.

1We make precise in the following sections some of the notations
and definitions used in this introduction.
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Thus, the set of tuples (Ωi, Bi) allows to decide the mem-
bership in the differential ideal {Σ} by simple reductions.

The intersection computed may not be minimal. Unfor-
tunately, we do not know how to test redundancy, which is
a problem close to the open problem related in [Ko], page
166. However, when we know that the differential ideal {Σ}
is prime, the formula mentioned above may be simplified to:

{Σ} = J1,

and we give a method for calculating, starting with the
Gröbner basis B1, a characteristic set of the differential ideal
{Σ}, in the sense of Ritt, relative to the ranking R.

The Rosenfeld–Gröbner algorithm relies essentially on
three theorems:

1. the theorem of zeros of Hilbert, which states that a
polynomial p belongs to the radical of an ideal given
by a finite family of generators Σ if and only if the
system of equations and inequations Σ = 0, p 6= 0 has
no solutions; we use this theorem, in the algebraic and
in the differential case.

2. a lemma of Rosenfeld [Ro], which gives a sufficient
condition so that a system of polynomial equations and
inequation admits a differential solution if and only if
it admits a purely algebraic solution; the systems Ωi

described above satisfy the condition of Rosenfeld,

3. a lemma of D. Lazard, which establishes in particular
that the ideals Ji described above are radical.

The algorithm which we describe utilizes only the opera-
tions and equality test with zero in the base field K: we
refer to the reduction algorithm of Ritt, the computations
of Gröbner bases, and splittings similar to those in the elim-
ination methods of Seidenberg [Se1]. It does not need any
factorization. An implementation of Rosenfeld–Gröbner has
been realized [Bo], in the language C. It makes calls to the
big number library of PARI and the software GB [FGLM]
for the calculus of Gröbner bases.

In order to place the interest of this algorithm, let us
describe in a few words the principals of existing methods.

Ritt gave [Ri] a method to decompose the radical of a dif-
ferential ideal as an intersection of prime differential ideals,
providing a characteristic set for each of these ideals. That
algorithm is inconvenient because it is only partially effec-
tive: it proceeds by factorization over a tower of algebraic
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field extensions of the field of coefficients. To our knowledge,
it has not been implemented.

Ollivier [Ol] and Carrà–Ferro [Ca] have independently
tried to generalize to differential algebra the Gröbner bases
invented by Buchberger [Bu] for the study of polynomial
ideals in commutative algebra. These differential Gröbner
bases are in general however infinite.

Another attempt to define differential Gröbner bases has
been done by E. Mansfield [Ma]. The algorithm DIFFGBA-
SIS, implemented in MAPLE, utilizes Ritt’s algorithm of
reduction and then always terminates. In general however,
it cannot guarantee its output to be a differential Gröbner
basis.

We may remark that the membership problem in an arbi-
trary differential ideal is undecidable [GMO], and the mem-
bership problem of a finitely generated differential ideal is
still open.

The elimination algorithms of Seidenberg [Se1] are more
general. Rosenfeld–Gröbner borrows from them the idea to
combine Hilbert’s theorem of zeros and Ritt’s algorithm of
reduction. They decide the membership problem in the rad-
ical {Σ} of a finitely generated differential ideal by succes-
sively eliminating all the unknowns appearing in the poly-
nomials of Σ. They use only the operations of the base
field K, but present two inconveniences: first, the descrip-
tion of the differential ideal {Σ} they give is not usable to
test the membership in the ideal afterwards; second, their
behavior is a lot more explosive in practice than that of
Rosenfeld–Gröbner, because they are restricted to the elim-
ination rankings. This phenomenon is particularly striking
in the case of systems with partial derivatives.

2 Preliminaries

Differential algebra. In this paper, K denotes a differen-
tial field of characteristic zero endowed with a certain num-
ber of derivations denoted δ1, . . . , δm. Let u be an element of
K. We denote by θ the derivation operators (θ = δa1

1 · · · δam
m ,

ai ∈ N) and by θu the element of K obtained by differen-
tiating u a1 times by δ1, . . . , am times by δm. The sum of
the exponents ai is called the order of the operator θ. The
identity operator is of order 0. The other operators are said
to be proper.

Let S be a subset of a differential ring R which con-
tains K. We denote respectively by K[S] and K{S} the
smallest subring and the smallest differential subring of R
containing K and S (denoting by ΘS the smallest subset
of R containing S and stable under differentiation, we have
K[ΘS] = K{S}).

Let S be a subset of a differential ring R. We denote by
(S) and [S] the smallest ideal and the smallest differential
ideal of R which contains S (we have (ΘS) = [S]). The
smallest radical differential ideal containing S, denoted by
{S}, coincides with the radical of [S].

Let I be an ideal and T be a multiplicatively stable family
of R. We denote I :T the ideal of all the elements p of R
such that, for some t ∈ T , the element tp belongs to I. If the
ideal I is differential or radical, then so is I :T . If T ⊂ R is
any set, then T∞ denotes the smallest multiplicative family
of R which contains T .

We work with differential polynomials in K{y1, . . . , yn}.
We call the yj letters and the θyj derivatives.

An order R over the set of the derivatives (θyj) is said
to be a ranking ([Ko], page 75) if it is total and if it is
compatible with the differentiations over the alphabet:

1. δiθyj > θyj (for all derivation δi, all operator θ and all
letter yj)

2. θ1yi > θ2yj ⇒ δℓθ1yi > δℓθ2yj (for all derivations δℓ,
all operators θ1, θ2 and all letters yi, yj).

