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ABSTRACT 
Sketching and prototyping of design concepts have long 

been valued as tools to support productive early stage 

design. This study investigates previous findings about the 

interplay between the use and timing of use of such design 

tools. This study evaluates such tools in the context of team 

design projects. General trends and statistically significant 

results about “sketchstorming” and prototyping suggest that, 

in certain constrained contexts, the focus should be on the 

quality of information rather than on the quantity of 

information generated, and that prototyping should begin as 

soon as possible during the design process. Ramifications of 

these findings are discussed in the context of educating 

future designers on the efficient use of design tools. 

 
INTRODUCTION 

In the early stages of design, designers and teams of 

designers are known to employ a range of techniques to 

represent and explore design concepts, from sketching to 

physical prototyping and CAD modeling.  

Extensive literature can be found on the respective 

advantages and drawbacks of design tools. For instance, 

sketches have been shown to be highly useful in supporting 

the ideation process because of their ability to preserve 

ambiguity yet allow the expression of key detail, thus 

enabling designers to explore a spectrum of variants 

intuitively. Designers also rely on the development of 

various types of physical prototypes during early phase 

design in order to understand a design's functionality, its 

usability, or its role. In later stages of design, 3D CAD 

modeling is valued for the dynamic and rendered 

visualizations it offers as well as the ability to run 

simulations and computational analysis. 

Though research has been conducted on the value of 

individual design tools and techniques, there is currently no 

single "best practice" for determining when and how 

designers should employ these various representations to 

explore and evaluate design concepts. This paper operates 

under the assumption that using the wrong representational 

technique at the wrong phase of design or in the wrong way 

can lead to decreased design quality and efficiency and poor 

use of precious design resources during this critical phase. 

This paper explores the notion of optimal timing and 

guidelines for use of two of these design tools, namely 

sketches and physical prototypes. 

This study is conducted in the context of design project 

in a graduate class of mid-career professionals, and examines 

the interplay of both of these design tools to observe if: 

• the way students currently use both design tools, in 

terms of timing and quantity of information generated, 

can influence the quality of design outcome; 
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• we can, as researchers and teachers, develop guidelines 

for “best practices” in using these design tools. 

 

RELATED WORK 
1. Sketches as Design Tools 

There is abundant literature on the advantages of 

sketches (and, to a lesser extent, limitations) since they have 

always have been considered the most natural, low cost and 

widely used way to generate concepts during the preliminary 

design phase. 

Sketching is indeed known as a fast, intuitive technique 

to represent the opportunistic flow of ideas [1]. Sketches 

reduce cognitive load and provide mnemonic help [2, 3]; 

they enable efficient and broad problem/solution exploration 

with minimal content [4, 5] and spur unexpected discoveries 

by keeping the exploration dynamic (“see-transform-see 

process”, [6]). They also enable ambiguous, highly personal 
content [7] that permits adaptability to all kinds of 

communicative purposes [8, 9]. The contents of sketches can 

be implicit and have limited structure (making them difficult 

to interpret); their rigid and static aspects make them “old-

fashioned” compared to more reactive representations [7]. 

Sketches can also be analyzed in regard to their 

applications or content. Several “types” of drawings are 

recognized (thinking sketch [10]; communicative or talking 

sketch [11]; reminder sketch [12]). Do and Gross [13] and  

Lim [14] define various taxonomies for sketches, while 

others [15, 16] try to determine underlying principles for 
sketching. At a more detailed level, McGown, Green and 

Rodgers [8, 17] are interested in the graphical complexity of 

traces. 

Specific aspects of hand-generated sketches, across all 

domains, have generally been analyzed separately from those 

of other design tools like Computer-Aided Design tools or 

physical prototyping. Some research exists comparing some 

of these tools [18, 19], but there is little research that 

considers their respective uses in the context of either design 

practice or the design classroom.  

 

2. Prototypes as Design Tools 
Prototypes may vary from rough to very detailed, and 

are known to facilitate the progressive exploration of design 

ideas, the communication of concepts as well as the 

understanding of user-experiences [20]. They are powerful 

tools to construct knowledge, to raise issues, and are more 

and more used inside various professional environments for 

their potential to maintain motivation through constant 

learning and sense of progress [21]. These authors observe 

that “with the increasing widespread adoption and 

proliferation of design practices […], low-fidelity 

prototyping [is] under increased scrutiny by non-designers. 

Therefore, a more sophisticated and empirically validated 

explanation for why a practice works, including both 

anticipated and non-anticipated outcomes is needed” (pp. 

