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Abstract
A genetic algorithm is invariant with respect to a set of representations if it runs
the same no matter which of the representations is used. We formalize this concept
mathematically, showing that the representations generate a group that acts upon the
search space. Invariant genetic operators are those that commute with this group action.
We then consider the problem of characterizing crossover and mutation operators that
have such invariance properties. In the case where the corresponding group action
acts transitively on the search space, we provide a complete characterization, including
high-level representation-independent algorithms implementing these operators.
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1 Introduction

Suppose two people set out to implement a genetic algorithm (GA) for a specific
problem—an instance of the knapsack problem, say. They agree to use a generational
GA, with the same population size. Solutions will be represented by binary strings
to indicate which objects are in the knapsack, and which are excluded. They use the
same mutation rate (with bitwise mutation) and the same crossover rate (one-point
crossover). However, when they run their experiments, they get significantly different
results. Assuming there are no bugs in the software, what could be the reason?

One possibility is that the bitstring representations order the objects differently. For
example, one may order the objects by increasing weight, and the other by increasing
value. The effect of one-point crossover will be different in each case. We say that
one-point crossover is not invariant under changes in the order of objects.

The point of this story is that when we design representations and genetic operators
for a particular problem, we are implicitly making certain commitments about what
features of the representation are significant, and what can be ignored. When using
one-point crossover, for example, the assumption is that the order matters, whereas for
uniform crossover this is not the case.
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In this paper, we begin by formalizing what it means for a genetic operator to be
invariant with respect to a set of possible representations (Section 2). We illustrate this
formalism in Section 3 with some examples: the bitstring and permutation examples
already mentioned, and a new problem based on balanced partitions of a set of objects.
We then ask the following general question: given a set of possible representations for a
problem, how can we characterize the possible crossover and mutation operators that
are invariant with respect to these representations? Given a certain technical assumption
on the properties of this set (namely, that they generate a group that acts transitively on
the search space) we provide a complete characterization of such operators in Section 4,
including general representation-independent algorithms for their implementation.1
This result is illustrated by again referring to our three examples in Section 5.

The proof of the characterization theorem is somewhat complicated. Details and
proofs are postponed to Section 6. Those readers who have no interest in mathematics
may therefore stop reading after Section 5, and still come away with a general recipe for
the design of new crossover and mutation operators. For those who are interested, the
proof is based around a rather interesting result that states that any GA that is invariant
with respect to a set of representations (again subject to a technical condition) can be
seen as the projection, or coarse graining of another GA running on a larger search space.

2 Representation Invariance

Given a particular combinatorial optimization problem, there is a (finite) set S, called the
solution space, whose elements are candidate solutions to the problem. These elements
are rated by an objective function F : S → R, which is to be optimized. This function
may include a penalty function or other method of handling constraints. In order to
implement a GA for the problem, we create a search space, which we denote by !, whose
elements are the objects on which crossover and mutation will act. For example, if S is
the set of all subsets of some larger set containing " elements, then ! could be the set of
binary strings of length ".

DEFINITION 1: A representation is a bijection from the solution space of a problem to the
search space.

That is, a representation tells us which of the elements of the search space will be
used to represent which elements of the solution space. Continuing the subset example,
one possible representation (call it a1) would order the objects of the larger set in some
way, and then use a 1 to indicate the presence of an object in the subset, and a 0 to
indicate its absence. Another possibility (call it a2) is to use 0 to indicate presence and 1
to indicate absence.

We are now in a position to say what we mean by an operator being invariant
with respect to a collection of representations. We would like to say that the GA using
such an operator will run the same, independent of the choice of representation. So,
for example, uniform crossover works exactly the same whether we use a1 or a2 above.
Given i, j, k ∈ !, denote the probability that parents {i, j} produce child k by s(i, j, k).

1Readers interested in general methods for constructing crossover operators might also like to
read Radcliffe (1992) and Moraglio et al. (2007).
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Then, for crossover to be invariant with respect to representations a1 and a2, we require

s(a1(x), a1(y), a1(z)) = s(a2(x), a2(y), a2(z))

for all x, y, z ∈ S. Similarly, for mutation, write the probability that j mutates to i as
U (i, j ). Then mutation is invariant with respect to a1 and a2 if

U (a1(x), a1(y)) = U (a2(x), a2(y))

for all x, y ∈ S.
Note that selection, which depends only on the objective value of an object, not its

representation, is always invariant. In order to express this formally, consider that for
any choice of representation a : S → !, we have a fitness function fa : ! → R defined
on the search space, given by

fa(i) = F (a-1(i)).

So if we use representation a1, then the fitness ascribed to an element representing x ∈ S

is fa1 (a1(x)) = F (x), and is the same as the fitness we would get using representation
a2. The effects of any of the usual selection operators (proportional, tournament, rank)
will therefore be the same, independent of the choice of representation.

We now give necessary and sufficient conditions for crossover and mutation to be
invariant with respect to a set of representations, A. In order to do this, we consider
functions of the form a1 ◦ a-1

2 , for a1, a2 ∈ A. Such functions are permutations of !. The
collection of all such functions contains the identity function and is closed for taking
inverses. We then collect all the functions that can be made by composing two or more
of these functions together—these are again permutations of !. This collection forms a
group G(!) acting on !, which we call the group action generated by A.

THEOREM 1: Crossover is invariant with respect to a set of representations A if and only if

s(i, j, k) = s(g(i), g(j ), g(k))

for all i, j, k ∈ ! and for all g ∈ G(!), the group action generated by A. In this case we say that
crossover commutes with the group action.

A proof of the previous and following theorems (in a more general and abstract
form) can be found in Rowe et al. (2002).

THEOREM 2: Mutation is invariant with respect to a set of representations A if and only if

U (i, j ) = U (g(i), g(j ))

for all i, j ∈ ! and for all g ∈ G(!), the group action generated by A. In this case we say that
mutation commutes with the group action.

The result of these theorems is that the search for genetic operators that are invariant
with respect to a set of representations amounts to finding operators that commute with
the group action generated by those representations. The main aim of this paper is to
characterize operators that commute with a group action. We will, however, restrict
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Figure 1: Three different representations of a subset as a binary string.

ourselves to considering transitive group actions. That is, given any two elements i, j ∈
!, we will assume there is some group element g ∈ G such that i = g(j ).

When a genetic operator commutes with a transitive group action, there are a
number of consequences that follow. The interested reader is referred to Rowe et al.
(2002, 2004, 2007) for details.

