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Summary

We consider the steady state oscillation equations of the theory of elasticity of hemitropic
materials. We derive general representation formulae for the displacement and microrotation
vectors by means of six scalar metaharmonic functions. These formulae are very convenient
and useful in many particular problems for domains with concrete geometry. Here we consider
two canonical transmission problems for piecewise homogeneous bodies with spherical
interfaces and with the help of the representation formulae construct explicit solutions in the
form of absolutely and uniformly convergent series. The representations can also be applied to
multi-layered bodies with spherical and cylindrical interfaces.

1. Introduction

Technological and industrial developments, and also great success in biological and medical sci-
ences, require us to use more refined models for elastic bodies. In a generalized solid continuum, the
usual displacement field has to be supplemented by a microrotation field. Such materials are called
micropolar or Cosserat solids. They model composites with a complex inner structure whose mater-
ial particles have six degrees of freedom (three displacement components and three microrotation
components). Recall that the classical elasticity theory allows only three degrees of freedom (three
displacement components).

Experiments have shown that micropolar materials possess quite different properties in com-
parison with classical elastic materials (1 to 6). For example, in non-centrosymmetric micropolar
materials (which are also called hemitropic or chiral materials) left-handed and right-handed waves
can propagate. Moreover, the twisting behaviour under an axial stress is a purely hemitropic (chiral)
phenomenon and has no counterpart in classical elasticity.

Hemitropic solids are not isotropic with respect to inversion: they are isotropic with respect to all
proper orthogonal transformations but not with respect to mirror reflections.

Materials may exhibit chirality on the atomic scale, as in quartz and biological molecules (DNA),
as well as on a large scale, as in composites with helical or screw-shaped inclusions, certain types of
nanotubes, bone, fabricated structures such as foams, chiral sculptured thin films and twisted fibres.
For more details see (1, 2, 4, 7 to 14).
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452 D. NATROSHVILI et al.

Mathematical models describing the chiral properties of elastic hemitropic materials have been
proposed by Aero and Kuvshinski (1, 2). For historical notes see also (4, 11, 12).

In the mathematical theory of hemitropic elasticity there are introduced the asymmetric force
stress tensor and moment stress tensor, which are kinematically related with the asymmetric strain
tensor and torsion (curvature) tensor via the constitutive equations. All these quantities are expressed
in terms of the components of the displacement and microrotation vectors. In turn these satisfy
a coupled complex system of second-order partial differential equations of dynamics. When the
mechanical characteristics (displacements, microrotations, body force and body couple vectors) do
not depend on a time variable t we have the differential equations of statics. If the characteristics
are time harmonic (that is, they are represented as the product of e−iσ t and a function of the spatial
variable x ∈ R

3) then we have the steady state oscillation equations. Here σ is a real frequency
parameter. Note that if σ = 0, then we obtain the equations of statics. If σ = σ1 + iσ2 is a
complex parameter, then we have the so-called pseudo-oscillation equations (which are related to
the dynamical equations via the Laplace transform). All the above equations generate a 6×6 strongly
elliptic, formally self-adjoint differential operator involving nine material constants.

The Dirichlet, Neumann and mixed type boundary-value problems (BVPs) corresponding to this
model are well investigated for general domains of arbitrary shape and uniqueness and existence
theorems are proved, and regularity results for solutions are established by potential methods as
well as by variational methods; see (12, 15 to 18).

Our main goal is to derive general representation formulae for the displacement and microrotation
vectors by means of metaharmonic functions, solutions of the Helmholtz equations with different
wave numbers. That is, we can represent solutions to the very complicated coupled system of sim-
ultaneous differential equations of ‘hemitropic elasticity’ with the help of solutions of a simpler
canonical metaharmonic equation (similar formulae in classical elastostatics are well known as
Papkovich–Neuber representation formulae). We prove that the six components of the field vectors
(three displacement and three microrotation components) can be expressed linearly by six scalar
metaharmonic functions. Moreover, we show that this correspondence is one-to-one. The represen-
tation formulae obtained have proved to be very useful in the study of many problems for domains
with concrete geometry.

In particular, here we apply these representation formulae to construct explicit solutions of two
canonical boundary-value and transmission problems with a spherical interface. In the first case
both components are hemitropic with different material constants and on the interface we have
transmission conditions relating limiting values of the displacement, microrotation, force stress,
and couple stress vectors, twelve conditions (chiral–chiral coupling). In the second problem the
interior ball is occupied by the usual isotropic elastic material described by the classical Lamé
model, while in the exterior part we have again a hemitropic material. In this case, the interface
conditions relate the corresponding displacement and force stress vectors and, in addition, on the
interface there are given either components of the microrotation vector or the couple stress vector,
in all nine conditions (chiral–achiral coupling). We represent the solutions of these problems in
the form of Fourier–Laplace series and prove that these series along with their derivatives of the
first order are absolutely and uniformly convergent in closed domains if the boundary data satisfy
appropriate smoothness conditions.

The motivation for the choice of the transmission problems treated in the paper is that by the
same approach one can construct explicit solutions to similar transmission problems for layered
composites with finitely many spherical interfaces. Moreover, the representations obtained can be
applied to some generalizations of the classical Eshelby type inclusion problems for hemitropic
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HEMITROPIC ELASTICITY 453

materials (19, 20). Applications are anticipated in complex structures such as composite thin films,
bones, DNA, nanotubes among others. For a wider overview of the subject concerning different
areas of applications we refer to (5, 7, 9, 14, 21 to 23).

2. Field equations. Auxiliary material

Here we collect some auxiliary material from the theory of elasticity of hemitropic bodies.

2.1 Constitutive equations

Let �+ ⊂ R
3 be a bounded, simply connected domain with a piecewise smooth connected Lipschitz

boundary S := ∂�+ and �+ = �∪ S. Then it follows that �− := R
3\�+ is also simply connected

and ∂�− = ∂�+. Let � ∈ {�+, �−} be filled with an elastic material with hemitropic properties:
each material particle has 6 degrees of freedom, corresponding to displacements and microrotations.
Let B(r) be a ball of radius r , centred at the origin, with spherical boundary �r .

Denote by u = (u1, u2, u3)
� and ω = (ω1, ω2, ω3)

� the displacement vector and the micro-
rotation vector, respectively; here and in what follows the symbol (·)� denotes transposition. Note
that the microrotation vector in the hemitropic elasticity theory is kinematically distinct from the
macrorotation vector 1

2 curl u.
The force stress tensor {τpq} and the couple stress tensor {µpq} in the linear theory are related to

u and ω by the following constitutive equations (see (1, 11)):

τpq = τpq(U ) := (µ + α)
∂uq

∂xp
+ (µ − α)

∂u p

∂xq
+ λδpq div u + δ δpq div ω

+ (
 + ν)
∂ωq

∂xp
+ (
 − ν)

∂ωp

∂xq
− 2α

3∑
k=1

εpqkωk, (2.1)

µpq = µpq(U ) := δ δpq div u + (
 + ν)

[
∂uq

∂xp
−

3∑
k=1

εpqkωk

]
+ β δpq div ω

+ (
 − ν)

[
∂u p

∂xq
−

3∑
k=1

εqpkωk

]
+ (γ + ε)

∂ωq

∂xp
+ (γ − ε)

∂ωp

∂xq
,

where U = (u, ω)�, δpq is the Kronecker delta, εpqk is the permutation (Levi-Civitá) symbol,
and α, β, γ , δ, λ, µ, ν, 
 and ε are material constants. Concerning experimental determination of
the hemitropic material parameters and comparison of centrosymmetric and hemitropic (acentric)
models see (14).

The strain and torsion (curvature) tensors for hemitropic bodies are calculated by

u pq = ∂puq −
3∑

k=1

εpqk ωk, ωpq = ∂p ωq , p, q = 1, 2, 3. (2.2)

Clearly, all the above tensors are asymmetric.
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The so called energy bilinear form reads as follows:

E(U,U ′) = E(U ′,U ) =
3∑

p,q=1

{(µ + α)u′
pqu pq + (µ − α)u′

pquqp

+ (
 + ν)(u′
pqωpq + ω′

pqu pq) + (
 − ν)(u′
pqωqp + ω′

pquqp) + (γ + ε)ω′
pqωpq

+ (γ − ε)ω′
pqωqp + δ(u′

ppωqq + ω′
qqu pp) + λu′

ppuqq + βω′
ppωqq}.

