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REPRESENTATION FORMULAS FOR 
INTEGRABLE AND ENTIRE FUNCTIONS 

OF EXPONENTIAL TYPE I 

CLÉMENT FRAPPIER 

1. Introduction. Let BT denote the class of entire functions of ex
ponential type T (>0) bounded on the real axis. For the function / e BT 

we have the interpolation formula [1, p. 143] 

(1) sin yf'(t) - cos yf'(t) 

fc=-oo \ KIT + y J \ T J 

where /, y are real numbers and J is the so called conjugate function of/ . 
Let us put 

The function Gyj is a periodic function of a, with period 2. For / = 0 
(the general case is obtained by translation) the righthand member of (1) is 
2rGyj(l). In the following paper we suppose that / satisfies an additional 
hypothesis of the form/(x) = O ( |JC|~€), for some e > 0, as x —» zboo and 
we give an integral representation of Gy j(a) which is valid for 0 ^ a ^ 2. 
More precisely, the Theorems 1, 2 and 3, below, contain formulas giving a 
representation of Gyj(a) valid respectively for 0 ^ a ê 1, 1 ^ a ^ 3/2 
and 3/2 â a ^ 2. Before we examine the method of proof we state 
explicitly the results in question. 

THEOREM 1. Letf e BT such thatf(x) = O ( |JC|-€)> (c > 0, x —» zboo). 
For all reals y and 0 ^ a ^ 1 we have 

(3) -4iTTe-aiyGyf(a) 

/ fix 
J —oo J x 

\e~irx - aiTxe~nx - 2e~mTX + ^ 1 ~ " ) ^ ] 
) « ^ 

Received December 1, 1987. 

1010 

https://doi.org/10.4153/CJM-1988-040-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-040-3


REPRESENTATION FORMULAS 1011 

[ e0-«)/TX _ eirx + aiTXei*Xi foo 
+ e'2,y J -oo / W - > ' " *• 

THEOREM 2. L ^ / G £ T such thatf(x) = O ( |x| c), (c > 0, JC -» ±oo). 
For all reals y and 1 ^ a ^ 3/2 we have 

(
. [km + y \ \ 2 

sml \ 
\ 2 M |a(far + Y)\ 

JÇ-ÏÏ + y J \ T / 

= J - o o / ^ ) 2̂ ^ 

+ e J -oo ^ a X > ^2 <**• 

Formulas (3) and (4) coincide for a = 1. 

T H E O R E M 3. Letf e Br such thatf(x) = O ( | * | ~ c ) , (€ > 0, x -> zboo). 
For a// re#/s y awd 3/2 ^ a ^ 2 we /ïave 

oo / S i n l l\2 

(5) -W* 2 e-^^C[ 2 ']/[«*« + y)\ 
k=-oo \ kir + y J \ T / 

f00 , , A (2a- 3)hxettiTX + e(3~a)iTX - eaiTX] J 

= J - c o ^ " * ) -2 dX 

<e(\-a)nx _ 2e(2-a)iTx _|_ e(3-a)hx-, 

+ e2 'Y / _ _ / ( « * ) 2 J * 
foo 

J - o o ^ 
foo 

/ /(c 
y —oo ^ v 

r ( l - a ) lTX 

Formulas (4) and (5) coincide for a = 3/2. 

In the statements of Theorems 2 and 3 we suppose a ^ 1. We can 
therefore see the function / as being an element of BTa. If we change r to 
rot in formulas (4) and (5) then their lefthand members are equal to 

-4mre{2-a)iyGyJ(a) and -4<irTe{4-a)iyGyJ(a) 

respectively. This gives us a precise representation of Gy y(a) valid for 
1 ^ a ^ 2. 