Let p be a polynomial2 of K{y1, . . . , yn} and R a ranking
on the θyj . The leader u of p is the largest derivative with
respect to the ranking R which appears in p. The two con-
ditions mentioned above imply that the leader of θp is θu
for all derivation operators θ. Let d be the degree of u in
p. The initial Ip of p is the coefficient of ud in p. The sep-
arant Sp of p is the initial of all the proper derivatives of p
(Sp = ∂p/∂u). The rank of a polynomial p = Ip · ud +Rp is
the polynomial ud. The rank of a set E is the set of ranks
of the elements of E.

Let p and q be two polynomials and let ud be the rank
of p. The polynomial q is said to be partially reduced with
respect to p if no proper derivative of u appears in q. The
polynomial q is said to be reduced with respect to p if q is
partially reduced with respect to p and its degree in u is less
than d.

A set of polynomials A is said to be triangular if its el-
ements have different leaders. A set of polynomials A is
said to be autoreduced if each element of A is reduced with
respect to every other element of the set. Every autore-
duced set is triangular. Every autoreduced set is finite ([Ko],
page 77).

Let A be an autoreduced set. We denoteHA the set of all
the initials and the separants of A. Hence H∞

A denotes the
set of all the products of powers of the initials and separants
of the elements of A.

Let p be a polynomial and A = p1, . . . , ps be an autore-
duced set. There exists ([Ko], page 77) an algorithm, called
Ritt’s algorithm of reduction, which rewrites p as a polyno-
mial r = p rem A, reduced with respect to A (i.e. with
respect to all the elements of A), satisfying the relation:

r ≡ Ia1

1 · · · Ias
s Sb1

1 · · ·Sbs
s p (mod [A]), for some integers ai

and bi (where Iℓ and Sℓ denote respectively the initial and
the separant of pℓ).

The algorithm begins by producing a partial remainder
q = p partial-rem A. The polynomial q is partially reduced
with respect to A and satisfies for some integers b1, . . . , bs

the relation: q ≡ Sb1
1 · · ·Sbs

s p (mod [A]). The algorithm
then calculates r = p rem A by applying to q a simple
algebraic reduction.

If p ∈ [A] :H∞

A then (p rem A) ∈ [A] :H∞

A .
Many such algorithms exist. We fix one of them.
An autoreduced subset C of a set E of polynomials is

called a characteristic set 3 of E if E does not contain any
non-zero element reduced with respect to C. All the charac-
teristic sets of E have the same rank. A characteristic set C
of an ideal J reduces to zero all elements of J . If the ideal
is prime, C reduces to zero only the elements of J and we
have J = [C] :H∞

C ([Ko], lemma 2, page 167).
Let pi and pj be two polynomials in an autoreduced

subset A of K{y1, . . . , yn}, whose leaders θiyℓ and θjyℓ are
derivatives of some same letter yℓ (this can only happen for
partial differential systems). We denote θ the operator of
minimal order and φi and φj the two derivation operators

2The definitions which we give are only valid for polynomials p /∈
K. In this paper, we don’t need to bother with the exceptions p ∈ K.

3This definition corresponds to Ritt’s one (see [Ri], page 5) and
coincides with Kolchin’s when E is a differential ideal. Kolchin only
defined characteristic sets for ideals (see [Ko], page 81 and 124).
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such that φiθi = φjθj = θ. We define the ∆–polynomial be-
tween pi and pj as the polynomial ∆ij = Spj

φipi −Spi
φjpj .

Its leader is strictly less than θyℓ.
Denote ∆–polynomial (A) the set of all the ∆–polynom-

ials which can be formed between any two elements of A.
The set A is said to be coherent 4 if it reduces to zero all its
∆–polynomials: ∆–polynomial (A) rem A = {0} (or = ∅).

Gröbner Bases. We will have to calculate (non-differential)
Gröbner bases of (non-differential) ideals of K{y1, . . . , yn}.
Let A be a finite subset of K{y1, . . . , yn} and let R1 be a
ranking of the derivatives θyi. We order following R1 the
derivatives w1 < · · · < wt which appear in the elements of
A. The order R1 induces an order of elimination R2 on the
monomials of the ring K[w1, . . . , wt]. Let m1 = wa1

1 · · ·wat
t

and m2 = wb1
1 · · ·wbt

t . The order R2 is defined by: m1 < m2

if for the largest index i such that ai and bi are different, we
have ai < bi.

The largest monomial for the order R2 which appears in
a polynomial p is called the head monomial of p. Also, if
ud is the rank of a polynomial p for the order R1, then ud

appears as a factor in the head monomial of p.
If A is a subset of K[w1, . . . , wt] ⊂ K{y1, . . . , yn}, then

the non-differential ideal generated by A in K[w1, . . . , wt]
coincides with the intersection between the non-differential
ideal generated by A in K{y1, . . . , yn} and the polynomial
ring K[w1, . . . , wt]. Thus for the non-differential ideal (A),
the property to be prime of radical is independent of the
polynomial ring.

3 Theorems Used

3.1 The theorem of zeros

Let Σ be a polynomial system of equations and inequations.
A model of Σ is a solution of Σ in a field extension of the
base field of the system. More formally,

Definition 1 Let Σ be a differential polynomial system of
equations and inequations of K{y1, . . . , yn}. A differential
model of Σ is a morphism K{y1, . . . , yn} → L of differ-
ential K–algebras into a differential field L that annuls the
equations but not the inequations of Σ.

Let w1, . . . , wt denote the derivatives which appear in the
equations and inequations of Σ. An algebraic model of Σ is
a morphism of K–algebras K[w1, . . . , wt] → L into a field L
which annuls the equations but not the inequations of Σ.

Every differential model provides an algebraic model, but
the converse is not true. Take the example of a partial dif-
ferential system of Q{u, v}, equipped with two derivations
δx and δy which we denote by subscripts:

ux = 0, uy = v, vx 6= 0.

The system does not admit a differential model since the
equation δyux − δx(uy − v) = vx = 0 contradicts the in-
equation. It admits however an obvious algebraic model:
ux = uy = v = 0 and vx = 1.