3 Examples

3.1 Subset Problems
When we represent subsets of some set using binary strings, we have already seen two
types of invariance that may be relevant. First, there is invariance with respect to the
choice of the label 0 or 1 to indicate the presence or absence of an element. Second,
there is invariance with respect to the ordering of the elements of the set. Consider, as
an example, the set X = {1, 2, 3, 4, 5, 6}. Our solution space S is the set of all subsets
of X. We will be representing these subsets as binary strings of length six. The set of
all such strings is the search space !. The most obvious representation is to use a 1
in each position to indicate the presence of an object, assuming numerical ordering.
We will call this representation a1. Figure 1 shows this representation for the subset
{1, 3, 6}. Another representation, a2, uses the same ordering but uses a 0 to indicate the
presence of an object, rather than a 1. One of our group elements is a2 ◦ a-1

1 , which tells
us how to translate strings from the first representation to the second. It is clear that
this is done by taking the complement of the string. If for some bit positions we use 1
to indicate the presence of an element, and for others we use 0 for that purpose, then
we can translate between two such representations by complementing just those bit
positions where the two representations differ in their convention. The group elements
arising from such relabellings therefore correspond to applying a bitwise exclusive-or
with the appropriate binary mask. Given a binary mask b, the group element is:

gb(i) = b ⊕ i.

For the second type of invariance, consider the representation a3 in Figure 1. Here
we use the convention of always using a 1 to indicate the presence of an element,
but the order of the elements of X have been reversed. Of course, other orderings are
possible, and it is clear that translating between two such representations corresponds
to permuting the bit positions of the strings accordingly. Such permutations give rise to
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another class of group element in our group action on !. The whole group is generated
by these two classes of group element (permutations and exclusive-or masks).

We can now formally state the difference between the invariance properties of
uniform and one-point crossover as follows. Uniform crossover commutes with the
group generated by permutations and exclusive-or masks. One-point crossover does
not commute with permutations, but does so with exclusive-or masks (which form a
subgroup of the larger group action). This is a rather technical way of stating what
we already said in the introduction, namely that using one-point crossover carries a
commitment to a particular ordering, whereas uniform crossover is order independent.
Both are invariant with respect to the choice of labels used at each bit position. Note that
the larger the size of the group that the operator commutes with, the more invariance it
has, and the fewer the representational commitments.

As an example, consider crossing the strings 100000 and 000001 using one-point
crossover together with the permutation x1x2x3x4x5x6 &→ x2x3x4x5x6x1. Applying the
permutation to the parents yields 000001 and 000010. Crossing, using the one-point
crossover mask 111000, produces the offspring 000010. Reversing the permutation re-
sults in 000001, which could not possibly have been created from the original parents
using one-point crossover alone.

3.2 Permutation Problems
Consider the traveling salesman problem (TSP), in which each element of the solution
space is a tour of the set of cities. If there are n cities, then the search space ! can be
taken to be permutations of the numbers {1, 2, . . . , n}. Different representations may
correspond to different ways of numbering the cities, and translating between two rep-
resentations would then correspond to appropriately permuting the numbering. If we
wish our genetic operators to be invariant with respect to the numerical labeling of the
cities, then we need them to commute with the group action given by those permuta-
tions; given such a permutation π , the corresponding group element g : ! → ! is

gπ (i) = π (i) = π ◦ i

where ◦ is function composition and we interpret i ∈ ! as itself a permutation of the
set {1, 2, . . . , n}.

Most crossover operators defined in the literature for TSP do have this property
(Vose and Whitley, 1999). One that does not, however, is the ordinal crossover described
in Michalewicz (1998). This explicitly makes use of an ordering of the cities in the prob-
lem. For example, suppose our TSP problem concerns the cities London, Oxford, Cam-
bridge, and Birmingham, and we wish to cross over two parents representing the tours:

P 1 = Oxford, Birmingham, London, Cambridge

P 2 = London, Oxford, Birmingham, Cambridge.

In order to use ordinal crossover, we have to represent these tours numerically with
respect to a reference ordering. Suppose we choose to represent tours with respect to
the ordering:

R1 = London, Oxford, Cambridge, Birmingham
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then P 1 = (2, 3, 1, 1), meaning that we take the second element of R1 first (and remove
it from R1). We then take the third element of the (remainder of) R1. Then we take the
first element of the remainder of that, and so on. Similarly P 2 = (1, 1, 2, 1). Crossing P 1
and P 2 with a one-point crossover in the middle produces offspring (2, 3, 2, 1) which
corresponds to the tour: Oxford, Birmingham, Cambridge, London.

If we chose a different representation ordering:

R2 = Birmingham, London, Cambridge, Oxford

then P 1 = (4, 1, 1, 1) and P 2 = (2, 3, 1, 1). Applying exactly the same crossover operator
produces offspring (4, 1, 1, 1), which is the same as P 1, namely, Oxford, Birmingham,
London, Cambridge. We see that we get different results depending on which city
ordering we choose, and so ordinal crossover is not invariant with respect to ordering.

3.3 Balanced Partition Problems
Our third example is a partitioning problem, in which a set of objects has to be divided
into equal parts. Consider, for instance, the assignment of jobs evenly between machines,
or dealing a pack of cards to a number of players. The problem is to find the optimal
partition, as specified by a particular objective function. We will consider a simple
example of six objects to be split three ways. The representations of solutions in the
search space will be of the form 〈{u1, u2}, {v1, v2}, {w1, w2}〉, where each element in the
list is a number from 1 to 6.

This example is instructive, as there are several different types of invariance that
may be relevant depending on the particular problem at hand. One type of invariance
we might hope for is with respect to the labeling of the objects so that it does not matter
which job gets labeled 1, 2, . . . , the GA will run just the same. This invariance is given
by group elements corresponding to permuting the labels; if π permutes the labels
{1, 2, 3, 4, 5, 6} then the corresponding group element is

gπ (〈{u1, u2}, {v1, v2}, {w1, w2}〉) = 〈{π (u1),π (u2)}, {π (v1),π (v2)}, {π (w1),π (w2)}〉.

A second type of invariance is with respect to the labeling of the machines, which can
be viewed as the ordering of the subsets of the partition. This is a similar issue to the
ordering of bits in a binary string. Here the relevant group elements permute subsets,
for example:

〈{u1, u2}, {v1, v2}, {w1, w2}〉 &−→ 〈{v1, v2}, {w1, w2}, {u1, u2}〉.

There are six possible ways to reorder the subsets. It is easily checked that any such
reordering commutes with a permutation of the labels (it does not matter in which
order they are performed, the result is the same).

A third type of invariance relates to the way we represent the subsets themselves.
For example, if we use binary strings (of length six in this case) then we have the same
issues as we did in the subset problem example. In order to simplify things, we will
ignore this issue and assume our group is generated by the first two types of invariance.
The group therefore contains 6 × 6! = 4,320 elements.

640 Evolutionary Computation Volume 18, Number 4



Representation Invariant Genetic Operators

4 Characterizing Crossover and Mutation Operators

In this section we present the main results of the paper, namely the characterization of
genetic operators that commute with a transitive group action. High-level algorithms
for these operators are given, which we illustrate in the following section with our three
examples. Proofs are postponed to following sections.

