Annales de l'institut Fourier

BRUNO Franchi
 Guozhen Lu
 Richard L. Wheeden
 Representation formulas and weighted Poincaré inequalities for Hörmander vector fields

Annales de l'institut Fourier, tome 45, no 2 (1995), p. 577-604
http://www.numdam.org/item?id=AIF_1995__45_2_577_0
© Annales de l'institut Fourier, 1995, tous droits réservés.
L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

REPRESENTATION FORMULAS AND WEIGHTED POINCARÉ INEQUALITIES FOR HÖRMANDER VECTOR FIELDS

by B. FRANCHI, G. LU \& R.L. WHEEDEN ${ }^{(*)}$

1. Introduction.

In this paper, we derive the Poincaré inequality

$$
\begin{equation*}
\left(\frac{1}{|B|} \int_{B}\left|f(x)-f_{B}\right|^{q} d x\right)^{\frac{1}{q}} \leq c r\left(\frac{1}{|B|} \int_{B}\left(\sum_{j}\left|\left\langle X_{j}, \nabla f(x)\right\rangle\right|^{2}\right)^{\frac{p}{2}} d x\right)^{\frac{1}{p}} \tag{1.1}
\end{equation*}
$$

in Euclidean space \mathbb{R}^{N} for $1 \leq p<\infty$ and certain values $q>p$, where $\left\{X_{j}\right\}$ is a collection of smooth vector fields which satisfy the Hörmander condition (see $[\mathrm{H}]$). Here, B denotes any suitably restricted ball of radius r relative to a metric ρ which is naturally associated with $\left\{X_{j}\right\}$ as, e.g., in $[\mathrm{FP}]$ (although similar results hold for more general regions), $f_{B}=|B|^{-1} \int_{B} f(x) d x$, and c is a constant independent of f and B.

Inequality (1.1) was derived in [J] for $q=p$ and $1 \leq p<\infty$, and this result was improved in case $p>1$ in $[\mathrm{L} 2]$ by showing that the estimate holds for $1<p<Q$ and $q=p Q /(Q-p)$, where $Q(\geq N)$ denotes

[^0]the homogeneous dimension of \mathbb{R}^{N} associated with $\left\{X_{j}\right\}$ (see $\S 2$ for the definition). We will show that this result also holds in case $p=1$.

In fact, we will show that (1.1) holds for $1 \leq p<q<\infty$ if p and q are related by a natural balance condition which involves the local doubling order of Lebesgue measure (for metric balls). This condition will allow values of q which may be larger than those in [L2] and which may be different for different balls. We will also derive weighted versions of (1.1) for $1 \leq p \leq q<\infty$, and our estimates of this kind include those in [L1]. We note that it is shown in [BM1], [BM2] that, in very general settings, Poincaré's inequality with $p=q=p_{0}$, for a value $p_{0} \geq 1$, together with the doubling property of the underlying measure implies some SobolevPoincaré results of a different type for $q \geq p \geq p_{0}$, with q related to the doubling order. Some results in the same spirit were proved in [S-Cos] for compactly supported functions. We also mention here that embedding theorems for Hörmander vector fields on Campanato-Morrey spaces, and from Morrey spaces to BMO and non-isotropic Lipschitz spaces have been obtained in [L3] and [L4], together with some applications to subelliptic problems.

As a corollary of our results for $p=1$, we will derive relative isoperimetric inequalities for vector fields, including weighted versions. Such inequalities are more local than standard isoperimetric estimates. They remain valid for the classes of degenerate vector fields introduced in [FL] (see also [FS], [F], [FGuW]), which are not smooth but satisfy appropriate geometric conditions instead of the Hörmander condition. For $p=1$ and vector fields of this second type, weighted Poincaré estimates are proved in [FGuW$]$. In this way, we obtain relative versions of the isoperimetric estimates in [FGaW1], [FGaW2], which are derived by using Sobolev's inequality (for $p=1$), i.e., the inequality like (1.1) in which the constant f_{B} is omitted but f is assumed to be supported in B.

Our results of Poincaré type are based on a new representation formula for a function in terms of the vector fields $\left\{X_{j}\right\}$, and this formula is one of our main results. One form of the representation states that if ρ denotes the metric corresponding to $\left\{X_{j}\right\}$, then

$$
\begin{equation*}
\left|f(x)-f_{B}\right| \leq C \int_{c B}|X f(y)| \frac{\rho(x, y)}{|B(x, \rho(x, y))|} d y, \quad x \in B \tag{1.2}
\end{equation*}
$$

where B is any suitably small ρ-ball. Here, C and c are appropriate constants, $|X f|^{2}=\sum_{j}\left|\left\langle X_{j}, \nabla f\right\rangle\right|^{2}, f_{B}$ is the Lebesgue average $|B|^{-1} \int_{B} f d y$, $B(x, r)$ is the metric ball with center x and radius r, and $c B$ denotes
$B(x, c r)$ if $B=B(x, r)$. This estimate is more difficult to prove than the corresponding formula (without the constant f_{B} on the left) for functions f with compact support in B. In fact, that formula follows easily from the estimates in [NSW] and [SCal] for the fundamental solution of the operator $\sum_{j} X_{j}^{*} X_{j}$.

Inequality (1.2) was shown to be true on graded nilpotent Lie groups for the left invariant vector fields in [L1] (see Lemma (3.1) there). For general Hörmander vector fields, (1.2) improves an analogous fractional integral estimate in [L1] (Lemma (3.2) there) in several ways. For example, it only involves the original vector fields $\left\{X_{j}\right\}$ and metric ρ rather than their "lifted" versions $\left\{\tilde{X}_{j}\right\}$ and $\tilde{\rho}$ as defined in $[\mathrm{RS}]$ (see $\S 2$ below). Furthermore, the representation in [L1] also involves the Hardy-Littlewood maximal function of $|\tilde{X} f|+|f|$. Since the maximal function is not a bounded operator on L^{1}, its elimination is an important step in deriving Poincaré estimates for $p=1$. Another important step involves eliminating the zero order term $|f|$. We will do this and also derive a sharper local version of (1.2) by modifying an argument in [SW] (see also [FGuW] and [FGaW1], [FGaW2]). The main modification we need in order to eliminate the zero order term is to use the known unweighted Poincaré inequality from L^{1} to L^{1} (see for example $[J])$. The precise argument is given in $\S 2$. The more local version of (1.2) is stated in Proposition 2.12 and will be especially important for our Poincaré estimates in case $p=1$.

In order to state our results more precisely, we now introduce some additional notation (see $\S 2$ for more detail). Let Ω be an open, connected set in \mathbb{R}^{N}. Let X_{1}, \ldots, X_{m} be real C^{∞} vector fields which satisfy Hörmander's condition, i.e., the rank of the Lie algebra generated by X_{1}, \ldots, X_{m} equals N at each point of a neighborhood Ω_{0} of $\bar{\Omega}$. As is well-known, it is possible to naturally associate with $\left\{X_{j}\right\}$ a metric $\rho(x, y)$ for $x, y \in \Omega$. The geometry of the metric space (Ω, ρ) is described in [NSW], [FP] and [S-Cal]. In particular, the ρ-topology and the Euclidean topology are equivalent in Ω, each metric ball

$$
B(x, r)=\{y \in \Omega: \rho(x, y)<r\}, x \in \Omega, r>0
$$

contains some Euclidean ball with center x, and if K is a compact subset of Ω, there are positive constants c and r_{0} such that

$$
\begin{equation*}
|B(x, 2 r)| \leq c|B(x, r)|, \quad x \in K, \quad 0<r<r_{0} \tag{1.3}
\end{equation*}
$$

where $|E|$ denotes the Lebesgue measure of a measurable set E. This doubling property of Lebesgue measure is crucial for our results. If $B=$ $B(x, r)$, we will use the notation $r(B)$ for the radius r of B.

By [NSW], given a ball $B=B(x, r), x \in K, r<r_{0}$, there exist positive constants γ and c, depending on B, so that

$$
\begin{equation*}
|J| \leq c\left(\frac{r(J)}{r(I)}\right)^{N \gamma}|I| \tag{1.4}
\end{equation*}
$$

for all balls I, J with $I \subset J \subset B$. We will call γ the (local) doubling order of Lebesgue measure for B. In fact, by [NSW], $N \gamma$ lies somewhere in the range $N \leq N \gamma \leq Q$, where Q is the homogeneous dimension. We can always choose $N \gamma=Q$, but smaller values may arise for particular vector fields, and these values may vary with $B(x, r)$. See $\S 2$ for some further comments about (1.4).

Given any real-valued function $f \in \operatorname{Lip}(\Omega)$, we denote

$$
X_{j} f(x)=\left\langle X_{j}(x), \nabla f(x)\right\rangle, j=1, \ldots, m
$$

and

$$
|X f(x)|^{2}=\sum_{j=1}^{m}\left|X_{j} f(x)\right|^{2}
$$

where ∇f is the usual gradient of f and \langle,$\rangle is the usual inner product on$ \mathbb{R}^{N}.

The Poincaré estimate that we will prove in the unweighted case is as follows.

Theorem 1. - Let K be a compact subset of Ω. There exists r_{0} depending on K, Ω and $\left\{X_{j}\right\}$ such that if $B=B(x, r)$ is a ball with $x \in K$ and $0<r<r_{0}$, and if $1 \leq p<N \gamma$ and $1 / q=1 / p-1 /(N \gamma)$, where γ is defined by (1.4) for B, then

$$
\left(\frac{1}{|B|} \int_{B}\left|f(x)-f_{B}\right|^{q} d x\right)^{\frac{1}{q}} \leq c r\left(\frac{1}{|B|} \int_{B}|X f(x)|^{p} d x\right)^{\frac{1}{p}}
$$

for any $f \in \operatorname{Lip}(\bar{B})$. The constant c depends on $K, \Omega,\left\{X_{j}\right\}$, and the constants c and γ in (1.4). Also, f_{B} may be taken to be the Lebesgue average of $f, f_{B}=|B|^{-1} \int_{B} f(x) d x$.

As mentioned earlier, we may always choose $N \gamma=Q$, and then with $p>1$ we obtain the principal result of [L2]. The theorem also improves the estimate in [J] for $p=1$, where the L^{1} norm appears on the left side of the conclusion.

After the preparation of this paper, a result similar to Theorem 1 was proved in [MS-Cos] by using a different approach. In fact, in [MS-Cos], the
authors do not derive a representation formula like (1.2), which is one of the main results of the present paper. Moreover, formula (1.2) enables us to prove two-weight Sobolev-Poincaré inequalities (see Theorem 2 below), and at present seems essential for deriving such inequalities. Some related arguments have been given on graphs and manifolds in [Cou].

