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Abstract

The high rate of intensive care unit false arrhythmia alarms can lead to disruption of
care and slow response time due to desensitization of clinical staff. We study the use of
machine learning models to detect false ventricular tachycardia (v-tach) alarms using ECG
waveform recordings. We propose using a Supervised Denoising Autoencoder (SDAE) to
detect false alarms using a low-dimensional representation of ECG dynamics learned by
minimizing a combined reconstruction and classification loss. We evaluate our algorithms
on the PhysioNet Challenge 2015 dataset, containing over 500 records (over 300 training and
200 testing) with v-tach alarms. Our results indicate that using the SDAE on Fast Fourier
Transformed (FFT) ECG at a beat-by-beat level outperforms several competitive baselines
on the task of v-tach false alarm classification. We show that it is important to exploit the
underlying known physiological structure using beat-by-beat frequency distribution from
multiple cardiac cycles of the ECG waveforms to obtain competitive results and improve
over previous entries from the 2015 PhysioNet Challenge.

1. Introduction

Intensive care units (ICU) false arrhythmia alarm rates have been reported to be as high
as 88.8%, and can lead to disruption of care and slow response time (Drew et al., 2014).
Detecting and suppressing false arrhythmia alarms could potentially have high impact on
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the quality of patient care, reducing the chance of missing a life-threatening true alarm
due to staff desensitization. We investigate representation learning approaches to finding
discriminative features of ECG dynamics for false alarm reduction. We focus on the problem
of detecting false alarms for one of the life-threatening arrhythmias, ventricular tachycardia
(v-tach), defined as five or more ventricular beats with a heart rate higher than 100 bpm
(Clifford et al., 2015). Of all the life-threatening arrhythmia alarm types, false v-tach alarms
have proven to be the hardest to detect (Clifford et al., 2015), and remain an open challenge.

This work investigates the utility of both linear and non-linear embeddings of ECG for
detecting v-tach false alarms. We present a supervised generative model, Supervised De-
noising Autoencoders (SDAE), to classify ventricular tachycardia alarms using non-linear
embeddings of ECG dynamics. The model, a variant of a Denoising Autoencoder (Vincent
et al., 2008), is learned using a combination of discriminative and generative losses.

Furthermore, we explore feature transformations that utilize known physiological structure
within ECG signals to enable learning under the constraints of limited labeled data. To
this end, we propose a multi-stage approach that utilizes the FFT-transform of consecutive
(heart) beats. We compare the SDAE against several baseline approaches that use a wide
range of time and frequency domain ECG features.

Technical Significance The application of neural networks based representation learning
techniques in arrhythmia analysis and false alarm reduction in critical care has had limited
success, partly due to sparse availability of labeled data (Clifford et al., 2017; Schwab
et al., 2018). The best performing approaches for false v-tach alarm detection in the 2015
PhysioNet Challenge rely on a combination of expert-defined rule-based logic analysis and
simple machine-learning models (Clifford et al., 2016; Kalidas and Tamil, 2016; Plesinger
et al., 2016). To make representation learning practical, in the low labeled data setting
considered here, we leverage FFTs applied to the ECG signal spanned between consecutive
heart beats. We then leverage the SDAE to learn nonlinear embeddings which are used
for the task of false v-tach alarm detection. Tests on a real-world ICU dataset from 2015
PhysioNet Challenge containing over 500 records indicate that the proposed approach leads
to improved performance over several baselines, including previous entries from the 2015
PhysioNet Challenge. The use of beat level information enables scalable learning of models
that performs well even when labels are scarce.

Clinical Relevance In modern ICUs, where critically-ill patients are closely monitored,
as many as 187 audible alarms have been reported per ICU bed per day (Drew et al., 2014).
Arrhythmia alarms contribute to approximately 45% of the overall ICU alarms, and have
a high false alarm rate of 88.8%, which can lead to lower patient care quality (Drew et al.,
2014; Clifford et al., 2015). Detecting and minimizing false alarms could potentially reduce
the chance of missing a life-threatening true alarm due to staff desensitization.