78-79), which underline the necessity to quickly foresee if 

there is, indeed, best practices in generating such types of 

representations. 

When it comes to prototypes, one of the most frequent 

questions considered concerns their suggested level of 

fidelity. After categorizing these various levels of fidelity 

and developing new terminologies [22 – 24], some research 

underlines how simple prototypes, with fewer parts and 
requiring less building time, seem to lead to more efficient 

processes and outcomes [25]. Levels of efficiency in using 

prototypes in many cases seem to be linked to the type of 

audience they refer to as well as the time constraints they 

have to adapt to [23], and phenomena like the “Sunk Cost 

Effect” (or the “reluctance to choose a different path of 

action since significant money, time and effort is invested”) 

may explain fixation on premature concepts [26] and may be 

avoided by building multiple types of prototypes [27]. 

As for studies of side-by-side comparisons of 

prototypes with other design tools, and their respective 

contributions to the design process, Christensen and Schunn 
[28] showed that prototypes are more prone to generate 

within-domain analogies, whereas sketches are better to 

stimulate between-domain analogies. Without being sure 

about how these types of analogies impact the nature and 

quality of design output, the authors nevertheless tentatively 

suggest “to use sketching and idea generation unsupported 

by external representation in the early stages of design and, 

perhaps, to postpone prototyping until several promising 

concepts have been developed” (p. 37). These authors do not 

offer empirical evidence that such timing is indeed better for 

the overall quality of the designed object. It seems that more 
research has to be done to better understand how, when and 

why prototypes should be used for effective preliminary 

design. 

 
3. Timing and Instructions of Use 

While specific qualities of design tools have been well 

documented, when is the best time to use those tools is 

generally less studied. In the area of sketches, Yang found 

statistically significant, positive correlations between the 

time students spent on “design” (including the sketching 

phase) and the final grade they received for their project 

[25]. Time spent on early sketching of dimensioned drawings 
was found to correlate with better design outcomes. 

In terms of prototyping, Yang suggests that the time 

spent on early building could correlate positively with design 

outcome. It is at least the case for one of the classes she 

studied, while the trend seems less clear for a second group 

of students. Acuna and Sosa [29], by suggesting that a higher 

investment on sketching and model-making time tends to be 

linked to more original solutions, share the same idea but do 

not mention when this timing should be preferentially 

scheduled.  

In terms of how both representation techniques should 
be used, design tools’ advantages, as summarized above, 

tend to encourage some behaviors.  

The task- and cost-efficiency of low-fidelity (or 

throwaway) prototypes during preliminary design, built very 

quickly with materials at hand, is well known in design 

practice. The ambiguity, fluidity and range of sketches, on 

the other hand, are qualities one should try to adopt. In terms 
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of types of drawings, two-dimensional drawings, such as 

sections and elevations, are used 80% of the time during 

ideation in fields like architecture [30], while 3D perspective 

sketches are more prevalent in fields like product design. 

Other design techniques that have been considered 
include the creative effort a designer should put forth during 

ideation. Houde and Hill recommend making many rough 

prototypes, and consider how each of them can respectively 

support the “look and feel”, “role” or “implementation” 

aspects of the product being designed [23].  

Previous work on sketching and annotation suggests that 

they are highly efficient ways to generate ideas during 

creative sessions (individual or collective), and that the more 

fluidly and quickly ideas are multiplied, the better. However, 

contradictory results can be found in the literature when it 

comes to the benefit of generating as many concepts as 

possible. Much research on productive creative techniques, 
such as brainstorming or divergent thinking, argue that 

quantity eventually leads to creative quality during 

preliminary design (Osborn, 1957; Diehl & Stroebe, 1987; 

1991, all quoted by [31]). Other observations suggest 

caution: Sutton and Hargadon find evidence of trade-offs 

between quantity and creativity in organizational contexts 

(1996, quoted by [31]), and further research shows that 

performance and the number of prototypes cannot 

immediately be correlated [27]. Reining and Briggs [32] 

suggest alternative models to link the number of ideas with 

the number of good ideas (Figure 1).  
 

 
Figure 1. “THREE POSSIBLE SHAPES FOR THE IDEATION 

FUNCTION”, SOURCE [32]. 

 

Litchfield underlines that several researchers emphasize 

that some distinction should be made between “ideas” in 

general and “good ideas,” provided that one can determine a 

robust way to differentiate context-dependent ideas [31]. 