As the proof of Theorem 1 will show, if the conclusion is weakened by replacing the integration over B on the right by integration over an appropriate larger ball $c B$, then (1.4) may be replaced by the condition

$$
|B| \leq c\left(\frac{r(B)}{r(I)}\right)^{N \gamma}|I|
$$

for all balls I with center in $c B$ and $r(I) \leq r(B)$.
Some weighted versions of Poincaré's inequality for Hörmander vector fields are proved in [L1] when $p>1$, and our methods allow us to improve these and also extend them to $p=1$. A weight function $w(x)$ on Ω is a nonnegative function on Ω which is locally integrable with respect to Lebesgue measure. We say that a weight $w \in A_{p}\left(=A_{p}(\Omega, \rho, d x)\right.$), $1 \leq p<\infty$, if

$$
\begin{aligned}
& \left(\frac{1}{|B|} \int_{B} w d x\right)\left(\frac{1}{|B|} \int_{B} w^{-1 /(p-1)} d x\right)^{p-1} \leq C \quad \text { when } 1<p<\infty \\
& \frac{1}{|B|} \int_{B} w d x \leq C \text { ess } \inf w \quad \text { when } p=1
\end{aligned}
$$

for all metric balls $B \subset \Omega$. The fact that Lebesgue measure satisfies the doubling condition (1.3) allows us to develop the usual theory of such weight classes as in [Ca], at least for balls $B=B(x, r)$ with $0<r<r_{0}$ and x belonging to a compact subset of Ω. It follows easily from the definition and (1.3) that if $w \in A_{p}$ then

$$
w(B(x, 2 r)) \leq C w(B(x, r))
$$

if $0<r<r_{0}$ and $x \in K \subset \Omega, K$ compact, with $C=C\left(r_{0}, K\right)$, where we use the standard notation $w(E)=\int_{E} w d x$. We say that any such weight is doubling. All the weights we shall consider will be doubling weights.

Given two weight functions w_{1}, w_{2} on Ω and $1 \leq p<q<\infty$, we will assume that the following local balance condition holds for w_{1}, w_{2} and a ball B with center in K and $r(B)<r_{0}$:

$$
\begin{equation*}
\frac{r(I)}{r(J)}\left(\frac{w_{2}(I)}{w_{2}(J)}\right)^{\frac{1}{q}} \leq c\left(\frac{w_{1}(I)}{w_{1}(J)}\right)^{\frac{1}{p}} \tag{1.5}
\end{equation*}
$$

for all metric balls I, J with $I \subset J \subset B$. Note that in the case of Lebesgue measure ($w_{1}=w_{2}=1$), (1.5) reduces to (1.4) when $1 / q=1 / p-1 /(N \gamma)$.

Our main result of Poincaré type for $p<q$ is then as follows.
Theorem 2. -- Let K be a compact subset of Ω. Then there exists r_{0} depending on K, Ω and $\left\{X_{j}\right\}$ such that if $B=B(x, r)$ is a ball with $x \in K$ and $0<r<r_{0}$, and if $1 \leq p<q<\infty$ and w_{1}, w_{2} are weights satisfying the balance condition (1.5) for B, with $w_{1} \in A_{p}(\Omega, \rho, d x)$ and w_{2} doubling, then

$$
\left(\frac{1}{w_{2}(B)} \int_{B}\left|f(x)-f_{B}\right|^{q} w_{2}(x) d x\right)^{\frac{1}{q}} \leq c r\left(\frac{1}{w_{1}(B)} \int_{B}|X f(x)|^{p} w_{1}(x) d x\right)^{\frac{1}{p}}
$$

for any $f \in \operatorname{Lip}(\bar{B})$, with $f_{B}=w_{2}(B)^{-1} \int_{B} f(x) w_{2}(x) d x$. The constant c depends only on $K, \Omega,\left\{X_{j}\right\}$ and the constants in the conditions imposed on w_{1} and w_{2}.

This result includes Theorem 1 and the weighted results in [L1].
We note here that the proof of Theorem 2 will show that if we replace the integration over B on the right side of the conclusion by integration over a suitably enlarged ball $c B$, then we may also choose f_{B} to be $|B|^{-1} \int_{B} f(x) d x$. Moreover, the inequality with the enlarged ball $c B$ on the right also holds by assuming a slightly different balance condition : see (3.1). We also remark here that in the usual Poincaré inequality for Hörmander vector fields, one can replace the average f_{B} by $f\left(x_{0}\right)$ for any fixed distinguished interior point x_{0} of B if f is a solution of a certain type of degenerate subelliptic differential equation (see [L5]).

Remark 1.6. - Theorem 2 has an analogue in case $q=p$ and $1 \leq p<\infty$. In fact, the theorem remains true as stated if $1<p<\infty$ and $q=p$ provided $w_{1} \in A_{p}$ and there exists $s>1$ such that w_{2}^{s} is a doubling weight and the balance condition (1.5) is replaced by the condition

$$
\begin{equation*}
\left(\frac{r(I)}{r(J)}\right)^{p} \frac{\mathcal{A}_{s}\left(I, w_{2}\right)}{w_{2}(J)} \leq c \frac{w_{1}(I)}{w_{1}(J)} \tag{1.7}
\end{equation*}
$$

for all balls I, J with $I \subset J \subset B$, where

$$
\mathcal{A}_{s}\left(I, w_{2}\right)=|I|\left(\frac{1}{|I|} \int_{I} w_{2}^{s} d x\right)^{\frac{1}{s}}
$$

Note that $w_{2}(I) \leq \mathcal{A}_{s}\left(I, w_{2}\right)$ for $s>1$ by Hölder's inequality, and, as is well known, $w_{2}(I)$ and $\mathcal{A}_{s}\left(I, w_{2}\right)$ are equivalent if w_{2} belongs to some $A_{p_{0}}$ class and s is sufficiently close to 1 . For some discussion concerning this remark, and for a result in case $p=q=1$, see the end of $\S 3$.

We mention in passing that it is possible to use the Poincaré estimates above to derive analogous estimates for domains other than balls. In particular, this can be done for domains which satisfy the Boman chain condition; see the end of the proof of Theorem 2 in $\S 3$ for a result of this type. In fact, the technique used for Boman domains is also needed in order to prove Theorem 2. John metric domains (see [BKL]) and bounded (ϵ, ∞) metric domains (see [LW]) have been shown to be Boman chain domains, and thus Poincaré inequalities hold on such domains by the argument in this paper (see also [FGuW]). For the problem of extending Poincaré inequalities to other domains than balls, see also [CDG].

We will use the Poincaré estimates for $p=1$ to derive analogues of the relative isoperimetric inequality. The classical relative isoperimetric inequality for a bounded open set $E \subset \mathbb{R}^{N}$ with sufficiently regular boundary ∂E and a Euclidean ball B is

$$
\min \left\{\left|B_{\cap} E\right|,|B \backslash E|\right\}^{1-\frac{1}{N}} \leq c H_{N-1}\left(B_{\cap} \partial E\right)
$$

where H_{N-1} denotes ($N-1$)-dimensional Hausdorff measure. This estimate is more local than the standard isoperimetric inequality $|E|^{1-\frac{1}{N}} \leq$ $c H_{N-1}(\partial E)$. Some analogues of the standard estimate which are related to either Hörmander vector fields or vector fields of the type [FL], including weighted versions, are derived in [FGaW1], [FGaW2]. By adapting the arguments there, we will prove the following corresponding result of relative type in $\S 4$.

Theorem 3. - Let $\left\{X_{j}\right\}$ be vector fields of Hörmander type on $\Omega_{0} \supset \bar{\Omega}$, and let K be a compact subset of Ω. Let w_{1}, w_{2} be weights with w_{1} continuous and in $A_{1}(\Omega, \rho, d x)$, and w_{2} doubling. Suppose also that (1.5) holds for $p=1$ and some $q>1$ uniformly in $B=B(x, r)$ with $x \in K$ and $0<r<r_{0}$. Let E be an open, bounded, connected subset of Ω whose boundary ∂E is an oriented C^{1} manifold such that E lies locally on one side of ∂E. If r_{0} is sufficiently small and $B=B(x, r)$ is any ball with $x \in K$ and $0<r<r_{0}$, then

$$
\min \left\{w_{2}\left(B_{\cap} E\right), w_{2}(B \backslash E)\right\}^{1 / q} \leq c \int_{\partial E_{\cap} B}\left(\sum_{j}\left\langle X_{j}, \nu\right\rangle^{2}\right)^{1 / 2} w_{1} d H_{N-1}
$$

where ν is the unit outer normal to ∂E, and the constants c, r_{0} are independent of E and B.

In particular, in the case of Lebesgue measure, i.e., in case $w_{1}=w_{2}=$ 1 , the conclusion holds with $q=Q /(Q-1)$. In any case, the assumption
that (1.5) holds uniformly in B may be deleted by allowing the constant c in the conclusion to depend on the constant in (1.5).

The analogous isoperimetric result in [FGaW1], [FGaW2] amounts to the special case when E lies in the middle half of B. Theorem 3 has an analogue for the degenerate vector fields of type [FL] : see the remarks at the end of $\S 4$.

Some of the results of the present paper were announced in [FLW], where applications to Harnack's inequality for degenerate elliptic equations are given.

2. Proof of the representation formula.

We begin by briefly recalling some definitions and facts about Hörmander vector fields. For details, we refer to [NSW], [FP], [S-Cal], $[\mathrm{RS}]$ and [J]. Following [FP], we say that an absolutely continuous curve $\gamma:[0, T] \rightarrow \Omega$ is a sub-unit curve if

$$
\left|\left\langle\gamma^{\prime}(t), \xi\right\rangle\right|^{2} \leq \sum_{j}\left|\left\langle X_{j}(\gamma(t)), \xi\right\rangle\right|^{2}
$$

for all $\xi \in \mathbb{R}^{N}$ and a.e. $t \in[0, T]$. The metric $\rho(x, y)$ mentioned in the introduction is then defined for $x, y \in \Omega$ by
$\rho(x, y)=\inf \{T: \exists$ a sub-unit curve $\gamma:[0, T] \rightarrow \Omega$ with $\gamma(0)=x, \gamma(T)=y\}$.
By [NSW], Lebesgue measure satisfies the doubling condition (1.3) for ρ-balls. In fact, by the results of [NSW], we have

$$
\begin{equation*}
c_{1}\left(\frac{r}{s}\right)^{\alpha} \leq \frac{|B(x, r)|}{|B(x, s)|} \leq c_{2}\left(\frac{r}{s}\right)^{\beta} \tag{2.1}
\end{equation*}
$$

for $x \in K$ and $0 \leq s<r<r_{0}$ for suitable $\alpha=\alpha(x)$ and $\beta=\beta(x)$, with $N \leq \alpha \leq \beta$. To prove (2.1), first remember that, by the Hörmander condition, there exists a positive integer M such that, among X_{1}, \ldots, X_{m} and their commutators of degree (length) less than or equal to M, we can find at least one N-tuple of vector fields which are linearly independent at x. Now define

$$
\begin{aligned}
& \alpha=\alpha(x)=\min \left\{\operatorname{deg} Y_{1}+\ldots+\operatorname{deg} Y_{N}\right\} \\
& \beta=\beta(x)=\max \left\{\operatorname{deg} Y_{1}+\ldots+\operatorname{deg} Y_{N}\right\},
\end{aligned}
$$

where $\operatorname{deg} Y_{i}$ is the formal degree of Y_{i} (a fixed integer ≥ 1) and $\left\{Y_{1}, \ldots, Y_{N}\right\}$ ranges over all collections of N vectors chosen from $\left\{X_{j}\right\}$
and its commutators up to degree M such that Y_{1}, \ldots, Y_{N} are linearly independent at x. Clearly, $\alpha \geq N$ and $\beta \leq M N$. Actually, $\beta \leq Q$, where Q is the homogeneous dimension defined below.