2. Overview

2.1. Background and Motivation

Erroneous triggers of v-tach alarms typically occur due to noise and ECG-related artifacts
(such as electrode movements) (Clifford, 2006). Ventricular arrhythmias are characterized
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by distortion of beat morphology with a broader QRS complex1. Our approach leverages
the fact that the broader QRS complexes during v-tach often cause a shift in the spectral
peak of the ECG to a lower frequency. However, a challenge to be overcome is that noise
and artifacts can exhibit similar morphologies as abnormal QRS complexes, almost indis-
tinguishable from the periodic anomalies from a true v-tach episode (Clifford, 2006). To
tackle this, our approach leverages data from multiple heartbeats. The hypothesis we test is
whether the changes in the frequency spectrum across multiple beats provide a sufficiently
discriminative signal. To take into account that the discriminative function may potentially
be non-linear, we leverage a neural network based representation learning approach to learn
a lower-dimensional embedding of the ECG’s spectral dynamics which we use to distinguish
between true and false alarms.

2.2. Approach Overview

We take a multi-stage approach to false alarm detection from ECG segments. Figure 1 il-
lustrates our approach from the ECG data processing pipeline to deriving FFT-transformed
ECG features on a beat-by-beat basis as input to the model for false alarm detection.

ECG beat annotations

Fast Fourier Transform (FFT)

Average Pooling

FFT of ECG Beats

FFT of ECG Beats

Classification loss

Outcome 

(true/false alarm)

Encoder

Decoder

(Reconstructed)

Identify 3-second 

targeted potential 

v-tach region

Ventricular beat models 

code
Hidden

Layer

Figure 1: Approach Overview: ECG data processing pipeline and the SDAE model
which uses FFT-transformed ECG beats as input for v-tach false alarm classification.

1. The width of a QRS complex corresponds to the time for the ventricles to depolarize.
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• We use the MIT-BIH database, with annotated beat labels, to build a ventricular beat
(v-beat) classifier that classifies whether the FFT transform of a beat is a ventricular
or non-ventricular beat.

• We apply a peak-detection algorithm to multi-channel ECG signals in the PhysioNet
2015 Challenge dataset to identify heartbeats. For each ECG record, in the last 25
seconds before alarm onset, we apply the v-beat classifier to estimate the probability
of a ventricular beat. The goal is to obtain a small region in the ECG recordings
to focus on when predicting alarm outcomes. This is done by identifying a 3-second
target interval with the highest v-beat probability (averaged over consecutive beats)
among beats where the heart rate exceeds 100bpm.

• From the targeted region, we extract the following features: (i) FFT of beats: obtained
by performing an FFT transform on each ECG beat from all ECG beats in the three-
second target interval prior to the alarm onset. Each beat is represented as a 41-
dimensional FFT-transformed feature vector, and (ii) FFT transform on the entire
3-second targeted ECG segment. Figure 1 illustrates the data processing and FFT-
transformation pipeline.

• We use the data from the previous step to classify (with different models) the probabil-
ity of a true or false alarm. In Figure 1, we show how the best performing approach,
the SDAE, is used to predict false alarms using the FFT-transformed features ex-
tracted from the target intervals of the training record.

3. Datasets

Our approach (with ECG data transformation pipeline outlined in Figure 1) requires the
use of two datasets which we describe in this section.

3.1. MIT-BIH Arrhythmia Dataset

We use the MIT-BIH Arrhythmia Database (Moody and Mark, 2001; Goldberger et al.,
2000) to train a ventricular beat identification model. The MIT-BIH dataset contains 48
half-hour excerpts of two-channel ambulatory ECG recordings (360 Hz), obtained from 47
subjects studied by the BIH Arrhythmia Laboratory between 1975 and 1979. All data are
re-sampled to 250 Hz to match the sampling frequency of the PhysioNet Challenge data.