For U ′ = U we have the potential energy density E(U,U ) which due to physical considerations
is assumed to be positive definite with respect to the variables (2.2). For the material constants this
implies (see (16))

µ > 0, α > 0, 3λ + 2µ > 0, µγ − 
2 > 0, αε − ν2 > 0,

(3λ + 2µ)(3β + 2γ ) − (3δ + 2
)2 > 0, (2.3)

whence

γ > 0, ε > 0, λ + µ > 0, β + γ > 0,

d1 := (µ + α)(γ + ε) − (
 + ν)2 > 0, d2 := (λ + 2µ)(β + 2γ ) − (δ + 2
)2 > 0.
(2.4)

The components of the force stress vector τ (n) and the couple stress vector µ(n), acting on a
surface element with a normal vector n = (n1, n2, n3), read as

τ (n)
q (U ) =

3∑
p=1

τpq(U ) n p, µ(n)
q (U ) =

3∑
p=1

µpq(U ) n p, q = 1, 2, 3.

Further we introduce the generalized stress operator (6 × 6 matrix differential operator)

T (∂, n) =
[

T (1)(∂, n) T (2)(∂, n)

T (3)(∂, n) T (4)(∂, n)

]
6×6

, T ( j) =
[
T ( j)

pq

]
3×3

, j = 1, 4, (2.5)

where ∂ = (∂1, ∂2, ∂3) with ∂ j = ∂/∂x j , ∂/∂n denotes the directional derivative along the vector
n (normal derivative),

T (1)
pq (∂, n) = (µ + α) δpq

∂

∂n
+ (µ − α) nq

∂

∂xp
+ λ n p

∂

∂xq
,

T (2)
pq (∂, n) = (
 + ν) δpq

∂

∂n
+ (
 − ν) nq

∂

∂xp
+ δ n p

∂

∂xq
− 2 α

3∑
k=1

εpqk nk,

T (3)
pq (∂, n) = (
 + ν) δpq

∂

∂n
+ (
 − ν) nq

∂

∂xp
+ δ n p

∂

∂xq
,

T (4)
pq (∂, n) = (γ + ε) δpq

∂

∂n
+ (γ − ε) nq

∂

∂xp
+ β n p

∂

∂xq
− 2 ν

3∑
k=1

εpqk nk .
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HEMITROPIC ELASTICITY 455

It can be easily checked that T (∂, n)U = (τ (n)(U ), µ(n)(U )
)�

. In what follows we refer to T (∂, n)
as the hemitropic stress operator. The first three components of the vector T (∂, n)U correspond to
the force stress vector,

T (U ) := T (1)(∂, n) u + T (2)(∂, n) ω,

while the second three components describe the couple stress vector,

M(U ) := T (3)(∂, n) u + T (4)(∂, n) ω.

Direct calculations show that

T (U ) = 2µ
∂u

∂n
+ λ n div u + (µ − α) [n × curl u] + 2


∂ω

∂n

+ δ n div ω + (
 − ν) [n × curl ω] + 2α [n × ω], (2.6)

M(U ) = 2

∂u

∂n
+ δ n div u + (
 − ν) [n × curl u] + 2γ

∂ω

∂n

+ β n div ω + (γ − ε) [n × curl ω] + 2ν [n × ω], (2.7)

where the symbol × denotes the cross product in R3.

2.2 The basic equations

The equations of dynamics of the hemitropic theory of elasticity have the form

3∑
p=1

∂p τpq(x, t) + � Fq(x, t) = �
∂2uq(x, t)

∂t2 ,

3∑
p=1

∂p µpq(x, t) +
3∑

l,r=1

εqlr τlr (x, t) + � Gq(x, t) = I ∂2ωq(x, t)

∂t2 , q = 1, 2, 3,

where t is the time variable, F = (F1, F2, F3)
� and G = (G1, G2, G3)

� are the body force and
body couple vectors per unit mass, � is the mass density of the elastic material, and I is a constant
characterizing the so-called spin torque corresponding to the interior microrotations (that is, the
moment of inertia per unit volume).

Using the constitutive equations (2.1) we can rewrite the above dynamical equations in terms of
the displacement and microrotation vectors. If all the quantities involved in these equations have har-
monic time dependence, that is, u(x, t) = u(x) e−i tσ , ω(x, t) = ω(x) e−i tσ , F(x, t) = F(x) e−i tσ

and G(x, t) = G(x) e−i tσ , with σ ∈ R and i = √−1, we obtain the steady state oscillation
equations of the hemitropic theory of elasticity:

(µ + α)�u(x) + (λ + µ − α) grad div u(x) + (
 + ν)�ω(x)

+ (δ + 
 − ν) grad div ω(x) + 2α curl ω(x) + � σ 2u(x) = −� F(x), (2.8)

(
 + ν)�u(x) + (δ + 
 − ν) grad div u(x) + 2α curl u(x) + (γ + ε)�ω(x)

+ (β + γ − ε) grad div ω(x) + 4ν curl ω(x) + (Iσ 2 − 4α)ω(x) = −� G(x), (2.9)
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456 D. NATROSHVILI et al.

where � = ∂2
1 + ∂2

2 + ∂2
3 is the Laplace operator and u, ω, F and G are complex-valued vector

functions; σ is a frequency parameter.
If σ = σ1 + i σ2 is complex with σ2 �= 0, then the above equations are called the pseudo-

oscillation equations, while for σ = 0 they represent the equilibrium equations of statics.
In this paper we deal with the steady state oscillation equations and assume that

σ > 0, Iσ 2 − 4α > 0. (2.10)

Clearly, the first inequality is a natural condition while the second one is a restriction on σ . Due to
this condition and the inequalities I > 0 and α > 0, we cannot pass to the limit as σ → 0 in the
arguments below. Therefore, the static case (σ = 0) needs special consideration.

Let us introduce the matrix differential operator corresponding to (2.8) and (2.9):

L(∂, σ ) :=
⎡⎣L(1)(∂, σ ), L(2)(∂, σ )

L(3)(∂, σ ), L(4)(∂, σ )

⎤⎦
6×6

, (2.11)

where

L(1)(∂, σ ) := [(µ + α)� + � σ 2] I3 + (λ + µ − α) Q(∂),

L(2)(∂, σ ) = L(3)(∂, σ ) := (
 + ν)� I3 + (δ + 
 − ν) Q(∂) + 2 α R(∂),

L(4)(∂, σ ) := [(γ + ε)� + (Iσ 2 − 4 α)] I3 + (β + γ − ε) Q(∂) + 4 ν R(∂).

Here and in the sequel Ik stands for the k × k unit matrix and

R(∂) :=
⎡⎢⎣ 0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0

⎤⎥⎦
3×3

, Q(∂) := [ ∂k∂ j ]3×3. (2.12)

It is easy to see that R(∂)u = curl u, and Q(∂) u = grad div u. Equations (2.8) and (2.9) can be
rewritten in matrix form as

L(∂, σ )U (x) = �(x), U = (u, ω)�, � = (�(1),�(2))� := (−� F(x), −� G(x))�.

2.3 Orthogonal system of spherical vectors

Denote by r , ϑ , ϕ (0 � r < +∞, 0 � ϑ � π , 0 � ϕ < 2π) the spherical coordinates of a point
x ∈ R3. Further, let �1 be a unit sphere in R3. In [L2(�1)]3 we introduce the following complete,
orthonormal system of vector spherical harmonics (24, 25):

Xmk(ϑ, ϕ) = er Y (m)
k (ϑ, ϕ), k � 0,

Ymk(ϑ, ϕ) = 1√
k(k + 1)

(
eϑ

∂

∂ϑ
+ eϕ

sin ϑ

∂

∂ϕ

)
Y (m)

k (ϑ, ϕ), k � 1, (2.13)

Zmk(ϑ, ϕ) = 1√
k(k + 1)

(
eϑ

sin ϑ

∂

∂ϕ
− eϕ

∂

∂ϑ

)
Y (m)

k (ϑ, ϕ), k � 1,
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HEMITROPIC ELASTICITY 457

where |m| � k, er = (cos ϕ sin ϑ, sin ϕ sin ϑ, cos ϑ)�, eϑ = (cos ϕ cos ϑ, sin ϕ cos ϑ, − sin ϑ)�
and eϕ = (− sin ϕ, cos ϕ, 0)� are unit R3-orthogonal vectors,

Y (m)
k (ϑ, ϕ) =

√
2k + 1

4π

(k − m)!

(k + m)!
Pm

k (cos ϑ) eimϕ (2.14)

and Pm
k is the associated Legendre function of the first kind of degree k and order m.