We assume a finite group G acts transitively on the search space !. We arbitrarily
identify an element o ∈ ! as an origin. We then define the subgroup Fix(o) of G, known
as the stabilizer of o, as follows:

Fix(o) = {g ∈ G|g(o) = o}.

This subgroup is instrumental in characterizing crossover and mutation.
Crossover is implemented using functions from the search space to itself. Their role

(as will be seen in the following section) is a generalization of the use of masks in the
usual forms of crossover on binary strings. In particular, we will select such a function
according to some probability distribution χ , which must satisfy

χ (f ) = χ (d ◦ f ◦ d -1)

for all f ∈ !! and all d ∈ Fix(o). Given such χ , symmetric crossover—which is inde-
pendent of the order of the parents—is given by the following algorithm. To crossover
{i, j} ⊂ !

1. With probability 1/2, interchange i and j .

2. Let v ∈ G be such that v(o) = j .

3. Choose f : ! → ! according to χ .

4. Return v(f (v-1(i))).

A theorem in Section 6 shows this algorithm is independent of the particular choice of
v in step 2, and the resulting crossover commutes with the group action. Moreover, any
symmetric crossover that commutes with the group action can be implemented in this
way (for some choice of distribution χ).

Mutation is implemented using elements of the search space. Their role (as will be
seen in the following section) is a generalization of the use of masks in the usual forms
of mutation on binary strings. In particular, we select such an element according to
some probability distribution µ, which must satisfy

µ(k) = µ(d(k))

for all k ∈ ! and all d ∈ Fix(o). Given such µ, mutation is implemented as follows. To
mutate j ∈ !

1. Let v ∈ G be such that v(o) = j .

2. Choose c ∈ ! according to µ.

3. Return v(c).
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A theorem in Section 6 shows this algorithm is also independent of the particular choice
of v in step 1 and that the resulting mutation commutes with the group action. Moreover,
any mutation that commutes with the group action can be implemented in this way (for
some choice of distribution µ).

5 Examples

5.1 Subset Problems
When representing subsets as binary strings, we first need to select an origin. The
choice is arbitrary, but it is convenient to select the string of all zeros. The stabilizer
Fix(o) contains all permutations of bit positions, but none of the exclusive-or elements
(except, of course, exclusive-or with the origin itself, which is the identity). We now
need to find, for each string j ∈ !, some group element gj ∈ G such that gj (0) = j . A
simple choice is

gj (x) = j ⊕ x.

Note that for this choice g-1
j = gj for all j ∈ !.

In order to implement crossover, we need to choose a function from ! to itself
according to some preselected probability distribution χ that satisfies χ(f ) = χ (d ◦ f ◦
d -1) for all d ∈ Fix(o). Given string b ∈ !, define the function fb : ! → ! by

fb(k) = b ⊗ k

where ⊗ is a bitwise-and operation. The child of parents i, j ∈ ! by way of fb is

gj ◦ fb ◦ g-1
j (i) = gj ◦ fb(j ⊕ i)

= gj (b ⊗ (j ⊕ i))

= gj ((b ⊗ j ) ⊕ (b ⊗ i))

= j ⊕ (b ⊗ j ) ⊕ (b ⊗ i)

= (1 ⊗ j ) ⊕ (b ⊗ j ) ⊕ (b ⊗ i)

= ((1 ⊕ b) ⊗ j ) ⊕ (b ⊗ i)

= (b ⊗ j ) ⊕ (b ⊗ i)

where 1 is the string of all ones and b is the complement of b. Therefore, implementing
crossover by choosing χ to give positive probability only to such functions fb yields an
instance of the usual mask-based crossover. Of course, many other kinds of crossover
are also allowed by our theorem simply by varying the distribution χ .

Suppose we would like to use masks implementing one-point crossover. For strings
of length 5, they are {00000, 10000, 11000, 11100, 11110, 11111}. The necessary condition
on χ requires that if fb is chosen with some probability (i.e., if crossover uses mask b),
then we are obliged to choose with equal probability each of d ◦ fb ◦ d -1 for all d ∈ Fix(o).
Taking b = 11000, for example, this means that masks 11000, 10100, 10010, 10001, 01100,

01010, 01001, 00110, 00101, and 00011 are all used with equal probability. In other words,
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to ensure invariance of crossover with respect to bit position ordering, we are forced to
use some form of uniform crossover.

Note that if we did not include this form of invariance, then the group action would
comprise just the exclusive-or group elements, and Fix(o) would contain only the iden-
tity. In that case we would be permitted to use masks such as 11100 without including
all its permutations, and so one-point crossover would be permissible. In either case,
crossover by masks is invariant with respect to the labeling convention of the individual
bits. Remember that the smaller the group, the less invariance properties are ensured,
and so the greater the representational commitment. This then allows us a corresponding
degree of control in selecting which aspects of the representation we consider relevant
(e.g., whether we have reason to believe that linkage between neighboring bit positions
is a significant factor that ought to be respected by the crossover we use).

Implementing the usual bitwise mutation, with rate u, corresponds to choosing
mutation masks k ∈ ! with probability

µ(k) = u#k(1 − u)("-#k)

(where #k is the number of ones in k). Since this only depends on the number of ones in
the chosen mask, and not on their position, the condition µ(k) = µ(d(k)) is satisfied for
all d ∈ Fix(o). This type of mutation is therefore invariant with respect to bit position
ordering, as well as to the labeling convention for each bit.

Now consider the extreme situation of requiring mutation to be maximally invari-
ant, that is, that it should commute with all permutations of the search space. Fix(o) is
the set of all permutations that permute everything but o. The characterization theorem
then tells us that the probability of mutating with any mask other than o must have
uniform probability. That is, there is some fixed probability that a string is not mutated,
otherwise it is mutated to any other string with equal probability. Searching with such
a mutation operator therefore corresponds to performing random search.

5.2 Permutation Problems
Suppose we are representing tours by permutations of the numbers {1, 2, . . . , n}, where
n is the number of cities. Given a permutation π , we will write the corresponding tour
as 〈π (1),π (2), . . . ,π (n)〉 so that π (k) is the k th city in the tour. We arbitrarily select the
identity permutation 〈1, 2, . . . , n〉 as a convenient origin; it enables us to easily find a
group element such that gπ (o) = π . Given tour π , define gπ by

gπ (〈c1, c2, . . . , cn〉) = 〈π (c1),π (c2), . . . ,π (cn)〉.