3.2. PhysioNet Challenge 2015 Dataset

The 2015 PhysioNet Challenge event (Clifford et al., 2015, 2016) focused on five types of
life-threatening arrhythmias, including ventricular tachycardia (v-tach), asystole, extreme
bradycardia, extreme tachycardia, and ventricular fibrillation/flutter. The goal of the chal-
lenge was to reduce the number of false alarms, while avoiding suppression of true alarms.

Task: The PhysioNet 2015 Challenge (Clifford et al., 2015; Goldberger et al., 2000) con-
sists of two events: (1) real-time classification using only data up to the alarm onset; (2)
retrospective analysis in which the contestants are allowed to use the 10-second data after
the alarm onset for classification. Here, we focus strictly on the real-time setting where
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only data prior to the alarm onset time is used. Figure 2 shows an example of true and
false v-tach alarm each from the PhysioNet Challenge 2015 training dataset.
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Figure 2: Example true vs. false v-tach alarms (from PhysioNet Challenge 2015). Each
plot shows data in the 25-second interval immediately prior to the v-tach alarm onset (at
the end of the interval).

Statistics: The dataset comprises 1250 records (750 train, 500 hidden test), each containing
one of the five life-threatening arrhythmia alarms. Data is recorded on 3 to 4 channels,
including two channels of ECG and one or two of the following channels: arterial blood
pressure (ABP), respiration, or photoplethysmography (PPG). Each record contains 5-
minute recordings of multi-channel physiological waveforms (250 Hz) immediately prior to
the alarm onset. A subset of the records also contain 10-second recordings of the waveforms
after the alarm onset. Among the 1250 records, 562 records contain v-tach alarms, and
overall more than 75% of these v-tach alarms are false. The training and test sets of our
study are extracted from the 562 records (trainN = 341, testN = 221) corresponding to the
v-tach alarms from the PhysioNet Challenge 2015 dataset. Among the 341 v-tach alarms in
the training records, 73.3% are false (91 true alarms, and 250 false alarms). Among the 221
v-tach alarms in the hidden test set 79.6% are false (45 true alarm, 176 false alarms). We
used 337 records from the training set containing either lead II (N = 331) or V (N = 312)
ECGs. The hidden test set contains all 221 records with v-tach alarms. We extract the last
25-seconds ECG segments from each record prior to the alarm onset for analysis.

Visualization: Figure 3 shows a plot of ECG waveform segments, their respective FFT
from 3-sec targeted interval (top panel Figure 3c and d), and beat-level FFT-transformed
features averaged over 3-seconds (bottom panel Figure 3c and d) from a true and false v-tach
alarm records from the training set. Figure 4 compares the spectral content of ECG beats
extracted from the targeted region of the true versus false alarm records from the dataset
(lead II) at the population-level. Population median in each frequency bin is plotted as a
solid line, with the interquartile range (IQR) as dashed lines. Note that the power spectral
distribution of the true alarms peaks at the 4 Hz location. It is known that peaks at 1, 4, 7
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(c) Top: FFT of 3-sec targeted interval
from (a). Bottom: average FFT of
beats from the 3-sec interval from (a).
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(d) Top: FFT of 3-sec targeted interval
from (b). Bottom: average FFT of
beats from the 3-sec interval from (b).

Figure 3: Example ECG segments which triggered true (a) and false (b) v-tach alarms.
Two vertical blue dashed lines demarcate the targeted 3-second segment identified by our
algorithm. (c) and (d) show FFT from an entire 3-sec targeted segment (top) vs. average
FFT from individual beats in the 3-second targeted interval (bottom).
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Figure 4: FFT of beats (lead II) - population median and IQR.
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and 10 Hz, in a normal ECG (with QRS width 80-100 msec), correspond approximately to
the heart rate (at 60 bpm), T wave, P wave, and the QRS complex respectively (Clifford,
2006).

