
Representation Language-Neutral Modeling of
Ontologies

A. Mädche, H.-P. Schnurr, S. Staab & R. Studer

Abstract
In this paper we present a new approach for language-neutral modeling of large-scale ontologies.
The gist of our approach lies in the way we treat the majority of axioms. Instead of capturing
axiom semantics in some specific representation language, we categorize axioms into different
types and specify them as complex objects that refer to concepts and relations. A separate layer
that is language-specific, in fact it may even vary for different inference engines working on the
same language, describes how these objects are translated into a target representation. In addition
to its far reaching independence with regard to specific representation languages, this approach
benefits engineering since the semantics of important types of axioms may be much more
elucidated in our ontology engineering tool, OntoEdit, than in comparable tools. Furthermore, our
approach is principled in a way that allows for comparably easy adaptation of our tool to
requirements for modeling axioms in specific domains.

The apparition of these faces in the crowd;
 Petals on a wet black bough.

Ezra Pound, 1913.

1 Introduction
Ontologies have shown their usefulness in application areas such as intelligent information
integration, information brokering, or knowledge-based systems. The role of ontologies is to
capture domain knowledge in a generic way and provide a commonly agreed upon understanding
of a domain. The common vocabulary of an ontology, defining the meaning of terms and their
relations, is usually organized in a taxonomy and contains modeling primitives such as classes,
relations, functions, and axioms.

A couple of representation languages (e.g., Ontolingua, KIF, CycL, F-Logic, LOOM, OML,
OXL) and ontology modeling tools (cf. Section 4) have been developed that allow for the
representation and engineering of ontologies. In fact, these languages and tools have matured
considerably over the last few years. Nevertheless, a major drawback remains with them, namely
their tight linkage to particular languages – often to particular knowledge representation and
reasoning systems. Thus, the ontology engineer must oblige himself to a particular environment too
early in his software development process. If need arises to switch from one ontology language

Modellierung 2000

- 2 -

and engineering tool to another one, many ontology engineering efforts are lost forever. Though
there are a few approaches that translate between representation languages (e.g., OKBC [FFR
1997], ODE [BFG+ 1998]), these approaches typically fail to produce the desired results, when
they are applied to axiom specifications. This, however, is a major pitfall, since the semantics of
ontology definitions are mostly void without an adequate specification of axioms.

With our approach of ontology engineering we pursue the modeling of ontologies that are rather
language-independent and that include axiom specifications. The motivation of our approach is
manifold. (i), though one may translate between different ontology languages, translations usually
incur a loss of conciseness that aggravates engineering (modeling, debugging, etc.), (ii), there is
currently no general inference engine that takes advantage of all the features one may be interested
in during modeling time and is still applicable in realistic applications, (iii) for the purpose of
scalability there may even be the need to turn inferencing mechanisms on or off within one single
application. For instance, one might use our F-Logic inference engine offering services on the
conceptual level, but one may need to employ a database management system for efficient and
safe querying of instances. (iv), with RDF, RDF schema and XML schema a new family of
representation languages is developed and world wide web-applicable tools will be built that will
probably become the cornerstones of ontology applications and, hence, a major field for explicit
modeling methodology and tools. However, at their current stage of gestation these techniques are
too immature to be relied upon for comprehensive usage. Thus, it is important that we provide
sophisticated modeling techniques early on, which, however, must be rather independent from the
language standards lest one risks to model in a way that is not compatible with stipulations put
forth by sophisticated WWW techniques of tomorrow. (v), we do not know of any good user
interface for modeling ontology axioms and we want to improve on that. Finally, and most
important, (vi), the translation of an axiom from one representation language into another usually
requires to abstract from its syntactic realization – just like Pound’s haiku that must not be
translated literally lest one looses what it is all about. Rather, it is necessary to capture the
meaning of the axiom and to translate its meaning, i.e. the consequences it leads up to in the given
ontology.

We have collected these experiences in various ontology engineering projects for purposes like
information integration, information extraction, information brokering or knowledge management.
Besides the problems mentioned above, we have collected further requirements that are derived
from these application: An ontology engineering environment has to support different views on a
given ontology. Such views support the construction and management of large ontologies.
Ontologies must include axioms for supporting inference processes. Axioms need to be specified
on a conceptual level which abstracts from details of the underlying specification language. The
internal representation of ontologies must be kept separate from the external presentation. Thus,
multi-lingual external presentations may be provided. Ontologies have to be well documented for
real-life applications. Ontologies must be linked to other information repositories like (object)-
relational databases or domain lexicons. Thus, the database design process or linguistic analyses
may profit from the knowledge structures provided by ontologies.