We observe that the distance between two consecutive interpolation 
points is 
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(k + 1)77- "h y klT + y IT 

T T T 

in Theorem 1 and 

air IT 

T T 

in Theorems 2 and 3. If we apply formula (1) to a function of the form 
el^zf(z) e i?T+|£| then the corresponding distance is only 

7T 7T 

T + |j8| = ~T 

2. The method of proof. We consider the Levitan's polynomials fh (with 
the notation of [6] ) defined, for / e BT and h > 0, by 

(6) /*(*) = 2 rffac + *) /[x + - , 
k=-oo \ hi 

where 

\ 7TX / 

LEMMA 1. ( [6, p. 23] ) The functions fh defined by (6) are trigonometric 
polynomials with period \/h and order ^N : = [r/lirh]. When x is real we 
have 

\fh(x) I =i max | / ( 0 1 , 
— o o < / < o o 

and fh(z) —> f(z) uniformly in every bounded set of the complex plane as 
/* ->0. 

In view of Lemma 1 we may write 

(7) fh(x)= 2 Cj(h)e2^x. 
j=-N 

Let 

r-»oo r 

be the Phragmén-Lindelof indicator function. We shall need subsequently 

LEMMA 2. ( [5, p. 982] or [2, p. 465] ) If in addition, hfmll) ^ 0 then 

C-Jh) = 0 form = 1, 2, 3 . . . . 
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Let us illustrate now our method of proof. We have, from (7), 

N 

fh{t)= 2 eft)*?"*'', 
j=-N 

where the Fourier coefficients Cj(h) are equal to [6, p. 22] 

(8) Cj(h) = h J _TO <p(hx)f(x)e-2^xdx, 

whence 

/

oo N 

_00^p(hx)f(x) 2 tpm'-Dfr 
j=-N 

/-OO r>A(tf+l)l(/-JC) _ g - 2«hNi(t- x)l 

= J _oohq)(hx)f(x) (g2^i(/-^) _ !) J x ' 

Let us denote the integrand by Fh(x). If / e L( — oo, oo) then, for 
x e R: 

l^(*) I - h<p(hx)f(x) 2 *2*W-*> 

^ {IN + 1)A|/(*)| 

^ T|/(JC) I, (A -> 0), 

that is Fh(x) is dominated by an integrable function. Thus, using Lebesgue 
dominated convergence theorem and Lemma 1, we obtain 

(9) f(t) = lim fh{t) 

bo r 2irh(N+\)i(t-x) _ -2irhNi(t-x) -, 

_ œ / ( x ) lim h<p(hx) ,7,hi«-x) _ n
 dx 

= 1 [°° f **«-x) 
7T ^ - ° ° (f - x) 

If / is not necessarily in L( — oo, oo) but satisfies a condition of the 
form 

(10) f(x) = O ( |JC|~C), € > 0, JC -> ±oo, 

then the functions 

sin ôz 
&0O : = —T-/(z) oz 

are in i?T + 5 (8 > 0) and 
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gs(x) = o(\x\-] y, 

these functions are thus integrable so that, from (9): 

1 f°° sin((r + S)(t - x)) , 
(11) g8(t) = ~ J^gtx) , \ -dx, 

with 

8s(x) 
sin((T + 8)(t - x)) 

(t- x) 

(t - x) 

^ \f(x) | 
sin( (T + S)(? - x) ) 

~ Ul 1 + £ 

(t- x) 

if x —» ±oo . 

Thus a passage to the limit is again justified, in (11), by the Lebesgue 
dominated convergence theorem and we have proved the following result: 
if / G BT satisfies (10) then for all real t, 

„ ^ /v s ! f°° s, xSin r(t - x) , (12) f{t) = - J f(x)—± -tdx. 
7T J °° (t — X) 

Remark. Formula (12) is more easily proved with a quadrature formula; 
if g e Ba satisfied the condition 

g(x) = 0(\x\-8), ( 8 > 1, JC-> 

then [4] 

/ n , f°° , w 277 S /2^7T 
J O Jfc=-oo \ O 

Applying (13) to the function g e B2r, 

sin rz 

:oo), 

g(z) : = / ( * ) -

w h e r e / satisfies (10), we obtain 

(x) /
°° ., . sin TJC , vr ^ /ftw 
_<„/(*) dx = - 2 g[ 

T k=-oo \ T 

= - g ( 0 ) = 77/(0) 
T 

and (12) follows by translation. However, it is not clear if a similar remark 
can be applied to prove Theorems 2 and 3. 