Theorem 1 (theorem of zeros, Hilbert). Let Σ be a
differential polynomial system of equations and inequations:
p1 = 0, . . . , pm = 0; q 6= 0 in the ring K{y1, . . . , yn}.

4This definition is stronger than that of Rosenfeld [Ro] or
Kolchin [Ko], page 136. Any autoreduced set which is coherent in
our sense is also coherent in the classical sense (so theorems still ap-
ply). We adopt it because it corresponds to an algorithmic test.

The system Σ has no differential model if and only if
some power of q belongs to the differential ideal [p1, . . . , pm].

The system Σ has no algebraic model if and only if some
power of q belongs to the ideal (p1, . . . , pm).

Proof See [Se2], page 178. We give the proof in the differ-
ential case. The proof in the algebraic case is similar.

The implication from left to right. The radical of a dif-
ferential ideal is a radical differential ideal and every radi-
cal differential ideal is an intersection of prime differential
ideals. Suppose that q does not belong to the radical of
the ideal [p1, . . . , pm]. There exists then a prime differential
ideal P which contains [p1, . . . , pm] but not q. This ideal
provides a differential model: the canonical morphism of
the ring K{y1, . . . , yn} into the field of quotients of the ring
K{y1, . . . , yn}/P .

The reverse implication is immediate.

3.2 Regular systems

A rapid computation shows that ẋ3 ∈ [xẋ] but that ẋ3 /∈
(xẋ). More generally, if A denotes a finite set of polynomi-
als, the set of the elements of [A] partially reduced w.r.t. A
may also contain polynomials which are not in (A). This
phenomenon demonstrates well the importance of the fol-
lowing lemma.

Lemma 1 (Rosenfeld). If A is an autoreduced and coher-
ent subset of the ring K{y1, . . . , yn} then every differential
polynomial which belongs to [A] :H∞

A and which is partially
reduced with respect to A belongs also to (A) :H∞

A .

Proof See [Ro], page 397 or [Ko], lemma 5, page 135.

The regular systems are differential polynomial systems
of equations and inequations for which Rosenfeld’s lemma
applies.

Definition 2 A system of differential equations and inequa-
tions is said to be regular with respect to a ranking R1, if the
set of its equations is autoreduced and coherent, the initial
and separant of each equation appear among the inequations
and if its other inequations are partially reduced with respect
to the equations:

Ω







































p1 = 0
... A = p1, . . . , ps is autoreduced

ps = 0 and coherent
I1 6= 0

... the initial and separant of each pi

Ss 6= 0
q 6= 0 q is partially reduced w.r.t. A

Notation We use the letter Ω to denote regular systems
(for instance: Ω, Ωs etc . . . ). We use the letter A to denote
the set of the equations of Ω (for instance, A1 and As, stand
for the set of the equations of Ω1 and Ωs). We use H∞

Ω to
denote the set of all the power products of the inequations
of Ω (for instance, H∞

Ω1
and H∞

Ωs
correspond to Ω1 and Ωs).

We have H∞

A ⊂ H∞

Ω .

Theorem 2 (Rosenfeld). A regular system Ω admits a
differential model if and only if it admits an algebraic model.
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Proof See [Ro], page 398. Suppose that Ω does not admit a
differential model and we show that it then does not admit
an algebraic model. By the theorem of zeros, 1 ∈ [A] :H∞

Ω .
By Rosenfeld’s lemma, 1 ∈ (A) :H∞

Ω , and Ω does not admit
an algebraic model.

The other implication is immediate.

The lemma 1 and the theorem 2 are extensions of two re-
sults of Seidenberg ([Se1], theorems 6 and 7 pages 51 and 52)
which provide his elimination algorithm for partial differen-
tial systems.

3.3 Regular ideals

We establish in this section some important properties of the
ideals [A] :H∞

Ω and (A) :H∞

Ω . In particular, we show that
they are always radical and that there exists an algorithm
which decides if a given polynomial belongs to them.

The following lemma is interesting by itself. In particu-
lar, it generalizes a result of Kolchin (see [Ko], lemma 13,
page 36).

The total ring of fractions of a ring R is obtained by
making invertible all the elements of R which do not divide
zero. We denote it Q(R).

Lemma 2 (Lazard). Let A = p1, . . . , ps be a triangular
set of a polynomial ring K[w1, . . . , wt], for the ranking w1 <
· · · < wt. Let u1 < · · · < us be the leaders of the elements
of A and SA denote the set of the separants of the elements
of A. If the ideal (A) :S∞

A is non trivial, then the total ring
of fractions Q of the ring K[w1, . . . , wt]/(A) :S∞

A verifies the
two following properties:

(P1) it is isomorphic to a product of fields.

(P2) denoting w̄i the image of wi, we have: w̄i satisfies an
algebraic relation over Q(K[w̄1, . . . , w̄i−1]) if and only
if wi is some uj.

Moreover, the properties above remain true if S∞

A is replaced
by any multiplicative family S which contains it, provided
that the ideal (A) :S is non trivial.

The following small lemmas are used in the proof.

a. Let R be a ring. Let I be an ideal and S be a mul-
tiplicative family of R. Let X be an indeterminate.