In this paper we present our approach and our tool, OntoEdit, for modeling large-scale, language-
neutral ontologies. In Section 2, we explain our approach for ontology modeling, which includes
concepts, relations and axioms. Our tool OntoEdit for specifying language-neutral ontologies is

Language-neutral Modelling

- 3 -

presented in Section 3. Section 4 gives an short overview over related work. Section 5 outlines
further work and concludes.

2 A Principled Approach to Ontology Modeling
The requirements that we have derived so far, have shown that any ontology engineering approach
should provide comprehensive support for modeling concepts, relations, axioms, and metadata. In
this section we abstract from any actual implementation, and consider what mechanisms lay the
principle foundations for our ontology engineering environment (described in Section 3). Thereby,
we proceed from the (straightforward) modeling of concepts and relations1, over a new approach
for language-neutral modeling of axioms. The importance of metadata appears at a different level
of the ontology engineering task since metadata may be attached to the ontology itself as well as to
concepts, relations and axioms. This is reflected in Section 3.

2.1 Concepts and Relations
Considering the level of concepts and relations, we provide very much the same object-oriented
model that is well-known from tools like ODE [BFG+ 1998] and Protegé [GEF+ 1999] (cf.
[BDS+1999] for a survey). Multiple taxonomies of concepts, i.e. subconceptOf relations with
multiple inheritance, provide the backbone of our approach. Relations are considered as first-
order entities that come with several properties of their own, e.g. names. Concepts are linked by
relations to other concepts or to types, i.e. simple, system-defined, concepts. While one may
conceive of extending this principle approach, e.g., to account for finer distinctions like the ones
between subconceptOf and properSubconceptOf (or :is and :is-primitive in a system like
LOOM), the overall approach for modeling concepts and relations remains stable over many
representation languages and systems.

2.2 Axioms are Objects, too
Ontology modeling is much more critical when one pursues a language-neutral approach that
includes axiom specifications. The reason is that usually some kind of first-order predicate logic is
involved that deals with quantifiers, quantifier scope, negation and scope of negation. Axioms are
difficult to grasp in a language-independent way, since the representation of quantifier scope and
its likes is usually what a particular syntax is about. However, a closer look at the bread and
butter issues of ontology modeling problems reveals that the majority of axioms that need to be
formulated aim at much simpler purposes than arbitrary logic structures. Indeed, we have found
that many axioms, most often the majority of axioms, belong to one of the following categories:

1. Axioms for a relational algebra2

a) Reflexivity of relations

1 We here consider the notion of relation to subsume the more specific notion of attribute.
2 These axioms may be found in any algebra textbook. A very nice, compact survey is given at
http://www.bestweb.net/~sowa/misc/mathw.htm

Modellierung 2000

- 4 -

b) Irreflexivity of relations

c) Symmetry of relations

d) Asymmetry of relations

e) Antisymmetry of relations

f) Transitivity of relations

g) Inverse relations

2. Composition of relations

3. (Exhaustive) Partitions

4. Axioms for stating that a relation is a subrelation of another relation

5. Axioms for part-whole reasoning

6. Exceptions of superordinate axioms

We received the impression that in practical ontology engineering many, though not all, axioms
deal with structures that appear again and again. Also, we have noted that these structures need to
be realized differently in various representation languages. In fact, axiom specifications even turned
out to differ for different inference machines working on the basically same representation
language. Hence, our approach distinguishes the structures that are repeatedly found in axiom
specifications from the corresponding description in a particular language. In our approach,
axioms are described as complex objects that refer to concepts and relations. An additional layer
then provides the transformation step that realizes axioms in a particular target representation
language.