3. Other lemmas. We will use several times the basic formulas 
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(14) v ./ z - z 
(14) 

j = m Z A 

and 

(15) ,5/z = (TH?  
In order to obtain our formulas we prove the corresponding (and more 

precise) formulas for trigonometric polynomials and extend it, using the 
method described in the preceding section, to integrable and entire 
functions of exponential type. The following lemmas are used for that 
purpose. 

LEMMA 3. For all trigonometric polynomials 

n 

S(0) := 2 C/6 

j=-n 

we have 

( 1 6 ) 1 | (-l)ke^/n^+^iAk(R>y)sl0 + (** + Y )) 
In k=\ \ n J 

n — m n 

2 (Rj+m - \)c/je + 2 (R2n-m-j - \)Cjé 
= —m y' = « —m+1 

— m 

+ e~iy 2 (R-J~m - \)C/je, 
j=-n 

where 

Ak(R, Y) : = *» - 1 + 2 2 (* •" ' - 1) COS ^L±JÙ. 
v=\ n 

and 0 ^ m ^ n is an integer. 

LEMMA 4. ( [3, Lemma 3] ) For all trigonometric polynomials 

S(0) := 2 Cjéj\ n ^ 3, 

we have 
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(17) — ? — 2 (-\)ke-^+^-mUa^y)s[e + {f^) 
2(n — m) k=\ \ (n — m)) 

s'J» 

j=—n " j = 2m — n+\ 

2 (^2«-3m+7 _ X)C^jB + ^ ( i T ^ - X)Cf? 

y = m 

/or 0 = m = /?/3, whereas 

3iy 2{n — m) / / / i \ \ 

(18) - A - 2 ( - 1 ^ - " < * ' + ^ " - ^ M ( 1 1 , Y W « + ^ ^ 
2(« — m) k=\ \ (n — m)J 

3m —2n 

s 2 (JR
3m"2"^ - 1)C/" V * 

2m — n 

e2* 2 (/?2"-3m+> - \)cf6 

\j=3m — 2n 

+ 2 (Rm~j - \)c/je 

j=2m—nJr 1 

+ e4iy 2 (#~ w ~ 1)C/* 
j = m 

for n/3 ^ m ^ n/2. The coefficients Akm(R, y) are k,m^ 

n — m 

AKm(R,y):=R"-m-\+2 2 ( i ? — - 1) c o s ^ ^ . 
v=\ (n — m) 

We do not include a proof of Lemma 3 since it is similar (and easier) 
than that of Lemma 4. 

4. Proofs of the theorems. We observe that both members of each of the 
formulas (3), (4), (5) are periodic functions of y, with period m. Also, we 
may suppose that 

max |/(0I ^ 1; 
— o o < / < o o 

in view of Lemma 1 this implies that \fh(x) | ^ 1, — oo < x < oo. 

Hence, it is sufficient to prove the theorems for 0 ^ y ^ 77- and we may 
assume that \fh(x)\ ^ 1 for all reals x. 
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Proof of Theorem 1. Dividing both members of (16) by (R — 1) and 
letting R —> 1 we obtain 

In 
. lk<n + y\\2 

sinl 
(19) 1_ 2 ( -^y^/HXfor + Y))!1 ^ 

i-£Tl sm| 

, ( , + ^ ± J O ) 