Because the group action corresponds to all reorderings of the cities, the ordering of the
cities is completely arbitrary (unlike for ordinal crossover) and the GA will run exactly
the same whichever ordering is used. Identifying Fix(o) is easy; it is the trivial subgroup
containing just the identity. This means that we have no restrictions on our choice of
probability distributions χ and µ. It also follows that the gπ defined above is the only
possible choice of group element for π . We can use this fact to define a group operation
⊕ on the set ! itself by setting

π1 ⊕ π2 = gπ1 (π2) = π1 ◦ π2.
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This situation, where the search space itself takes on the group structure, forms an
important special case in the proof of our main theorem. Some of the consequences of
this are described in Rowe et al. (2002, 2004, 2007).

In order to crossover two tours π1 and π2, we pick any f ∈ !! according to a
predefined distribution χ and create the offspring

π2 ◦ f (π -1
2 ◦ π1).

Several crossovers defined for TSP in the literature are invariant with respect to the
ordering of the cities (Vose and Whitley, 1999). It follows that they can be implemented
as described above, by choosing χ appropriately.

We will illustrate the previous construction using cyclic crossover (CX), defined
in Michalewicz (1998). Given two parents, CX is a deterministic method for producing
an offspring in which each city’s position comes from one of the parents. We start by
taking the first city of the first parent, and copying this to the offspring. This means that
we need to find a position for the first city of the second parent. There is only one choice,
namely to place it according to the first parent. This sequence of choices continues until
a cycle is complete. We then begin again with the next available city from the second
parent. This continues, switching parents as each cycle is completed, until all the cities
are placed. For example, if the parents are

P 1 = 〈4, 6, 5, 7, 2, 8, 1, 3, 9, 11, 12, 10〉

P 2 = 〈1, 10, 3, 4, 9, 11, 7, 5, 2, 6, 12, 8〉

then we start the offspring with 4, which forces the choice for 1, and then 7 all from
the first parent. We then switch parents and place city 10 according to P 2, which forces
the place for 6, 11, and 8. We then switch back to P 1 and continue. The resulting
offspring is 〈4, 10, 5, 7, 9, 11, 1, 3, 2, 6, 12, 8〉. In order to implement this crossover using
our algorithm, we need to find the function f : ! → ! that will be used. Note that
there will only be one function, as the procedure is deterministic. We can identify
this function by noting that crossing a tour π with the identity gives the offspring
f (π ); for CX, the effect of taking the second parent to be the identity makes it easy
to determine the offspring. One writes out the first parent in cyclic notation, ordering
the cycles by their smallest element, and including order-1 cycles. For example, P 1
above can be written as (1 4 7)(2 6 8 3 5)(9)(10 11 12). We then select alternate cycles in this
decomposition, starting with the first. That is, we get (1 4 7)(9), which corresponds to the
tour 〈4 2 3 7 5 6 1 8 9 10 11 12〉. In order to verify this for the example above we calculate

P 2-1 = 〈1, 9, 3, 4, 8, 10, 7, 12, 5, 2, 6, 11〉

P 2-1 ◦ P 1 = 〈4, 10, 8, 7, 9, 12, 1, 3, 5, 6, 11, 2〉

= (1 4 7)(2 10 6 12)(3 8)(5 9)(11)

f (P 2-1 ◦ P 1) = (1 4 7)(3 8)(11)

= 〈4, 2, 8, 7, 5, 6, 1, 3, 9, 10, 11, 12〉

P 2 ◦ f (P 2-1 ◦ P 1) = 〈4, 10, 5, 7, 9, 11, 1, 3, 2, 6, 12, 8〉

as previously constructed.
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Implementing mutation using our general algorithm is straightforward, given our
choice of origin (the only group element that maps the origin to itself is the identity).
We can determine which “masks” k ∈ ! should be used, and with what probability,
by asking how the origin mutates, because go(k) = k (since o is the identity). For ex-
ample, a common mutation operator is to reverse some section of the tour. The effect
of reversing the first five cities of the origin 〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12〉 is simply
〈5, 4, 3, 2, 1, 6, 7, 8, 9, 10, 11, 12〉. This, then, is one of the elements of ! that we will use
as a mutation “mask.” For example, mutating P 1 above with this element gives

〈4, 6, 5, 7, 2, 8, 1, 3, 9, 11, 12, 10〉 ◦ 〈5, 4, 3, 2, 1, 6, 7, 8, 9, 10, 11, 12〉

= 〈2, 7, 5, 6, 4, 8, 1, 3, 9, 11, 12, 10〉

as required. The fact that tour segment reversal can be implemented in this way means
that it is invariant with respect to the ordering of the cities.

5.3 Balanced Partition Problems
If we have n = mk jobs to be assigned evenly to m different machines, then the number of
ways to do this is n!/(k!)m. Consider the example n=6, m=3, k=2, so there are 90 pos-
sibilities. Note that we count 〈{u1, u2}, {v1, v2}, {w1, w2}〉 and 〈{v1, v2}, {u1, u2}, {w1, w2}〉
as different partitions since the jobs are being assigned to different machines. The search
space can get big quickly (e.g., dividing 16 jobs equally between four different machines
can be done in over 63 million ways).

Assuming the jobs are numbered 1 to 6, we will arbitrarily assign the origin to be
〈{1, 2}, {3, 4}, {5, 6}〉. Recall that the group action is generated by permutations of job
labels and reorderings of machines. The label permutations that fix o form a subgroup
generated by the label transpositions (1 2), (3 4), and (5 6). This subgroup, which we will
denote D, has eight elements. Now for any machine reordering g, it is easy to find a label
permutation π such that g ◦ π ∈ Fix(o), and if d ∈ D then g ◦ π ◦ d ∈ Fix(o). Suppose
another permutation of labels π ′ has the property g ◦ π ∈ Fix(o), so there are elements
a, a′ ∈ Fix(o) such that

a = g ◦ π, a′ = g ◦ π ′.

Since Fix(o) is a subgroup, it follows that a-1 ◦ a′ ∈ Fix(o) and

a-1 ◦ a′ = π -1 ◦ g-1 ◦ g ◦ π ′ = π -1 ◦ π ′.

Hence π -1 ◦ π ′ is some label permutation d ∈ D which fixes o. Therefore π ′ = π ◦ d. It
follows, then, that given any machine reordering g, there are a corresponding eight
elements of Fix(o) of the form g ◦ π , where π is a permutation of labels. Since there are
six possible machine reorderings, it follows that Fix(o) contains 48 elements. This fact
can be checked by appealing to the orbit-stabilizer theorem which, for transitive group
actions, states that |G| = |!| ×| Fix(o)|.

In order to implement the generic crossover scheme for parents i, j ∈ !, we first
have to find a group element g ∈ G such that g(o) = j . In our example, there will be 48
such elements, since if g is one element, then so is g ◦ d for all d ∈ Fix(o). Second, we
have to choose f ∈ !! according to some prespecified distribution χ which satisfies
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χ (f ) = χ (d ◦ f ◦ d -1) for all d ∈ Fix(o). Thus for any one function we would like to use,
there are 47 others we are obliged to use with the same probability.