By the results of [NSW], p. 110, if $x \in K$ and $0<r<r_{0}$, then

$$
|B(x, r)| \sim \Lambda(x, r)=\sum_{I}\left|\lambda_{I}(x)\right| r^{d(I)}
$$

with constants of equivalence depending on K and r_{0}, where the sum is over all N-tuples $I=\left(i_{1}, \ldots, i_{N}\right)$ of integers such that $Y_{i_{1}}, \ldots, Y_{i_{N}}$ is a collection of N vectors chosen from $\left\{X_{j}\right\}$ and its commutators up to degree M,

$$
\lambda_{I}(x)=\operatorname{det}\left(Y_{i_{1}}, \ldots, Y_{i_{N}}\right)(x)
$$

and

$$
d(I)=\operatorname{deg} Y_{i_{1}}+\ldots+\operatorname{deg} Y_{i_{N}}
$$

Since

$$
\Lambda(x, r)=\sum_{I}\left|\lambda_{I}(x)\right| r^{d(I)}=\sum_{I}\left|\lambda_{I}(x)\right| s^{d(I)}\left(\frac{r}{s}\right)^{d(I)}
$$

and since for $s<r$ and $\lambda_{I}(x) \neq 0$ we have

$$
\left(\frac{r}{s}\right)^{\alpha} \leq\left(\frac{r}{s}\right)^{d(I)} \leq\left(\frac{r}{s}\right)^{\beta}
$$

it follows that

$$
\left(\frac{r}{s}\right)^{\alpha} \Lambda(x, s) \leq \Lambda(x, r) \leq\left(\frac{r}{s}\right)^{\beta} \Lambda(x, s), 0<s<r
$$

which proves (2.1).
The second inequality on (2.1) leads easily to a natural choice for the local doubling order γ defined in (1.4). In fact, let $x \in K$ and $r<r_{0}$, and let I and J be balls satisfying $I \subset J \subset B(x, r)$. Then, assuming as we may by doubling that I and J are concentric, we have by (2.1) that

$$
|J| \leq c\left(\frac{r(J)}{r(I)}\right)^{N \gamma}|I|
$$

where γ is chosen so that $N \gamma=\max \{\beta(y): y \in B(x, r)\}$.
We may adjoin new variables $\left(t_{1}, \ldots, t_{d}\right)=t \in \mathbb{R}^{d}$ to $\left(x_{1}, \ldots, x_{N}\right)$ as in $[\mathrm{RS}]$ and form new C^{∞} vector fields $\left\{\tilde{X}_{j}\right\}$ in $\Omega \times \mathbb{R}^{d}$,

$$
\left\langle\tilde{X}_{j}, \nabla_{x, t}\right\rangle=\left\langle X_{j}, \nabla_{x}\right\rangle+\sum_{l=1}^{d} a_{j l}(x, t) c \frac{\partial}{\partial t_{l}}, j=1, \ldots, m
$$

so that the new vector fields $\left\{\tilde{X}_{j}\right\}_{j=1}^{m}$ together with their commutators $\left\{\tilde{X}_{\alpha}\right\}_{|\alpha| \leq M}$ of length at most M span the tangent space in \mathbb{R}^{N+d} at each
point of $\Omega_{0} \times \mathbb{R}^{d}$, and are also free of order M, i.e., the commutators of length at most M satisfy no linear relationships other than antisymmetry and the Jacobi identity. The collection $\left\{\tilde{X}_{j}\right\}_{j=1}^{m}$ is referred to as the lifted or free vector fields. If m_{i} denotes the number of linearly independent commutators of length i (the length of each \tilde{X}_{j} itself being 1), then the number

$$
Q=\sum_{i=1}^{M} i m_{i}
$$

is called the homogeneous dimension of \mathbb{R}^{N} with respect to $\left\{X_{j}\right\}$. In what follows, we set $\tilde{\Omega}=\Omega \times U_{0}$ where U_{0} is the unit ball in \mathbb{R}^{d}, and we denote by $\tilde{\rho}$ the metric on $\tilde{\Omega} \times \tilde{\Omega}$ associated with the lifted vector fields $\tilde{X}_{1}, \ldots, \tilde{X}_{m}$. The corresponding metric balls will be denoted $\tilde{B}=\tilde{B}(\xi, r)$. Given a compact set $K \subset \Omega$ and $r_{0}>0$, we have

$$
\begin{equation*}
|\tilde{B}(\xi, r)| \approx r^{Q} \tag{2.2}
\end{equation*}
$$

with constants of equivalence independent of $\xi \in K \times U_{0}$ and $0<r<r_{0}$.
We will also use the following basic facts :

$$
\begin{equation*}
\tilde{\rho}((x, s),(y, t)) \geq \rho(x, y) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} \chi_{\tilde{B}((x, 0), r)}(y, t) d t \leq c \frac{|\tilde{B}((x, 0), r)|}{|B(x, r)|} \tag{2.4}
\end{equation*}
$$

provided $x \in K$ and $0<r<r_{0}$; see Lemmas 3.1 and 3.2 of [NSW] (see also Lemma 4.4 of [J] for a result about the inequality opposite to (2.4)).

As a first step in deriving the representation formula, we now prove the following pointwise estimate for the lifted vector fields $\left\{\tilde{X}_{j}\right\}$.

Lemma 2.5. - Let \tilde{K} be a compact subset of $\tilde{\Omega}$ and $\tilde{B}=\tilde{B}\left(\xi_{0}, r\right)$ with $\xi_{0} \in \tilde{K}, 0<r<r_{0}$. Then there are constants $c, c_{\tilde{B}}$ such that

$$
\left|f(\xi)-c_{\tilde{B}}\right| \leq c \int_{c \tilde{B}} \frac{(|\tilde{X} f|+|f|)(\eta)}{\tilde{\rho}(\xi, \eta)^{Q-1}} d \eta, \quad \xi \in \tilde{B},
$$

for any $f \in \operatorname{Lip}(\overline{c \tilde{B}})$, where c is independent of f and \tilde{B}, and $|\tilde{X} f|^{2}=$ $\sum_{j}\left\langle\tilde{X}_{j}, \nabla f\right\rangle^{2}$.

This lemma improves Lemma 3.2 in [L1] by replacing the term $M\left[(|\tilde{X} f|+|f|) \chi_{c \tilde{B}}\right]$ in the fractional integral there by $|\tilde{X} f|+|f|$, where M is the Hardy-Littlewood maximal operator. The proof of Lemma 2.5
will be a modification of the one in [L1], and due to the complexity of notation, we will only point out the changes that are needed in the proof there.

Proof of Lemma 2.5. - For simplicity, we will delete the tildas from the notations $\tilde{X}_{j}, \tilde{p}, \tilde{B}$. It is shown in [L1], p. 384-388, that

$$
\begin{equation*}
\left|M_{1} h(\xi)-f(\xi)\right| \leq C \int_{c B} \frac{(|X f|+|f|)(\eta)}{\rho(\xi, \eta)^{Q-1}} d \eta \tag{2.6}
\end{equation*}
$$

for all $\xi \in B=B\left(\xi_{0}, r\right)$. We need to show that for some constant c_{B}, $\left|M_{1} h(\xi)-c_{B}\right|$ is also bounded by the quantity on the right of (2.6).

We also have

$$
\left|X_{i} M_{1} h(\eta)\right| \leq C r^{-Q} \int_{\rho(\zeta, \eta) \leq c r}\left(\left|X_{i} h\right|+|h|\right)(\zeta) d \zeta
$$

and

$$
\left|E_{i}^{\xi_{0}, r} h(\eta)\right| \leq C r^{-Q} \int_{\rho(\zeta, \eta) \leq c r}|h(\zeta)| d \zeta
$$

by pp. 387 and 388 , respectively, of [L1]. Now, unlike what is done in [L1], we keep the two expressions on the right above rather than bounding them by maximal functions. As in [L1], we then obtain for $\xi \in B$,

$$
\begin{aligned}
& \left|M_{1} h(\xi)-C_{1}\right| \\
& \quad \leq C \int_{\rho\left(\xi_{0}, \eta\right)<c r} \frac{r\left[r^{-Q} \int_{\rho(\zeta, \eta) \leq c r}(|X h|+|h|)(\zeta) d \zeta\right]}{r^{-Q+1} \rho(\xi, \eta)^{Q-1}} r^{-Q} d \eta \\
& \quad \leq C \int_{\rho\left(\xi_{0}, \zeta\right) \leq c r} r^{-Q}\left(\int_{\rho\left(\xi_{0}, \eta\right) \leq c r} \frac{d \eta}{\rho(\xi, \eta)^{Q-1}}\right)(|X h|+|h|)(\zeta) d \zeta
\end{aligned}
$$

A simple computation based on (2.2) gives

$$
\int_{\rho\left(\xi_{0}, \eta\right) \leq c r} \frac{d \eta}{\rho(\xi, \eta)^{Q-1}} \leq C r
$$

uniformly for $\xi \in B$. Thus,

$$
\begin{aligned}
\left|M_{1} h(\xi)-C_{1}\right| & \leq C r^{1-Q} \int_{c B}(|X h|+|h|) d \zeta \\
& \leq C \int_{c B} \frac{(|X h|+|h|)(\zeta)}{\rho(\xi, \zeta)^{Q-1}} d \zeta
\end{aligned}
$$

since $\rho(\xi, \zeta) \leq c r$. Therefore, since $|X h| \leq C(|X f|+|f|)$ and $|h| \leq C|f|$, and by (2.6),

$$
\left|f(\xi)-C_{1}\right| \leq C \int_{c B} \frac{(|X f|+|f|)(\eta)}{\rho(\xi, \eta)^{Q-1}} d \eta, \xi \in B
$$

which proves the lemma.
The next lemma concerns the original vector fields.
Lemma 2.7. - Let K be a compact subset of Ω and $B=B\left(x_{0}, r\right)$ be a ρ-ball with $x_{0} \in K$ and $0<r<r_{0}$. Then

$$
\left|f(x)-f_{B}\right| \leq c \int_{c B}(|X f|+|f|)(y) \frac{\rho(x, y)}{|B(x, \rho(x, y))|} d y, x \in B
$$

for any $f \in \operatorname{Lip}(\overline{c B})$, where c is independent of f and B, and $f_{B}=$ $|B|^{-1} \int_{B} f(y) d y$.

Proof. - We first show that the conclusion holds with f_{B} replaced by some constant c_{B}. We will deduce this from Lemma 2.5 by using the same sort of argument as in [RS] and [NSW] (see, in particular, Theorem 5 of [NSW]).