The ring homomorphisms R
is→ S−1R, R

p
→ R/I and

R → R[X] commute together. Moreover, if S and S′

are two multiplicative families, the morphisms is and
is′ commute also. If I ⊂ J , then R/J ≃ (R/I)/p(J).

b. We retain the notations of (a). Since I :S = i−1
s (is(I))

and the image of S in R/I :S contains no zero divi-
sor, by (a), we have the isomorphisms Q(R/I :S) ≃
Q(S−1R/S−1I) ≃ Q(p(S)−1(R/I)).

c. Let R be a ring. If a ∈ R is nilpotent, then a−1R is
the zero ring. R/(1) is also the zero ring.

d. If R = R1 × · · · × Rn is a product of rings and if
a = (a1, . . . , an) is one of its elements, we have:

R/(a) = R1/(a1) × · · · ×Rn/(an),

a−1R = a−1
1 R1 × · · · × a−1

n Rn,

R[X] = R1[X] × · · · ×Rn[X].

e. Let R
f
→ S be a ring homomorphism. Let p ∈ R[X] be

a polynomial and Sp be its separant. Then f(Sp) =
Sf(p).

f. Let p ∈ K[X] be a polynomial over a field. Let
pa1

1 · · · pan
n be the decomposition of p into irreducible

factors. Since the separant Sp of p contains as factors
the multiple factors (ai > 1) of p, the ideal (p) :S∞

p

is generated by the product of the simple factors of p.
The ring K[X]/(p) :S∞

p is hence either the zero ring
(by (c), if p has no simple factors), either a product of
fields, according to the Chinese Remainders theorem.

Proof We define a sequence of rings as follows:

R0 = K

Ri+1 = Q(Ri[wi+1]) if wi+1 6= uj for each uj ,

Ri+1 = Ri[uj ]/(p̄j) : S̄∞

j if wi+1 = uj .

where p̄j and S̄j denote the images of pj and Sj in Ri[uj ].
To prove the lemma 2 we are going to establish, first that

Rt verifies (P1) and (P2), second that Rt is isomorphic to Q.
Last, we consider the case of multiplicative families which
contain S∞

A .

1. We show by induction on i that Rt verifies (P1) and
(P2). Clearly, R0 satisfies them. Assume that Ri ≃
K1 × · · · ×Km verifies these two properties and let us
show that Ri+1 verifies (P1) and (P2) also.

If wi is not a leader uj , using (d), Ri+1 is isomorphic
to

∏m

k=1
Kk(wi+1). It verifies (P1) and (P2).

Let us consider the case wi = uj . Let p̄j =
(p̄j1, . . . , p̄jm) and S̄j = (S̄j1, . . . , S̄jm). By (d) we
have, Ri[uj ]/(p̄j) : S̄∞

j ≃
∏m

k=1
Kk[uj ]/(p̄jk) : S̄∞

jk .

Let 1 ≤ k ≤ m.

If p̄jk ∈ Kk, then S̄jk = 0 and the kth factor of the
product above is the zero ring, by (e) and (c).

If p̄jk /∈ Kk, then by (f), Kk[uj ]/(p̄jk) : S̄∞

jk is either
the zero ring, either isomorphic to some product of
algebraic field extensions of Kk.

Thus Ri+1 verifies (P1) and (P2).

2. We show by induction on i that Rt ≃ Q. The main
point to check is that the inversion of the non zero
divisors commute with the other ring homomorphisms.
Let us denote

Ti = K[w1, . . . , wi]/(p1, . . . , pj−1) : (S1, . . . , Sj−1)
∞,

where uj−1 ≤ wi < uj . We have Q = Q(Tt). Clearly,
R0 ≃ Q(T0). Assume that Ri ≃ Q(Ti) and let us prove
that Ri+1 ≃ Q(Ti+1).

If wi+1 6= uj then Ri+1 = Q(Ri[wi+1]). Every non
zero divisor in Ti is still a non zero divisor in Ti[wi+1],
so Ri+1 ≃ Q(Ti[wi+1]) and by (a), Ri+1 ≃ Q(Ti+1).

If wi+1 = uj then Ri+1 = Ri[uj ]/(p̄j) : S̄∞

j . Since
Ri+1 verifies (P2), every non zero divisor in Ti is still a
non zero divisor in Ti[uj ]/(p̄j) : S̄∞

j . Since Ri+1 verifies

(P1) we have Ri+1 ≃ Q(Ti[uj ]/(p̄j) : S̄∞

j ). Then by (a)
and (b) Ri+1 ≃ Q(Ti+1).

3. By (c) and (d), the inversion of an element p of a prod-
uct of fields only suppresses the fields of the product
for which p has a zero component.
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Definition 3 A differential ideal J is said to be regular if
there exists a regular system Ω such that J = [A] :H∞

Ω . An
algebraic ideal J is said to be regular if there exists a regular
system Ω such that J = (A) :H∞

Ω .

Theorem 3 Every regular ideal is radical.

Proof Let Ω be a regular system. Let p be a polynomial for
which a power pn belongs to (A) :H∞

Ω . The image of pn in
K[w1, . . . , wt]/(A) :H∞

Ω is zero. That ring has no nilpotent
element, since its total ring of fractions is a product of fields,
according to the lemma 2. Hence the image of p is zero, p
belongs to (A) :H∞

Ω and that ideal is radical.
Let us show that the regular differential ideal [A] :H∞

Ω

is also radical. Let p be a polynomial for which a power pn

belongs to [A] :H∞

Ω . The polynomial p̄ = p rem A is equiv-
alent to some Sa1

1 · · ·Sas
s p modulo [A] :H∞

A . By Rosenfeld’s
lemma and the first part of the proof, p̄ ∈ (A) :H∞

Ω whence
p is in [A] :H∞

Ω . This ideal is thus radical.

The following lemma is a consequence of lemma 2 (prop-
erty (P2)), the proof of which is left to the reader. It is
used in the proof of the lemma 5 and shows that we may
read the transcendance degree of a system without calculat-
ing the Gröbner basis of (A) :H∞

Ω , except the condition to
ascertain that the ideal is non trivial.

Lemma 3 Let Ω be a regular system for a ranking R1. Let
u1 < · · · < us be the leaders of the equations of the sys-
tem. Let B be a Gröbner basis of (A) :H∞

Ω for the order R2

induced by R1.
If (A) :H∞

Ω is not the unit ideal, then the leaders of the
polynomials of B are the derivatives u1, . . . , us.