The motivation underlying this two-layer approach is that we may thus abstract from a large set of
representation languages and we may get a better grasp at the meaning of an axiom (or a set of
axioms) rather than its syntactic realization in a particular language. Our claim is that it becomes
much easier to realize these implications in a particular target representation, if we categorize
axioms according to what we here loosely term their meanings, i.e. the implications they enforce in
their respective frameworks. In contrast, related approaches like ODE specify axioms in a first-
order representation and then translate directly into the target language. Since literal translations
usually do not work (just like a literal translation of Ezra Pound's haiku would not achieve its
effects in German or Italian), the ODE approach would need to recognize the meaning of an
axiom - sometimes even the meaning of a set of axioms, before it could translate successfully. As
our approach does not require the recognition of meanings, but instead lets the engineer categorize
axiom specifications, we facilitate translation into target languages and give more sophisticated
means to organize the large set of axioms that appear in common ontologies such that ontology
engineering is faciliated.

In order to elucitate our approach, we proceed through a few examples of our categorization of
axiom specifications shown above. We give examples that explain the difference between two
prominent ontology representation languages, viz. F-Logic ([KLW 1995], [Deck 1998]) and

Language-neutral Modelling

- 5 -

Description Logics ([WoSc 1992], [MaBa 1987]) and, in addition, specify the transformation
step from an object description into an executable specification with a well-defined semantics. For
the latter issue, we exploit the expressiveness of F-Logic, which allows the direct definition of
transformation rules. Hence, the executable specification is simply given through the object
descriptions of our axioms and their corresponding transformation rules. Thus, the axiom
structures we propose receive a proper semantic interpretation. We indicate with our examples
that a similar step may be specified easily for other languages, like versions of description logics,
and that the intuitive meanings of axiom specifications are rather well-preserved.

Axioms for a relational algebra

The axiom types that we have shown above are listed such that the "simple" axioms come first and
the harder ones appear further down in the list. Axiom specifications that are referred to as
"axioms for a relational algebra" rank among the simplest ones. They describe axioms with rather
local effects, because their implications only affect one relation (with the exception of axioms for
inverse relations that affect two relations). We here list just one example, since the principle
approach remains unchanged and the meanings of the axioms is very easy to understand.

Let us consider an example for symmetry. A common denotation for the symmetry of a relation
isRelated (such as used for "Homer Simpson is related to Bart Simpson") in first-order predicate
logic boils down to:

FORALL X,Y isRelated(X,Y) <- isRelated(Y,X).

In F-Logics, this would be a valid axiom specification, too. Most often, however, modeling in F-
Logics uses an object-oriented view, i.e.

FORALL X,Y Y[isRelated->>X] <- X[isRelated->>Y].

In contrast, a description logics language like LOOM provides a modeling primitive for specifying
symmetry:

(define-relation isRelated :symmetric)

In our approach, we denote symmetry as a predicate that holds for particular relations:

Symmetric(isRelated)

For a particular language like F-Logic, one may then derive the implications of symmetry by a
general rule and, thus, ground the meaning of the predicate Symmetric in a particular target
language. The corresponding transformation rule (here in F-Logic) states that if for all relations R
and object instances X and Y it holds that X is related to Y via R, then Y is also related to X via
R.

Modellierung 2000

- 6 -

FORALL R,X,Y Y[R->>X]<- symmetric(R) and X[R->>Y].

This small example already shows three advantages. First, the axiom specification is rather
language independent. Second, our approach for denoting symmetry is much sparser than its
language specific counterparts. And, third, symmetry now constitutes a class of its own and one
may easily give an editor view that lists all relations that are symmetric or that are not. In order to
allow for a better overview over these different steps, we summarize them in Table 1 (with the
exception of the first-order predicate logic denotation which is almost the same as its F-Logic
counterpart).

Object Symmetric(isRelated).

F-Logic FORALL X,Y X[isRelated->>Y] <- Y[isRelated->>X].

DL (define-relation isRelated :symmetric)

Transf. FORALL R,X,Y Y[R->>X]<-symmetric(R) and X[R->>Y].

Table 1: Symmetry

For easier understanding, we will reuse this table layout for all subsequent examples.

Composition of relations

The next example concerns composition of relations. For instance, if a person works in a project
and the project is for a particular company then one may assert that the person also knows the
company. Again different representation languages require completely different realizations of such
an implication (cf. Table 2). This time, F-Logic (or predicate logics) allows for a rather concise
description, while description logics languages do not support composition of relations in general,
since it makes subsumption undecidable [ScSm 1989]. In Loom, e.g., one may ressort to
capabilities outside of the logic kernel, viz. production rules that achieve the intended effects3.
Both ways may be easily "summarized" by the object description

Composition(worksInProject,projectForCompany,knowsCompany).