 

RESEARCH QUESTIONS 
Previous work was concerned with design tools’ 

respective characteristics as well as what can be considered 

“best practices” for using them. We have seen how sketches 

and annotations are crucial for generating ideas, and how 

their use early on in the process correlates with good design, 

but it is still unclear how many ideas should be generated, 

and more specifically what type of ideas or information 

should preferentially be supporting “sketchstorming” (i.e., 

concept generation through sketching, annotating and 

brainstorming). 

In contrast, more evidence is needed as to when 
prototypes should be used during preliminary design. 

The high level aim of this work is the definition of best 

practices for using design tools and more specifically, when 

and how information should be generated. This paper poses 

the two following research questions:  

• does a certain type of information generated during 

preliminary design correlate with design outcome? 

• does the time spent on early prototyping correlate with 

design outcome? 

 

METHODS 
1. Context 

This work draws on data generated by 68 engineers and 

designers with an average of 8 years of work experience 

enrolled in a semester long, graduate level design course. 

These students worked in 13 teams and were asked to tackle 

the general theme of “healthcare and healthy living”. In this 

specific context, they were asked to define a user need 

through firsthand observation, to generate design concepts, 

and to fabricate a working prototype using a budget of $800. 

The semester was structured into 7 time periods (or 

TP’s) of about 2 weeks. These time periods sometimes 

corresponded to project milestones, including the selection of 
3 potential user groups at the end of TP 1, reporting of 3 

preliminary concepts at the end of TP 2 and the evaluation of 

drawings in the middle of TP 5. These milestones structured 

the design process, though students were still free to proceed 

as they wished. 

 

2. Type of Collected Data and Final Grading 
The evolution of each team's projects was captured 

through online time sheets, individual sketch notebooks, and 

brief reports that accompanied built prototypes. 

Time sheets were completed every two weeks, and 

students were asked to describe how they spent their efforts 
throughout the project (time spent on the various phases of 

the design process, on prototyping, on working in notebooks, 

on doing end-users’ analysis and so on). 

In addition, students were required to scan and return at 

least 3 significant (and new) sheets from their personal 

notebooks every 2 weeks. Some students submitted more 

than the 3 sheets required, and others sometimes didn’t 

submit them at all. A total of 512 sheets was collected, 

bringing together 721 sketches, 23 screen captures of 3D 

CAD models as well as an uncounted number of diagrams, 

doodles, annotations and tags. 
Brief reports were required each time a team constructed 

a prototype. These reports aimed at understanding how the 

prototype helped in pushing the design further on, in 

understanding functioning as well as errors and omissions or 

in generating open questions and surprises. Each team built 
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an average of 3 to 5 prototypes (including the final one) 

during the semester. 

At the end of Time Period 7, the final projects were 

demonstrated before a panel of 12 industry professionals, 8 

of whom had not seen the projects or met the students before. 
Intermediary and final project presentations counted for 40% 

of the final grades, another 40% of grading was attributed to 

team assignments (determining market opportunities; 

assessing users needs, building prototypes or developing a 

business case for the design) while the remaining 20% were 

allotted to individual contribution (notebooks, timesheets, 

etc.) and team contribution (anonymous peer evaluation 

throughout the semester). 

 

3. Analysis Methodology 
 A two-step methodology was followed in analyzing the 

data. The first step consisted of globally verifying the data 
consistency. Indeed, we anticipated that students might not 

have completed and returned their timesheets, reports and 

notebook sheets as regularly as required, and therefore we 

expected some irregularities in the way data had been 

collected, time period by time period. It was thus necessary 

to sort out which data was really usable. Due to somewhat 

low agreement between jury members, we also looked at 

different methods of clustering the teams.  

Once the coherence of the data and the evaluation 

process had been tested, the second step (leading to our main 

results) included two different approaches. 
The first approach consisted of analyzing correlations 

between time spent on specific activities and whether a team 

belonged to the “second tier” or “top tier” category. 

The second one consisted of clustering and analyzing 

the type of information generated at each step of the design 

process in order to test if a positive correlation, in favor of a 

better design outcome, could be found in regard to a specific 

behavior. In order to do that, we carefully examined the 

information provided in the notebooks as they were 

considered sufficiently representative of the overall work 

done by each team. A preliminary qualitative analysis of the 

content of these notebooks showed that the information (i.e. 
sketches, doodles, check-lists, annotations, calculations, 

pictures…) mainly related to three types of items: 

(i) definition of different types of end-users (clustered 

in User Groups, or UG);  

(ii)  definition of different problems these end-users 

encounter (clustered in Problems, or P); 

(iii) generation of concepts (products or services) 

tackling these end-users’ problems (clustered in 

Concepts, or C). 