Let $B=B\left(x_{0}, r\right)$ and $\tilde{B}=\tilde{B}\left(\xi_{0}, r\right)$ where $\xi_{0}=\left(x_{0}, 0\right)$. Note that $\tilde{B} \subset B \times \mathbb{R}^{d}$ by (2.3). Extend f to the closure of $c \tilde{B}$ by making it constant in t, i.e., if $\xi=(x, t)$ then $f(\xi)=f(x)$. Then by Lemma 2.5, since $\tilde{X} f(\eta)=X f(y)$ if $\eta=(y, t)$,

$$
\begin{aligned}
\left|f(x)-c_{\tilde{B}}\right| & \leq c \int_{c \tilde{B}} \frac{(|X f|+|f|)(y)}{\tilde{\rho}((x, 0),(y, t))^{Q-1}} d y d t, x \in B \\
& =c \int_{\mathbb{R}^{n}}(|X f|+|f|)(y)\left\{\int_{\mathbb{R}^{d}} \chi_{c \tilde{B}}(y, t) \frac{d t}{\tilde{\rho}((x, 0),(y, t))^{Q-1}}\right\} d y \\
& \leq c \int_{c B}(|X f|+|f|)(y)\left\{\int_{\mathbb{R}^{d}} \frac{d t}{\tilde{\rho}((x, 0),(y, t))^{Q-1}}\right\} d y
\end{aligned}
$$

Momentarily fix y and let $\rho=\rho(x, y)$. Since $\tilde{\rho}((x, 0),(y, t)) \geq \rho(x, y)$ by (2.3), we have the following estimate for the inner integral :

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}} \\
& \quad \frac{d t}{\tilde{\rho}((x, 0),(y, t))^{Q-1}} \leq \sum_{k=0}^{\infty} \frac{1}{\left(2^{k} \rho\right)^{Q-1}} \int_{2^{k} \rho \leq \tilde{\rho}((x, 0),(y, t)) \leq 2^{k+1} \rho} d t \\
& \quad \leq \sum_{k=0}^{\infty} \frac{1}{\left(2^{k} \rho\right)^{Q-1}} \int_{\mathbb{R}^{d}} \chi_{\tilde{B}\left((x, 0), 2^{k+1} \rho\right)}(y, t) d t \\
& \quad \leq c \sum_{k=0}^{\infty} \frac{1}{\left(2^{k} \rho\right)^{Q-1}} \frac{\left(2^{k+1} \rho\right)^{Q}}{\left|B\left(x, 2^{k+1} \rho\right)\right|} \text { by }(2.4) \text { and (2.2) } \\
& \quad \leq c \sum_{k=0}^{\infty} \frac{2^{k} \rho}{\left|B\left(x, 2^{k+1} \rho\right)\right|} \leq c \sum_{k=0}^{\infty} 2^{k(1-N)} \frac{\rho}{|B(x, \rho)|} \text { by }(2.1) \text { with } \alpha=N . \\
& \quad=c \frac{\rho}{|B(x, \rho)|} \text { since } N>1 .
\end{aligned}
$$

Hence with $c_{B}=c_{\tilde{B}}$, we have

$$
\begin{equation*}
\left|f(x)-c_{B}\right| \leq c \int_{c B}(|X f|+|f|)(y) \frac{\rho(x, y)}{|B(x, \rho(x, y))|} d y, x \in B \tag{2.8}
\end{equation*}
$$

It remains to show that c_{B} can be taken to be $f_{B}=|B|^{-1} \int_{B} f(z) d z$. In fact,

$$
\begin{align*}
\left|f_{B}-c_{B}\right| & \leq \frac{1}{|B|} \int_{B}\left|f(z)-c_{B}\right| d z \\
& \leq \frac{1}{|B|} \int_{B}\left\{C \int_{c B}(|X f|+|f|)(y) \frac{\rho(z, y)}{|B(z, \rho(z, y))|} d y\right\} d z \text { by }(2.8) \tag{2.8}\\
& \leq C \int_{c B}(|X f|+|f|)(y)\left\{\frac{1}{|B|} \int_{B} \frac{\rho(z, y)}{|B(y, \rho(z, y))|} d z\right\} d y
\end{align*}
$$

since $\mid B(y, \rho(z, y) \mid$ and $\mid B(z, \rho(z, y) \mid$ are equivalent by doubling. Hence, it is enough to show the following condition of A_{1}-type :

$$
\begin{equation*}
\frac{1}{|B|} \int_{B} \frac{\rho(z, y)}{|B(y, \rho(z, y))|} d z \leq c \frac{\rho(x, y)}{|B(y, \rho(x, y))|}, x, y \in c B \tag{2.9}
\end{equation*}
$$

To prove (2.9), fix $y \in c B$. Since $\rho(z, y) \leq c r(B)$ for $z \in B$, the expression on the left in (2.9) is at most

$$
\begin{aligned}
& \frac{1}{|B|} \sum_{k=0}^{\infty}\left(\int_{c 2^{-k} r(B) \leq \rho(z, y) \leq c 2^{1-k} r(B)} d z\right) \frac{c 2^{1-k} r(B)}{\left|B\left(y, c 2^{-k} r(B)\right)\right|} \\
\leq & \frac{1}{|B|} \sum_{k=0}^{\infty} \frac{\left|B\left(y, c 2^{1-k} r(B)\right)\right|}{\left|B\left(y, c 2^{-k} r(B)\right)\right|} c 2^{1-k} r(B)=c \frac{r(B)}{|B|}
\end{aligned}
$$

by doubling. However, if $x \in c B$ (and $y \in c B$) then $\rho(x, y)$ is at most $c r(B)$, and by (2.1) with $\alpha=N$,

$$
\begin{align*}
\frac{|B(x, \rho(x, y))|}{\rho(x, y)} & \leq c\left(\frac{\rho(x, y)}{r(B)}\right)^{N-1} \frac{|B(x, r(B))|}{r(B)} \\
& \leq c \frac{|B(x, r(B))|}{r(B)} \quad \text { since } N>1 \tag{2.10}\\
& \leq c \frac{|B|}{r(B)} \quad \text { by doubling. }
\end{align*}
$$

We obtain (2.9) by combining estimates, and the proof of Lemma 2.7 is complete.

In the following result, we use Lemma 2.7 to obtain the basic estimate (1.2) as well as a more local estimate. A similar argument given in [SW] (see also [FGuW]) needs modification due to the presence of the zero order
term $|f|$ in the integral in the conclusion of Lemma 2.7. We will use the notation

$$
\begin{equation*}
T f(x)=\int_{\Omega} f(y) \frac{\rho(x, y)}{|B(x, \rho(x, y))|} d y, x \in \Omega \tag{2.11}
\end{equation*}
$$

for the fractional integral transform on Ω.
Proposition 2.12. - Let K be a compact subset of Ω, and $B=$ $B\left(x_{0}, r\right), x_{0} \in K, 0<r<r_{0}$. There are positive constants C, c, and r_{0} depending only on K, Ω and $\left\{X_{j}\right\}$ such that if $k=0, \pm 1, \pm 2, \ldots$, and S_{k}, S_{k}^{*} are defined by

$$
\begin{aligned}
& S_{k}=\left\{x \in B: 2^{k}<\left|f(x)-f_{B}\right| \leq 2^{k+1}\right\} \\
& S_{k}^{*}=\left\{x \in c B: 2^{k}<\left|f(x)-f_{B}\right| \leq 2^{k+1}\right\}
\end{aligned}
$$

then

$$
\left|f(x)-f_{B}\right| \leq C T\left(|X f| \chi_{S_{k-1}^{*}}\right)(x)+C \frac{r}{|B|} \int_{B}|X f| d y
$$

for all $x \in S_{k}$ and all $f \in \operatorname{Lip}(\overline{c B})$. Moreover,

$$
\left|f(x)-f_{B}\right| \leq C T\left(|X f| \chi_{c B}\right)(x), x \in B
$$

Proof. - For $x \in \Omega$, define

$$
f_{k}(x)= \begin{cases}2^{k-1} & \text { if }\left|f(x)-f_{B}\right| \leq 2^{k-1} \\ \left|f(x)-f_{B}\right| & \text { if } 2^{k-1}<\left|f(x)-f_{B}\right|<2^{k} \\ 2^{k} & \text { if }\left|f(x)-f_{B}\right| \geq 2^{k}\end{cases}
$$

Then $2^{k-1} \leq f_{k}(x) \leq 2^{k-1}+\left|f(x)-f_{B}\right|$. Thus if $x \in S_{k}$,

$$
\begin{aligned}
2^{k}=f_{k}(x) \leq \mid f_{k}(x) & -\left(f_{k}\right)_{B} \mid+\left(f_{k}\right)_{B} \\
& \leq C T\left(\left[\left|X f_{k}\right|+f_{k}\right] \chi_{c B}\right)(x)+2^{k-1}+\frac{1}{|B|} \int_{B}\left|f-f_{B}\right| d z
\end{aligned}
$$

by Lemma 2.7

$$
\leq C T\left(|X f| \chi_{S_{k-1}^{*}}\right)(x)+C T\left(f_{k} \chi_{c B}\right)(x)+2^{k-1}+\frac{1}{|B|} \int_{B}\left|f-f_{B}\right| d z
$$

since $\left|X f_{k}\right| \chi_{c B} \leq|X f| \chi_{S_{k-1}^{*}}$.

$$
\text { Since } 2^{k-1} \leq f_{k} \leq 2^{k}
$$

$$
T\left(f_{k} \chi_{c B}\right)(x) \leq 2^{k} \int_{c B} \frac{\rho(x, y)}{\mid B(x, \rho(x, y) \mid} d y \leq C r 2^{k}
$$

where $r=r(B)$ (cf. (2.9)). By applying the known Poincaré inequality for Lebesgue measure and $p=q=1$ (see for example $[\mathrm{J}]$), we obtain

$$
\frac{1}{|B|} \int_{B}\left|f(z)-f_{B}\right| d z \leq C \frac{r}{|B|} \int_{B}|X f(y)| d y .
$$

Combining estimates, we have for $x \in S_{k}$ that

$$
2^{k} \leq C T\left(|X f| \chi_{S_{k-1}^{*}}\right)(x)+C r 2^{k}+2^{k-1}+C \frac{r}{|B|} \int_{B}|X f| d y
$$

Since $2^{k-1}=\frac{1}{2} 2^{k}$ and $C r 2^{k}<\frac{1}{3} 2^{k}$ when r is small (independent of k), we obtain by subtracting that

$$
2^{k} \leq C T\left(|X f| \chi_{S_{k-1}^{*}}\right)(x)+C \frac{r}{|B|} \int_{B}|X f| d y, x \in S_{k}
$$

for small r. The first statement in Proposition 2.12 follows from this since $\left|f(x)-f_{B}\right| \leq 2^{k+1}$ for $x \in S_{k}$. The second statement in the proposition (which is (1.2)) follows from the first one by simply noting that $T\left(|X f| \chi_{S_{k-1}^{*}}\right) \leq T\left(|X f| \chi_{c B}\right)$ and (by (2.10))

$$
\begin{aligned}
\frac{r}{|B|} \int_{B}|X f| d y & \leq C \int_{B}|X f(y)| \frac{\rho(x, y)}{|B(x, \rho(x, y))|} d y, x \in B \\
& \leq C T\left(|X f| \chi_{c B}\right)(x), x \in B
\end{aligned}
$$

This completes the proof of Proposition 2.12.