The transformation rule works very similarly as the transformation rule for symmetry.

Object Composition(worksInProject,projectForCompany,knowsCompany).

F-Logic FORALL X,Y,Z X[knowsCompany->>Z] <- X[worksInProject->>Y] and
Y[projectForCompany->>Z].

3 Of course, the disadvantage of extra-logical capabilities is that their semantics is not tightly integra-ted into
the system. If one of the premisses is retracted, a fact that has been asserted by a production rule is not
retracted automatically, too.

Language-neutral Modelling

- 7 -

DL (defproduction ComposeKnowsCompany
 :when (:detects (:and (worksInProject ?person ?project)
 (projectForCompany ?project ?company)))
 :perform (AssertMethod knowsCompany ?person ?company))

Transf. FORALL R,Q,S,X,Y,Z X[S->>Z] <- Composition(R,Q,S) and X[R->>Y] and
Y[Q->>Z].

Table 2: Composition

Axioms for stating that a relation is a subrelation of another relation

A major requirement for ontologies is the ability to structure relations into hierarchies. Natural
language applications (but also other areas like medical domains) rely on very specific relations
that denote background knowledge, like a hotel hasDoubleRoom double room. In order to bridge
from a conceptually high-level linguistic expressions like "has", which closely resembles the general
hasPart relation, to the more specific hasDoubleRoom, via other relations like hasRoom and
hasSubarea, information about the relation hierarchy must be retrievable from the ontology
modeling framework (cf. [HSR 1999]). An object representation of corresponding axioms, which
closely resembles its description logics counterpart, provides the structural information about
relations, allows for a corresponding visualization, and may be easily translated by a general axiom
into a target representation language (cf. Table 3).

Object subrelationOf(hasDoubleRoom,hasRoom).

F-Logic FORALL X,Y X[hasRoom->>Y] <- X[hasDoubleRoom->>Y].

DL (define-relation hasDoubleRoom

 (:is-primitive hasRoom))

Trans FORALL R,Q,X,Y X[Q->>Y] <- subrelationOf(R,Q) and X[R->>Y].

Table 3: Subrelation

Axioms for part-whole reasoning

Two aspects of reasoning on part-whole relations have received special attention in the ontology
engineering community. The first issue that has been debated is whether transitivity should be
considered a general property of partonomies. We here only refer to recent work of [HSR 1999],
[Arta1996] and [LaPa 2000] who survey this issue. Our approach provides the modeler with the
flexibility to turn transitivity constraints of part-whole (sub-)relations on or off as she prefers (cf.
the section on axioms for a relational algebra).

The second issue in the debate is about partonomic reasoning (cf. [Rect 1997]). Rector
distinguishes between role propagation and concept specialization. As for the first, properties of
parts may sometimes be propagated to become properties of their wholes. Assume that the
ColorOfCarBody is defined as the colorOf the CarBody and the CarBody is defined as a
physicalPartOf the Car. While the color of the car body is also the color of the car, the same

Modellierung 2000

- 8 -

does not hold for the color of the seats - in spite of the fact that there is no structural difference
found in these two examples. Hence, it is necessary to specify axioms that do propagate some
roles from parts to wholes - sometimes over several hasPart relations (cf. [HSR 1999]). In our
approach, we directly encode that a role may be propagated over hasPart relations in an object
representation that is straightforward and comparatively easy to understand:

PartonomicRolePropagationOn(ColorOfCarBody,ColorOf,CarBody).

In a typical application there will be dozens of definitions like this. It is easy to imagine that their
language-specific counterparts are much more cumbersome to understand. In fact, PL1 style
denotation needs to specify at least two axioms for each role that needs to be propagated, viz.
one at the conceptual level and one at the instance level. Description logics provides no direct
support, but the corresponding implications may be achieved by a - rather complicated - encoding
via new concept nodes (cf. [HSR 1999]) or via user-coded functions [LaPa 2000].

Object PartonomicRolePropagationOn(ColorOfCarBody,ColorOf,CarBody)

F-Logic Instance level: FORALL X,Y,Z,S,R X[R->>Z] <- X[R->>Y] and
subrelationOf(S,part-of) and Y[S->>Z].