 

Observing this, we decided to structure the notebooks 
information in hierarchical diagrams (or “trees”) following 

Kim, Bracell and Wallace’s methodology [33], but focusing 

on high-level information (User Groups, Problems and 

Concepts) rather than on the detail design information the 

authors exploit for their software, DRed. The first three 

layers of these trees respectively referred to each of the three 

categories (User Groups, Problems and Concepts), while 

further layers would connect information about how the 

concepts had been developed, the various decisions taken, 

the issues raised etc. An example of such a tree appears in 

Annex A. Each item (node) corresponds to a different piece 

of information, chronologically connected to parent items 
referring to the same UG, P or C. This way, each tree 

presents a global view of how and why concepts were 

generated, explored, sometimes abandoned or further 

developed.  

Complementary information was eventually added to 

each tree, in order to more precisely reflect the context in 

which each item had been generated. For instance, a color 

was assigned to each student of each team, and a type of line 

to each time period, in order for each item to be easily and 

visually connected to its author and chronological 

emergence. When identical items re-appeared in several 

notebooks, we concluded that the information was generated 
during a collective work session, and was consequently 

colored differently. Additional information was also noted 

next to each item, such as the number of sketches directly 

referring to it (added in an extra bubble), the fact that the 

item was issued from end-user feedback (in italics) or the 

fact that this particular item was part of the final chosen 

concept (extra-circle around the node). 

Creating a chronological tree for each team made it 

easier for the three researchers to independently and 

systematically proceed with consecutive analysis and 

counting of the nodes and connections. 
 

RESULTS AND DISCUSSION 
1. Data Consistency 

1.1 Ranking of Teams  In order to tackle our 
two research questions (i.e. finding out if the type of 

information generated during the preliminary design phase 

and/or the time spent on early prototyping correlate with the 

design outcome) we had to assess the quality of the final 

projects for each team. Three sets of data were available: (i) 

the ratings on many different criteria by each reviewer, (ii) 

the overall ranking of each team by each reviewer, 

performed after all ratings had been made (but completely 

independent from those ratings), and (iii) a final, single set of 

rankings by the judges as a whole after group discussion 
(individually ranking changing substantially after they met as 

a group and discussed).  

Ratings showed how each project performed 

considering different criteria, but to assess the overall 

performance we needed to determine a weighting for each of 

those criterion. Simulation of the various possible weightings 

was performed to determine the sensitivity of the overall 

rating with respect to the weighting1. However, the 

                                                             
1 Note that aggregating the rating information into a single overall 

rating for each team requires one additional step to compare it with ranking 
information. To map the rating of different criteria by each reviewer, we 
must aggregate the rating to different criteria into a combined rating of each 

reviewer, followed by aggregating the combined rating of each reviewer into 
a final single rating. On the other hand, ranking is already implicitly 
aggregated by the reviewer into a single combined ranking and we just need 

to combine each reviewer’s ranking into an aggregated ranking. This 
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consistency for reviewer’s ratings for each of criteria was 

poor (represented by Krispperdorff’s Alpha values ranging 

from 0.07 to -0.03), there was no optimal linear weighting 

that improved inter-rater reliability of the aggregated ratings. 

This is most likely caused by the difference in reviewers’ 
expertise and demonstrates the difficulty in assessing the 

quality of a product. Because the overall rating turns out to 

be sensitive to the weighting, individual ranking information 

was used to quantify the quality of the teams in this paper. 

Note that these ratings and ranking are collected separately 

from each reviewer. 

The rankings reflected each judge's assessment of the 

teams' overall performance. However, one limitation of using 

the ranking is that it differed somewhat from the ratings by 

the reviewers. 

For the ranking data, we used the mean, median and two 

types of Borda counts for each team to sort them. Ideally, 
this aggregation of rankings should be the same, regardless 

of which sorting criteria was chosen. For example, if every 

reviewer picked team A as their first, team B as their second 

and team C as their third choice, then no matter what the 

aggregation scheme was applied, the aggregated ranking 

would always order the teams A, B and C (from best to 

worst). 

However, in this case, such a pattern did not emerge, 

and the final order of the teams from best to worst depends 

on which of the four sorting methods is used. This 

demonstrates that in this particular context of selection, the 
perceived value of the final product is highly dependent on 

the panel of judges (because of their inter-personal 

subjectivity or because of the complexity of the evaluation 

process). 