Let a vector function f (ϑ, ϕ) be representable in the form

f (ϑ, ϕ) =
∞∑

k=0

k∑
m=−k

{
αmk Xmk(ϑ, ϕ) +√k(k + 1) [βmk Ymk(ϑ, ϕ) + γmk Zmk(ϑ, ϕ)]

}
,

with

αmk =
∫ 2π

0
dϕ

∫ π

0
f (ϑ, ϕ) · Xmk(ϑ, ϕ) sin ϑ dϑ, k � 0,

βmk = 1√
k(k + 1)

∫ 2π

0
dϕ

∫ π

0
f (ϑ, ϕ) · Ymk(ϑ, ϕ) sin ϑ dϑ, k � 1, (2.15)

γmk = 1√
k(k + 1)

∫ 2π

0
dϕ

∫ π

0
f (ϑ, ϕ) · Zmk(ϑ, ϕ) sin ϑ dϑ, k � 1.

Here and in what follows a · b denotes the usual scalar product of two complex vectors a, b ∈ Cm :
a · b =∑m

j=1 a j b j , where the overbar denotes complex conjugation.
We remark that throughout the paper the summation index k for the summands involving the

vectors Ymk(ϑ, ϕ) and Zmk(ϑ, ϕ) varies from 1 to ∞.
Now we formulate several technical lemmas.

LEMMA 2.1 For the vectors Xmk(ϑ, ϕ), Ymk(ϑ, ϕ) and Zmk(ϑ, ϕ) given by (2.13) the following
inequalities hold:

|Xmk(ϑ, ϕ)| �
√

2k + 1

4π
, |Ymk(ϑ, ϕ)| �

√
k(k + 1)

2k + 1
, |Zmk(ϑ, ϕ)| �

√
k(k + 1)

2k + 1
, (2.16)

where the first inequality holds for k � 0, the second and third for k � 1.

LEMMA 2.2 Let f ∈ [C�(�1)]3 with � � 1. Then the coefficients αmk, βmk and γmk given by (2.15)
have the properties

αmk = O(k−�), βmk = O(k−�−1), γmk = O(k−�−1) as k → ∞.

LEMMA 2.3 A vector v = (v1, v2, v3)
� solves the system

curl v(x) ∓ σ v(x) = 0, div v(x) = 0, σ > 0,

in some domain � ⊂ R
3 if and only if v can be represented as

v(x) = curl curl (x �(x)) ± σ curl (x �(x)),

where � is a scalar function satisfying the Helmholtz equation (� + σ 2)� = 0 in �.
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LEMMA 2.4 A vector v = (v1, v2, v3)
� solves the system

(� + σ 2) v(x) = 0, curl v(x) = 0, σ > 0,

in some domain � ⊂ R
3 if and only if v can be represented as v(x) = grad �(x), where � is a

scalar function satisfying the Helmholtz equation (� + σ 2)� = 0 in �.

Proofs of these lemmas can be found, for example, in (26 to 28).

3. Representation formulae of a general solution

Here we derive the basic representation formulae for a general solution to the system (2.8) and (2.9).
As we shall see, the representation formulae have different forms for δ + 2
 �= 0 and δ + 2
 = 0.
From the basic inequalities (2.3) and (2.4) it follows that both cases are possible. Therefore we have
to deal with these cases separately.

THEOREM 3.1 Let δ + 2
 �= 0. A vector U = (u, ω)� solves (2.8) and (2.9) if and only if

u(x) =
6∑

j=1

v( j)(x), ω(x) =
6∑

j=1

β j v( j)(x), (3.1)

where v( j) = (v
( j)
1 , v

( j)
2 , v

( j)
3 )�, j = 1, 2, . . . , 6, satisfy the relations

(� + k2
j ) v( j)(x) = 0, curl v( j)(x) = 0, j = 1, 2,

curl v( j)(x) − k j v( j)(x) = 0, div v( j)(x) = 0, j = 3, 4, (3.2)

curl v( j)(x) + k j v( j)(x) = 0, div v( j)(x) = 0, j = 5, 6;

β j = [ρσ 2 − (λ + 2µ)k2
j ][(δ + 2
)k2

j ]
−1, j = 1, 2, (3.3)

β j = [ρσ 2 − (µ + α)k2
j ][(
 + ν)k2

j − 2αk j ]
−1, j = 3, 4, (3.4)

β j = [ρσ 2 − (µ + α)k2
j ][(
 + ν)k2

j + 2αk j ]
−1, j = 5, 6. (3.5)

Here k j are positive constants; k1 and k2 are defined by the equations

k2
1 + k2

2 = d−1
2 [(β + 2γ )ρσ 2 + (λ + 2µ)(Iσ 2 − 4α)], k2

1k2
2 = d−1

2 ρσ 2(Iσ 2 − 4α), (3.6)

while k3, k4, −k5, −k6 are the roots of the equation

d1t4 + d3t3 + d4t2 + d5t + d6 = 0 (3.7)

with

d1 = (µ + α)(γ + ε) − (
 + ν)2 > 0, d2 = (λ + 2µ)(β + 2γ ) − (δ + 2
)2 > 0,

d3 = 4(α
 − µν), d4 = −[(γ + ε)ρσ 2 + (µ + α)(Iσ 2 − 4α) + 4α2], (3.8)

d5 = 4νρσ 2, d6 = ρσ 2(Iσ 2 − 4α).
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HEMITROPIC ELASTICITY 459

Proof. We recall that σ > 0 and Iσ 2 − 4α > 0 (see (2.10)). Let U = (u, ω)� solve (2.8) and (2.9).
Applying the divergence operator to these equations gives

[(λ + 2µ)� + ρ σ 2] div u + (δ + 2
)� div ω = 0,

(δ + 2
)� div u + [(β + 2γ )� + I σ 2 − 4α] div ω = 0,

whence

(� + k2
1)(� + k2

2)( div u, div ω)� = 0, (3.9)

where k2
1 and k2

2 are defined by (3.6).
Similarly, applying the curl operator to (2.8) and (2.9) we obtain

[(µ + α) curl curl −ρσ 2 I3] curl u + [(
 + ν) curl curl −2α curl] curl ω = 0,

[(
 + ν) curl curl −2α curl] curl u + [(γ + ε) curl curl −4ν curl −(Iσ 2 − 4α)I3] curl ω = 0.

From these relations it follows that

[d1 R̃4(∂) + d3 R̃3(∂) + d4 R̃2(∂) + d5 R̃(∂) + d6 I6](curl u, curl ω)� = 0, (3.10)

where I6 is the unit 6 × 6 matrix and

R̃(∂) =
[

R(∂) 0

0 R(∂)

]
6×6

,

R(∂) and the constants d j are given by (2.12) and (3.8), respectively.
In (18) it is shown that for σ > 0 and Iσ 2 − 4α > 0 all the roots of (3.7) are real. Since d4 < 0

and d6 > 0, it follows that (3.7) has two positive and two negative roots. Denote the positive roots
by k3 and k4, and the negative roots by −k5 and −k6. Throughout the paper we assume that k j �= kp

for j �= p, j, p = 1, 2, . . . , 6.
We can decompose then equation (3.10) as

[R̃(∂) − k3 I6][R̃(∂) − k4 I6][R̃(∂) + k5 I6][R̃(∂) + k6 I6](curl u, curl ω)� = 0. (3.11)

From (2.8) and (2.9) we have

u(x) = u′(x) + u′′(x), ω(x) = ω′(x) + ω′′(x), (3.12)

where

u′(x) = − 1

ρ σ 2 [(λ + 2µ) grad div u + (δ + 2
) grad div ω], (3.13)

ω′(x) = − 1

I σ 2 − 4α
[(δ + 2
) grad div u + (β + 2γ ) grad div ω],

and

u′′(x) = 1

ρσ 2 [(µ + α) curl curl u + (
 + ν) curl curl ω − 2α curl ω], (3.14)

ω′′(x) = 1

Iσ 2 − 4α
[(
 + ν) curl curl u + (γ + ε) curl curl ω − 2α curl u − 4ν curl ω].

In view of (3.9) from (3.13) we get

(� + k2
1) (� + k2

2) (u′, ω′)� = 0, curl u′ = 0, curl ω′ = 0.
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We can represent the vectors u′ and ω′ as

u′(x) =
2∑

j=1

v( j)(x), ω′(x) =
2∑

j=1

ω( j)(x), (3.15)

where

v(1)(x) = [k2
2 − k2

1]−1[� + k2
2] u′(x), v(2)(x) = [k2

1 − k2
2]−1[� + k2

1] u′(x), (3.16)

ω(1)(x) = [k2
2 − k2

1]−1[� + k2
2] ω′(x), ω(2)(x) = [k2

1 − k2
2]−1[� + k2

1] ω′(x). (3.17)

We see that, for j = 1, 2,

[� + k2
j ] v( j)(x) = 0, curl v( j)(x) = 0, [� + k2

j ] ω( j)(x) = 0, curl ω( j)(x) = 0.