Let Ω be a regular system and A be the set of its equa-
tions. We give in section 4 a method to calculate a Gröbner
basis B of (A) :H∞

Ω , and in section 6 an example of a regular
system without models.

The following lemma shows how to decide the member-
ship problem in a regular differential ideal. Its proof is an
easy consequence of Rosenfeld’s lemma.

Lemma 4 Let Ω be a regular system, A be the set of its
equations, and B be a Gröbner basis of (A) :H∞

Ω . For each
polynomial p of K{y1, . . . , yn} we have:

p ∈ [A] :H∞

Ω ⇐⇒ (p partial-rem A) ∈ (B).

We would like to clarify the correspondance between sys-
tems of regular algebraic ideals and regular differential ide-
als. An example suffices to show that two different regular
systems may define the same regular ideals:

x+ 1 = 0, and

(x+ 1)(x+ 2)2 = 0, (x+ 2)(3x+ 4) 6= 0.

Question: Is the correspondance between regular algebraic
ideals and regular differential ideals bijective ? In other
words, do two regular differential systems define the same
regular algebraic ideal if and only if they define the same reg-
ular differential ideal ? The following lemma, which shows
the implication from right to left, is a step in the proof of
theorem 6. The converse implication, which we have not
established, seems to be in keeping with the open problem:
to decide the inclusion of two prime differential ideals each
given by a characteristic set (see [Ko], page 166).

Lemma 5 Two regular systems which define the same reg-
ular differential ideal define also the same regular algebraic
ideal.

Proof Let Ω and Ω′ be two regular systems defining the
same regular differential ideal [A] :H∞

Ω = [A′] :H∞

Ω′ . Let
B and B′ be the Gröbner bases respectively of the ideals
(A) :H∞

Ω and (A′) :H∞

Ω′ for the order R2 induced by R1. We
suppose B is different from B′ and we seek a contradiction.

We order the polynomials of B = b0, b1, . . . , bm and of
B′ = b′0, b

′

1, . . . , b
′

m′ by increasing order. Let i be the least
index such that the head monomials of the polynomials bi
and b′i are different and suppose b′i < bi. Since b′i belongs
to the differential ideal [A] :H∞

Ω , by lemma 4 (b′i partial-rem
A) ∈ (B).

Let uℓ and u′

ℓ be the leaders of the polynomials in the
basis B and B′ and let u′

j be the leader of b′i. We have
u1 = u′

1, . . . , uj−1 = u′

j−1.
By the lemma 3, each polynomial of the basis B (re-

spectively B′) is partially reduced w.r.t. each other. Since
u1 = u′

1, . . . , uj−1 = u′

j−1 and since b′i < bi, the partial re-
duction of b′i by A does not modify b′i and we have b′i ∈ (B).
In view of the hypothesis made on i, the head monomial of
b′i can not be reduced by any rule from B.

This contradiction proves the lemma.

While the basis B is “canonical”, it does not permit easy
computation in K{y1, . . . , yn}/[A] :H∞

Ω . In fact, the partial
reduction algorithm does not transform a polynomial into a
polynomial which is equivalent modulo the ideal:

p 6≡ (p partial-rem A) (mod [A] :H∞

Ω ).

4 The Rosenfeld–Gröbner Algorithm

The program Rosenfeld–Gröbner gathers at entry a differ-
ential system of equations and inequations Σ and a ranking
R1. It produces by splittings a finite family (Ωi) of consis-
tent (with models) regular systems whose differential models
form a partition of the differential models of Σ.

The Greek letters Λ, Ω, Γi, denote systems of equations
and inequations. Λeq and Λin stand respectively for the set
of the equations and for the set of the inequations of the
system Λ.

The function obviouslyInconsistent returns true if a non-
zero element of K appears among the equations, or if 0
appears among the inequations of the system.

program Rosenfeld–Gröbner (Λ,R1)
begin

if not obviouslyInconsistent (Λ) then
A := a characteristic set of the finite set Λeq
Let {h1, . . . , hr} denote the set of the initials

and of the separants of the elements of A
such that hi /∈ K.

R := (Λeq \ A ∪ ∆–pols(A)) rem A
if R = ∅ or R = {0} then

Ωeq := A
Ωin := (Λin partial-rem A) ∪

{h1 6= 0, . . . , hr 6= 0}
B := a Gröbner basis of (A) : H∞

Ω
if B 6= {1} then

produce on output Ω and B
endif

else
Γr+1,eq := A ∪ R
Γr+1,in := Λin ∪ {h1 6= 0, . . . , hr 6= 0}
Rosenfeld–Gröbner (Γr+1,R1)

endif
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for i := r downto 1 do
Γi,eq := Λeq ∪ {hi = 0}
Γi,in := Λin ∪ {hi−1 6= 0, . . . , h1 6= 0}
Rosenfeld–Gröbner (Γi,R1)

end
endif

end

Some other ways exist to do the splitting of Λ into the
Γi (see [Bo]). This one was used by Seidenberg in [Se1].

The Gröbner basis B of the ideal (A) :H∞

Ω is computed
by the method below. It is classical [Tr]. It detects regular
systems without models: those with basis {1}.

1. The system Ω is transformed into a system of equa-
tions: the algorithm introduces a new unknown zi for
each inequation hi 6= 0 of the system and rewrites
hi 6= 0 as hizi = 1.

2. A basis B0 is computed following any elimination order
R2 satisfying: θyi < zj (for all derivatives θyi and all
unknowns zj),

3. The desired basis B is obtained by truncating B0.
Only those polynomials of B0 which do not involve
zi are retained.

4.1 Proofs

Lemma 6 The Rosenfeld–Gröbner algorithm stops.