Given the fact that the aggregated team rankings are so 

dependent on the aggregation scheme, instead of trying to 

rank all teams individually, we tried to look for some 

consensus among clusters of teams, i.e. if the majority of 

reviewers may have thought, for instance, that teams A and 

B were ranked as top tier, teams C and D as middle tier, E 

and F as bottom tier and so on.  In order to assess this, we 

ran a cluster analysis whose results depend on the particular 
chosen algorithm (K-mean, Ward’s, etc.) and on the 

definition of distances. We applied sensitivity analysis with 

respect to each algorithm choice and distance to determine if 

distinct clusters of teams could emerge. Our results showed 

that two distinct clusters of teams (“second tier” and “top 

tier” teams) could indeed be found, while smaller size 

clustering became too sensitive to the distance definition and 

algorithm choice. This showed that jury members did agree 

on which teams were “second tier” and which teams were 

”top tier”, but weren’t able to find a consensus on how a 

particular team performed on an ordinal scale within these 
two groups. 

 

 

 

                                                                                                        
additional step makes rating more sensitive to aggregation schemes. This 
aggregation problem can also be linked to the fact that the chosen weighting 

for each criterion depends on each reviewer. 

1.2 Completion of Timesheets The timesheets 
students completed every two weeks proved to be a rich 

resource for our research, especially for testing correlations 

between time spent on different activities and the design 

outcome. The overall response rate for the timesheets was 

85.5%. 

Noticing this, we ran a few simulations to evaluate if 
the missing information could be imputed without impacting 

the overall results. Two sets of data were made: inside the 

first one, called “original data”, missing information was just 

left as “holes” inside the data set. In other words, if students 

didn’t return information about the time spent on some 

activities, we just assumed they worked 0 hours on those. In 

the second set, called “imputed data”, we assigned values for 

the missing data by calculating an average effort level for 

each student: comparing each student’s work time to the 

work times of his/her teammates in general, we were able to 

extrapolate how much time the fragmentary student must 

have worked in reality. For example, if a specific student 
always reported working twice as much as his/her average 

team members, but didn’t submit a report for the third Time 

Period, we assumed that this student did twice as much work 

as the average teammate during this third TP. 

We will see below how, by running different 

correlation tests between time spent and overall success of 

each team, we were able to confirm that both methods 

(filling in the timesheets or not) produced similar outcomes 

and final results were not impacted. Thus, our analysis is 

robust to imputation methods. 

 
2. Results 

2.1 Impact of the type of information on design 

outcome  Once the main concerns about data 
consistency were settled, we ran a preliminary, qualitative 

analysis in order to evaluate how the type of information 

submitted could impact the overall team success. 

The contents of the notebooks were our main data set 

for this particular question. Could this simple medium, a few 

sheets of paper, contain the solution to a good design 

outcome? 

The first test we did, before diving deeper into the type 

of information contained in these notebooks, was to evaluate 

if the quantity of sketches could be linked to the design 

outcome. Being such a quick and intuitive activity, 
preliminary qualitative analyses of timesheets showed that 

students had difficulties evaluating the time they spent on 

sketching and drawing tasks. Furthermore, sketches can be 

created rather quickly, which means that timesheets may not 

be the optimal way to evaluate sketching effort. Instead, we 

looked at how many sheets of paper were filled and how 

many sketches each team generated. 

Figure 2 shows the total number of sheets each team 

submitted (collectively) at each Time Period. The five “top 

tier” teams are labeled “A” to “E”, while the eight remaining 

“second tier” teams are respectively labeled “F” to “M”. No 
specific correlation tests were run in this case: visual 

inspection indicates that there is no specific link between the 
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number of sheets returned and the overall success of each 

team. 

 
Figure 2. TOTAL NUMBER OF NOTEBOOKS SHEETS SUBMITTED 

BY EACH TEAM, PER TIME PERIOD. 

 
Notebooks contained everything from checklists, text, 

doodles, quick annotations, to dimensioned drawings and 

calculations. The quantity of sheets generated could therefore 

not be linked to any specific type of information generated. 

In order to refine this approach, we then focused specifically 

on free-hand sketches, which were in this case mainly 

obvious representations of generated concepts (with very few 
sketches of existing products or problems).  

Figure 3 shows the total number of sketches submitted 

by each team, this time during the whole semester. If a 

minimal number of sketches might contribute to the overall 

success of the five “top tier” teams, no clear trend could 

however be found in this graph, either. At least for teams “I”, 

“K” and “M”, one could underline that generating as many 

conceptual sketches as possible does not seem to have an 

impact on the quality of the final design outcome. This is 

consistent with the findings of Yang [34], which observes 

that early-dimensioned sketches correlated with outcome, 

rather than overall sketch quantity. 