3. Proof of the Poincaré estimates.

As noted in the introduction, Theorem 1 is a special case of Theorem 2. To prove Theorem 2, we first derive a weaker version in which the domain of integration on the right side of the Poincaré inequality is an enlarged ball $c B, c>1$, rather than B. In order to prove this weaker version for a given B, we will use the following slightly different form of the balance condition (1.5) :

$$
\begin{equation*}
\frac{r(I)}{r(B)}\left(\frac{w_{2}(I)}{w_{2}(B)}\right)^{\frac{1}{q}} \leq c\left(\frac{w_{1}(I)}{w_{1}(B)}\right)^{\frac{1}{p}} \tag{3.1}
\end{equation*}
$$

for all balls I with center in $c B$ and $r(I) \leq r(B)$. The restriction $r(I) \leq$ $r(B)$ may be replaced by $r(I) \leq c r(B)$ by doubling. Theorem 2 itself will follow from its weaker version for the same values of p and q by the results in $\S 5$ of $[F G u W]$. Some further comments about how to do this, including an indication of how (3.1) is used in conjunction with (1.5), are given at the end of the proof of Theorem 2. In fact, by a similar method, it is possible to prove a version of Theorem 2 for domains other than balls, as mentioned in the introduction.

Using Proposition 2.12, we will be able to derive the weaker version of Theorem 2 by the sort of argument used in [SW], including the adaptation of this argument to the case $p=1$ given in [FGuW]. We need the following estimate for $T f$ which is essentially a special case of Theorem 4.1 (and Remark 4.3) of [FGuW] (see also [GGK] and [SW]).

Lemma 3.2. - Let $1 \leq p<q<\infty, K$ be a compact subset of Ω, $B=B\left(x_{0}, r\right), x_{0} \in K$, and

$$
T_{B} f(x)=\int_{B} f(y) \frac{\rho(x, y)}{|B(x, \rho(x, y))|} d y
$$

for $x \in B$ and $f \geq 0$. There are constants r_{0} and C depending only on K, Ω and $\left\{X_{j}\right\}$ such that if $r<r_{0}$ and w_{1}, w_{2} are nonnegative weights then

$$
\int_{B \cap\left\{T_{B} f>t\right\}} w_{2} d x \leq\left(C L\|f\|_{L_{w_{1}}^{p}(B)} / t\right)^{q}, t>0
$$

where

$$
L=\left\{\begin{array}{l}
\sup w_{2}(B(x, s))^{1 / q}\left(\int_{B} k_{s}(x, y)^{p^{\prime}} w_{1}(y)^{-p^{\prime} / p} d y\right)^{1 / p^{\prime}} \text { if } p>1 \\
\sup w_{2}(B(x, s))^{1 / q}\left(\underset{y \in B}{\operatorname{ess}} \sup \left[k_{s}(x, y) / w_{1}(y)\right]\right) \quad \text { if } p=1
\end{array}\right.
$$

Here,

$$
k_{s}(x, y)=\min \left\{\frac{s}{|B(x, s)|}, \frac{\rho(x, y)}{\mid B(x, \rho(x, y) \mid}\right\}
$$

$p^{\prime}=p /(p-1)$, and the sup is taken over all x and s with $x \in B$ and $B(x, s) \subset 5 B$.

We now prove the version of Theorem 2 with an enlarged ball $c B$ on the right. Let B be a ball of radius r for which the conclusion of Proposition 2.12 is valid. Then

$$
\begin{equation*}
\int_{B}\left|f(x)-f_{B}\right|^{q} w_{2}(x) d x=\int_{B_{\cap}\left\{\left|f-f_{B}\right| \leq 2^{M+1}\right\}} \cdots+\int_{B_{\cap}\left\{\left|f-f_{B}\right|>2^{M+1}\right\}} \cdots \tag{3.3}
\end{equation*}
$$

where M is selected so that

$$
2^{M-1}<C \frac{r}{|B|} \int_{B}|X f| d x \leq 2^{M}
$$

C being the same constant which appears in the second term on the right of the conclusion of Proposition 2.12. With S_{k} as defined there, the right side of (3.3) is bounded by

$$
2^{(M+1) q} w_{2}(B)+\sum_{k \geq M+1} \int_{S_{k}} \ldots \leq 2^{(M+1) q} w_{2}(B)+\sum_{k \geq M+1} 2^{(k+1) q} w_{2}\left(S_{k}\right)
$$

For $k \geq M+1$, it follows from the choice of M and Proposition 2.12 (with T and S_{k}^{*} as defined there) that

$$
S_{k} \subset\left\{x \in B: T\left(|X f| \chi_{S_{k-1}^{*}}\right)(x)>2^{k-1} / C\right\}
$$

Set $A=\sup t w_{2}\left(B_{\cap}\{T f>t\}\right)^{1 / q}$ where the sup is taken over all $t>0$ and all $f \geq 0$ with $\operatorname{supp}(f) \subset c B$ and $\|f\|_{L_{w_{1}}^{p}} \leq 1$. Then

$$
w_{2}\left(S_{k}\right) \leq A^{q}\left\{\frac{2^{k-1} / C}{\left\||X f| \chi_{S_{k-1}^{*}}\right\|_{L_{w_{1}}^{p}}^{p}}\right\}^{-q}
$$

Therefore, (3.3) is bounded by

$$
\begin{aligned}
& 2^{(M+1) q} w_{2}(B)+\sum_{k \geq M+1} 2^{(k+1) q} A^{q}\left\{C\left\||X f| \chi_{S_{k-1}^{*}}\right\|_{L_{w_{1}}^{p}} / 2^{k-1}\right\}^{q} \\
& \leq 2^{(M+1) q} w_{2}(B)+(4 C A)^{q}\left(\sum_{k \geq M+1} \int_{S_{k-1}^{*}}|X f|^{p} w_{1} d x\right)^{q / p} \text { since } q \geq p \\
& \leq(4 C)^{q} w_{2}(B)\left(\frac{r}{|B|} \int_{B}|X f| d x\right)^{q}+(4 C A)^{q}\left(\int_{c B}|X f|^{p} w_{1} d x\right)^{q / p}
\end{aligned}
$$

by definition of M and since the S_{k-1}^{*} are disjoint. Dividing by $w_{2}(B)$ and taking the $q^{\text {th }}$ root, we obtain

$$
\begin{align*}
& \left(\frac{1}{w_{2}(B)} \int_{B}\left|f(x)-f_{B}\right|^{q} w_{2} d x\right)^{1 / q} \tag{3.4}\\
& \leq 8 C \frac{r}{|B|} \int_{B}|X f| d x+\frac{8 C A}{w_{2}(B)^{1 / q}}\left(\int_{c B}|X f|^{p} w_{1} d x\right)^{1 / p}
\end{align*}
$$

In case $p=1$, the fact that $w_{1} \in A_{1}$ implies that the first term on the right of (3.4) is bounded by a multiple of $\left(r / w_{1}(B)\right) \int_{B}|X f| w_{1} d x$. On the other hand, if $p>1$, by Hölder's inequality and the fact that $w_{1} \in A_{p}$, we have

$$
\begin{aligned}
\frac{r}{|B|} \int_{B}|X f| d x & \leq \frac{r}{|B|}\left(\int_{B} w_{1}^{-1(p-1)} d x\right)^{(p-1) / p}\left(\int_{B}|X f|^{p} w_{1} d x\right)^{1 / p} \\
& \leq c r\left(\frac{1}{w_{1}(B)} \int_{B}|X f|^{p} w_{1} d \xi\right)^{1 / p}
\end{aligned}
$$

Thus, in any case,

$$
\begin{align*}
& \left(\frac{1}{w_{2}(B)} \int_{B}\left|f-f_{B}\right|^{q} w_{2} d x\right)^{1 / q} \tag{3.5}\\
& \leq c r\left[1+\frac{A w_{1}(B)^{1 / p}}{r w_{2}(B)^{1 / q}}\right]\left(\frac{1}{w_{1}(B)} \int_{c B}|X f|^{p} w_{1} d x\right)^{1 / p}
\end{align*}
$$

We now show by using Lemma 3.2 that the term $A w_{1}(B)^{1 / p / r} w_{2}(B)^{1 / q}$ which appears on the right in (3.5) is bounded. Consider first the case $p=1$. By the definition of A, Lemma 3.2 applied to the ball $B_{0}=c B$, and doubling, it is enough to show that if $x \in B_{0}$ and $s \leq \operatorname{cr}\left(B_{0}\right)$, then

$$
\begin{equation*}
w_{2}(B(x, s))^{1 / q} \underset{y \in B_{0}}{\operatorname{essssup}}\left[k_{s}(x, y) \frac{1}{w_{1}(y)}\right] \tag{3.6}
\end{equation*}
$$

is bounded by a multiple of $r\left(B_{0}\right) w_{2}\left(B_{0}\right)^{1 / q} / w_{1}\left(B_{0}\right)$. Indeed, the assertion then follows by doubling since $B_{0}=c B$. Let $x, y \in B_{0}$ and suppose that $y \in B\left(x, 2^{k+1} s\right) \backslash B\left(x, 2^{k} s\right)$ for some $k=0,1, \ldots$ (The argument for the remaining case when $y \in B(x, s)$ will be similar but simpler.) We may assume that $2^{k} s \leq \operatorname{cr}\left(B_{0}\right)$ since all points lie in B_{0}. Then

$$
k_{s}(x, y) \frac{1}{w_{1}(y)} \leq c \frac{2^{k} s}{\left|B\left(x, 2^{k} s\right)\right|} \frac{1}{w_{1}(y)}
$$

by definition of $\dot{k}_{s}(x, y)$ and (2.1) (with $\alpha=N>1$)

$$
\leq c \frac{2^{k} s}{\left|B\left(x, 2^{k} s\right)\right|} \frac{\left|B\left(x, 2^{k+1} s\right)\right|}{w_{1}\left(B\left(x, 2^{k+1} s\right)\right)}
$$

for a.e. $y \in B\left(x, 2^{k+1} s\right)$ by the A_{1} estimate on w_{1}

$$
\leq c \frac{2^{k s}}{w_{1}\left(B\left(x, 2^{k} s\right)\right)} \text { by doubling. }
$$

This estimate is also valid with $k=0$ in case $y \in B(x, s)$. Multiplying both sides by $w_{2}(B(x, s))^{1 / q}$ and using the balance condition (3.1) in the form

$$
\frac{2^{k} s}{r\left(B_{0}\right)}\left(\frac{w\left(B_{2}\left(x, 2^{k} s\right)\right)}{w_{2}\left(B_{0}\right)}\right)^{1 / q} \leq c \frac{w_{1}\left(B\left(x, 2^{k} s\right)\right)}{w_{1}\left(B_{0}\right)}
$$