Proof The set of the equations of each system Γi not obvi-
ously inconsistent, produced from Λ, contains A and at least
one polynomial p /∈ K reduced w.r.t. A.

Thus, the characteristic sets of the sets of the equations
of the systems Γi not obviously inconsistent are lower than
A, for the usual ranking on autoreduced sets ([Ko], page 81).

This ranking is a well ordering ([Ko], proposition 3, page
81). Since the algorithm discards obviously inconsistent sys-
tems, Rosenfeld–Gröbner stops.

The two lemmas below deal with the correction of the
algorithm. Since Ω corresponds to a particular case of Γr+1,
we do not distinguish it from Γr+1, in order to simplify the
statements.

Lemma 7 φ is a differential model of Λ if and only if φ is
a differential model of some Γi (1 ≤ i ≤ r + 1). Moreover,
the differential models of the systems Γi are disjoint.

We only give the main argument of the proof.
Let φ be a differential model of some system A = 0, h1 6=

0, . . . , hr 6= 0. Let p be any polynomial and let p̄ = p rem A.
According to the definition of the models and to the spec-
ifications of Ritt’s algorithm of reduction, we have φ(p) =
0 ⇔ φ(p̄) = 0.

We need the notations below for the lemma 8, which is
used for the calculus of characteristic sets in section 5.

Let Σ be a system of equations and inequations, {Σeq}
be the radical differential ideal generated by the equations of
the system, and H∞

Σ be the multiplicative family generated
by its inequations. We denote J (Σ) the radical differential
ideal {Σeq} :H∞

Σ .

Lemma 8 If J (Λ) is prime and if ℓ is the greatest index
such that Γℓ has a differential model, then

J (Λ) = J (Γℓ).

Proof According to the lemma 7 above and to the theorem
of zeros,

J (Λ) = J (Γr+1) ∩ · · · ∩ J (Γ1),

so the index ℓ exists. We consider thus two cases.

1. No polynomial hi (1 ≤ i ≤ r) belongs to J (Λ). We
prove that J (Γr+1) ⊂ J (Λ) and the equality follows
from the formula above (ℓ = r + 1).

We have Γr+1,eq ⊂ [Λeq] ⊂ J (Λ). Since the ideal is
prime and since no polynomial hi belongs to it, we have
H∞

Γr+1
∩J (Λ) = ∅. Now, assume that p ∈ J (Γr+1) i.e.

that for some h ∈ H∞

Γr+1
, we have hp ∈ {Γr+1,eq} ⊂

J (Λ). Since h /∈ J (Λ) and that ideal is prime, we
have p ∈ J (Λ).

2. Let t ≤ r be the smallest index such that ht ∈ J (Λ).
We prove that all the ideals J (Γi) (t < i ≤ r + 1) are
trivial and that J (Γt) ⊂ J (Λ). The equality follows
from the formula above (ℓ = t).

By the formula above, for t < i ≤ r + 1 we have ht ∈
J (Λ) ⊂ J (Γi) but, according to the way the Γi are
computed, we have also ht ∈ H∞

Γi
. These ideals J (Γi)

are hence trivial and the corresponding systems Ωi are
not produced on the output of the program.

According to the hypothesis Γt,eq ⊂ J (Λ). Since this
ideal is prime and no polynomial hi (1 ≤ i < t) belongs
to it, we have H∞

Γt
∩J (Λ) = ∅ whence as in 1. above,

J (Γt) = J (Λ).

4.2 Properties of the computed representation

A basis in the sense of Ritt and Raudenbush of a radical
differential ideal J is any finite family Σ such that J = {Σ}.
Ritt and Raudenbush established [Ri], page 10 that every
radical differential ideal admitted a basis.

The Rosenfeld–Gröbner algorithm decomposes a differ-
ential ideal {Σ} given by a finite basis as an intersection of
regular differential ideals each described by a regular sys-
tem. This decomposition is also an algorithm for member-
ship testing in {Σ}.

Consider a system Σ : p1 = 0, . . . , pm = 0 of differential
polynomial equations of K{y1, . . . , yn}. Let Ω1, . . . ,Ωs be
the successive regular systems produced by the Rosenfeld–
Gröbner algorithm applied to Σ for some ranking R1.

For each system Ωi, we denote Ai the set of its equations
and H∞

Ωi
the multiplicative family generated by its inequa-

tions.

Theorem 4 With notations as above, we have:

1) φ is a differential model of Σ if and only if φ is a
differential model of some Ωi (1 ≤ i ≤ s).
Moreover, the differential models of the regular systems
Ωi are disjoint.

2) the radical differential ideal {Σ} is the intersection of
the regular differential ideals [Ai] :H

∞

Ωi
.

{Σ} =
√

[Σ] = [A1] :H
∞

Ω1
∩ · · · ∩ [As] :H

∞

Ωs
.

Proof

1) It is an easy consequence of the lemma 7.
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2) By 1) and the theorem of zeros, a polynomial p belongs
to {Σ} if and only if, for each i ∈ [1, s], the system
obtained by adjoining the inequation p 6= 0 to Ωi has
no differential models. By the theorem of zeros and the
theorem 3, these systems have no differential models
if and only if p ∈ [Ai] :H

∞

Ωi
.

The description of the ideal {Σ} computed by Rosenfeld–
Gröbner allows us to decide the membership problem in {Σ},
using a few reductions. This is expressed in the following
theorem, whose proof is an immediate consequence of the
theorem 4 and the lemma 4.

Theorem 5 With notations as above, we have:

p ∈ {Σ} ⇔ ∀i ∈ [1, s], (p partial-rem Ai) ∈ (Bi).

5 Computation of characteristic sets

We give a method to compute the characteristic set of a
prime differential ideal given by a basis in the sense of Ritt
and Raudenbush. We generalize here the result [Ol], page
89, of Ollivier.