 
Figure 3. TOTAL NUMBER OF SKETCHES SUBMITTED BY EACH 

TEAM, DURING THE WHOLE SEMESTER. 
 

After assessing that quantity (quantity of work done in 

general, quantity of sketching concepts in particular) does 

not lead, in our specific case, to a minimum level of quality 

(contrary to what is suggested by other research), we wanted 

to analyze more deeply if certain types of information could 

nevertheless correlate with a good design output.  

Starting from the trees built for each team, three 

researchers independently counted three specific values: (i) 

the number of User Groups generally considered all along 

the design process (directly or not directly linked to the final 

product); (ii) the number of problems (encountered by the 
chosen end-user group) that were tackled, at least partially, 

by the final design; and (iii) the number of concepts 

generated that appeared in the final design. As a specific 

assignment required the students to quickly focus on one 

specific User Group (for example, each final product 

couldn’t expand too much toward other potential end-users), 

the decision was taken to keep an overall point of view on 

the number of User Groups generated, in contrary to the 

Problems and Concepts.  

Figure 4 shows the average of the User Groups’ 

counted by the three independent researchers, for each team. 

 

 
Figure 4. AVERAGE OF USER GROUPS GENERATED BY EACH 

TEAM, DURING THE WHOLE DESIGN PROCESS. 
 

The five “top tier” teams (A to E) imagined, on 

average, between 7 and 22.3 different User-Groups, while 

the eight “second tier” teams (F to M) rank from 7 to 38.3 

different User-Groups. 

Considering these preliminary results, we tried to 

determine an optimal cutoff for the decision boundary for 

binary classification, between second tier and top tier teams, 

using the number of User Groups as a single predictor. In 

other words, we tried to find any cutoff number of User 
Groups that would separate the teams between “low value” 

and “high value” and that would create a statistically 

significant contingency table, this table translating a 

statistically significant trend. 

Results showed that the best Kolmogorov-Smirnov (K-

S) statistics we could obtain was 0.35, for a ranking cutoff at 

11.67 (Table 1). Even if the K-S value is fairly robust, 

Fisher's Exact Test shows a p-value of 0.2929 for this 

particular confusion matrix, and it is thus not statistically 

significant. No clear trend can be concluded from this 

approach, certainly because of the limited sample size. 
 

 
 
 

 
 
 

 



 

 7 Copyright © 2012 by ASME 

Table 1. BEST CONTINGENCY TABLE FOR A RANKING CUTOFF AT 
11.67. 

 

 
Number of top tier  

teams 

Number of second tier 

teams 

Low value ( < 11.67) 3 2 

High value ( > 11.67) 2 6 

 

We then attempted to fit a logistic regression by 

treating this data as a classification problem again (logistic 

regression rather than linear regression is used because we 

are determining the likelihood that a particular team will be 

classified as a “second tier” team given the number of User 

Groups generated). We assigned “top tier” teams a “0” value 

and “second tier” teams a “1” value.  As with previous 

analysis, in this case, the coefficient in front of User Group is 
0.07091 (which is positive rather than negative), implying 

that as more User Groups are explored, the more likely the 

team will be classified as a lower performing team. When we 

looked at a 95% confidence interval for the coefficient, it 

appears to be between [-0.056, 0.276]. Because this 

confidence interval covers both positive and negative values, 

this result is not statistically significant in the global 

direction of the trend.  

Although neither cutoff and contingency table or 

logistic regression approaches showed strong, statistically 

significant results, the general trend nevertheless tends to go 
in the opposite direction of the generally accepted theory: the 

smaller the number of items (here, User Groups) generated, 

the better the ranking. In coherence to our results in terms of 

number of sheets and sketches generated, an extensive 

generative session about all possible end-users in the general 

field of “healthcare and healthy living” does not necessarily 

correlate positively with better design outcome. 

Similar analyses have been conducted considering the 

number of Problems and Concepts generated (and appearing 

in the final design). Again, in both cases, there is no 

statistically significant trend observed. Unlike the number of 

User Groups, the emergent trend does not seem to be linear, 
though is not significant. There seems to be an optimal range 

of problems and concepts to generate (i.e., too few or too 

many problems or concepts is not good). Thus, rather than 

having 1 decision boundary, we implemented 2 decision 

boundaries to determine the expected class for each of the 

teams. 