Since div u = div u′ and div ω = div ω′, with the help of (3.16), (3.17) and the identity grad
div v = �v + curl curl v for any v = (v1, v2, v3)

�, from (3.13) we get

[(λ + 2µ)k2
j − ρσ 2] v( j)(x) + (δ + 2
) k2

j ω( j)(x) = 0,

(δ + 2
) k2
j v( j)(x) + [(β + 2γ ) k2

j − (I σ 2 − 4α)] ω( j)(x) = 0, j = 1, 2.

Hence, for δ + 2
 �= 0, ω( j)(x) = β jv
( j)(x), j = 1, 2, where β1 and β2 are given by (3.3).

Substituting these expressions into (3.15) gives

u′(x) =
2∑

j=1

v( j)(x), ω′(x) =
2∑

j=1

β j v( j)(x), curl v( j)(x) = 0, j = 1, 2. (3.18)

Further, from (3.11) with the help of (3.14) we get

[R̃(∂) − k3 I6][R̃(∂) − k4 I6][R̃(∂) + k5 I6][R̃(∂) + k6 I6](u′′, ω′′ )� = 0. (3.19)

We can represent u′′ and ω′′ in the form

u′′(x) =
6∑

j=3

v( j)(x), ω′′(x) =
6∑

j=3

ω( j)(x), (3.20)

where

v( j)(x) = M ( j)(∂) u′′(x), ω( j)(x) = M ( j)(∂) ω′′(x), j = 3, 4, 5, 6, (3.21)

and M ( j)(∂), j = 3, 4, 5, 6, are the following differential operators:

M (3)(∂) = 1

(k3 − k4)(k3 + k5)(k3 + k6)
[R(∂) − k4 I3] [R(∂) + k5 I3] [R(∂) + k6 I3],

M (4)(∂) = 1

(k4 − k3)(k4 + k5)(k4 + k6)
[R(∂) − k3 I3] [R(∂) + k5 I3] [R(∂) + k6 I3],

M (5)(∂) = 1

(k6 − k5)(k5 + k3)(k5 + k4)
[R(∂) − k3 I3] [R(∂) − k4 I3] [R(∂) + k6 I3],

M (6)(∂) = 1

(k5 − k6)(k6 + k3)(k6 + k4)
[R(∂) − k3 I3] [R(∂) − k4 I3] [R(∂) + k5 I3].
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Due to the equalities div u′′ = 0 and div ω′′ = 0 from (3.21) in view of (3.19) we have

[R(∂) − k j I3] v( j)(x) = 0, [R(∂) − k j I3] ω( j)(x) = 0, j = 3, 4,

[R(∂) + k j I3] v( j)(x) = 0, [R(∂) + k j I3] ω( j)(x) = 0, j = 5, 6,

div v( j)(x) = 0, div ω( j)(x), j = 3, 4, 5, 6.

(3.22)

On the other side, since curl u = curl u′′ and curl ω = curl ω′′ from (3.14) with the help of (3.21)
and (3.22) we conclude

[(µ + α) k2
j − � σ 2] v( j)(x) + [(
 + ν) k2

j − 2α η j ] ω( j)(x) = 0,

[(
 + ν) k2
j − 2α η j ] v( j)(x) + [(γ + ε) k2

j − 4ν η j − (Iσ 2 − 4α)] ω( j)(x) = 0,

where

η3 = k3, η4 = k4, η5 = −k5 and η6 = −k6. (3.23)

From these relations it follows that

ω( j)(x) = β j v( j)(x), j = 3, 4, 5, 6, (3.24)

with β j given by (3.4) and (3.5). Substituting ω( j)(x) given by (3.24) into (3.20) gives

u′′(x) =
6∑

j=3

v( j)(x), ω′′(x) =
6∑

j=3

β j v( j)(x), (3.25)

where curl v( j)(x) − η jv
( j)(x) = 0 and div v( j)(x) = 0 for j = 3, 4, 5, 6. Finally, inserting u′, ω′,

u′′, and ω′′ given by (3.18) and (3.25) into (3.12) we get the representation (3.1).

Note that if δ + 2
 = 0, then an arbitrary solution (u, ω)� of (2.8) and (2.9) can be represented
in the form

u(x) = v(1)(x) +
6∑

j=3

v( j)(x), ω(x) = v(2)(x) +
6∑

j=3

β j v( j)(x),

where the constants β j , j = 3, 4, 5, 6, are defined by (3.4) and (3.5),

[� + k2
j ] v( j)(x) = 0, curl v( j)(x) = 0, j = 1, 2,

curl v( j)(x) − η j v( j)(x) = 0, div v( j)(x) = 0, j = 3, 4, 5, 6,

with η j given by (3.23), k2
1 = �σ 2/(λ + 2µ) and k2

2 = (Iσ 2 − 4α)/(β + 2γ ).
For definiteness, in what follows we assume that δ + 2
 �= 0.

THEOREM 3.2 A vector U = (u, ω)� is a solution of (2.8) and (2.9) if and only if it is representable
in the form

u(x) = grad
2∑

j=1

� j (x) +
6∑

j=3

[curl curl(x� j (x)) + η j curl(x� j (x))], (3.26)

ω(x) = grad
2∑

j=1

β j� j (x) +
6∑

j=3

β j [curl curl(x� j (x)) + η j curl(x� j (x))], (3.27)
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where η j are defined by (3.23), β j are defined by (3.3) to (3.5), and the functions � j solve the
Helmholtz equations, [� + k2

j ]� j (x) = 0, for j = 1, 2, . . . , 6, with k j as in Theorem 3.1.

Proof. By direct calculation it can easily be shown that the pair of vectors given by (3.26) and (3.27)
solves (2.8) and (2.9).

Now, let U = (u, ω)� be an arbitrary solution of (2.8) and (2.9). By Theorem 3.1, the represen-
tation formulae (3.1) with v( j), j = 1, 2, . . . , 6, satisfying (3.2) are true. By Lemmas 2.3 and 2.4
we have v( j) = grad � j for j = 1, 2 and v( j)(x) = curl curl(x� j (x)) + η j curl(x� j (x)) for
j = 3, 4, 5, 6, where η j are given by (3.23) and [� + k2

j ]� j = 0 for j = 1, 2, . . . , 6. Substitution
of these expressions for v( j) into (3.1) completes the proof.

COROLLARY 3.3 Let U = (u, ω)� and � j (x), j = 1, 2, . . . , 6, be as in Theorem 3.2. The corres-
pondence between U and � j , j = 1, 2, . . . , 6, in the ball B(R) is one-to-one if∫

�r

� j (x) d�r = 0, j = 3, 4, 5, 6, r = |x | � R, (3.28)

that is, the totality of metaharmonic functions {�1,�2, . . . ,�6} is uniquely defined by the compo-
nents of the vector U = (u, ω)� if (3.28) hold.

Proof. From formulae (3.26) and (3.27) we get

� j (x) = (−1)� j (δ + 2
)

� σ 2(k2
2 − k2

1)
k2
� j

[β� j div u(x) − div ω(x)],

r2

(
∂2

∂r2 + 2

r

∂

∂r
+ k2

j

)
� j (x) = � j (x, u)

k j (k j − k� j )(k j + k5)(k j + k6)
,

r2

(
∂2

∂r2 + 2

r

∂

∂r
+ k2

j

)
� j (x) = � j (x, ω)

k j (k j − k� j )(k j + k3)(k j + k4)
,

with �1 = 2, �2 = 1, �3 = 4, �4 = 3, �5 = 6, �6 = 5,

� j (x, u) = [R(∂) − k� j I3][R(∂) + k5 I3][R(∂) + k6 I3] curl u · x, j = 3, 4,

� j (x, ω) = [R(∂) + k� j I3][R(∂) − k3 I3][R(∂) − k4 I3] curl ω · x, j = 5, 6.

If u = 0 and ω = 0 in B(R) we have �1 = �2 = 0 and

r2

(
∂2

∂r2 + 2

r

∂

∂r
+ k2

j

)
� j (x) = 0, j = 3, 4, 5, 6. (3.29)

It remains to show that � j (x) = 0, j = 3, 4, 5, 6. Applying the well-known series representation
of metaharmonic functions (29) we can write, for x ∈ B(R),

� j (x) =
∞∑

k=0

k∑
m=−k

gk(k jr) A( j)
mk Y (m)

k (ϑ, ϕ), j = 3, 4, 5, 6.