3.3. Targeting ECG Segments with the Ventricular Beat Identification Model

We used the peak detection algorithm developed by Johnson et al. (2015) and the Pan
Tompkins algorithm (Pan and Tompkin, 1985) to identify each ECG beat for the MIT-BIH
Arrhythmia database and the PhysioNet Challenge 2015 dataset. A model for ventricular
beat identification was trained using the MIT-BIH database. We applied the v-beat classifier
learned from the MIT-BIH data to identify a potential v-tach episode as a 3-second ECG
segment from each record in the 2015 PhysioNet Challenge. We detail the algorithm used
to identify the 3-second targeted interval in Appendix A.

3.4. Transforming from the Time-Domain to the Frequency-Domain

Due to heart rate variability, durations of RR-intervals (i.e. intervals between R-peaks)
are different. It is a common approach to nondimensionalize time so that all the beats are
aligned. Here, we adopt a different approach using frequency distribution of the ECG beat
to avoid rescaling the time axis. FFT is applied to every beat within the selected 3-second
range in order to obtain the frequency spectrum between 0.1Hz and 40Hz. The beat-level
FFT of all beats from a 3-second targeted window of each record are then averaged.

4. Predictive Models for False Alarm Detection

4.1. Baselines

Across different inputs, for prediction, we study the use of: i) Logistic Regression (LR),
ii) feed-forward neural network in the original space (MLP), iii) a feedforward neural net-
work applied to the projection of data onto the principal components (PCA/MLP), and
iv) Supervised Denoising Autoencoder (SDAE). For the baselines, a three-layer MLP with
Rectified Linear Units (ReLU) as non-linearities between intermediate layers is used. The
MLPs parameters were selected using a grid search performed over the layer size (16, 32,
64, 128, 256), and dropout (0.2, 0.4, 0.5). The dimensionality of the PCA had a signifi-
cant impact on performance; it was selected using cross validation with a grid search over
dimensions (5, 10, 15, 25).

4.2. Supervised Denoising Autoencoder (SDAE)

To study how generative approaches affect this domain, we use a supervised denoising au-
toencoder on FFT transformed ECG waveforms. Denoising autoencoders (Vincent et al.,
2010, 2008; Lovedeep and Gondara, 2016; Bengio et al., 2013) are a class of autoencoders
where the goal of the model is to reconstruct the input given a noisy version of it. The
model is trained to perform the reconstruction using an intermediate low-dimensional rep-
resentation. Here, we use this representation to predict the label corresponding to whether
or not the beats represented in the input correspond to a true alarm. Figure 5 shows the
SDAE architecture when the model is applied to multi-channel ECG data. The SDAE may
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Figure 5: SDAE model diagram for v-tach false alarm detection using two leads of ECG.
Each of these input ECG channels is run through two perception layers and then combined
to form a 32-dimension compressed hidden-layer representation. The data from individ-
ual leads are then reconstructed through separate decoding layers, while an outcome and
classification loss are gathered using the combined layer.

be viewed as learning a nonlinear projection akin to the linear one learned by PCA. The
SDAE is trained using the ADAM optimizer (Kingma and Ba, 2014) with two loss functions:
(1) a reconstruction loss (in our case the mean-squared error) that encourages the model
to learn a representation capable of reconstructing the input and (2) a prediction loss that
encourages the low-dimensional representation to be well suited to predicting the likelihood
of a true alarm. The model parameters were selected using a grid search performed over
the layer size (16, 32, 64, 128, 256), dropout (0.2, 0.4, 0.5), and variance of the noise added
to the hidden state (0, 0.001, 0.01). A ten-fold-cross-validation was used to compute the
validation accuracy, which in turn was used to determine the best model parameters. The
parameters and architecture of the model are discussed in Appendix C.