M 
j=n—m+1 L y = - m 

2 a + "Oc/ ̂ 
7 = - n 

We apply (19), with 0 = 0, to the trigonometric polynomials (7). We 
choose n = N and m = (p/q)N where p and q are positive integers such 
that 0 ^ p ^ q. In order that N = 0 (mod #) we need to take A of the 
form 

h = 
2<nSq 

where S is an integer which tends to oo if and only if h tends to 0. That 
choice is permitted since all the limits under consideration will exist. We 
have thus 

(20) enSx(h) = e2iyS2(h) - S3(h), 

where 

IN 

Sl(h):=— 2 (-1)V</"*X**+Y)).1 
2N k=\ 

' . [km + y\\ 
sinH—J1 

\ 
[kir + y 

sin 
\ 27V 

f(kv + y\ 
Jh\ ITTHN F 

(\-(p/q))N 

S2(h): = 2 [j+p—\Cj{h) 

+ 2 f(2-^W-y)c/A) 
j={\-{P/q))N+\ W qi I 

and 

S3(h):= 2 y+^VC,(A). 
i=-N \ a J J 
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Now, 

N-\ 
. [km + y \ \ 2 

sin " 

Sl(h) = — ï (-i)ke((p^(^y)À 2 

2N k=\ | . [km + y 
sin 

f{ 
km + y\ 

27ThN I 

2N 

2N II 

U*L±1\V 
— 2 (-\)ke{(p/q)(k7T+y))l 

2N k=N 

sinl 

(km + y 

r\-iïni 
Â{ 

km + y\ 

2mhN ) 

In the second summation we change k to (27V + k). Using the periodicity 
of the f u n c t i o n / (Lemma 1) we obtain 

(21) hSx(h) 

h N-\ sin -

2N k—N 
2 (-I)-* kÀ{p/q)(kTT + y))i\ 

[km + y \ \ 2 

\ 2 

. [km H- y 
\ sin 

\ IN 

\4 km + y\ 

2mhN I 

If 0 ^ y ^ m then 

km -\- y 

2N 
^ - (for -N ^ k < N) 

so that 

sin| 
/c77 + y 

27V 

km + y 

2N 

Also, 

A( 
km + y 

^ 1 
27r/*7V 

(recall that we may assume 

max | / ( 0 | ^ 1). 
— o o < / < o o 

The summand in (21) is thus 

hN 

[km + y\ \ 2 (km + y)' 

M^)) 
r, ( A - » 0 ) , 

1 _ 

\ 2iV 

and the dominated convergence theorem implies that 
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(22) lim hSx(h) 
h-*0 

. //C7T -f y \ \ 2 

- 2 (_I)V(/'^)(^+Y))' . 
77" k=—oo 

H 
\ km + y 

/ ! 
A:7r H- y\ 

Here we must observe that 

far + y 

which follows from the inequalities 

[km + y\ Jkir + y 
M 2mhN -4-
SI4T^) - few) I+ \fëw) - A—) 

I \ 2irhN ! \ zirhN I ' I \ lirhN J \ r J 
and [6, p. 22] 

1 4 lirhN I \ 27ThN I ' = I V\ 2lT# ' / 

On the other hand, 

(\-(p/q))N , n \ foo 

(23) AS2(A) = h2 2 (/ + - # / _ <p(hx)f(x)e-2"hiJxdx 
j=-(P/q)N\ q I J °° 

( M M / 
/*oo 

= J -co h\{hx)f{x) 

f ( l -^We~2'*-x ( < 1'~ ( /' /'? ) ) A r + 2 ) + (-7V + i|e
2^««/' /'?)^-1) 

(e-2»*« - l)2 

- ( (l - - W + l|e-2^«((l-(/'/?))iV+l) _E?Le2vhix(pN/q) 

+ A2 2 I (2 - ^ W - 7 j / _ _ ^hx)f(x)e~2^xdx 

(e-2vhix__ ^ 2 -dx 

+ jZj-Nh\(hx)f{x) 

https://doi.org/10.4153/CJM-1988-040-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-040-3