Here Y (m)
k are given by (2.14), A( j)

mk are constants, and gk(k jr) = r−1/2 Jk+1/2(k jr), where Jν are
the Bessel functions. With the help of the equality(

d2

dr2 + 2

r

d

dr
+ k2

j

)
gk(k jr) = k(k + 1)

r2 gk(k jr),
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we get from (3.29)

∞∑
k=0

k∑
m=−k

k(k + 1) gk(k jr) A( j)
mk Y (m)

k (ϑ, ϕ) = 0,

whence the equations A( j)
mk = 0 follow for k � 1 and j = 3, 4, 5, 6. Therefore,

� j (x) = 1

2
√

π
g0(k jr) A( j)

00 , j = 3, 4, 5, 6.

Further, from (3.28), we deduce that A( j)
00 = 0 for j = 3, 4, 5, 6.

By the same arguments we can show that Corollary 3.3 holds also for the domain R3\B(R)
if the relations (3.28) hold for r = |x | � R.

4. Applications of the representation formulae

Illustrating efficiency of the general representations obtained above, here we consider two canon-
ical transmission problems, whose explicit solutions are obtained in the form of absolutely and
uniformly convergent series. The motivation for the choice of problems is that by the same ap-
proach one can construct explicit solutions to similar problems for layered composites with finitely
many spherical interfaces.

4.1 Equations of classical elasticity and Sommerfeld–Kupradze radiation conditions

Steady state oscillation equations in classical elasticity theory read as follows (30):

A(∂, σ ) u(x) = µ� u(x) + (λ + µ) grad div u(x) + � σ 2 u(x) = 0, (4.1)

where u = (u1, u2, u3)
� is the displacement vector, � is the mass density, σ is the frequency

parameter, and λ and µ are the Lamé constants satisfying µ > 0 and 3λ + 2µ > 0.
We denote the classical stress operator by P(∂, n) = [Pkj (∂, n)]3×3 and the corresponding stress

vector acting on a surface element with the unit normal n = (n1, n2, n3) by P(∂, n)u:

P(∂, n)u = 2µ∂u/∂n + λ n div u + µ [n × curl u]. (4.2)

We say that a vector u = (u1, u2, u3)
� satisfies the Sommerfeld–Kupradze radiation conditions

in �− if u(x) = u(1)(x) + u(2)(x) in �−, where the vectors u(l) = (u(l)
1 , u(l)

2 , u(l)
3 )� satisfy the

Helmholtz equations

[� + (k∗
l )2] u(l)(x) = 0, l = 1, 2,

and
∂

∂|x | u(l)
p (x) − i k∗

l u(l)
p (x) = o (|x |−1) as |x | → ∞, p = 1, 2, 3.

Here

(k∗
1)2 = �σ 2/µ, (k∗

2)2 = �σ 2/(λ + 2µ). (4.3)

For details see (30).
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Note that for a general solution of the classical steady oscillation equations (4.1) we have the
following representation formula (25):

u(x) = grad �1(x) + curl curl (x �2(x)) + curl (x �3(x)), (4.4)

where

[� + (k∗
1)2] �1(x) = 0, [� + (k∗

2)2] � j (x) = 0, j = 2, 3. (4.5)

We also have an analogue of Corollary 3.3: the triad of metaharmonic functions {�1,�2,�3} is
uniquely defined by the components of u if the conditions (3.28) hold for j = 2, 3.

4.2 Sommerfeld–Kupradze type radiation conditions in hemitropic elasticity

We say that a vector U = (u, ω)� satisfies the Sommerfeld–Kupradze type radiation conditions in
�− if

U (x) =
6∑

l=1

U (l)(x) in �−, (4.6)

where the vectors U (l) = (U (l)
1 , . . . , U (l)

6 )� satisfy the Helmholtz equations

[� + k2
l ] U (l)(x) = 0, l = 1, 2, . . . , 6, (4.7)

and for each l,
∂

∂|x | U (l)
p (x) − i kl U (l)

p (x) = o (|x |−1) as |x | → ∞, p = 1, 2, . . . , 6.

Here kl are as in Theorem 3.1. Such solutions will be referred to as radiating (for details see (18)).
As is well known, for sufficiently large |x | (as |x | → ∞) there hold the asymptotic relations (29)

U (l)(x) = exp{i kl |x |}
|x | U (l)∞ (x̂) +O (|x |−2),

∂

∂|x | U (l)
p (x) − i kl U (l)

p (x) = O (|x |−2),

∂

∂xq
U (l)

p (x) − i kl x̂q U (l)
p (x) = O (|x |−2), x̂q = xq

|x | , q = 1, 2, 3,

where U (l)∞ (x̂) is the so called far-field pattern,

U (l)∞ (x̂) := − 1

4π

∫
∂�−

e−i kl x̂ ·y{[∂n(y)U
(l)(y)]− + i kl (x̂ · n(y)) [U (l)(y)]−}dS.

Here and in what follows the symbols [ · ]± denote limits on ∂�± from �±.
Recall the celebrated Rellich–Vekua lemma: if U (l)

p solves (4.7) in �− with kl > 0 and

lim
R→∞

∫
�R

|U (l)
p (x)|2 d�R = 0,

then U (l)
p = 0 in �−. As a consequence we get that U (l)∞ = 0 implies U (l) = 0 in �−.

It is evident that a vector U = (u, ω)�, where u and ω are represented by formulae (3.1), is
radiating if the vectors v(l) satisfy the Sommerfeld radiation conditions at infinity

∂

∂|x | v(l)
p (x) − i kl v(l)

p (x) = o (|x |−1) as |x | → ∞, p = 1, 2, 3, l = 1, 2, . . . , 6.

It is also obvious that, in this case, in (4.6) we can take U (l) = (v(l), βlv
(l))�, l = 1, 2, . . . , 6.
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4.3 Formulation of transmission problems

Let �+ = �1 = B(R), a ball centred at the origin and radius R; �− = �2 = R
3\�1. We assume

that the domains �1 and �2 are occupied by hemitropic elastic solids with different material con-
stants involved in (2.8) and (2.9), and satisfying (2.3), (2.4) and (2.10). We endow these constants
with a subscript l: λl , . . . , 
l , �l , Il , l = 1, 2. The corresponding operators will be denoted by
L [l](∂, σ ), T [l](∂, n), T [l] andM[l]; see (2.5) and (2.11).

A vector function V = (V1, . . . , Vm) is said to be regular in �p if V ∈ [C1(�p)]m .

PROBLEM (H.H.) Find regular vector functions U (l) = (u(l), ω(l))� in �l , l = 1, 2, satisfying
the homogeneous differential equations L [l](∂, σ ) U (l)(x) = 0, for x ∈ �l , l = 1, 2, with U (2)

radiating in �2, and the transmission conditions on the interface ∂�1 = ∂�2 = �R ,

[U (1)(z)]+ − [U (2)(z)]− = f (z), (4.8)

[T [1](∂, n)U (1)(z)]+ − [T [2](∂, n)U (2)(z)]− = F(z), (4.9)

where n(z) = R−1 z is the unit exterior normal vector at z ∈ �R , f = ( f (1), f (2))� and F =
( f (3), f (4))� with f ( j) = ( f ( j)

1 , f ( j)
2 , f ( j)

3 )� are given continuous vector functions on �R .

We can rewrite the transmission conditions as follows:

[u(1)(z)]+ − [u(2)(z)]− = f (1)(z), [ω(1)(z)]+ − [ω(2)(z)]− = f (2)(z), (4.10)

[T [1](U (1))(z)]+ − [T [2](U (2))(z)]− = f (3)(z), (4.11)

[M[1](U (1))(z)]+ − [M[2](U (2))(z)]− = f (4)(z), (4.12)

where T [l](U (l)) andM[l](U (l)) are the force and couple stress vectors (cf. (2.6) and (2.7)),

T [l](U (l)) = 2 µl
∂u(l)

∂n
+ λl n div u(l) + (µl − αl) [n × curl u(l)] + 2 
l

∂ω(l)

∂n

+ δl n div ω(l) + (
l − νl) [n × curl ω(l)] + 2 αl [n × ω(l)], (4.13)

M[l](U (l)) = 2
l
∂u(l)

∂n
+ δl n div u(l) + (
l − νl) [n × curl u(l)] + 2γl

∂ω(l)

∂n

+ βl n div ω(l) + (γl − εl) [n × curl ω(l)] + 2 νl [n × ωl ], l = 1, 2. (4.14)

Equation (4.10) describes the jump of the displacement and microrotation vectors, while (4.11) and
(4.12) describe the jumps of the force stress and couple stress vectors.