We retain the notations of the preceding section.

Lemma 9 If the differential ideal {Σ} is prime then

{Σ} = [A1] :H
∞

Ω1
.

Proof The inclusion from left to right comes from the the-
orem 4. The other one is a consequence of the lemma 8.

To our knowledge, there does not exist any algorithm
which decides if a differential ideal given by a basis (either
in the classical sense or in the sense of Ritt and Raudenbush)
is prime.

The coherent and autoreduced set A1 satisfies a property
of characteristic sets of the ideal: if C is a characteristic
set of a prime differential ideal {Σ}, then we have {Σ} =
[C] :H∞

C . However, A1 is not necessarily a characteristic set
of the ideal. Consider the (algebraic) example below:

A1 : (x+ 1)(x+ 2) = 0, (x+ 1)y + 2 = 0.

A1 is autoreduced with respect to the order x < y, the ideal
(A1) :H∞

A1
is prime but its characteristic set is

C : x+ 2 = 0, y − 2 = 0.

The basis B of (A1) :H∞

Ω1
, computed with respect to the

order R2 induced by R1 is almost a characteristic set of
{Σ}, but not quite. We give in the following section an
example which shows that this is not necessarily the case.

The theorem below indicates how to compute C from B.

Theorem 6 Let {Σ} be a prime differential ideal and Ω
be a regular system with respect to a ranking R1 such that
{Σ} = [A] :H∞

Ω . Let B be a Gröbner basis of (A) :H∞

Ω

computed with respect to the order R2 induced by R1.
The following algorithm calculates a characteristic set C

of the ideal {Σ}, with respect to the ranking R1, from the
basis B.

begin
Assume that the elements of B = b1 < · · · < bm

are arranged in increasing order.
C := {b1}
for i := 2, . . . , m do

let ui and ui−1 be the leaders of bi and bi−1

if ui 6= ui−1 then
C := C ∪ {bi rem C}

endif
end

end

Proof We are going to successively establish the following
points:

1. To determine C amounts to determining a character-
istic set of the prime ideal (C) :H∞

C , with respect to
the order R1.

2. B is a Gröbner basis of (C) :H∞

C .

3. Let p = Ip · udp + Rp be a polynomial of (B) =
(C) :H∞

C , whose initial Ip is not in the ideal. There ex-
ists then in B a polynomial b = Ib ·u

db +Rb with db ≤
dp and there exists in C a polynomial c = Ic ·u

dc +Rc

with dc ≤ dp.

Since neither Ib, nor Ic, appear in (B) = (C) :H∞

C ,
and since B and C are two subsets of the ideal, the
algorithm described in the theorem extracts from B a
set of polynomials of the same rank as C, but which is
not necessarily autoreduced in the sense of Ritt. The
proof of the theorem is completed by:

4. The reductions carried out by the algorithm may not
reduce the rank of the polynomials extracted from the
basis.

Proof of 1. See [Ro]. The characteristic set of a differential
ideal, autoreduced by definition, is coherent since it reduces
to zero every polynomial (in particular the ∆–polynomials)
of the ideal. We apply the lemma of Rosenfeld. (C) :H∞

C is
the intersection of the prime differential ideal [C] :H∞

C and
the ring of partially reduced polynomials with respect to C.
The ideal (C) :H∞

C is then prime.
To say that a coherent and autoreduced set C is not a

characteristic set of [C] :H∞

C , is to say that there exists in
that ideal a non-zero polynomial p, reduced with respect
to C. By the lemma of Rosenfeld, this is to say that p
belongs to (C) :H∞

C and hence C is not a characteristic set
of (C) :H∞

C .

Proof of 2. Since {Σ} = [C] :H∞

C (see [Ko], lemma 2,
page 167) and {Σ} = [A] :H∞

Ω , by lemma 5, we have (B) =
(C) :H∞

C .

Proof of 3. Let p = Ip · udp + Rp be a polynomial of
(B) = (C) :H∞

C , whose initial Ip is not in the ideal. Suppose
the head monomial mi of Ip under normal form modulo B.
Since p is reduced to zero by B, there exists a polynomial
b of B whose head monomial divides the head monomial
mp = mi · u

dp of p, but does not divide mi. The rank of b
is then udb with 0 < db ≤ dp.

Since (B) = (C) :H∞

C is prime and since Ip does not
belong to the ideal, C does not reduce Ip to zero. There
exists then in the characteristic set a polynomial c = Ic ·
udc +Rc with 0 < dc ≤ dp.

Proof of 4. This is immediate since the initials of the
polynomials of B do not belong to (B) = (C) :H∞

C , the
ideal is prime and the characteristic set of a prime ideal
reduces to zero only the elements of the ideal.
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6 Examples

The algorithms described in the preceding sections have
been programmed (see [Bo], VI) in the language C. The
manipulations of big numbers are effected by the library of
PARI. The Gröbner bases computations are by the software
GB (see [FGLM]).

The computations are done on the IBM RS/6000 sta-
tion cosme.polytechnique.fr. The timing of computation are
given by the UNIX command time.

6.1 Membership testing

We first give a very simple example to illustrate splittings
and to show how to test membership in radical differential
ideals. We deal with

Σ

{

(2ẍ+ 1)ẏ + y = 0
ẋ2 + x = 0.

For the ranking θx < φy (for all derivation operators θ
and φ), the first equation may be reduced by the second one.
Its remainder is ẋy. Σ is thus split into two systems:

Γ2

{

ẋy = 0
ẋ2 + x = 0
ẋ 6= 0

and Γ1

{

(2ẍ+ 1)ẏ + y = 0
ẋ2 + x = 0
ẋ = 0.