1020 CLÉMENT FRAPPIER 

,-2irhix((\-(p/q))N+\) _ e2irhix(pN/qh 
X TT-T: ~dx 

(e-2TThlX _ 1 } 

+ / l (2 - PA»#«hx)f{x) 

t -2irhix{N+\) _ -2irhix((\-(p/q))N+\h 
X T-7- -dx 

(e-2vhix _ 1 } 

/*oo 

/ "2 

X 

hz<r(hx)f(x) 

\Ne-2nhix(N+2) _ L _ P\Ne-2«hix((\-(p/q))N+2) 

^-2-nhix _ J J 2 

N + 1 L - 2 v r t o ( ( l - ( ^ / ^ ) ) A ^ + l ) 

- Jx. 

In each of the four integrals of (23) we can justify a passage to the limit 
under the integral sign; the integrands are uniformly bounded by 
^(r)\f(x) | where ^(r) is independent of h (<1) . Thus, assuming for the 
moment t h a t / e L( — OO, OO) we obtain 

(24) lim hS2(h) 

- r 
X 

4^->-°°ÂX) 

c — fl —^-\iTxe~irx + e
iTx(<p/q^ — 2e~(<x~<<p/q^iTX 

dx. 

Similarly, 

(25) lim hS3(h) 
h->0 

/

oo I 
jTx(p/q) (• - ! H 

-dx. 
4TT' 

Using (20), (22), (24) and (25) we see that the following result is 
established: if '/ G BT is integrable then, for all real y and all rational 
numbers p/q such that 0 ë /?/# ë 1, we have 
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(26) - W Y 2 (-^V^^X^+Y))»] 
& = —oo 

t . (km + y\\2 
/sin \ 
I \ 2 / /̂ 77 + y\ 

km + y / \ r / 

X 

/•oo 

L~'T* - (l - ^ W x e - ™ + eiTx(p'q) - 2e~{l~{p/ll))iTX 

-dx 

+ 
foo 

J-oo/C X ) 

</«(/>/*) _ jrx + ( j _ ^ | / T J C ^ x 

dx. 

Given any real number a in the interval [0, 1] let us choose a sequence 
{p/q} of rational numbers in [0, 1] such that {p/q} —> «• The summand in 
(26) is bounded by 4mr/(km + y) and the integrands by D(T) | / (JC) | for 
some constant D(r) independent of the sequence {p/q}. Taking the 
appropriate limits in (26) we get: 

sin 
km + y\\2 

(27) - 4 W 2 (-l)V(fer+Y),'| 
A:=-oo 1 fe + lf M: A:7T + y 

= . 2 < Y 

X 

/*oo 

TX - (1 - a ) / V ^ - ' " + eaiTX - 2e" ( |-a) ,TJC] 
cfx 

I f / i s not necessarily in L( —co, oo) but satisfies the condition (10) then 
the functions 

* ( * ) : = ^ / ( * ) , * > 0 , oz 

are integrable functions of Br+8 such that 

|g5(x) | ^ | / (x) I and lim g8(z) = f(z). 
5^0 

Applying (27) to the functions g8 we obtain 
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(
. IklT + y\\2 

sinl 1 \ 

km + y / \ T + o / 

/*oo 

- / ( T + «)X _ n - n\i(n- -4- X\v»- ' ( f+^ [ e " ' , T T ^ - (1 - «)Ï (T + 8)xe 
X x2 

e«,(T + «)x _ 2 -

1 

/*oo 

J -oo &**> 

rai(T+S)x _ ei(T + S)x 4. n -- a)i(T + 5)xe'(T+6)x] 

( l - a ) z ( T + 5)x-i 

dx 

X ~ dx. 
x 

The two terms in brackets, in (28), are bounded, for large \x | and small 8, 
by 2S(T)|;C|; the integrands are thus bounded by 

E(r)\x\\f(x)\ < K(r) 

" ? - R ^ ' ( ^ ± o o ) -
The summand in the lefthand member of (28) being bounded by 

877T 

(for 8 < T) 

we may invoke the dominated convergence theorem and after the passage 
to the limit we see that formula (27) is valid with the less restrictive 
condition (10). 