Further we formulate a transmission problem for the composed body where we consider the
model of classical elasticity in �1 and the model of hemitropic elasticity in �2.

PROBLEM (C.H.) Find regular vector functions u(1) in �1 and U (2) = (u(2), ω(2))� in �2
satisfying A[1](∂, σ ) u(1)(x) = 0 for x ∈ �1, L [2](∂, σ ) U (2)(x) = 0 for x ∈ �2, with U (2)

radiating in �2, and the boundary transmission conditions on ∂�1 = ∂�2 = �R ,

[u(1)(z)]+ − [u(2)(z)]− = f (1)(z), [ω(2)(z)]
− = f (3)(z), (4.15)

[P [1](∂, n)u(1)(z)]+ − [T [2](U (2))(z)]− = f (2)(z), (4.16)
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where f ( j) = ( f ( j)
1 , f ( j)

2 , f ( j)
3 )�, j = 1, 2, 3, are given continuous vector functions on �R ,

A[1](∂, σ ) u(1) and P [1](∂, n)u(1) are defined by (4.1) and (4.2) with λ1, µ1, �1, and u(1) for λ,
µ, �, and u, and T [2](U (2)) is given by (4.13).

Note that, in the above problems, usually it is natural to require rigid bonding conditions on
the interfaces between the adjacent bodies, that is, continuity of the displacement and microrotation
fields, and force and couple stress vectors, which converts the transmission and boundary conditions
(4.8), (4.9), (4.15) and (4.16) into homogeneous ones. However, non-homogeneous transmission
conditions may occur for several reasons. For example, if we have non-zero body forces and body
couples, then the differential equations in the corresponding domains become non-homogeneous.
By a standard approach we can easily reduce them to homogeneous equations by introducing new
unknown vector functions, Ũ ( j) = U ( j) − U ( j)

0 , j = 1, 2, where U ( j)
0 are some particular solutions

to the non-homogeneous equations in the corresponding domains. For example, such solutions can
be explicitly written by means of the Newtonian potentials since the matrices of fundamental so-
lutions are known (16, 18). Clearly, Ũ ( j) solves then the homogeneous differential equations, but
now the transmission and boundary conditions become non-homogeneous since U (1)

0 and U (2)
0 do

not satisfy homogeneous transmission and boundary conditions.
Non-homogeneous transmission conditions arise also in Eshelby-type inclusion problems. In this

case, a region (‘inclusion’) in an infinite elastic medium undergoes a change of shape and size
which, but for the constraint imposed by its surroundings (the ‘matrix’), would be an arbitrary
homogeneous strain. It is required to determine the elastic state of inclusion and matrix. Due to
Mura’s nomenclature (31), when the material properties of the inclusion and the matrix are the
same, the problem is referred to as Eshelby’s first problem, while when the elastic properties are
different the problem is referred to as Eshelby’s second problem; for details see (19, 20) for elastic
bodies, and (14) for hemitropic bodies.

THEOREM 4.1 The homogeneous transmission problems (H.H.) and (C.H.) have only the trivial
solution.

Proof. Let R1 > R and �R1 = �2 ∩ B(R1). We have the following Green’s formulae (16):

∫
�1

[U (1) · L [1](∂, σ )U (1) − L [1](∂, σ )U (1) · U (1)]dx

=
∫

�R

[U (1) · T [1](∂, n)U (1) − T [1](∂, n)U (1) · U (1)]+dS,∫
�1

[u(1) · A[1](∂, σ )u(1) − A[1](∂, σ )u(1) · u(1)]dx

=
∫

�R

[u(1) · P [1](∂, n)u(1) − P [1](∂, n)u(1) · u(1)]+dS,∫
�R1

[U (2) · L [2](∂, σ )U (2) − L [2](∂, σ )U (2) · U (2)]dx

= −
∫

�R

[U (2) · T [2](∂, n)U (2) − T [2](∂, n)U (2) · U (2)]−dS

+
∫

�R1

[U (2) · T [2](∂, n)U (2) − T [2](∂, n)U (2) · U (2)]dS.
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From the homogeneous transmission conditions it follows that

Im
∫

�R1

U (2) · T [2](∂, n)U (2) dS = 0 for arbitrary R1 > R. (4.17)

In (18) it is shown that for radiating vectors the condition (4.17) implies U (2)(x) = 0 in �2. There-
fore due to the homogeneous transmission conditions we get

[U (1)(z)]+ = 0, [T [1](∂, n)U (1)(z)]+ = 0, z ∈ �R, (4.18)

in the case of Problem (H.H.) and

[u(1)(z)]+ = 0, [P [1](∂, n)u(1)(z)]+ = 0, z ∈ �R, (4.19)

in the case of Problem (C.H.). Now, we recall the standard integral representation formulae for
regular solutions U (1) and u(1) in �1 (see, for example, (16, 30))

U (1)(x) =
∫

�R

{[T [1](∂, n)�(x − y, σ )]�[U (1)(z)]+ − �(x − y, σ )[T [1](∂, n)U (1)(z)]+} dS,

u(1)(x) =
∫

�R

{[P [1](∂, n)�̃(x − y, σ )]�[u(1)(z)]+ − �̃(x − y, σ )[P [1](∂, n)u(1)(z)]+} dS,

where �(x − y, σ ) and �̃(x − y, σ ) are the fundamental matrices of L [1](∂, σ ) and A[1](∂, σ ),
respectively. These relations along with (4.18) and (4.19) complete the proof.

4.4 Solution of Problem (H.H.)

We look for a solution pair U (1) = (u(1), ω(1))� and U (2) = (u(2), ω(2))� of the transmission
problem (H.H.) in the form (see (3.26) and (3.27))

u(l)(x) = grad
2∑

j=1

�
(l)
j (x) +

6∑
j=3

[curl curl (x �
(l)
j ) + η

(l)
j curl (x �

(l)
j (x))], (4.20)

ω(l)(x) = grad
2∑

j=1

β
(l)
j �

(l)
j (x) +

6∑
j=3

β
(l)
j [curl curl(x�

(l)
j ) + η

(l)
j curl(x�

(l)
j (x))], (4.21)

where l = 1, 2,

β
(l)
j = [ρlσ

2 − (λl + 2µl)k
2
jl ][(δl + 2
l)k

2
jl ]

−1, j = 1, 2,

β
(l)
j = [ρlσ

2 − (µl + αl)k
2
jl ][(
l + νl)k

2
jl − 2αlη

(l)
j ]−1, j = 3, 4, 5, 6,

k2
1l + k2

2l = [d2l ]
−1[(βl + 2γl)ρlσ

2 + (λl + 2µl)(I lσ
2 − 4αl)], (4.22)

k2
1l k

2
2l = [d2l ]

−1ρlσ
2(I lσ

2 − 4αl), η
(l)
3 = k3l , η

(l)
4 = k4l , η

(l)
5 = −k5l , η

(l)
6 = −k6l , (4.23)

the constants k3l , k4l , −k5l , −k6l (k jl > 0, j = 3, 4, 5, 6), are roots of the equation

d1l t
4 + d3l t

3 + d4l t
2 + d5l t + d6l = 0
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with

d1l = (µl + αl)(γl + εl) − (
l + νl)
2, d2l = (λl + 2µl)(βl + 2γl) − (δl + 2
l)

2,

d3l = 4(αl 
l − µlνl), d4l = −[(γl + εl)ρlσ
2 + (µl + αl)(I lσ

2 − 4αl) + 4α2
l ],

d5l = 4νlρlσ
2, d6l = ρlσ

2(I lσ
2 − 4αl), l = 1, 2;

�
(l)
j are metaharmonic scalar functions,

[� + k2
jl ]�

(l)
j (x) = 0, j = 1, 2, . . . , 6, l = 1, 2. (4.24)

Note that U (2) has to be radiating. Therefore �
(l)
j can be represented in �l as

�
(l)
j (x) =

∞∑
k=0

k∑
m=−k

A( j,l)
mk g(l)

k (k jl r) Y (m)
k (ϑ, ϕ), (4.25)

where A( j,l)
mk are unknown constants, Y (m)

k are given by (2.14), and

g(1)
k (k j1 r) = r−1/2 Jk+1/2(k j1 r), g(2)

k (k j2 r) = r−1/2 H (1)
k+1/2(k j2 r), j = 1, 2, . . . , 6;

here Jν are Bessel functions and H (1)
ν are Hankel functions of the first kind. We assume that �

(l)
j (x)

satisfy conditions similar to (3.28) for j = 3, 4, 5, 6 and l = 1, 2. It is evident that these restrictions
are equivalent to the equalities

A( j,l)
00 = 0, j = 3, 4, 5, 6, l = 1, 2. (4.26)

In what follows we assume that in the representation (4.25) these conditions are fulfilled.
We remark that for radiating metaharmonic functions �

(2)
j the series (4.25) converge absolutely

and uniformly on compact subsets of �2. Conversely, if the series (4.25) converge in the mean
square sense on the sphere |x | = R then they also converge absolutely and uniformly on compact
subsets of |x | > R and represent radiating solutions to the Helmholtz equation (4.24) for |x | > R;
for details, see (29, Theorem 2.14).