(recall that $p=1$ and $2^{k} s \leq c r\left(B_{0}\right)$) and the doubling property of the weights, we see that (3.6) is at most a multiple of

$$
\frac{r\left(B_{0}\right) w_{2}\left(B_{0}\right)^{1 / q}}{w_{1}\left(B_{0}\right)}\left\{\sup _{k \geq 0} \frac{w_{2}(B(x, s))}{w_{2}\left(B\left(x, 2^{k} s\right)\right)}\right\}^{1 / q}=\frac{r\left(B_{0}\right) w_{2}\left(B_{0}\right)^{1 / q}}{w_{1}\left(B_{0}\right)}
$$

as desired.
In case $p>1$, with the same notation as above, if $x \in B_{0}$ and $s \leq c r\left(B_{0}\right)$,
$\int_{B_{0}} k_{s}(x, y)^{p^{\prime}} w_{1}(y)^{-p^{\prime} / p} d y$
$\leq \sum_{\substack{k \geq 0 \\ B\left(x, 2^{k}\right) \subset c B_{0}}}\left(\frac{2^{k} s}{\left|B\left(x, 2^{k} s\right)\right|}\right)^{p^{\prime}} \int_{B\left(x, 2^{k+1} s\right)} w_{1}^{-p^{\prime} / p} d y$

$$
\leq C \sum_{\substack{k \geq 0 \\ 2^{k} \leq \leq r\left(B_{0}\right)}}\left[\frac{2^{k} s}{w_{1}\left(B\left(x, 2^{k} s\right)\right)^{1 / p}}\right]^{p^{\prime}}
$$

since $w_{1} \in A_{p}$ and by doubling

$$
\leq C\left[\frac{r\left(B_{0}\right) w_{2}\left(B_{0}\right)^{1 / q}}{w_{1}\left(B_{0}\right)^{1 / p}}\right] \sum_{\substack{k \geq 0 \\ 2^{k} \leq \sin \left(B_{0}\right)}} w_{1}\left(B\left(x, 2^{k} s\right)\right)^{-p^{\prime} / q}
$$

by (3.1)

$$
\leq C\left[\frac{r\left(B_{0}\right) w_{2}\left(B_{0}\right)^{1 / q}}{w_{1}\left(B_{0}\right)^{1 / p}}\right] \frac{1}{w_{2}(B(x, s))^{p^{\prime} / q}}
$$

since the reverse doubling condition $w_{2}(B(x, 2 s)) \geq \gamma w_{2}(B(x, s))$ for some $\gamma>1$ implies that the last sum is at most $\sum_{k \geq 0}\left\{\gamma^{k} w_{2}(B(x, s))\right\}^{-p^{\prime} / q}=$ $c w_{2}(B(x, s))^{-p^{\prime} / q}$. This form of the reverse doubling condition follows easily from the doubling condition in any metric space in which annuli are not empty (see [W], (3.21); in fact, the value of α there can be chosen to be 2 in the case of a metric space, as the argument shows). If we combine the estimate above with Lemma 3.2 and the definition of A, we obtain the desired estimate for A.

Thus it follows by (3.5) that

$$
\left(\frac{1}{w_{2}(B)} \int_{B}\left|f-f_{B}\right|^{q} w_{2} d x\right)^{1 / q} \leq C r\left(\frac{1}{w_{1}(B)} \int_{c B}|X f|^{p} w_{1} d x\right)^{1 / p}
$$

which is the weaker version of Poincare's inequality. Note that the constant f_{B} in this weaker version can be taken to be the Lebesgue average of f over B.

As mentioned earlier, this weaker version leads to Theorem 2 itself by using the results in section 5 of $[F G u W]$, and we now briefly outline those results, which hold in a more general context. If (S, d) is a metric space, we say that an open set $D \subset S$ satisfies the Boman chain condition $\mathcal{F}(\tau, M)$, $\tau \geq 1, M \geq 1$, if there exists a covering W of D consisting of balls B such that
(i) $\sum_{B \in W} \chi_{\tau B}(x) \leq M \chi_{D}(x)$ for all $x \in S$.
(ii) There is a "central" ball $B_{1} \in W$ which can be connected to every ball $B \in W$ by a finite chain of balls $B_{1}, \ldots, B_{\ell(B)}=B$ of W so that $B \subset M B_{j}$ for $j=1, \ldots, \ell(B)$. Moreover, $B_{j} \cap B_{j-1}$ contains a ball R_{j} such that $B_{j} \cup B_{j-1} \subset M R_{j}$ for $j=2, \ldots, \ell(B)$.

We then have the following result.
Theorem 3.7. - Let $\tau, M \geq 1,1 \leq p \leq q<\infty$ and D satisfy the Boman chain condition $\mathcal{F}(\tau, M)$ in a metric space (S, d). Also, let μ and ν
be Borel measures and μ be doubling. Suppose that f and g are measurable functions on D and for each ball B with $\tau B \subset D$ there exists a constant f_{B} such that

$$
\left\|f-f_{B}\right\|_{L_{d \mu}^{q}(B)} \leq A\|g\|_{L_{d \nu}^{p}(\tau B)}
$$

with A independent of B. Then there is a constant f_{D} such that

$$
\left\|f-f_{D}\right\|_{L_{d \mu}^{q}(D)} \leq c A\|g\|_{L_{d \nu}^{p}(D)}
$$

where c depends only on τ, M, q and μ. Moreover, we may choose $f_{D}=f_{B_{1}}$ where B_{1} is a central ball for D.

The proof of Theorem 3.7 consists simply of adapting the argument given in [Ch] in case $S=\mathbb{R}^{n}$ and $d(x, y)=|x-y|$. The result also holds in d is merely quasimetric. See the remarks following Theorem 5.2 of [FGuW], and see [Bo] and [IN] for earlier basic results.

For the next result, we impose the following "segment" (geodesic) property for a ball B_{0} in the metric space (S, d) :

If B is a ball contained in B_{0} with center x_{B}, then for each $x \in B$ there is a continuous one-to-one curve

$$
\begin{align*}
& \gamma=\gamma_{x_{B}, x}(t), 0 \leq t \leq 1, \text { in } B \tag{3.8}\\
& \text { with } \gamma(0)=x_{B}, \gamma(1) \Rightarrow x \text { and } d\left(x_{B}, z\right)=d\left(x_{B}, y\right)+d(y, z) \\
& \text { for all } y, z \in \gamma \text { with } y=\gamma(s), z=\gamma(t) \text { and } 0 \leq s \leq t \leq 1
\end{align*}
$$

We then have
Theorem 3.9. - Let (S, d) be a locally compact metric space, B_{0} be an open ball in S which satisfies condition (3.8), and μ be a doubling measure on B_{0}. Then B_{0} satisfies the Boman chain condition $\mathcal{F}(\tau, M)$ for any given τ with M depending only on τ and the doubling constant of μ.

For a proof, see the proof of Theorem 5.4 of [FGuW].
Let us now indicate how to use Theorems 3.7 and 3.9 to complete the proof of Theorem 2. Fix a ball $B=B(x, r)$ with $x \in K$ and $0<r<r_{0}$. Condition (1.5) for B (together with the doubling property of the weights) clearly implies that

$$
\frac{r(I)}{r(J)}\left(\frac{w_{2}(I)}{w_{2}(J)}\right)^{\frac{1}{q}} \leq C\left(\frac{w_{1}(I)}{w_{1}(J)}\right)^{\frac{1}{p}}
$$

for all I with center in $c J$ and $r(I) \leq r(J)$ provided J is any ball with the property that $\tau J \subset B$ for a suitably large constant τ depending on c.

Since this is just condition (3.1) for J, we may apply the weaker version of Theorem 2 to any such J, obtaining

$$
\left(\frac{1}{w_{2}(J)} \int_{J}\left|f-f_{J}\right|^{q} w_{2} d x\right)^{\frac{1}{q}} \leq C r(J)\left(\frac{1}{w_{1}(J)} \int_{c J}|X f|^{p} w_{1} d x\right)^{\frac{1}{p}}
$$

We also have

$$
\frac{w_{2}(J)^{1 / q} r(J)}{w_{1}(J)^{1 / p}} \leq C \frac{w_{2}(B)^{1 / q} r(B)}{w_{1}(B)^{1 / p}}
$$

for all such J by (1.5). Moreover, condition (3.8) holds for B. In fact, (3.8) holds for balls in complete metric spaces of homogeneous type for which the metric is the infimum of the lengths of the curves between two points (a length space in the sense of [G]); indeed, this follows from [Bu] since any complete metric space of homogeneous type is locally compact. The conclusion of Theorem 2 now follows from Theorems 3.9 and 3.7, applied to B. Note that since the constant f_{B} in the weaker version of Theorem 2 can be chosen to be the Lebesgue average of f over B, it follows from Theorem 3.7 that the constant f_{B} in Theorem 2 can be chosen to be the Lebesgue average of f over a central sub-ball in B. By a standard argument, f_{B} can also be taken to be a $w_{2}(B)^{-1} \int_{B} f w_{2} d x$.

In passing, we note that the argument used above in order to obtain Theorem 2 from its weaker version can be adapted to derive an analogue of Theorem 2 for suitable Boman domains. In fact, let D be a Boman domain of type $\mathcal{F}(\tau, M)$, and let B_{1} be a central ball for D. By definition, each ball J in the covering W of D satisfies $\tau J \subset D$. Define

$$
A=\sup _{\substack{, J, I \subset J, T J \subset D}}\left\{\frac{r(I)}{r(J)}\left(\frac{w_{2}(I)}{w_{2}(J)}\right)^{\frac{1}{\varphi}}\left(\frac{w_{1}(I)}{w_{1}(J)}\right)^{-\frac{1}{p}}\right\} .
$$

If \bar{D} is a compact subset of Ω with small diameter, and if τ is sufficiently large, it follows from the argument used above that

$$
\left\|f-f_{D}\right\|_{L_{w_{2}}^{q}(D)} \leq c A\|X f\|_{L_{w_{1}}^{p}(D)}
$$

with f_{D} equal to the Lebesgue average of f over B_{1}.
The verification of the result for $p=q, 1<p<\infty$, which is mentioned in Remark 1.6 is analogous to that of Theorem II in $[\mathrm{FGuW}]$ and can be derived directly from the strong type estimates for T given in Theorem 3 (a) of [SW], using only the representation (1.2) rather than the more local version. Actually, all the cases of Theorem 2 except the case $p=1$ can also be derived in this way. We omit the details.