For the number of Problems, results showed that the 

best Kolmogorov-Smirnov (K-S) statistics we could obtain 

was 0.475, for a cutoff inferior or equal to 3, and superior to 

4.5 (see Table 2), i.e. results showed that the optimal range 

of Problems one should generate, in this case, is between 3 to 
4.5, anything less or more tending to push the team towards 

the worse performing group (Figure 5). If we look at Figure 

5, there are indeed 3 “top tier” teams and one “second tier” 

team that are within the range of 3 to 4.5, while two “top 

tier” teams and 7 “second tier” teams lie outside of that 

range. This corresponds to the elements in the contingency 

table (see Table 2). 

 

Table 2. BEST CONTINGENCY TABLE FOR A CUTOFF AT ! 3 AND > 

4.5 PROBLEMS 

 

 
Number of top tier 

teams 

Number of second tier  

teams 

Class 1 (> 3 and < 4.5) 3 1 

Class 2  (< 3 or > 4.5) 2 7 

 

 
 

Figure 5. AVERAGE OF PROBLEMS GENERATED BY EACH TEAM, 
OPTIMAL RANGE CALCULATED: BETWEEN 3 AND 4.5 

PROBLEMS. 
 

As for the number of Concepts, results showed that the 

best Kolmogorov-Smirnov (K-S) statistics we could obtain 

was also equal to 0.475, for a cutoff inferior or equal to 9, 

and superior to 10.5 (Table 2). Results showed that the 

optimal range of Concepts one should generate is between 9 

to 10.5, anything less or more also pushing the team towards 

the worse group (see Figure 6). 

In these two cases, we did not attempt to fit a logistic 

regression (because it assumes a monotonic trend) or other 

nonlinear regression models, because it tends to over-fit due 
to the limited sample size (only 13 data points). The fractions 

in the numbers of Problems and Concepts come from the 

limited disparity between the different author’s accounting. 

 
Table 3. BEST CONTINGENCY TABLE FOR A CUTOFF AT ! 9 AND > 

10.5 CONCEPTS 

 

 
Number of top tier 

teams 

Number of second 

tier teams 

Class 1 (> 9 and <= 10.5) 3 1 

Class 2 (< 9 and > 10.5) 2 7 
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Figure 6. AVERAGE OF CONCEPTS GENERATED BY EACH TEAM, 
OPTIMAL RANGE CALCULATED: BETWEEN 9 AND 10.5 

CONCEPTS.  

 

For both problems and concepts, it seems that 

generating higher quantity, as generally observed in literature 

and taught in design classes, does not systematically lead to 

the best final ranking. Three suggestions are made to explain 

these non-traditional trends: 

1) given the limited time provided in such specific 

education contexts, students need to generate a decent 

number of items (number of Problems potentially 
encountered by the chosen end-user; number of Concepts) 

but at the same time, should be weary of wasting time 

generating meaningless items; 

2) there could be a link between the number of 

Problems/Concepts generated and the level of similarity of 

those Problems/Concepts, i.e. we can guess that students 

should not develop too many similar items on similar topics; 

3) it has been said that “quantity breeds quality” [35], 

but it may be that there are diminishing returns on quantity 

after some minimum value is meant. 

 
Considering the selection of the three preliminary 

concepts at the end of Time Period 2, two additional results 

were provided by the analysis of the timesheets. Looking at 

the imputed data (i.e., the data where missing information 

was filled-in), there was a negative significant correlation 

between the percentage of time spent on Concepts’ selection 

during the second Time Period, and the overall ranking. This 

significant trend appeared when considering both the 

percentage of time spent on Concept Selection, in time 

period 2, out of the total time spent on concept selection 

throughout the whole semester (Rho -0.634 / P.Val 0.02) and 

the percentage of time spent on Concept Selection out of the 
total time spent on all activities during the whole semester 

(Rho -0.592 / P. Val 0.033). 

 

Overall, teams that spent more time debating and 

picking their three preliminary concepts did worse than 

teams who chose more quickly. 