Let us substitute (4.25) into (4.20) and (4.21), and apply the following identities:

grad [a(r) Y (m)
k (ϑ, ϕ)] = da(r)

dr
Xmk(ϑ, ϕ) +

√
k(k + 1)

r
a(r) Ymk(ϑ, ϕ),

curl(x a(r) Y (m)
k (ϑ, ϕ)) =√k(k + 1) a(r) Zmk(ϑ, ϕ),

curl curl (x a(r) Y (m)
k ) = k(k + 1)

r
a(r) Xmk +√k(k + 1)

(
d

dr
+ 1

r

)
a(r) Ymk,

where Xmk(ϑ, ϕ), Ymk(ϑ, ϕ), and Zmk(ϑ, ϕ) are defined in (2.13) and a(r) is an arbitrary differen-
tiable scalar function of r . We arrive at the equalities

u(l)(x) =
∞∑

k=0

k∑
m=−k

{u(1,l)
mk (r) Xmk +√k(k + 1) [v(1,l)

mk (r) Ymk + w
(1,l)
mk (r) Zmk]}, (4.27)

ω(l)(x) =
∞∑

k=0

k∑
m=−k

{u(2,l)
mk (r) Xmk +√k(k + 1)[v(2,l)

mk (r) Ymk + w
(2,l)
mk (r) Zmk]}, (4.28)
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where

u(p,l)
mk (r) =

2∑
j=1

γ
(p)
jl A( j,l)

mk
d

dr
g(l)

k (k jl r) +
6∑

j=3

k(k + 1)

r
γ

(p)
jl A( j,l)

mk g(l)
k (k jl r), k � 0, (4.29)

v
(p,l)
mk (r) =

2∑
j=1

1

r
γ

(p)
jl A( j,l)

mk g(l)
k (k jl r) +

6∑
j=3

γ
(p)
jl A( j,l)

mk

(
d

dr
+ 1

r

)
g(l)

k (k jl r), k � 1, (4.30)

w
(p,l)
mk (r) =

6∑
j=3

η
(l)
j γ

(p)
jl A( j,l)

mk g(l)
k (k jl r), k � 1, p = 1, 2, l = 1, 2, (4.31)

γ
(1)
jl = 1, γ (2)

jl = β
(l)
j and η

(l)
j are defined in (4.23). Further, let us substitute the above expressions of

u(l)(x) and w(l)(x) into (4.13) and (4.14), and apply the identities er ×Xmk = 0, er ×Ymk = −Zmk ,
er × Zmk = Ymk , div [a(r) Zmk] = 0,

div [a(r) Xmk] =
(

d

dr
+ 2

r

)
a(r) Y (m)

k , div [a(r) Ymk] = −
√

k(k + 1)

r
a(r) Y (m)

k ,

curl [a(r) Xmk] =
√

k(k + 1)

r
a(r) Zmk, curl [a(r) Ymk] = −

(
d

dr
+ 1

r

)
a(r) Zmk,

curl [a(r) Zmk(ϑ, ϕ)] =
√

k(k + 1)

r
a(r) Xmk(ϑ, ϕ) +

(
d

dr
+ 1

r

)
a(r) Ymk(ϑ, ϕ).

Finally, we obtain the representation of the force stress and couple stress vectors in the form of
series

T [l](U (l))(x) =
∞∑

k=0

k∑
m=−k

{a(1,l)
mk (r) Xmk +√k(k + 1)[b(1,l)

mk (r) Ymk + c(1,l)
mk Zmk]}, (4.32)

M[l](U (l))(x) =
∞∑

k=0

k∑
m=−k

{a(2,l)
mk (r) Xmk +√k(k + 1)[b(2,l)

mk (r) Ymk + c(2,l)
mk Zmk]}, (4.33)

where

a(1,l)
mk (r) = −

2∑
j=1

A( j,l)
mk

[
4ξ jl

r

d

dr
+ ρl σ 2 − 2k(k + 1)

r2 ξ jl

]
g(l)

k (k jl r)

+
6∑

j=3

2k(k + 1)

r
ξ jl A( j,l)

mk

(
d

dr
− 1

r

)
g(l)

k (k jl r), k � 0, (4.34)

b(1,l)
mk (r) =

2∑
j=1

2ξ jl

r
A( j,l)

mk

(
d

dr
− 1

r

)
g(l)

k (k jl r)

−
6∑

j=3

A( j,l)
mk

[
2ξ jl

r

(
d

dr
− k(k + 1) − 1

r

)
+ ρl σ 2

]
g(l)

k (k jl r), k � 1, (4.35)
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c(1,l)
mk (r) = −

2∑
j=1

2αl

r
β

(l)
j A( j,l)

mk g(l)
k (k jl r)

+
6∑

j=3

A( j,l)
mk

[
ρl σ 2

η
(l)
j

(
d

dr
+ 1

r

)
− 2

r
ξ jl η

(l)
j

]
g(l)

k (k jl r), k � 1, (4.36)

a(2,l)
mk (r) = −

2∑
j=1

A( j,l)
mk

[
2ζ jl

r

(
2

d

dr
− k(k + 1)

r

)
−
(
δl + 2
l + (βl + 2γl)β

(l)
j

)
k2

jl

]
g(l)

k (k jl r)

+
6∑

j=3

2k(k + 1)

r
A( j,l)

mk ζ jl

(
d

dr
− 1

r

)
g(l)

k (k jl r), k � 0, (4.37)

b(2,l)
mk (r) =

2∑
j=1

2ζ jl

r
A( j,l)

mk

(
d

dr
− 1

r

)
g(l)

k (k jlr) +
6∑

j=3

A( j,l)
mk

[
−2ζ jl

r

(
d

dr
− k(k + 1) − 1

r

)

+ (
l + νl) k2
jl + (γl + εl) β

(l)
j k2

jl + 2 νl β
(l)
j η

(l)
j

]
g(l)

k (k jl r), k � 1, (4.38)

c(2,l)
mk (r) = −

2∑
j=1

2νl

r
β

(l)
j A( j,l)

mk g(l)
k (k jlr) +

6∑
j=3

A( j,l)
mk

{[
(
l + νl)η

(l)
j

+ (γl + εl)η
(l)
j β

(l)
j − 2νlβ

(l)
j

]( d

dr
+ 1

r

)
− 2ζ jl

r
η

(l)
j

}
g(l)

k (k jlr), k � 1. (4.39)

Here ξ jl = µl + 
lβ
(l)
j , ζ jl = 
l + γlβ

(l)
j , l = 1, 2 and j = 1, 2, . . . , 6.

Let the given vector functions f ( j)(z), j = 1, 2, 3, 4, involved in the transmission conditions
(4.10) to (4.12) be representable as the Fourier–Laplace series

f ( j)(z) =
∞∑

k=0

k∑
m=−k

{α( j)
mk Xmk(ϑ, ϕ) +√k(k + 1)[β( j)

mk Ymk(ϑ, ϕ) + γ
( j)
mk Zmk(ϑ, ϕ)]}, (4.40)

where the coefficients α
( j)
mk , β

( j)
mk , γ

( j)
mk are calculated by (2.15) with f ( j) for f .