The system Γ2 gives immediately a regular system Ω2 =
Γ2. The Gröbner basis computation only simplifies the fac-
tor ẋ in the first equation: B2 = {y, ẋ2 +x}. The system Γ1

leads with no splittings to the regular system below. The
Gröbner basis computation is useless.

Ω1

{

ẏ + y = 0
x = 0

Now, we may verify that (2ẍ+ 1) /∈ {Σ}. We apply the
theorem 5: (2ẍ + 1) is reduced to zero by (ẋ2 + x) in Ω1,
but reduced to 1 in Ω2.

We may also verify that ẋ(2ẍ + 1), which is the first
derivative of (ẋ2 + x), belongs to {Σ}. This polynomial is
reduced to zero by both systems Ω2 and Ω1.

6.2 Hidden algebraic contradictions

The following example does not have any physical signif-
icance. It shows the necessity to assure that the regular
systems have models.

Consider the following system in Q{u, v} equiped with
three derivations δx, δy and δz. The derivation operators
are denoted by subscripts.

u2
yu

2
x = 2uyux − 1, uxy = v, vx = uxvz,

vy = uyvz, u3
z = uxuy.

The ranking R1 used for the calculations is the following:

1) θu > φv for all derivation operators θ, φ,

2) θu > φu if θ > φ for the lexicographic order given by
δx > δy > δz (same choice for v).

The Rosenfeld–Gröbner algorithm computes two regular sys-
tems in a little more than 6 seconds:















































vzvyz − vzzvy = 0,
(v2

zvyvyy + (−vzz + vvz)v
3
y)vx − v4

zvyy

+(v2
zvzz − vv3

z)v2
y = 0,

u3
z − 1 = 0, vzuy − vy = 0,

(v2
zvyvyy + (−vzz + vvz)v

3
y)ux − v3

zvyy

+(vzvzz − vv2
z)v2

y = 0,
vz 6= 0, vzvyvyy − v2

yvyz + vv3
y 6= 0, vy 6= 0

uz 6= 0, v2
yvx − v2

zvy 6= 0,
v2

zvyvyy + (−vzz + vvz)v
3
y 6= 0























v = 0
u3

z − 1 = 0
uyy = 0
uyux − 1 = 0
uz 6= 0
uy 6= 0

The first is inconsistent. Remark that it is not detected
before the Gröbner bases computation, although our imple-
mentation of the splitting process looks for simple contra-
dictions: the final algebraic treatment is necessary. Here is
the Gröbner basis associated with the second system:

v, u3
z − 1, uyy, uxuy − 1.

6.3 Computing a characteristic set

The example below, which has no physical significance, shows
the necessity to proceed with the described reductions in
theorem 6 to obtain a characteristic set of a differential ideal
that (we know) is prime.

Let Σ be the following system of ordinary differential
equations:

{

ẍ = yẋ+ ẏ + 1
ÿ = 2ẏx+ 2ẋyx+ y + 2x
z = y

The differential ideal [Σ] is prime, since the system is or-
thonomic (H∞

A = {1}) and autoreduced5 with the ranking:

1) θz > φy and θz > ψx for all derivation operators θ, φ
and ψ,

2) φy > ψx if the order of φ is larger or equal to that of
ψ,

3) ψx > φy if the order of ψ is strictly larger than that
of φ.

We now apply the Rosenfeld–Gröbner algorithm to Σ with
the elimination order:

1) θz > φy > ψx for all operators θ, φ and ψ.

We obtain (in a bit more than 3 seconds) a unique regular
system Ω1. The Gröbner basis B1 that is associated to it is:

p1 = ((ẍ− ẋ2 + 1)x(4) − x(3)2 + (3ẋẍ+ 2xẋ2 − ẋ

− 2x)x(3) − 2ẍ3 + ((−6x− 2)ẋ− 1)ẍ2 + ((2x
+ 2)ẋ3 + ẋ2 + (−2x− 2)ẋ+ 2)ẍ− ẋ2 + 1)

p2 = ((ẍ− ẋ2 + 1)y − x(3) + (ẋ+ 2x)ẍ− ẋ)

p3 = ((x(3) − 2ẋ3 + 2ẋ)y − x(4) + (−2ẋ+ 2x)x(3)

+ 2ẍ2 + (2ẋ2 + (6x+ 2)ẋ− 1)ẍ− 2ẋ2 − 1)
p4 = (z − y).

5It is necessarily coherent, since it only involves ordinary differen-
tial equations.
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If we extract a characteristic set from B1, without effecting
the described reduction in theorem 6, we obtain an autore-
duced set A = p1, p2, which is not a characteristic set of the
ideal [Σ] (the polynomial p4 in fact does not leave since it
is not reduced with respect to p2). Apply the theorem 6 by
reducing p4 by p2. We obtain then a characteristic set C of
[Σ]:

p1, p2, ((ẍ− ẋ2 + 1)z − x(3) + (ẋ+ 2x)ẍ− ẋ).

Remark In practice, we may often do without Rosenfeld–
Gröbner for generating the system Ω1: the majority of the
time, we know that an ideal [Σ] is prime by showing a rank-
ing R for which Σ is orthonomic, autoreduced and coherent
(cf. the example above). The ranking R furnishes a char-
acteristic set, hence a membership testing algorithm of the
ideal [Σ], which permits avoiding the splittings.

7 Conclusion

Although the models of the regular systems produced by the
Rosenfeld-Gröbner algorithm are disjoint, the regular differ-
ential ideals which are defined by them may be redundant.
In particular, the algorithm may produce many systems,
even when the differential ideal {Σ} is prime.

We do not know how to decide the inclusion of two regu-
lar differential ideals. It is a problem very close to the prob-
lem of Ritt: to decide the inclusion of two prime differential
ideals each given by a characteristic set, which “seems very
far from solution” ([Ko], page 166). Its solution would allow
us to decide if a differential ideal given by a finite family of
generators is prime.
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