Concept level: FORALL X,Y,Z,S,R X[R=>>Z] <- X[R=>>Y] and
subrelationOf(S,part-of) and Y[S=>>Z].

DL Artificial concept triples may encode partonomic reasoning into
taxonomic reasoning (cf. [HSR 1999]), or a piece of lisp code may
act to perform propagation in an approach by [LaPa 2000].

Trans Instance level:

FORALL C,D,X,Y,Z,S,R X[R->>Z] <-

PartonomicRolePropagationOn(C,R,D) and X:C and Y:D and X[R->>Y] and
subrelationOf(S,partOf) and Y[S->>Z].

Concept level: analogous to the instance level

Table 4a: Part-Whole Reasoning - (i) role propagation

The second aspect of partonomic reasoning that is reflected upon by Rector et al. is concept
specification through partonomic reasoing. To cut it short, we only mention here that this type of
axiom specification also relies on the PartonomicRolePropagation specified in Table 4a and show
a corresponding F-Logic representation in Table 4b. This type of reasoning is provided for by
mechanisms analogous to the ones in Table 4a.

F-Logic FORALL X,Y,Z,S,R,W X::W <- X[R=>>Y] and subrelationOf(S,partOf) and
Y[S=>>Z] and W[R=>>Z].

Table 4b: Part-Whole Reasoning - (ii) concept specification

Language-neutral Modelling

- 9 -

Exceptions of superordinate axioms

To give a further outlook on modeling "hard problems", we have investigated how exceptions may
be captured in our approach. By "exceptions" we refer to axiom combinations that, e.g., allow to
conclude that hotelGuests must pay in advance, unless they are regularHotelGuests. We have
found that it is indeed very elegant and helpful to model axioms and refine them with more specific
exceptions. The semantics of the latter may then affect the semantics of the superordinate axioms.
While the general structure that holds between premises and implications of general and refining
axioms has been easy to cover in our approach, we have encountered a problem in formulating
the premises and implications themselves in a language-independent manner. The reason is that
one may use rather arbitrary logical formulas to specify premises or implications. Here, we reach a
point where our approach still helps to organize axiom specifications, e.g. through views like
"show me all exceptions of the axiom about payments", but where it must (partially) fall back onto
a more general, but less concise way for modeling general axioms.

General axioms

The approach we have described so far is not suited to cover every single axiom specification one
may think of. Hence, we still must allow for axioms that are specified in a particular representation
language like first-order predicate logic and we must try to translate these axioms, possibly with
human help, into their target representation language, e.g., description logics. For such general
axiom specifications, we do not gain anything compared to related approaches, like ODE [BFG+
1998], however, we do not fare any worse either.

Naturally, we have restricted our attention to axiom types that we have found of particular interest
in our applications. We do not claim that we cover all axiom types that may be of interest. Rather,
our goal is the provision of a general methodology that may be employed for the definition of new
axiom types for new domains and applications and for the specification of transformation rules that
we have not thought of yet.

3 OntoEdit - A Tool for Ontology Engineering
OntoEdit is an ontology engineering environment4 based on the principles described in the last
section. Modeling in OntoEdit along theses principles is supported by an ontology engineering
process model depicted in Figure 1. In our approach we mainly distinguish between the meta
descriptions, concepts, relations and axioms. First of all, if a new ontology is created inital meta
descriptions have to be defined. This includes, e.g., the name of the ontology, the information
about the author(s) and some inital documentation. Meta descriptions about the ontology are
extended during the entire modeling process (e.g. documenting incoming requirements).

The modeling process proper is initiated with the creation of new concepts (such as Person,
Organization, ...) to the ontology. The concepts are positioned into the is-a hierarchy, multiple
inheritance being allowed. Subsequently relations are defined. Both, concepts and relations can be

4 The OntoEdit environment is fully implemented in Java (JDK 1.2) using the JFC Swing packages to create the
GUI (cf. Figure 2).

Modellierung 2000

- 10 -

further described using metadata descriptions, such as documentation, multlingual interpretation or
mapping information. On the basis of existing concepts and relations, axioms are defined.