4.3. Evaluation

Learning from ECG waveforms: We study predicting false alarms from the following
types of ECG features i) default 10-second raw ECG waveform intervals extracted from
10-seconds prior to the alarm onset (denoted waveform) ii) targeted 3-second raw ECG
waveform segments identified using the MIT-BIH ventricular beat model (denoted 3-sec
interval) and iii) beat-level spectral representation from the targeted region (denoted beats).
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Experimental Procedure: The training data was split 10 different times, each resulting
in 70% used for training and 30% used for validation. We report the sensitivity, specificity,
positive predictive value (PPV), and negative predictive value (NPV) and Area under the
Curve (AUC) from the receiver operating characteristic (ROC) curve. Confidence inter-
vals (CI) for area under the receiver operating curves (AUCs) were based on the method
described in DeLong et al. (1988). For our final model, our primary performance metric
when comparing with previous approaches is the PhysioNet Challenge 2015 scores, defined
as (TP + TN)/(TP + TN + FP + 5 ∗ FN), a function of the following variables: true
positives (TP), false positives (FP), false negatives (FN), and true negatives (TN).

5. Results

5.1. Classification Using Single-Lead ECG Waveforms

Table 1 compares the performance of various representation learning techniques and clas-
sifiers when using different feature representations of single-lead ECG. In particular, our
goal is to characterize and compare the performance of classifiers built on linear (PCA)
vs. non-linear (autoencoder-based) representations of various time and frequency domain
features of ECG signals. We experiment with (i) the raw ECG waveform from targeted
3-second segments, (ii) frequency content from targeted 3-second ECG segments, and (iii)
averaged beat-level frequency content from targeted ECG segments. Additionally, we also
evaluated the performance of classifiers that predict false alarms using the 10-second raw
waveform immediately prior to the alarm onset; the performance (not shown in Table 1) of
all classifiers investigated in this study was significantly worse (AUCs mostly in the 0.60’s
range or lower) than using the 3-second targeted waveform.

Table 1: Single lead ECG. Lead II (N=214), V (N=203). AUC (95% CI) shown.

Data LR MLP PCA+MLP SDAE

1 3-sec waveform II 0.54 (0.44, 0.64) 0.77 (0.67, 0.86) 0.83 (0.75, 0.92) 0.77 (0.68, 0.86)

2 3-sec waveform V 0.57 (0.47, 0.67) 0.74 (0.65, 0.84) 0.78 (0.69, 0.87) 0.76 (0.67, 0.85)

3 FFT 3-sec interval II 0.70 (0.60, 0.80) 0.84 (0.76, 0.92) 0.85 (0.77, 0.93) 0.87 (0.80, 0.94)

4 FFT 3-sec interval V 0.73 (0.63, 0.82) 0.81 (0.73, 0.90) 0.85 (0.77, 0.93) 0.86 (0.77, 0.93)

5 FFT of beats II 0.76 (0.67, 0.86) 0.89 (0.86, 0.98) 0.88 (0.84, 0.97) 0.87 (0.80, 0.94)

6 FFT of beats V 0.69 (0.60, 0.79) 0.87 (0.79, 0.94) 0.87 (0.79, 0.94) 0.88 (0.80, 0.94)

We find that FFT-transforming the ECG signal prior to predicting false alarms performs
significantly better than using the raw ECG waveforms directly. Furthermore, we find that
learning a non-linear representation of the ECG frequency content using SDAE achieves even
better performance, with an AUC of 0.87 (0.80, 0.94) and 0.86 (0.77, 0.93) using lead II and
V ECG channels respectively, than other baselines that include LR, MLP and PCA/MLP.
Using FFT-transformed beat-level representations from single lead ECG, we note that
MLP and PCA-MLP performed better than when FFT features from entire waveform seg-
ments were used (Table 1). Table 1 demonstrates that exploiting beat-level information in
ECG dynamics generally leads to a boost in performance results.
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5.2. Classification with Two-Channels of ECG Waveforms

Table 2 compares the performance of different classifiers using two-lead ECGs. We list the
best known results from the 2015 PhysioNet Challenge as a comparison. The first-place
entry by Kalidas and Tamil (2016) achieved a Challenge score of 75.10 in the real-time
event and 76.70 when considering both real-time and retrospective events. The second-place
entry in v-tach alarm by Plesinger et al. (2016) used ECG, ABP, and PPG waveforms, and
achieved a Challenge score of 72.73 in real-time event, and 75.07 when considering both
real-time and retrospective events. The performance is generally better in retrospective
events, since data post alarm onset can be used for classification.