Finally, formula (3) is the same as (27) where we change a to (1 — a). 

Proof of Theorems 2 and 3. Lack of space does not permit us to include a 
detailed proof of Theorems 2 and 3. However, we point out that they are 
very similar to that of Theorem 1. We use respectively (17) and (18) to get 
the formulas corresponding to (19). The lefthand members of the resulting 
formulas are examined like the term S{(h) in (20); for the righthand 
members we use (14) and (15) to obtain explicit integrands whose limits, 
as h —> 0, are evaluated. The passages to the limit are justified exactly as in 
the proof of Theorem 1. We obtain (4) and (5) after possibly some obvious 
change of variables. 

5. Complementary results. 

5.1. If hjiir/l) ^ 0 then, in view of Lemma 2, we may write 

fh(x) = Ph(e2*hix) 
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where Ph is an algebraic polynomial of degree ^N (: = [T/ITTII] ). All the 
coefficients Cp j = — 1, — 2, . . . , in (19), are thus equal to 0. Taking that 
observation into account we may follow the same line of reasoning as in 
the proof of Theorem 1 and we obtain 

THEOREM 1'. If we suppose, in addition to the hypothesis of Theorem 1, 
that hj{<n/2) ̂  0 then: 

(30 - 4T7TGY f(a) 

/ 

00 _, [e-,TX - airxe-,TX - 2e~anx + 1 + (1 - a)hx] , 
J(x) j dx-

-OO * X 

An analogous observation can be made for Theorems 2 and 3. It is 
interesting to observe here that formulas (17) and (18) coincide when the 
trigonometric polynomial is of the form S(0) = P(el ) where P is an 
algebraic polynomial of degree ^n. 

5.2. Under suitable restrictions we can differentiate both members of 
formula (3). In fact, if we differentiate two times then we obtain 

COROLLARY 1. Let f e BT such that f(x) = O (\x\~8), (8 > 1, 
x —> ztoo). For all reals y and 0 = a = I we have 

(29) 4» | e.a{k„+y)l• ^ ^ l + Y J ^ ^ L Y J 
T k=-oo 

/*oo 

J —oo 

CO 

(\-a)irx\ f(x)(2e-aiTX - e{l~a)lTX)dx 

/

CO 

_oof(x)e{l-°L)lTXdx. 

Here, the functions f(z)e~aiTZ and/(z)é? (1_a)r rz are respectively elements 
of 5(1 + a)T and BQ-a)?- Using (13) we readily obtain, under the same 
hypothesis as in Corollary 1 : 

(30) 1 e-«^+v)( sin2(^L±2)/(^±_l) 
* = - o o \ 2 / \ T / 

1 + a ) / ( : 
J Y e2km/(\+»^"l 2&7T 

(1 + a) ^ - o o Hi + a)r 

x)/( 
cos ye 'Y Y e-2hn/(2-a)fl

 2k7T 

(2 - a) *=-oo H2 — a)T 

As a particular case of (30) let us take a = 1/2 and y = 0; we obtain 
that if / <= £T is such that/(;c) = O ( |x | _ ô ) , 5 > 1, x -> ±oo, then 
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„„ 3 t(-,W<*±J)ï)_4 1 4^)f(f\ 
k=-oo \ T ! k=-oo V 3 / \ 3 T / 

We have also 

COROLLARY V. If we suppose, in addition to the hypothesis of Corollary 1, 
that hjiir/l) g 0 then: 

(290 - 1 e~^+^ ^^L±l]f{^±J.) 
T k=~oo \ 2 / \ T / 

CO 

— oo J v y 

Of course we can also integrate all the functions of a under 
consideration. The resulting formulas become more complicated. 
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