6 Results

6.1 Definitions and Notation
Let %! be the set of probability vectors over a finite search space ! (each element is
a column vector, indexed by !, whose components sum to one). Elements of %! also
represent populations; p ∈ %! represents a population containing k in proportion pk

(we follow the usual convention that unbound variables are universally quantified).
That is, pk is the number of copies of item k found in the population divided by the
population size.

A map C : %! → %! is a quadratic operator iff there exist symmetric matrices Mk

such that

C(p)k = pT Mkp.

The quadratic operator C represents a binary crossover operator if (Mk)i,j is the proba-
bility s(i, j, k) that child k is produced by parents {i, j}.

Let G be a finite group that acts transitively on ! (we use multiplicative notation
to represent the group operation). Choose an arbitrary element o ∈ ! to be the origin,
except that if ! = G, then choose the origin to be the group identity element 1. For each
g ∈ G, define the permutation matrix σg by

(σg)i,j = [i = g(j )]

where [expression] denotes the integer 1 if expression is true, and otherwise denotes the
integer 0. Crossover commutes with the group action (Rowe et al., 2002) iff

σg ◦ C = C ◦ σg.

In that case, the matrices Mk associated with C are determined by the mixing matrix
M = Mo, and if g(o) = k then

Mk = σgMσ T
g .

Moreover, commutativity is equivalent to

s(g(i), g(j ), g(k)) = s(i, j, k).

Similarly, a linear operator U : %! → %! represents a unary mutation operator if
Ui,j is the probability j mutates to i. Mutation commutes with the group action iff

σg ◦ U = U ◦ σg.

In the same way, crossover and mutation operators which commute with the action
of G on itself (choose ! = G in the explanation above) are defined with respect to %G

(the set of probability vectors over G). We are interested in projections of operators from
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%G to %!. A function f : %G → %G is compatible with ' : %G → %! iff there exists a
function f : %! → %! such that the following diagram commutes:

%G
f−−−→ %G

'↓ '↓
%!

f̄−−−→ %!

.

6.2 Special Case: The Search Space Has a Group Structure
The case where G = ! is a group acting on itself by translation (g(i) = gi) has already
been sorted out in Rowe et al. (2007). The canonical crossover scheme is defined with
respect to an arbitrary probability distribution χ (called the crossover distribution) over
the set GG of maps from G to itself. An offspring is produced from parents i, j ∈ G as
follows:

1. Choose an element b ∈ GG according to χ .

2. Return (with equal probability) an element from {jb(j -1i), ib(i-1j )}.

The main result of Rowe et al. (2007) is that the canonical crossover scheme commutes
with G, and every two-parent crossover commuting with G is some instance of the
canonical crossover scheme.

Without loss of generality, the crossover distribution χ satisfies χ
b = χ

b̂ (such dis-
tributions are called symmetric) where the map b̂ : G → G is defined by

b̂(x) = xb(x-1).

This follows from b = ̂̂b and the observation that the probability of obtaining k is

1
2

∑

b

χ
b[jb(j -1i) = k] + 1

2

∑

b

χ
b[ib(i-1j ) = k]

= 1
2

∑

b

χ
b[jb(j -1i) = k] + 1

2

∑

b

χ
b[i(i-1j )̂b(j -1i) = k]

= 1
2

∑

b

χ
b[jb(j -1i) = k] + 1

2

∑

b̂

χ
b̂[jb(j -1i) = k]

=
∑

b

χ
b + χ

b̂

2
[jb(j -1i) = k].

If αb = (χb + χ
b̂)/2, then αb = αb̂ and χ can be replaced with α in the chain of equalities

above. Moreover, a consequence of assuming symmetric χ is that step 2 in the definition
of the canonical crossover scheme can be replaced with:

2′. Return jb(j -1i).
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6.3 Coarse Graining the Group to the Search Space
Let C : %G → %G be a crossover operator corresponding to an instance of the canonical
crossover scheme; thus C commutes with G and has a mixing matrix M . Let the linear
coarse graining operator ' : %G → %! have matrix

'i,g = [i = g(o)].

Two elements g, h ∈ G are said to be equivalent (denoted by g ≡ h) if g(o) = h(o). It
follows that h ≡ k ⇐⇒ h = kd where d ≡ 1. Let ek denote the kth column of the identity
matrix. Then

g ≡ h ⇐⇒ '(eg − eh) = 0

(see Vose, 1999, for a basic discussion of equivalence in the context of linear coarse
graining). The following theorem is in part concerned with the map (d · b) : G → G

defined by

(d · b)(x) = b(xd).

Note that the map d &→ d · b induces a group action of G on GG ( d ·(d ′ · b) = (dd ′) · b

and 1 · b = b). In particular, the map d &→ d · b is invertible.
Because ' is linear, the compatibility of C reduces to the invariance of the kernel K

of ' under the differential ∂Cx of C (see Rowe et al., 2006; for an alternate perspective
on coarse graining, see Toussaint, 2005). If M is a matrix which is indexed by way of a
group, its twist M∗ is defined by

(M∗)i,j = Mi-1j,i-1 .

The derivation of ∂Cx given in Vose (1999) carries over (with trivial modifications) to
the present context and yields

∂Cx = 2
∑

g

σgM
∗σ T

g xg. (1)

Therefore, K is invariant under ∂Cx provided it is invariant under σg and M∗. An
element v ∈ K is characterized by

0 = ('v)i =
∑

g′

[i = g′(o)] vg′ .

It follows that K is invariant under σg , since 'σgv has ith component
∑

g′

[i = g′(o)]
∑

g′′

[g′ = gg′′]vg′′ =
∑

g′

[i = g′(o)]vg-1g′

=
∑

g′

[i = gg′(o)]vg′

=
∑

g′

[g-1(i) = g′(o)]vg′ .

The considerations above lead to the following.
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THEOREM 3: A canonical crossover is compatible with ' iff the kernel of ' is invariant under
the twist of the mixing matrix. Moreover, a sufficient condition for compatibility is that the
crossover distribution χ satisfy d ≡ 1 =⇒ χ

b = χ
d·b.

PROOF: We have just shown that invariance of the kernel of ' under the twist of the
mixing matrix is a sufficient condition for crossover to be compatible with'. Conversely,
suppose canonical crossover C is compatible with ', and therefore the kernel of ' is
invariant under the differential ∂Cx at any point x. Let z ∈ %G be the vector given by
zg = [g = 1], where 1 is the group identity element. From Equation (1), we see that
∂Cz = 2M∗. It follows that the kernel of ' is invariant under the twist M∗.

Now assume that χb = χ
d·b, let v ∈ K , and let R be a complete set of equivalence

class representatives (for the equivalence relation ≡). Suppose that

h ≡ k =⇒ s(h, 1, g) = s(k, 1, g).