With the help of (4.27) to (4.39), and the expansions (4.40), from the transmission conditions
(4.10) to (4.12) we get the following two groups of linear systems of algebraic equations for the
unknowns A( j,l)

mk :

1. for k = 0, m = 0 (four equations with four unknowns, A( j,l)
00 , j = 1, 2, l = 1, 2)

u(1,1)
00 (R) − u(1,2)

00 (R) = α
(1)
00 , a(1,1)

00 (R) − a(1,2)
00 (R) = α

(3)
00 ,

u(2,1)
00 (R) − u(2,2)

00 (R) = α
(2)
00 , a(2,1)

00 (R) − a(2,2)
00 (R) = α

(4)
00 ;

⎫⎬⎭
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2. for k � 1, −k � m � k (12 equations with 12 unknowns for every fixed k and m, A( j,l)
km ,

j = 1, 2, . . . , 6, l = 1, 2)

u(1,1)
mk (R) − u(1,2)

mk (R) = α
(1)
mk , a(1,1)

mk (R) − a(1,2)
mk (R) = α

(3)
mk ,

u(2,1)
mk (R) − u(2,2)

mk (R) = α
(2)
mk , a(2,1)

mk (R) − a(2,2)
mk (R) = α

(4)
mk ,

v
(1,1)
mk (R) − v

(1,2)
mk (R) = β

(1)
mk , b(1,1)

mk (R) − b(1,2)
mk (R) = β

(3)
mk ,

v
(2,1)
mk (R) − v

(2,2)
mk (R) = β

(2)
mk , b(2,1)

mk (R) − b(2,2)
mk (R) = β

(4)
mk ,

w
(1,1)
mk (R) − w

(1,2)
mk (R) = γ

(1)
mk , c(1,1)

mk (R) − c(1,2)
mk (R) = γ

(3)
mk ,

w
(2,1)
mk (R) − w

(2,2)
mk (R) = γ

(2)
mk , c(2,1)

mk (R) − c(2,2)
mk (R) = γ

(4)
mk .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Due to Theorem 4.1 and Corollary 3.3 these systems are uniquely solvable with respect to the un-
knowns A( j,l)

mk . Thus we can construct explicitly the formal solution of the transmission problem in
the form of series. Further we have to investigate the convergence of these series and their deriva-
tives. To this end we apply the asymptotic formulae for Bessel and Hankel functions as k → ∞
(32) to obtain

g(1)
k (k j1 r) ≈

√
k j1 2k+1/2 k! (k j1 r)k

√
π (2k + 1)!

, [g(1)
k (k j1 r)]′ ≈ k

k j1 r
g(1)

k (k j1 r), r < R,

g(2)
k (k j2 r) ≈ −i

√
k j2 (2k)!√

π 2k−1/2k! (k j2r)k+1 , [g(2)
k (k j2 r)]′ ≈ − k

k j2 r
g(2)

k (k j2 r), R < r < R1.

Here R1 is an arbitrary number greater than R.
From these relations it follows that the series (4.27), (4.32) and (4.33) converge absolutely and

uniformly on compact subsets of �1 and �2.
These series converge absolutely and uniformly on ∂�1 = ∂�2 = �R if the following dominat-

ing series (obtained with the help of (2.16)) converges

∞∑
k=k0

4∑
j=1

k
3
2 [k(δ1 j + δ2 j ) + δ3 j + δ4 j ][|α( j)

mk | + k|β( j)
mk | + k|γ ( j)

mk |], (4.41)

where α
( j)
mk , β

( j)
mk , and γ

( j)
mk are the Fourier–Laplace coefficients of f ( j) (see (4.40)).

Now, with the help of the above asymptotic formulae we conclude that the following asymptotic
relations

α
( j)
mk = O(k−τ−1), β

( j)
mk = O(k−τ−2), γ

( j)
mk = O(k−τ−2), j = 1, 2, (4.42)

α
( j)
mk = O(k−τ ), β

( j)
mk = O(k−τ−1), γ

( j)
mk = O(k−τ−1), j = 3, 4, (4.43)

with τ > 5/2 are sufficient for convergence of the dominating series (4.41). In turn, from Lem-
mas 2.1 and 2.2, it follows that the inclusions

f ( j)(z) ∈ [C4(�R)]3, j = 1, 2, f ( j)(z) ∈ [C3(�R)]3, j = 3, 4, (4.44)

imply (4.42) and (4.43). Thus, if the sufficient conditions (4.44) hold, then the series (4.27), (4.32)
and (4.33) and their first-order derivatives converge uniformly and absolutely in �1 and �2 respec-
tively, and define a regular pair of solutions U (1) and U (2) to Problem (H.H.).
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4.5 Solution of Problem (C.H.)

We look for a regular vector U (2) in �2 again in the form (4.20) and (4.21), while we seek a regular
vector u(1) in �1 in the form (4.4) and (4.5) with the wave numbers k∗

1 and k∗
2 defined by (4.3) with

λ1 and µ1 for λ and µ. As before, we represent the functions � j as

� j (x) =
∞∑

k=0

k∑
m=−k

A( j)
mk g(1)

k (k∗
j r) Y (m)

k (ϑ, ϕ), j = 1, 2, 3, (4.45)

where k∗
3 = k∗

2 , A( j)
mk are unknown constants, and g(1)

k (k∗
j r) = r−1/2 Jk+1/2(k∗

j r). We again assume

that conditions (4.26) hold for l = 2 and also A( j)
00 = 0, j = 2, 3, which are equivalent to conditions

similar to (3.28).
From (4.4) and (4.45) we derive the following expansion for the displacement vector:

u(1)(x) =
∞∑

k=0

k∑
m=−k

{umk(r) Xmk +√k(k + 1)[vmk(r) Ymk + wmk(r) Zmk]}, (4.46)

where

umk(r) = A(1)
mk

d

dr
gk(k

∗
1r) + A(2)

mk
k(k + 1)

R
gk(k

∗
2r), k � 0,

vmk(r) = A(1)
mk

gk(k∗
1r)

r
+ A(2)

mk

(
d

dr
+ 1

r

)
gk(k

∗
2r), wmk(r) = A(3)

mk gk(k
∗
2r), k � 1.

With the help of formulae (4.2) and (4.46) we get a similar expansion for the stress vector:

P [1](∂, n)u(1)(x) =
∞∑

k=0

k∑
m=−k

{amk(r) Xmk +√k(k + 1)[bmk(r) Ymk + cmk(r) Zmk]}, (4.47)

where

amk(r) = −µ1 A(1)
mk

[
4

r

d

dr
− 2k(k + 1)

r2 + k∗
2

2
]

gk(k
∗
1r)

+ 2µ1k(k + 1)

r
A(2)

mk

(
d

dr
− 1

r

)
gk(k

∗
2r), k � 0,

bmk(r) = 2µ1

r
A(1)

mk

(
d

dr
− 1

r

)
gk(k

∗
1r)

− µ1 A(2)
mk

(
2

r

d

dr
− 2

k(k + 1) − 1

r2 + k∗
2

2
)

gk(k
∗
2r), k � 1,

cmk(r) = µ1 A(3)
mk

(
d

dr
− 1

r

)
gk(k

∗
2r), k � 1.

The representations (4.27) to (4.39), (4.46) and (4.47), and the transmission and boundary con-
ditions (4.15) and (4.16), lead to the following linear systems of algebraic equations with respect to
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the unknown constants A( j)
mk and A( j,2)

mk :

1. for k = 0, m = 0 (three equations with the three unknowns, A(1)
00 , A( j,2)

00 , j = 1, 2)

u00(R) − u(1,2)
00 (R) = α

(1)
00 , a00(R) − a(1,2)

00 (R) = α
(2)
00 , u(2,2)

00 (R) = α
(3)
00 ; (4.48)

2. for k � 1, −k � m � k (nine equations with the nine unknowns for every fixed k and m, A(p)
km ,

p = 1, 2, 3, A( j,2)
km , j = 1, 2, 3, 4, 5, 6)

umk(R) − u(1,2)
mk (R) = α

(1)
mk , amk(R) − a(1,2)

mk (R) = α
(2)
mk , u(2,2)

mk (R) = α
(3)
mk ,

vmk(R) − v
(1,2)
mk (R) = β

(1)
mk , bmk(R) − b(1,2)

mk (R) = β
(2)
mk , v

(2,2)
mk (R) = β

(3)
mk ,

wmk(R) − w
(1,2)
mk (R) = γ

(1)
mk , cmk(R) − c(1,2)

mk (R) = γ
(2)
mk , w

(2,2)
mk (R) = γ

(3)
mk ,

⎫⎪⎪⎬⎪⎪⎭ (4.49)

where α
( j)
mk , β

( j)
mk , γ

( j)
mk are the coefficients given by (2.15) with f ( j) for f .

In accordance with Theorem 4.1 and Corollary 3.3 (see also section 4.1) the systems (4.48) and
(4.49) are uniquely solvable and we can construct explicitly the vectors u(1) in �1 and U (2) in �2.
Quite similarly, as in the previous case, we can show that if

f (1), f (3) ∈ [C4(�R)]3, f (2) ∈ [C3(�R)]3,

then the series obtained and their first-order derivatives converge absolutely and uniformly in �1
and �2. Therefore, u(1) and U (2) are regular in the corresponding domains.
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