We find that using SDAE to learn non-linear embeddings of beat-by-beat FFT-transformed
ECG achieved the best performance in comparison to other baselines. The SDAE achieved
an AUC of 0.91 (0.85, 0.97) and a higher F1 score (0.73) and Challenge score (77.59) than
other baselines, including MLP and PCA/MLP. We also note that SDAE achieved a higher
Challenge score (77.59) than the winning Challenge 2015 entry (score 75.10) by Kalidas
and Tamil in the real-time event (using data only from prior to the alarm onset). SDAE
reduced the v-tach false alarm rate of the test set from 79.64% to 11.3% (suppressed 151
false v-tach alarms), at the cost of missing 11.1% (5 out of 45) true alarms. We report
the specificity of SDAE when sensitivity is set at 0.89, and note that SDAE has a higher
specificity (0.86) than the other baselines for the real-time event.

Table 2: Performance Using Two-Channel ECG (N=221). RT (realtime), Retro (retrospective).

Event Features Sens. Spec. Prec. F1 AUC Score

1 MLP RT FFT 3-sec interval 0.89 0.73 0.45 0.60 0.87 (0.80, 0.94) 67.98

2 PCA-MLP RT FFT 3-sec interval 0.87 0.78 0.48 0.62 0.89 (0.83, 0.96) 69.29

3 SDAE RT FFT 3-sec interval 0.84 0.79 0.51 0.63 0.89 (0.82, 0.95) 68.49

4 MLP RT FFT of beats 0.89 0.67 0.52 0.64 0.89 (0.83, 0.96) 71.65

5 PCA-MLP RT FFT of beats 0.89 0.80 0.50 0.65 0.88 (0.82, 0.95) 73.82

6 SDAE RT FFT of beats 0.89 0.86 0.62 0.73 0.91 (0.85, 0.97) 77.59

7 Challenge,1st RT ECG 0.89 0.80 - - - 75.10

8 Challenge, 2nd RT ECG/ABP 0.82 0.84 - - - 72.73

9 Challenge, 1st RT/Retro ECG 0.90 0.82 - - - 76.75

10 Challenge, 2nd RT/Retro ECG/ABP 0.85 0.84 - - - 75.07

5.3. Varying the Number of Training Examples

We investigate how the SDAE behaves under different feature representations (beat-by-
beat vs. FFT-transformed 3-second waveform segments) as a function of the labeled data
size. Table 3 shows the classification performance of SDAE as the training data size varies
from 25 to over 300 using FFT transformation of 3-second segment versus beat-by-beat
data respectively. Using FFT-transformed beat-by-beat data, SDAE scales gracefully as
the training sample size is reduced to 25.

Using 25 training samples, SDAE with beat-by-beat data achieved an AUC of 0.86 (0.79,
0.93) which is only slightly worse than when using the full training data size (N=337) (p =
0.035). Using 50 or more training samples, SDAE with beat-by-beat data achieved similar
performance as using the full data set (AUC of 0.87 [0.80, 0.94] trained with 50 samples vs.
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Table 3: SDAE performance as a function of training size using two ECG channels. (Test set N=221)

Training Size 25 50 150 250 337

1 FFT waveform 0.63 (0.53, 0.72) 0.63 (0.53, 0.72) 0.87 (0.80, 0.94) 0.88 (0.81, 0.95) 0.89 (0.82, 0.95)

2 FFT B2B 0.86 (0.79, 0.93) 0.87 (0.80, 0.94) 0.91 (0.85, 0.97) 0.91 (0.85, 0.97) 0.91 (0.85, 0.97)

0.91 [0.85, 0.97] with full dataset, p-val = 0.058). This showcases that leveraging beat level
information is crucial for ensuring good predictive performance when labels are scarce.