Finally, in case $p=q=1$, if we assume that w_{2} is doubling and w_{1}, w_{2} satisfy the condition

$$
\begin{equation*}
\frac{1}{w_{2}(I)} \int_{I} \frac{\rho(x, y)}{|B(y, \rho(x, y))|} w_{2}(x) d x \leq c \frac{r(I)}{w_{1}(I)} w_{1}(y) \text { a.e. in } I \tag{3.10}
\end{equation*}
$$

for all balls $I \subset B$, then the conclusion of Theorem 2 holds with $p=q=1$. In fact, by Proposition 2.12 and Fubini's theorem, if J is a ball with $c J \subset B$, $c>1$, then

$$
\begin{aligned}
& \frac{1}{w_{2}(J)} \int_{J}\left|f(x)-f_{J}\right| w_{2}(x) d x \\
& \quad \leq c \frac{1}{w_{2}(J)} \int_{c J}|X f(y)|\left(\int_{J} \frac{\rho(x, y)}{|B(x, \rho(x, y))|} w_{2}(x) d x\right) d y \\
& \quad \leq c \frac{r(J)}{w_{1}(J)} \int_{c J}|X f(y)| w_{1}(y) d y
\end{aligned}
$$

by (3.10) with $I=c J$ (note that $|B(x, \rho(x, y))| \sim|B(y, \rho(x, y))|)$. Theorems 3.7 and 3.9 then show as before that

$$
\frac{1}{w_{2}(B)} \int_{B}\left|f-c_{B}\right| w_{2} d x \leq c \frac{r(B)}{w_{1}(B)} \int_{B}|X f| w_{1} d x
$$

for some constant c_{B}, and as usual c_{B} can be taken to be $w_{2}(B)^{-1} \int_{B} f w_{2} d x$.
We would like to point out a misstatement in Lemma (6.1) of [L1, page 395]. It should instead be stated there that a condition like (3.1) above with (p, q) leads to the two-weighted Poincaré inequality in Lemma (6.1) with $\left(p, q_{0}\right)$ for some $q_{0}<q$, instead of with $q_{0}=q$ as stated. This can easily be proved by using Lemma (6.9) in [L1]. The difficulty with the proof as given in [L1] comes in the passage from the balance condition (3.1) for the original vector fields to the one for the lifted vector fields. However, such a loss in q in Lemma (6.1) does no harm in deriving Theorem A in [L1]. On the other hand, by using the new representation formula in Proposition 2.12 above for the original vector fields, we have avoided such an argument altogether and proved the weighted Poincaré inequality for the same value of q that appears in the balance condition.

4. Isoperimetric results.

In this section, we prove Theorem 3 and briefly discuss some of its variants, including an analogue for the degenerate vector fields of type $[F]$, [FGuW].

Let E be an open, bounded, connected set in Ω whose boundary ∂E is an oriented C^{1} manifold such that E lies locally on one side of its boundary, i.e., assume that for any $x \in \partial E$ there is a neighborhood O of x in \mathbb{R}^{N} and a C^{1} diffeomorphism $\varphi: O \rightarrow \varphi(O) \subset \mathbb{R}^{n}$ such that

$$
\begin{align*}
\varphi\left(O_{\cap} \partial E\right) & =\left\{y \in \varphi(O): y_{N}=0\right\} \\
\varphi\left(O_{\cap} E\right) & =\left\{y \in \varphi(O): y_{N}<0\right\} \tag{4.1}\\
\varphi(O \backslash \bar{E}) & =\left\{y \in \varphi(O): y_{N}>0\right\}
\end{align*}
$$

Let $\left\{\left(O_{j}, \varphi_{j}\right): j=1, \ldots, l\right\}$ be a finite collection of such local coordinate systems such that $\bigcup_{j=1}^{l} O_{j}$ covers a neighborhood of ∂E, and let $\left\{\psi_{j}\right\}_{j=1}^{l}$ be a corresponding smooth partition of unity with $\operatorname{supp} \psi_{j} \subset O_{j}$ and $\psi_{j} \geq 0$.

If $\varphi_{j}=\left(\varphi_{j 1}, \ldots, \varphi_{j N}\right)$, it is easy to see that the function

$$
\sigma(x)=\sum_{j=1}^{l} \psi_{j}(x) \varphi_{j N}(x)
$$

is a C^{1} function in a neighborhood W_{0} of ∂E such that

$$
\begin{align*}
& \sigma(x)>0 \text { in } W_{0} \backslash \bar{E}, \sigma(x)<0 \text { in } W_{0} \cap E, \tag{4.2}\\
& \text { and } \sigma(x)=0 \text { if } x \in \partial E .
\end{align*}
$$

Moreover, $\nabla \sigma(x) \neq 0$ on ∂E, and hence we may assume that $\nabla \sigma(x) \neq 0$ in W_{0}, and without loss of generality we may also assume that $|\nabla \sigma(x)| \leq 1$ in W_{0}. In fact to show that $\nabla \sigma(x) \neq 0$ on ∂E, note that

$$
\nabla \sigma(x)=\sum_{j} \psi_{j}(x) \nabla \varphi_{j N}(x) \text { if } x \in \partial E
$$

since, by (4.1), $\varphi_{j N}(x) \equiv 0$ on ∂E, and so also $\nabla \psi_{j}(x) \varphi_{j N}(x) \equiv 0$ on ∂E. Now let $\nu(x)$ be the outer (relative to E) normal to ∂E at x. Since $\nabla \varphi_{j N}(x)$ is also normal to ∂E at x, and in fact by (4.1) is an outer normal, $\left\langle\nabla \varphi_{j N}(x), \nu(x)\right\rangle>0$ for $x \in \partial E_{\cap} O_{j}, j=1, \ldots, l$. Thus, by the formula for $\nabla \sigma$ on ∂E, we have $\langle\nabla \sigma(x), \nu(x)\rangle>0$ if $x \in \partial E$, and therefore $\nabla \sigma \neq 0$ on ∂E.

For small $\epsilon>0$, let

$$
\begin{aligned}
\sigma^{+}(x)= & \max \{0, \sigma(x)\} \text { if } x \in W_{0}, \text { and } \sigma^{+}(x)=0 \\
& \text { if } x \in E \backslash W_{0}, \\
f_{\epsilon}(x)= & \max \left\{0,1-\sigma^{+}(x) / \epsilon\right\} .
\end{aligned}
$$

Then both σ^{+}and f_{ϵ} are Lipschitz continuous functions defined in a neighborhood of \bar{E}, and the Lipschitz constant of σ^{+}is at most 1 . Moreover,
$\sigma^{+}(x)=0$ if and only if $x \in \bar{E}$, and $|\partial E|=0$, so that f_{ϵ} converges a.e. to the characteristic function of E, χ_{E}, as $\epsilon \rightarrow 0$. Keeping in mind that $\sigma^{+}(x)=\sigma(x)$ if $\sigma(x)>0$, we get from Theorem 2 (with $p=1$) that

$$
\begin{aligned}
\left(\int_{B} \left\lvert\, f_{\epsilon}(x)-\frac{1}{w_{2}(B)} \int_{B}\right.\right. & \left.\left.f_{\epsilon}(y) w_{2} d y\right|^{q} w_{2}(x) d x\right)^{1 / q} \\
& \leq C r \frac{w_{2}(B)^{1 / q}}{w_{1}(B)} \int_{B}\left|X f_{\epsilon}(x)\right| w_{1}(x) d x \\
& \leq C r \frac{w_{2}(B)^{1 / q}}{w_{1}(B)} \frac{1}{\epsilon} \int_{B \cap\{0<\sigma(x) \leq \epsilon\}}|X \sigma(x)| w_{1}(x) d x
\end{aligned}
$$

if $B=B(\bar{x}, r), \bar{x} \in K, 0<r<r_{0}$. We can cover K by a finite family of balls $\left\{B_{j}=B\left(x_{j}, r_{0}\right), j=1, \ldots, J\right\}$. By (1.5) for $p=1$,

$$
r \frac{w_{2}(B)^{1 / q}}{w_{1}(B)} \leq c r_{0} \frac{w_{2}\left(B\left(\bar{x}, r_{0}\right)\right)^{1 / q}}{w_{1}\left(B\left(\bar{x}, r_{0}\right)\right)}
$$

On the other hand, $\bar{x} \in B_{j}$ for some $j=1, \ldots, J$, and hence $w_{i}\left(B\left(\bar{x}, r_{0}\right)\right)$ is comparable to $w_{i}\left(B_{j}\right), i=1,2$, for this j by doubling. Hence,

$$
\begin{gathered}
\frac{r w_{2}(B)^{1 / q}}{w_{1}(B)} \leq c \max \left\{r_{0} \frac{w_{2}\left(B_{j}\right)^{1 / q}}{w_{1}\left(B_{j}\right)}, j=1, \ldots, J\right\} \\
=C_{K}
\end{gathered}
$$

Hence,

$$
\begin{align*}
& \left(\int_{B}\left|f_{\epsilon}(x)-\frac{1}{w_{2}(B)} \int_{B} f_{\epsilon}(y) w_{2}(y) d y\right|^{q} w_{2}(x) d x\right)^{1 / q} \tag{4.3}\\
& \leq C_{K} \frac{1}{\epsilon} \int_{B \cap\{0<\sigma(x) \leq \epsilon\}}\left(\sum_{j}\left|X_{j} \sigma(x)\right|^{2}\right)^{1 / 2} w_{1}(x) d x \\
& =C_{K} \frac{1}{\epsilon} \int_{0}^{\epsilon} d t \int_{\{\sigma(x)=t\}}\left(\sum_{j}\left\langle X_{j}, \frac{\nabla \sigma}{|\nabla \sigma|}\right\rangle^{2}\right)^{1 / 2} \chi_{B}(x) w_{1}(x) d H_{N-1}(x)
\end{align*}
$$

by the co-area formula ($[\mathrm{Fe}]$, Theorem 3.2.12) and since w_{1} is continuous by hypothesis. Now let $\epsilon \rightarrow 0$. The term on the left in (4.3) tends to

$$
\begin{aligned}
\left(\int_{B} \mid \chi_{E}(x)\right. & \left.-\left.\frac{w_{2}\left(B_{\cap} E\right)}{w_{2}(B)}\right|^{q} w_{2}(x) d x\right)^{\frac{1}{q}} \\
& =\left[\left(\frac{w_{2}(B \backslash E)}{w_{2}(B)}\right)^{q} w_{2}\left(B_{\cap} E\right)+\left(\frac{w_{2}\left(B_{\cap} E\right)}{w_{2}(B)}\right)^{q} w_{2}(B \backslash E)\right]^{1 / q} \\
& \geq\left[\left(\frac{1}{2}\right)^{q} \min \left\{w_{2}\left(B_{\cap} E\right), w_{2}(B \backslash E)\right\}\right]^{1 / q} \\
& =\frac{1}{2} \min \left\{w_{2}\left(B_{\cap} E\right), w_{2}(B \backslash E)\right\}^{1 / q}
\end{aligned}
$$

To study the behavior of the expression on the right side of (4.3), we first consider the inner integral there with $\chi_{B}(x)$ replaced by a larger continuous analogue $\chi_{\eta}(x), \eta>0,0 \leq \chi_{\eta} \leq 1$, with $\chi_{\eta}=1$ on B and supported in an η-neighborhood of B (in the usual Euclidean sense) : consider then

$$
\begin{equation*}
\int_{\{\sigma(x)=t\}}\left(\sum_{j}\left\langle X_{j}, \frac{\nabla \sigma}{|\nabla \sigma|}\right\rangle^{2}\right)^{1 / 2} \chi_{\eta}(x) w_{1}(x) d H_{N-1}(x) \tag{4.4}
\end{equation*}
$$