The ith component of 'M∗v is then
∑

g

[i = g(o)](M∗v)g =
∑

g

[i = g(o)]
∑

g′

Mg-1g′,g-1vg′

=
∑

g

[i = g(o)]
∑

g′

s(g-1g′, g-1, 1)vg′

=
∑

g

[i = g(o)]
∑

g′

s(g′, 1, g)vg′

=
∑

g

[i = g(o)]
∑

r∈R

∑

g′≡r

s(g′, 1, g)vg′

=
∑

g

[i = g(o)]
∑

r∈R

∑

g′≡r

s(r, 1, g)vg′

=
∑

g

[i = g(o)]
∑

r∈R

s(r, 1, g)
∑

g′≡r

vg′ .

Thus K is invariant under M∗ since the inner sum above is zero, which can be seen as
follows

0 =
∑

g′

[r(o) = g′(o)]vg′

=
∑

r ′∈R

∑

g′≡r ′

[r(o) = g′(o)]vg′

=
∑

r ′∈R

[r(o) = r ′(o)]
∑

g′≡r ′

vg′

=
∑

r ′∈R

[r ≡ r ′]
∑

g′≡r ′

vg′

=
∑

g′≡r

vg′ .
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By what has been established, it only remains to show h ≡ k =⇒ s(h, 1, g) = s(k, 1, g).
Recall that h ≡ k =⇒ h = kd where d ≡ 1. Hence (by the definition of canonical crossover
and the assumption h ≡ k)

s(h, 1, g) =
∑

b

χ
b[b(h) = g]

=
∑

b

χ
b[d · b(k) = g]

=
∑

b

χ
d-1·b[d · (d -1 · b)(k) = g]

=
∑

b

χ
d-1·b[b(k) = g]

= s(k, 1, g)

since k-1h = d ≡ 1 =⇒ d -1 ≡ 1 so that χd-1·b = χ
b. !

LEMMA 4: If a canonical crossover is compatible with ', then

x ≡ x ′ =⇒
∑

g

[i = g(o)]s(x, y, g) =
∑

g

[i = g(o)]s(x ′, y, g).

PROOF: Let ek denote the kth column of the identity matrix. It follows from Equation
(1) that

1
2 (∂Cey

)i,j =
(
σ T

y ei

)T
M∗(σ T

y ej

)

= eT
y-1i M

∗ey-1j

= M∗
y-1i,y-1j

= Mi-1j,i-1y

= s(i-1j, i-1y, 1)

= s(j, y, i).

If x ≡ x ′ then ex − ex ′ ∈ K and so compatibility implies ∂Cey
(ex − ex ′ ) ∈ K . Therefore

'∂Cey
ex is invariant under x &→ x ′. But according to what has been established above,

2('∂Cey
ex)i = 2

∑

g

'i,g(∂Cey
)g,x

=
∑

g

[i = g(o)]s(x, y, g).

!

A canonical crossover C satisfying the conditions of Theorem 3 is compatible with
' and commutes with G. The linear maps σg are also compatible with ' since they
preserve K (this was shown before Theorem 3). Therefore, there exist coarse grainings
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C and σg such that C ◦ ' = ' ◦ C and σg ◦ ' = ' ◦ σg . It follows that

C ◦ σg ◦ ' = C ◦ ' ◦ σg = ' ◦ C ◦ σg = ' ◦ σg ◦ C = σg ◦ ' ◦ C = σg ◦ C ◦ '

and therefore

C ◦ σg = σg ◦ C.

The coarse grainings are given explicitly (see Vose, 1999) by

C = ' ◦ C ◦ D ◦ 'T

σg = ' ◦ σg ◦ D ◦ 'T

where in the present context D = α-1I , and α = |{d : d ≡ 1}| is the size of an equivalence
class. In particular,

(σg)i,j = ('σgD'T )i,j

= α-1
∑

h,k

[i = h(o)] [h = gk] [j = k(o)]

= α-1
∑

k

[i = gk(o)] [j = k(o)]

= [i = g(j )]α-1
∑

k

[j = k(o)]

= [i = g(j )].

Thus σg is the matrix of the group action on %!, and therefore C commutes with G. The
considerations above lead to the following.

THEOREM 5: If a canonical crossover C with mixing matrix M is compatible with ', then its
quotient C commutes with G and has mixing matrix M defined by

s(i, j, o) = Mi,j =
∑

g≡1

Mg-1r,g-1r ′

where s(i, j, o) is the probability parents {i, j} produce child o, and where r, r ′ are arbitrary
elements of G such that r(o) = i, r ′(o) = j .

PROOF: Except for the claim concerning M , the theorem has already been established.
If R is a complete set of equivalence class representatives (for the equivalence relation
≡), then

C(x)k = ('C(D'T x))k

=
∑

g

[k = g(o)]C(D'T x)g

= α-2
∑

g

[k = g(o)]('T x)T σgMσ T
g ('T x)
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= α-2
∑

g

[k = g(o)]
∑

a

∑

b

(
σ T

g 'T x
)
a

(
σ T

g 'T x
)
b
Ma,b

= α-2
∑

g

[k = g(o)]
∑

a

∑

b

('T x)ga('T x)gb Ma,b

= α-2
∑

g

[k = g(o)]
∑

a

∑

b

xga(o)xgb(o) Ma,b

= α-2
∑

g

[k = g(o)]
∑

a

∑

b

xa(o)xb(o) Mg-1a,g-1b

= α-2
∑

g

[k = g(o)]
∑

r∈R

∑

r ′∈R

∑

d≡1

∑

d ′≡1

xrd(o)xr ′d ′(o) Mg-1rd,g-1r ′d ′

= α-2
∑

r∈R

∑

r ′∈R

xr(o)xr ′(o)
∑

d≡1

∑

d ′≡1

∑

g

[k = g(o)]s(g-1rd, g-1r ′d ′, 1)

= α-2
∑

r∈R

∑

r ′∈R

xr(o)xr ′(o)
∑

d≡1

∑

d ′≡1

∑

g

[k = g(o)]s(rd, r ′d ′, g).

Since rd ≡ r and r ′d ′ ≡ r ′ (because d ≡ d ′ ≡ 1), appealing to lemma 4 and the fact that
s(x, y, z) = s(y, x, z), shows the inner sum above is

∑

g

[k = g(o)]s(r, r ′, g).

It follows that

C(x)o =
∑

r∈R

∑

r ′∈R

xr(o)xr ′(o)
∑

g

[o = g(o)]s(r, r ′, g)

=
∑

r∈R

∑

r ′∈R

xr(o)xr ′(o)
∑

g≡1

Mg-1r,g-1r ′ .

!