 

 

 

2.2 Relationship between the time spent on 

early prototyping and the design outcome  For 
both data sets (original, i.e. not filled-in, and imputed, i.e. 

filled-in) we looked at five different ways to correlate design 

outcome with the time spent on building prototypes: 

1) Absolute time spent on prototyping vs. overall 

success; 
2) Cumulative time spent since the beginning of the 

course vs. overall success; 

3) Percentage of time spent on prototyping out of the 

total time spent on all activities during a certain time period, 

vs. overall success. For instance, if a team worked 100h total 

during Time Period 3, and if they spent 10h on prototyping 

during the same TP, then we compare “10% of time spent” 

with the overall success; 

4) Timing of prototyping, regardless of how much time 

they spent on prototyping throughout the course in total. We 

correlated the percentage of their total prototyping time 

during a specific time period.  
5) Looking at the percentage of total time spent on 

prototyping during specific time periods, and comparing this 

ratio with overall success (so if a team spent 4000 hours in 

total on the project, and if they spent 40 hours on prototyping 

during Time Period 5, then we compare the 1% of time spent 

on prototyping with the success of the team). 

 

Considering specifically the time spent on prototyping, 

we ran a Spearman correlation analysis and compared our 

results for the times spent in the five different ways 

mentioned above. We found that, regardless of the chosen 
data set (original or imputed), prototyping in Time Periods 1, 

2 and to some extent 3, correlates with a better overall 

ranking for the concerned teams (results are positively and 

statistically significant, see Tables 4 and 5). In other words, 

the sooner the teams prototype, the better the team performs. 

This result supports Yang’s previous observations [25]. 

 
Table 4. IN BOLD, STATISTICALLY SIGNIFICANT CORRELATION 
BETWEEN TIME SPENT ON PROTOTYPING (DURING SPECIFIC 

TIME PERIODS) AND DESIGN OUTCOME. ORIGINAL DATA. 
 

 
 
Table 5. IN BOLD, STATISTICALLY SIGNIFICANT CORRELATION 
BETWEEN TIME SPENT ON PROTOTYPING (DURING SPECIFIC 

TIME PERIODS) AND DESIGN OUTCOME. IMPUTED DATA. 
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CONCLUSION 
This paper explored whether the type of information 

generated during preliminary design and/or the time spent on 

early prototyping correlates with design outcome. 

 Research in the field of design, architecture, 
engineering and creativity in general often involves jury 

members to evaluate the overall quality of a project (in terms 

of creativity, quality, team efficiency etc.), and in design 

practice, designs are often evaluated by multiple 

stakeholders. Our study brought into focus the nuances in 

assessing the consistency of these ratings and rankings, since 

it is challenging for humans to objectively deal with complex 

evaluation processes.  

This paper moreover brings several other results in 

light: 

1) In this study, teams that generated the most design 

information in the form of sketches and potential end-user 
groups did not also have a better design outcome, contrary to 

some current literature. In our case, even if results were not 

strongly statistically significant, the overall trend suggested 

that the smaller the number of User Groups generated, the 

better the overall ranking of the teams; 

2) Rather than developing as many Problems and 

Concepts as possible, our results suggests that design teams 

should focus on meaningful and non-redundant items. In the 

specific educational context we looked at, there seems to be 

an optimal range of items one should develop (between 3 to 

4.5 Problems and between 9 and 10.5 Concepts); 
3) Statistically significant results generated from 

analyzing the timesheets showed that the more time teams 

spent on selecting the (in this case, three) preliminary 

concepts, the worse they performed; 

4) Finally, the timesheets also provided statistically 

significant positive correlations between the time spent early 

on prototyping and the overall design outcome. 

 

The results in the paper moreover suggest ways to 

rethink how mid-career professionals are taught design, and 

more broadly, how students should be guided through 

project-based design projects.  
 

FUTURE WORK 
Future work will consider this type of analysis of design 

process in other contexts, including controlled studies and in 

situ studies of design teams in practice. What role does idea 

generation, sketching, and prototypes play in these other 

types of contexts? Each of these strategies have their own 

trade-offs in terms of the amount of data we'll be able to 

obtain and the realism and length of design tasks that may be 

tested.  

Future work will develop new, finer tuned instruments 
for collecting data from other design courses as well as from 

design projects in industry. Of particular interest will be the 

formulation of approaches for reconciling design assessment 

by design juries and groups of stakeholders. 

Comparisons with future classes will also enable us to 

consider the impact of the specific contexts with more 

granularity, including problem definition, team structure, and 

the role of different stakeholders on the level of creativity 

and quality of design output. 

Finally, further analysis will be done on this specific set 

of data. We will try to capture how team cohesion (on User 
Groups, Problems and Concepts) impacts the design 

outcome, by looking at how many teammates have explored 

similar ideas, individually. Further research on the level of 

similarity between the different items generated will also be 

done. 
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ANNEX A 

TREE BUILT FOR ONE OF THE TEAM

 