Consider the set $G=\left\{(x, t) \in W_{0} \times(-\delta, \delta)\right\}$, for small $\delta>0$, and the function $F(x, t)=\sigma(x)-t$ in G. Since $\nabla \sigma(x) \neq 0$ in $W_{0} \supset \partial E$, we may assume by the implicit function theorem that $W_{0}=\cup Q_{i}$ is the union of a finite number of Euclidean cubes Q_{i} with centers on ∂E such that
$\left\{(x, t) \in Q_{i} \times(-\delta, \delta): F(x, t)=0\right\}=\left\{\left(x^{\prime}, g_{i}\left(x^{\prime}, t\right), t\right): x^{\prime} \in Q_{i}^{\prime}, t \in(-\delta, \delta)\right\}$, for instance, where Q_{i}^{\prime} is the projection of Q_{i} along one of the x-coordinates (we choose the x_{N}-coordinate above for simplicity; the coordinate may vary), and g_{i} is a C^{1} function. Thus, for $t \in(-\delta, \delta)$,

$$
\left\{x \in Q_{i}: \sigma(x)=t\right\}=\left\{\left(x^{\prime}, g_{i}\left(x^{\prime}, t\right)\right): x^{\prime} \in Q_{i}^{\prime}\right\}
$$

so that we can parametrize $\{\sigma(x)=t\}_{\cap} Q_{i}$ for small t by means of $g_{i}\left(x^{\prime}, t\right)$, $x^{\prime} \in Q_{i}^{\prime}$. If $\left\{\tilde{\psi}_{i}\right\}$ is a corresponding smooth partition of unity, then (4.4) equals

$$
\begin{aligned}
\sum_{i} \int_{Q_{i} \cap\{\sigma(x)=t\}} & \left(\sum_{j}\left\langle X_{j}, \frac{\nabla \sigma}{|\nabla \sigma|}\right\rangle^{2}\right)^{1 / 2} \chi_{\eta} \tilde{\psi}_{i} w_{1} d H_{N-1} \\
= & \sum_{i} \int_{Q_{i}}(\ldots)^{1 / 2}\left(x^{\prime}, g_{i}\left(x^{\prime}, t\right)\right) \chi_{\eta}\left(x^{\prime}, g_{i}\left(x^{\prime}, t\right)\right) \tilde{\psi}_{i}\left(x^{\prime}, g_{i}\left(x^{\prime}, t\right)\right) \\
& w_{1}\left(x^{\prime}, g_{i}\left(x^{\prime}, t\right)\right)\left(1+\left|\nabla g_{i}\left(x^{\prime}, t\right)\right|^{2}\right)^{1 / 2} d x^{\prime}
\end{aligned}
$$

By the continuity of all functions involved (recall that $\nabla \sigma$ is continuous and $|\nabla \sigma| \neq 0$ in W_{0}, so that $\nabla \sigma /|\nabla \sigma|$ is also continuous), this sum is continuous at $t=0$. Since $\{x: \sigma(x)=0\}$ equals ∂E by (4.2), and $\nabla \sigma /|\nabla \sigma|=\nu$ on ∂E, it follows that the limit as $\epsilon \rightarrow 0$ of the expression on the right of (4.3) is at most

$$
c_{K} \int_{\partial E}\left(\sum_{j}\left\langle X_{j}, \nu\right\rangle^{2}\right)^{1 / 2} \chi_{\eta} w_{1} d H_{N-1}
$$

Theorem 3 now follows by letting $\eta \rightarrow 0$.
If E is not a regular domain, the following relative isoperimetric inequality can be proved by repeating the arguments used in the proof of

Theorem 3.2 of [FGaW2], except of course that we use Poincaré's inequality instead of Sobolev's inequality.

Theorem 4.5. - With the same assumptions as in Theorem 3, except that now w_{1} need not be continuous and E may be any measurable set in Ω,

$$
\min \left\{w_{2}\left(B_{\cap} \bar{E}\right), w_{2}(B \backslash \bar{E})\right\}^{1 / q} \leq c \lim _{\epsilon \rightarrow 0} \inf \frac{1}{\epsilon} w_{1}(\{x \in B: \rho(x, \partial E) \leq \epsilon\})
$$

with c independent of B and E.
As in [FGaW1], [FGaW2], we can call the expression on the right above the ($N-1$)-dimensional lower Minkowski ρ-content of ∂E in B with respect to the measure w_{1}.

Analogues of Theorems 3 and 4.5 can be derived for vector fields of type [FL]. The required Poincaré estimates are discussed in Theorem 1 of [FGuW] and in the comments at the end of the introduction there. These analogues include the isoperimetric results in cases II and III of Theorem 3.2 of [FGaW2]. We omit their precise statements, and mention only that their proofs use the sort of representation formula in [FGuW].

BIBLIOGRAPHY

[BKL] S. Buckley, P. Koskela and G. Lu, Boman aka John, in preparation.
[BM1] M. Biroli and U. Mosco, Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur., to appear.
[BM2] M. Biroli and U. Mosco, Proceedings of the Conference "Potential theory and partial differential operators with nonnegative characteristic form," Parma, February 1994, Kluwer, Amsterdam, to appear.
[Bo] B. Bojarski, Remarks on Sobolev imbedding inequalities, Lecture Notes in Math. 1351 (1989), 52-68, Springer-Verlag.
[Bu] H. Busemann, The Geometry of Geodesics, Academic Press, New York, 1955.
[Ca] A.P. CAlderón, Inequalities for the maximal function relative to a metric, Studia Math., 57 (1976), 297-306.
[CDG] L. Capogna, D. Danielli, N. Garofalo, Subelliptic mollifiers and a characterization of Rellich and Poincaré domains, Rend. Sem. Mat. Univ. Politec. Torino, 51 (1993), 361-386.
[Ch] S.-K. CHUA, Weighted Sobolev's inequality on domains satisfying the Boman chain condition, Proc. Amer. Math. Soc., to appear.
[Cou] T. Coulhon, Espaces de Lipschitz et inegalités de Poincaré, J. Funct. Anal., to appear.
[CW] S. Chanillo and R.L. Wheeden, Weighted Poincaré and Sobolev inequalities and estimates for the Peano maximal function, Amer. J. Math., 107 (1985), 1191-1226.
[Fe] H. Federer, Geometric Measure Theory, Springer, 1969.
[FP] C. Fefferman and D.H. Phong, Subelliptic eigenvalue estimates, Conference on Harmonic Analysis, Chicago, 1980, W. Beckner et al. ed., Wadsworth (1981), 590-606.
[F] B. Franchi, Weighted Sobolev-Poincaré inequalities and pointwise estimates for a class of degenerate elliptic operators, Trans. Amer. Math. Soc., 327 (1991), 125-158.
[FGaW1] B. Franchi, S. Gallot and R.L. Wheeden, Inégalités isoperimétriques pour des métriques dégénérées, C.R. Acad. Sci. Paris, Sér. I, Math., 317 (1993), 651-654.
[FGaW2] B. Franchi, S. Gallot and R.L. Wheeden, Sobolev and isoperimetric inequalities for degenerate metrics, Math. Ann., 300 (1994), 557-571.
[FGuW] B. Franchi, C.E. Gutierrez and R.L. Wheeden, Weighted Sobolev-Poincaré inequalities for Grushin type operators, Comm. P.D.E., 19 (1994), 523-604.
[FL] B. Franchi and E. Lanconelli, Hölder regularity for a class of linear non uniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa, (IV) 10 (1983), 523-541.
[FLW] B. Franchi, G. Lu and R.L. Wheeden, Weighted Poincaré inequalities for Hörmander vector fields and local regularity for a class of degenerate elliptic equations, Proceedings of the Conference "Potential theory and partial differential operators with nonnegative characteristic form," Parma, February 1994, Kluwer, Amsterdam, to appear.
[FS] B. Franchi and R. Serapioni, Pointwise estimates for a class of strongly degenerate elliptic operators, Ann. Scuola Norm. Sup. Pisa, (IV) 14 (1987), 527568.
[G] M. Gromov, Structures Métriques pour les Variétés Riemanniennes (rédigé par J. Lafontaine et. P. Pansu), CEDIC Ed., Paris, 1981.
[GGK] I. Genebashvili, A. Gogatishvili and V. Kokilashyili, Criteria of general weak type inequalities for integral transforms with positive kernels, Proc. Georgian Acad. Sci. Math., 1 (1993), 11-34.
[H] L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171.
[IN] T. Iwaniec and C.A. Nolder, Hardy-Littlewood inequality for quasiregular mappings in certain domains in \mathbb{R}^{n}, Ann. Acad. Sci. Fenn. Series A.I. Math., 10 (1985), 267-282.
[J] D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J., 53 (1986), 503-523.
[L1] G. Lu, Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications, Revista Mat. Iberoamericana, 8 (1992), 367-439.
[L2] G. Lu, The sharp Poincaré inequality for free vector fields: An endpoint result, Preprint 1992, Revista Mat. Iberoamericana, 10 (2) (1994), 453-466.
[L3] G. Lu, Embedding theorems on Campanato-Morrey spaces for vector fields of Hörmander type and applications to subelliptic PDE, C.R. Acad. Sci. Paris, to appear.
[L4] G. Lu, Embedding theorems into the Orlicz and Lipschitz spaces and applications to quasilinear subelliptic differential equations, Preprint, February, 1994.
[L5] G. Lu, A note on Poincaré type inequality for solutions to subelliptic equations, Comm. Partial Differential Equations, to appear.
[LW] G. Lu and R.L. Wheeden, (ϵ, δ) domains, Poincaré domains and extension theorems on weighted Sobolev spaces for degenerate vector fields, in preparation.
[MS-Cos] P. Maheux and L. Saloff-coste, Analyse sur les boules d'un opérateur souselliptique, preprint (1994).
[NSW] A. Nagel, E.M. Stein and S. Wainger, Balls and metrics defined by vector fields I: basic properties, Acta Math., 155 (1985), 103-147.
[RS] L.P. Rothschild and E.M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math., 137 (1976), 247-320.
[S-Cal] A. SÁnchez-CAlLE, Fundamental solutions and geometry of the sums of squares of vector fields, Invent. Math., 78 (1984), 143-160.
[S-Cos] L. SALOFF-COSTE, A note on Poincaré, Sobolev and Harnack inequalities, Internat. Math. Research Notices (Duke Math. J.), 65(2) (1992), 27-38.
[SW] E.T. SaWYer and R.L. Wheeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. Math., 114 (1992), 813-874.
[W] R.L. Wheeden, A characterization of some weighted norm inequalities for the fractional maximal function, Studia Math., 107 (1993), 257-272.

Manuscrit reçu le 20 juillet 1994, révisé le 6 décembre 1994.

Bruno FRANCHI, Dipartemento di Matematica Università di Bologna Piazza di Porta S. Donato, 5 I 40127 Bologna (Italy).
Guozhen LU, Department of Mathematics Wright State University Dayton, Ohio 45435 (USA).
Richard L. WHEEDEN, Department of Mathematics Rutgers University New Brunswick, NJ 08903 (USA).

[^0]: (*) The first author was partially supported by MURST, Italy (40% and 60%) and GNAFA of CNR, Italy. The second and third authors were partially supported by NSF Grants DMS93-15963 and 93-02991.
 Key words : Hörmander vector fields - Weighted Poincaré inequalities - Representation formulas - Isoperimetric inequalities.
 Math. classification : 46E35.