THEOREM 6: Let a canonical crossover with symmetric distribution χ be compatible with '.
The quotient crossover can be implemented as follows. To produce an offspring from parents
{i, j} ⊂ !,

1. Let ri, rj ∈ G be such that i = ri(o), j = rj (o).

2. Pick b ∈ GG according to χ .

3. Return rjb(r -1
j ri)(o).

PROOF: Let rk ∈ G be such that rk(o) = k. The probability that k is produced is

∑

b

χ
b

[
rjb

(
r -1
j ri

)
(o) = rk(o)

]
=

∑

b

χ
b

[
rjb

(
r -1
j ri

)
≡ rk

]

=
∑

g≡1

∑

b

χ
b

[
rjb

(
r -1
j ri

)
= rkg

]
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=
∑

g≡1

s(ri, rj , rkg)

=
∑

g≡1

s(g-1r -1
k ri, g-1r -1

k rj , 1)

=
∑

g≡1

Mg-1r-1
k ri , g-1r-1

k rj
.

Since r -1
k ri(o) = r -1

k (i) and r -1
k rj (o) = r -1

k (j ), appealing to Theorem 5 shows the last ex-
pression above is

Mr-1
k (i), r-1

k (j ) = s
(
r -1
k (i), r -1

k (j ), o
)

= s(i, j, k).

!

THEOREM 7: Every crossover operator on %! commuting with G is a quotient C of a canonical
crossover C on %G with symmetric crossover distribution χ satisfying d ≡ 1 =⇒ χ

b = χ
d·b.

PROOF: Let s(i, j, k) denote the probability that parents {i, j} produce child k (for
i, j, k ∈ !), and for t, u, v ∈ G define the probability s(t, u, v) that parents {t, u} produce
child v by

s(t, u, v) = s(t(o), u(o), v(o))/α.

By hypothesis, the crossover corresponding to s commutes with G; therefore

s(gt, gu, gv) = s(gt(o), gu(o), gv(o))/α = s(t(o), u(o), v(o))/α = s(t, u, v).

Hence there exists a canonical crossover C with mixing matrix M corresponding to s.
According to Theorem 5, the quotient C is the crossover operator we began with, since

Mi,j =
∑

g≡1

Mg-1r,g-1r ′ where r(o) = i, r ′(o) = j

=
∑

g≡1

s(r, r ′, g)

= α-1
∑

g≡1

s(r(o), r ′(o), g(o))

= s(i, j, o).

The properties of χ remain to be verified (according to Theorem 3, d ≡ 1 =⇒ χ
b = χ

d·b
implies C is compatible with '). The proofs of Theorems 5 and 6 of Rowe et al. (2007)
show the crossover distribution can be defined as χ

b = (αb + αb̂)/2 where

αb =
∏

g

Mb(g)-1, b(g)-1g =
∏

g

s(1, g, b(g)) =
∏

g

s(o, g(o), b(g)(o))/α. (2)
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Making use of Equation (2) yields

αb̂ =
∏

g

s(o, g(o), gb(g-1)(o))/α

=
∏

g

s(g-1(o), o, b(g-1)(o))/α

=
∏

g

s(g(o), o, b(g)(o))/α

= αb.

In particular, χ = α. If d ≡ 1 (and therefore d -1(o) = o), then Equation (2) gives

αd·b =
∏

g

s(o, g(o), b(gd)(o))/α

=
∏

g

s(o, gd -1(o), b(gd -1d)(o))/α

=
∏

g

s(o, g(o), b(g)(o))/α

= αb.

!
6.4 Using Maps on the Search Space
Taken together, Theorems 3, 5, 6, and 7 have the dual function of characterizing and
providing an implementation for those crossovers on %! which commute with G. This
section will conclude with an alternate characterization and implementation involving
functions from !! rather than from GG.

DEFINITION 2: Define Rk for k ∈ ! by

Rk = {g ∈ G | g(o) = k}.

Define T (k, b, f ) for k ∈ !, b : G → G, and f : ! → ! by

T (k, b, f ) = {g ∈ Rk | b(g)(o) = f (k)}.

Given crossover distribution χ on GG, define the corresponding function χ on !! by

χ(f ) =
∑

b

χ
b

∏

k

|T (k, b, f )|/α.

LEMMA 8: The function χ is a probability distribution on !!. If χ is symmetric and satisfies
d ≡ 1 =⇒ χ

b = χ
d·b, then χ satisfies

d ≡ 1 =⇒ χ(f ) = χ (d ◦ f ◦ d -1).
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PROOF: Note that Do = {d : d ≡ 1}, and all Rk have size α. Therefore,2

∑

f

∏

k

|T (k, b, f )|/α =
∑

f ∈!!

∏

k∈!

∑

gk∈Rk

[b(gk)(o) = f (k)]/α

=
∏

k∈!

∑

fk∈!

∑

gk∈Rk

[b(gk)(o) = fk]/α

=
∏

k∈!

∑

gk∈Rk

∑

fk∈!
[b(gk)(o) = fk]/α

=
∏

k∈!

∑

gk∈Rk

α-1

= 1.

It follows that
∑

f

χ(f ) =
∑

b

χ
b

∑

f

∏

k

|T (k, b, f )|/α =
∑

b

χ
b = 1.

Thus χ is a probability distribution. Note that

d̂ · b̂(x) = x(d · b̂)(x-1) = xb̂(x-1d) = xx-1db(d -1x) = d ◦ b ◦ d -1(x).

Hence a consequence of the assumptions regarding χ is that if d ≡ 1 and b = d ◦ b′ ◦ d -1,
then χ

b = χ
b′ . Therefore,

χ (d ◦ f ◦ d -1) =
∑

b

χ
b

∏

k

∑

g∈Rk

[b(g)(o) = d ◦ f ◦ d -1(k)]/α

=
∑

b

χ
b

∏

k

∑

g∈Rd(k)

[b(g)(o) = d ◦ f (k)]/α

=
∑

b

χ
b

∏

k

∑

h∈Rk

[(d -1 ◦ b ◦ d)(h)(o) = f (k)]/α

=
∑

b′

χ
b′

∏

k

∑

h∈Rk

[b′(h)(o) = f (k)]/α

=
∑

b′

χ
b′

∏

k

∑

h∈Rk

[b′(h)(o) = f (k)]/α

= χ(f ).

!

THEOREM 9: Let π be a probability distribution on !! such that d ≡ 1 ⇒ π (f ) = π (d ◦
f ◦ d -1), and implement crossover as follows. In order to produce an offspring from parents
{i, j} ⊂ !,

2See appendix for details of summing over the set of functions.
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1. With probability 1/2, interchange i and j .

2. Let v ∈ G be such that v(o) = j .

3. Choose f : ! → ! according to π .

4. Return v(f (v-1(i))).

The induced crossover operator on %! commutes with G.