Figure 1: Ontology Modeling process using OntoEdit

The axiom classification introduced in the last section is used to facilitate the modeling process.
The six different types of axioms introduced in the last section and depicted in Figure 1 are offered
to the user in separate modeling views. Our general strategy here is to model the “easy”, local
axioms first and the harder axioms a later stage. Thereby, OntoEdit offers various views onto
axioms classified into the different types. Axiom types which belong to “Relational Algebra” and
“Composition” are used for all types of applications. Depending on the domain for which the
ontology is built, several axiom types may play a major or minor role (for example, part-whole
reasoning plays a important role in medical applications (cf. [HSR 1999])). Axiom modeling may
necessitate a revision of the already modeled concepts and relations. For instance, new sub-
concepts of existing concepts may have to be introduced, relations may have to become concepts.

Ontology

Concepts
Relations

Meta
descr..

Meta
descr.

Meta
descr .

Relational
Algebra

Axioms

Composition

Relation
Hier-
archy

Part-Whole
ReasoningPartitions

Exceptions

General
Axioms

Axiom
Inheri-
tance

New
Ontology

Language-neutral Modelling

- 11 -

Figure 2: OntoEdit – Ontology Engineering Environment

View on general metadata descriptions

Metadata for ontology engineering has to be subdivided into metadata for the entire ontology and
metadata for the knowledge structures (concepts, relations and axioms) contained in the ontology.
If we talk about metadata for the entire ontology, this includes identifying and descriptive
characteristics of an ontology. This schema is taken from [AGT+ 1999], who developed a
framework for finding and retrieving ontologies. Identifying attributes of an ontology enclose the
name of the ontology, the creation date, last modification date, the version and information about
the authors. Descriptive attributes store information and statistics about the ontology. The general
information about the ontology is decomposed into characteristics like type of the ontology,
purpose, design techniques and application goal (cf. right part of Figure 2). Statistics about the
ontology are computed automatically by OntoEdit (number of concepts, number of relations,
number of axioms, the highest and the average depth level).

Modellierung 2000

- 12 -

Views on concepts and relations

OntoEdit uses the object-oriented modeling paradigm to structure new concepts in a general way.
The concept browser is depicted in the left part of Figure 2. Using this “concept browser”
developers can edit concept hierarchies via drag & drop. Introducing a new concept means
positioning it in the taxonomy. Concepts are defined using abstract, natural language-independent
identifiers. As already mentioned, natural language-dependent external representations of concepts
(e.g. for visualizing the ontology) are realized via metadata descriptions for the identifiers.

Having defined a core taxonomy, relations of and between concepts are modeled in an extra view.
This view depends on the concept selected in the taxonomy and is updated each time another
concept is selected. In the middle part of Figure 2 the relation view of the concept Person is
depicted. A person in our small example ontology is characterized by the attributes Name and
wohnt_in. Similar to concepts, relations are defined using abstract, language-independent
identifiers. The external representation and documentation of attributes is attached through
metadata descriptions.

Views on axioms

As already explained in Section 2.2 modeling axioms in a language-neutral way is crucial. The
axiom view of OntoEdit consists of multiple views that correspond to the classification of axioms.

In Figure 2 we give an example for an axiom view, that realizes the modeling of a relation
hierarchy. Modeling subrelation relationships into the hierarchy using OntoEdit is a very simple
task, because the relation hierarchy view is very similar to the taxonomy view on concepts.
Introducing a new subrelation axiom boils down to the selection of one of the existing relations and
its addition as a subrelation.

Translating for inferencing

As described in section 2, a transformation step from the object description produced by
OntoEdit into an executable specification with a well-defined semantics has to be performed. This
transformation step has been illustrated in the examples in Section 2 using F-Logic. It has to be
mentioned that this transformation is not only dependent on the representation language, but also
on the capabilitities of the underlying inference engine. Our examples have been executed on a
running inference engine for F-Logic developed in the context of the OntoBroker project (cf.
[Deck 1998]).

A transformation module for Description Logics inference engines (cf. [WoSc 1992], [Rect
1995], [BBM+ 1989]) may also be developed based on the object descriptions which have been
created using OntoEdit.