6. Discussion and Related Work

Human heart beats generate a wide-range of complex ECG dynamics, which have been
studied extensively under both healthy and pathological conditions. Classical ECG analyses
are based on hand-crafted features obtained from temporal and/or frequency analyses, which
are then used as inputs in a machine learning classifier. Recent advances on deep learning
inspire new models where features are learned from segments of ECG signals. While deep
learning has made significant advances in the domains of image and voice analysis, the
application of deep learning in physiological waveform analysis has had limited success,
partly due to limited availability of labeled data. Expert-defined rule-based approaches or
simple machine learning models (such as gradient boosting, or random forest) combined
with hand-crafted features often outperform more complex models, such as deep neural
networks (Clifford et al., 2017).

Here, our results indicate that direct application of several machine learning techniques on
raw waveforms performed poorly (with the current training sample size). We show that
learning representations of the FFT-transformed ECG waveforms results in significantly
better performance than using raw waveforms. We study both linear and non-linear em-
beddings of ECG for the purpose of detecting false v-tach alarms. Tests on PhysioNet
Challenge 2015 dataset indicate that, for both linear and non-linear embeddings, repre-
sentation learning approaches that exploit the underlying known physiological structure,
specifically, using FFT-transformed ECG beats, averaged over multiple cardiac cycles, lead
to higher Challenge scores compared to models that use the entire ECG waveform segments.
In the case of SDAE, this procedure is key to out-performing previous known best results
from PhysioNet 2015 Challenge. We conjecture that this averaged beat-by-beat Fourier
feature representation significantly simplifies the learning task (relative to models that use
the entire ECG waveform segments) under the constraint of limited labeled data.

When comparing the performance of linear vs. non-linear embeddings using various ECG
feature transformation, we observe that non-linear embeddings from SDAE achieved slightly
better performance than PCA/MLP, when beat-level frequency features from two-channels
of ECG were used. Further investigation is required to characterize and improve the perfor-
mance of these approaches as the sample size increases and to avoid suppressing any true
positive alarms. An avenue of future work is to leverage unlabeled data to improve the
quality of the nonlinear embeddings in the SDAE generative framework. We leave taking
advantage of this to future work.
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The PhysioNet Challenge 2015 event focused on five types of life-threatening arrhythmias,
including asystole, extreme bradycardia, extreme tachycardia, ventricular tachycardia, and
ventricular fibrillation/flutter. More than 200 entries were submitted for this event (see
the collection of articles in the special issue of Physiological Measurement (Clifford et al.,
2015)). Among all the arrhythmia alarm types, v-tach has proven to be the hardest to
classify, and received the lowest prediction accuracy (Clifford et al., 2015). While machine
learning approaches have been proposed (Eerikinen et al., 2016; Ansari et al., 2016), the
winning entry in v-tach alarm classification by Kalidas and Tamil (2016) used logical analysis
to improve classification results from SVM classification, and Plesinger et al. (2016) used
signal processing and rule-based reasoning to achieve the second best performance in v-tach
alarm classification in the 2015 PhysioNet Challenge.

Early work on v-tach false alarm reduction by Aboukhalil et al. (2008) used a data fusion
approach with rule-based logic to reduce 5 types of false arrhythmia alarms from 42.7%
to 17.2% (on average) when simultaneous ECG and arterial blood pressure waveform were
available. They reported false v-tach alarm suppression as the most challenging task (with
the lowest suppression rate among all alarm categories tested), with a reduced false v-tach
alarm rate from 46.6% to 30.8%, at the cost of suppressing 14.5% and 4% of the true
alarms in the train and test set respectively. In (Schwab et al., 2018), a supervised multi-
task learning approach was proposed to reduce the number of training labels required to
suppress general ICU false alarms. Our work, in contrast, focuses on v-tach false alarms, and
uses FFT-transformation of individual ECG beats for scalable learning. Rajpurkar et al.
(2016) used a deep convolutional neural network for arrhythmia detection, and obtained
good performance with a significantly larger dataset.