PROOF: We first show the crossover operator is well-defined (i.e., it is independent of
the choice of v in step 2). Let r(i, j, k) denote the probability that parents i, j produce
child k using steps 2 through 4 above (i.e., parents i and j are not interchanged). It
follows that

s(i, j, k) = r(i, j, k) + r(j, i, k)
2

.

Moreover, s(i, j, k) is independent of the choice of v in step 2 provided r(i, j, k) is. Note
that if v denotes the chosen representative for j in step 2, then

r(i, j, k) =
∑

f

π (f )[v(f (v-1(i))) = k].

Alternate representatives for j in step 2 have the form vd for some d ≡ 1, and lead to
the production of offspring k with probability

∑

f

π (f )[(vd)(f ((vd)-1(i))) = k] =
∑

f

π (f )[v ◦ d ◦ f ◦ d -1 ◦ v-1(i) = k]

=
∑

f

π (d -1 ◦ f ◦ d)[v ◦ f ◦ v-1(i) = k]

=
∑

f

π (f )[v(f (v-1(i))) = k].

Crossover commutes with G will now be shown. If v(o) = g(j ), then

r(g(i), g(j ), g(k)) =
∑

f

π (f )[v(f (v-1(g(i)))) = g(k)]

=
∑

f

π (f )[(g-1v)f ((g-1v)-1(i)) = k]

= r(i, j, k).

The last equality above is justified by the observation that (g-1v)(o) = j . !

THEOREM 10: Every crossover operator on %! commuting with G is an instance of the
crossover defined in Theorem 9.
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PROOF: According to Theorem 6, Theorem 7, and Lemma 8, it suffices to show that
the crossover operator described by Theorem 6 is the same as the crossover operator
described by Theorem 9 for the choice π = χ . Reusing notation from the proof of
Theorem 9,

r(i, j, k) =
∑

f

χ (f )[v(f (v-1(i))) = k]

=
∑

f

[v(f (v-1(i))) = k]
∑

b

χ
b

∏

m

|T (m, b, f )|/α

=
∑

b

χ
b

∑

f

[v(f (v-1(i))) = k]
∏

m

∑

gm∈Rm

[b(gm)(o) = f (m)]/α

=
∑

b

χ
b

∏

m

∑

fm

[
v
(
fv-1(i)

)
= k

] ∑

gm∈Rm

[b(gm)(o) = fm]/α

=
∑

b

χ
b

∑

fv-1(i)

[
v
(
fv-1(i)

)
= k

] ∑

g∈Rv-1(i)

[
b(g)(o) = fv-1(i)

]
/α

=
∑

b

χ
b

∑

g

[g(o) = v-1(i)]
∑

a∈!
[b(g)(o) = a][v(a) = k]/α

=
∑

b

χ
b

∑

g

[g(o) = v-1(i)][v(b(g)(o)) = k]/α

=
∑

b

χ
b

∑

g

[g(o) = i][v(b(v-1g)(o)) = k]/α

=
∑

g

[g(o) = i]/α
∑

b

χ
b[v(b(v-1g)(o)) = k].

The inner sum is the probability that crossing i and j produces k using the crossover
described by Theorem 6, because v(o) = j and g(o) = i. The outer sum over g is not
relevant; there are α nonzero terms which correspond to alternate representatives g for
i (and the choice of representative is irrelevant). !

6.5 Corollary: Mutation
Any linear operator U : %! → %! is a quadratic operator with associated matrices

s(i, j, k) = (Mk)i,j = (Uk,i + Uk,j )/2

(see Rowe et al., 2002). Therefore, mutation is a degenerate form of crossover. Mutation
commutes with G iff

Ug(i),g(j ) = Ui,j .

In that case, s(g(i), g(j ), g(k)) = s(i, j, k). Thus, any mutation operator commuting with
G is implementable as crossover which commutes with G. That implies it suffices to
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construct an instance of the crossover defined in Theorem 9 such that

s(o, o, v-1(k)) = Uv-1(k),o

since if j = v(o), then

s(j, j, k) = Uk,j

and the result k of mutating j is obtained as the offspring of parents {j, j}.
For each c ∈ !, define the constant function

fc(·) = c

and let π give positive probability to only those functions. The probability parents {o, o}
produce child v-1(k) is

s(o, o, v-1(k)) =
∑

f

π (f )[1(f (1-1(o))) = v-1(k)]

=
∑

c

π (fc)[c = v-1(k)]

= π (fv-1(k)).

Let µ be the probability distribution on ! defined by µ(c) = π (fc) = Uc,o. Then

s(o, o, v-1(k)) = π (fv-1(k)) = Uv-1(k),o

as required. Moreover, the condition

d ≡ 1 =⇒ π (fc) = π (d ◦ fc ◦ d -1)

is equivalent to

d ≡ 1 =⇒ µ(c) = µ(d(c))

which is satisfied because Ui,j = Ug(i),g(j ) (choose i = c, j = o, g = d).
As noted above, the result k of mutating j is obtained as the offspring of parents

{j, j}. In this case the algorithm in Theorem 9 reduces to:

1. Let v ∈ G be such that v(o) = j .

2. Choose c ∈ ! according to µ.

3. Return v(c).

7 Conclusions

Crossover and mutation operators that commute with a transitive group action on the
search space have been characterized. Moreover, it has been shown how to implement
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them in a representation-independent manner. If the group action is generated by a set
of representations, then these operators are guaranteed to be invariant with respect to
changes within the set of representations. These results have been illustrated with a
number of examples.

An interesting feature of the proof is that the crossover and mutation operators
arise as coarse grainings of genetic operators defined on the group itself. This could
be taken a step further by considering projections of selection operators. If fitness is
assigned to group elements such that g ∈ G has the fitness of g(o) in !, then equivalent
group elements have equal fitness. Selection methods, such as proportional, binary
tournament, and rank-based selection, will then project (in a form-invariant way) from
the group level to the search space (see Rowe et al., 2006). This means any genetic
algorithm (comprising selection, crossover, and mutation) running on the search space
(where crossover and mutation commute with a transitive group action) is a coarse
graining of a genetic algorithm running on the group itself (again with the crossover
and mutation operators commuting with the group).
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Appendix

In the proof of Lemma 8, we have to sum over the set of all functions, the sum containing
the product over all elements of !. For any function f : ! → ! and any k ∈ !, let
S(k, f (k)) be any expression depending on k and f (k). If we identify the elements of !
with the set {1, 2, . . . , |!|}, then we can identify a function f with the vector whose kth
component is f (k). Then

∑

f

∏

k

S(k, f (k)) =
∑

f1∈!

∑

f2∈!
. . .

∑

f|!|

∏

k

S(k, fk)

=
∑

f1∈!
S(1, f1)

∑

f2∈!
S(2, f2) . . .

∑

f|!|

S
(
|!|, f|!|

)

=
∏

k

∑

fk∈!
S(k, fk)

which allows the sum and product to be exchanged.
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