4 Related Work
Like ODE (Ontology Design Environment) [BFG+ 1998], we choose a modelling approach
interacting with the user at the conceptual level. This approach is in contrast with tools like the
Ontolingua system and OntoSaurus (cf. [FFR 1997]), that interact with the user at the symbol
level (e.g. the representation language Ontolingua). However, axioms are specified in ODE in a
first-order representation and then translated directly into the target language. Since literal

Language-neutral Modelling

- 13 -

translations usually do not work, the ODE approach would need to recognize the meaning of an
axiom - sometimes even the meaning of a set of axioms, before it could successfully translate.

As already mentioned, the main difference in our approach to existing approaches such as ODE
is that the most important axioms are considered as objects and defined according to the
presented axiom classification. As our approach does not require the recognition of meaning, but
instead lets the engineer categorize axiom specification, we facilitate translation into target
languages and give more sophisticated means to organize the large set of axioms that appear in
common ontologies such that ontology engineering is faciliated.

5 Conclusion
We have presented a new approach towards representation language-neutral modeling of
ontologies in the engineering environment OntoEdit. First, our approach incorporates a new
concept for modeling axioms that is easy to read and easy to organize in a number of different
views. Second, the scheme is generally applicable with regard to its language scope - in fact it is
language-neutral to a large extent as we have illustrated by various examples for F-Logic and
Description Logics. Third, our approach is even adaptable to particular inferencing mechanisms.
One may easily implement means for tuning the computation of particular axioms, e.g., efficient
incremental computation of transitive closures. Inferencing becomes scalable as particular axiom
types may be turned on or off depending on what exactly is required at a particular point in time.
Fourth, our scheme for axiom representation may be easily incorporated into common user
interfaces for the visualization of tree structures, lists, or records. Finally, and most important, our
approach preserves the meaning of axiom specifications to a large extent over a wide range of
representation languages and systems.

For the future we will have to investigate further what type of axioms other than those mentioned
here exist and how one may best get a hold on their structures. As for the implementation side, we
plan to integrate our ontology engineering environment, OntoEdit, into a larger client-server
framework, OntoServer, that offers ontology services through a range of various client
applications. Important features that we consider now are, e.g., versioning and merging of
ontologies and the interaction of ontologies with new web standards (XML, RDF, RDF Schema).

6 References
[AGT+ 1999] J. C. Arpirez Vega, A. Gomez-Perez, A. L. Tello, H. Pinto. How to Find

suitable Ontologies Using an Ontology-based WWW Broker. LNCS 1607.
1999.

[Arta 1996] Artale et al.: Part-Whole Relations in Object-Centered Systems. Part-Whole
Relations in Object-Centered Systems: An Overview (special issue on
Modeling Parts and Wholes). Data and Knowledge Engineering, Vol. 20, No.
3. 1996, pp. 347-383.

[Bala 1995] M. Balaban.The F-Logic Approach for Description Languages. Annals of
Mathematics and Artificial Intelligence, 15, pp. 19-60, 1995.

Modellierung 2000

- 14 -

[BBM+ 1989] A. Borgida, R. J. Brachman, D. L. McGuinness, L. A. Resnick. CLASSIC:
A Structural Data Model for Objects. In: Proceedings of the 1989 ACM
SIGMOD International Conference on Management of Data, 1989.

[BDS+ 1999] R. Benjamins, A. J. Duineveld, R. Stoter, M. R. Weiden, B. Kenepa
Wondertools? A comparative study of ontological engi-neering tools.
Proceedings of the 12th International Workshop on Knowledge Acquisition,
Modeling and Mangement (KAW'99), Banff, Canada, October 1999.

[BFD+ 1999] R. Benjamins, D. Fensel, S. Decker, A. Gomez Perez: KA2. Building
Ontologies for the Internet: A Midterm Report. In: International Journal of
Human Computer Studies, 51(3), 1999. pp. 687-712.

[BFG+ 1998] M. Blázquez, M. Fernández, J. M. García-Pinar, A. Gómez-Pérez. Building
Ontologies at the Knowledge Level using the Ontology Design Environment.
Proceedings of the 11th International Workshop on Knowledge Acquisition,
Modeling and Mangement (KAW'98), Banff, Canada, October 1998.

[CFF+1998] V. K. Chaudhri, A. Farquhar, R. Fikes, P. D. Karp, J. P. Rice. OKBC: A
Programmatic Foundation for Knowledge Base Interoperability. Proceedings
of the 15th National Conference on Artificial Intelligence (AAAI-98) and of the
10th Conference on Innovative Applications of Artificial Intelligence (IAAI-98),
pp. 600-607. 1998.