7. Conclusion

We developed a supervised representation learning approach to detect false v-tach alarms
from two leads of ECG waveforms, and obtained improved performance over several base-
lines, including previous results in the same task using the PhysioNet 2015 Challenge
dataset. Our final best-performing model used a supervised denoising autoencoder, SDAE,
to learn non-linear embeddings of spectral dynamics, averaged over multiple cardiac cycles.
These results suggest that generative modeling may play a role in tackling the problem
of v-tach false alarm detection. Future work will extend the current approach to combine
information from multi-channel physiological waveforms (PPG, ABP) for false arrhythmia
alarm reduction. We expect the full potential of such representational learning methods will
lead to more significant results when the sample sizes are greatly increased. We also ex-
pect that representation learning will play an important role in analyzing other biomedical
waveforms, such as time series of blood pressure, respiration, electroencephalogram (EEG),
and photoplethysmogram (PPG).
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Appendix A: Identify Potential V-Tach Episodes

A model for ventricular beats identification was trained using a total of 107,129 annotated
beats from lead II of the MIT-BIH database (7,104 ventricular beats). A model for lead
V was also trained using 96,189 annotated beats from lead V in MIT-BIH database (7,010
ventricular beats). We extracted the FFT features from all beats, and trained a ventricular-
beat logistic classifiers to classify a beat as either a ventricular or non-ventricular beat based
on the FFT transformed features. The 10-fold cross validated median training AUC (and
inter-quartile range) of this ventricular beat classifier is 0.94 (0.93, 0.94) using the MIT-BIH
arrhythmia dataset.

For each beat (in the last 25-seconds of each record) in the PhysioNet Challenge dataset,
we used the MIT-BIH ventricular beat model to estimate the probability of each beat being
a ventricular beat based on the FFT of individual beats. At each beat j, with onset time tj ,
we estimated the probability of five consecutive beats starting at time tj being ventricular
beats, by averaging v-beat probabilities over five consecutive beats. The onset time Ti

of the potential v-tach region of each record i is identified as the onset time of the beat
with the highest running 5-beat ventricular-beat probability (from among the beats with
RR-intervals shorter than 600 ms). For each record i, we extracted its FFT features by
averaging FFT of all individual beats in a K-second window starting at time Ti. We chose
K to be 3 (seconds), since the v-tach is defined as 5 consecutive ventricular beats with heart
rate of over 100 bpm, and therefore a 3-second of ECG interval should be sufficient in length
to identify potential v-tach episodes (5 beats at less than 600 ms RR-interval per beat).

Appendix B: MLP Parameter Settings

The first layer of both input channels is a 64 neuron layer, with ‘ReLU’-activation, followed
by a dropout of 0.5. The channels are then added together and given to 128-neuron ‘ReLU’
layer. Finally, a final sigmoid layer is applied for prediction.

Appendix C: SDAE Parameter Settings

The SDAE uses the ‘ADAM’ optimizer in attempt to minimize ‘mean-squared-error’ and
‘binary cross-entropy’ loss. Each input channel sequentially leads into a layer of size 64,
each using a ‘ReLU’ activation function. Afterwards, the output of the size 64 hidden layer
is given to a layer size of 32, which uses a ‘sigmoid’ activation function. The output of both
of the 32 unit hidden layers are added together in order to find an underlying representation
of the combined data. Depending on the results of the grid search, Gaussian noise is applied
to the summed layer. The leads are once again separated and sent into a decoding 64 unit
‘ReLU’ layer, and a 41 unit ‘ReLU’ layer, which attempts to reconstruct the original signal
from its respective lead. The output of summed layer is fed into a simple feed forward
neural network. This simple feed forward neural network consisting of only 1 hidden layer
with a hidden unit size of 128 and a ‘ReLU’ activation function; the output is then fed
into a sigmoid layer to obtain a prediction. The model utilizes the ADAM optimizer, and
a batch size of 64.
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