[DBS+1998] S. Decker, D. Brickley, J. Saarela, J. Angele: A Query and Inference Service
for RDF. QL'98 - The Query Languages Workshop. 1998.

[Deck 1998] S. Decker: On Domain-Specific Declarative Knowledge Representation and
Database Languages In: Proceedings of the 5th Knowledge Representation
meets Databases Workshop (KRDB98). 1998.

[DEF+ 1999] S. Decker, M. Erdmann, D. Fensel, and R.Studer: Ontobroker: Ontology
Based Access to Distributed and Semi-Structured Information. In: R.
Meersman et al. (eds.), Database Semantics: Semantic Issues in Multimedia
Systems, Proceedings TC2/WG 2.6 8th Working Conference on Database
Semantics (DS-8), Rotorua, New Zealand, Kluwer Academic Publishers,
Boston, 1999.

[ErSt 1999] M. Erdmann and R. Studer: Ontologies as Conceptual Models for XML
Documents. Proceedings of the 12th International Workshop on Knowledge
Acquisition, Modeling and Mangement (KAW'99), Banff, Canada, October
1999.

[FFR 1997] R. Fikes, A. Farquhar, J. Rice: Tools for Assembling Modular Ontologies in
Ontolingua. Proceedings of the Fourteenth National Conference on Artificial
Intelligence and Ninth Innovative Applications of Artificial Intelligence
Conference, AAAI 97, IAAI 97, July 27-31, 1997, Providence, Rhode
Island. AAAI Press / The MIT Press, 1997.

Language-neutral Modelling

- 15 -

[GEF+ 1999] W. E. Grosso, H. Eriksson, R. W. Fergerson, J. H. Gennari, S. W. Tu, M. M.
Musen. Knowledge Modeling at the Millennium – The Design and Evolution of
Protege-2000. Proceedings of the 12th International Workshop on Knowledge
Acquisition, Modeling and Mangement (KAW'99), Banff, Canada, October
1999.

[HSR 1999] U. Hahn, S. Schulz, M. Romacker. Part-Whole Reasoning: A Case Study in
Medical Ontology Engineering. IEEE Intelligent Systems, Vol. 14, No. 5,
1999, pp. 59-67.

[KLW 1995] M. Kifer, G. Lausen, & J. Wu. Logical Foundations of Object-Oriented and
Frame-Based Languages. Journal of the ACM, 42, 1995.

[LaPa 2000] P. Lambrix, L. Padgham. Conceptual Modeling in a Document Management
Environment using Part-of Reasoning in Description Logics. Data &
Knowledge Engineering, Vol. 32, No. 1, 2000, pp. 51-86.

[MaBa 1987] R. MacGregor, R. Bates. The LOOM Knowledge Representation Language
Proceedings of the Knowledge-Based Systems Workshop, 1987.

[RDF 1999] RDF Schema Specification. http://www.w3.org/TR/PR-rdf-schema/, 1999.

[Rect 1997] L. Rector et al. The Grail Concept Modelling Language for Medical
Terminology. Artificial Intelligence Medicine, Vol. 9, No. 2, 1997, pp. 139-
171.

[SBD+ 1999] S. Staab, C. Braun, A. Düsterhöft, A. Heuer, M. Klettke, S. Melzig, G.
Neumann, B. Prager, J. Pretzel, H.-P. Schnurr, R. Studer, H. Uszkoreit, B.
Wrenger: GETESS - Searching the Web Exploiting German Texts. In: CIA'99
- Proceedings of the 3rd Workshop on Cooperative Information Agents,
1999.

[ScSm 1989] M. Schmidt-Schauß and Gerd Smolka. Subsumption in KL-ONE is
undecidable. KR-89 - Proceedings of the Conference on Knowledge
Representation and Reasoning, Morgan Kaufmann, 1989, pp. 421-43.

[WCH 1987] M. Winston, R. Chaffin, and D.J. Herrmann. A Taxonomy of Part-Whole
Relationships. Cognitive Science, Vol. 11, 1987, pp. 17-444.

[WoSc 1992] W.A. Woods and J.G. Schmolze. The KL-One Family. Computers and
Mathematics with Applications, Vol. 23, No. 2 and 5, 1992, pp. 133-177.

