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Abstract

We propose a novel approach using represen-

tation learning for tackling the problem of ex-

tracting structured information from form-like

document images. We propose an extraction

system that uses knowledge of the types of the

target fields to generate extraction candidates,

and a neural network architecture that learns a

dense representation of each candidate based

on neighboring words in the document. These

learned representations are not only useful in

solving the extraction task for unseen docu-

ment templates from two different domains,

but are also interpretable, as we show using

loss cases.

1 Introduction

In this paper, we present a novel approach to the

task of extracting structured information from form-

like documents using a learned representation of

an extraction candidate. Form-like documents like

invoices, purchase orders, tax forms and insurance

quotes are common in day-to-day business work-

flows, but current techniques for processing them

largely still employ either manual effort or brit-

tle and error-prone heuristics for extraction. The

research question motivating our work is the fol-

lowing: given a target set of fields for a particular

domain – e.g., due date and total amount for in-

voices – along with a small set of manually-labeled

examples, can we learn to extract these fields from

unseen documents?

Take, for instance, the domain of invoices, a doc-

ument type that large enterprises often receive and

process thousands of times every week (iPayables,

2016). Invoices from different vendors often

present the same types of information but with dif-

ferent layouts and positioning. Figure 1 shows the

headers of invoices from a few different vendors

†Work done during an internship at Google Research

Figure 1: Excerpts from sample invoices from different

vendors. Instances of the invoice_date field are

highlighted in green.

showing the invoice date (highlighted in green)

and number in different layouts. Furthermore, in-

voices from the same supplier even share similar

presentation and differ only in specific values. We

refer to this unit of visual pattern that is similar

across a collection of documents as a template,

and the fields of information that are common

across templates in a domain as the schema. The

schema consists of fields like invoice_date

and total_amount, each associated with a type

like date and currency.

Extracting values for these fields from a given

document, particularly one belonging to an unseen

template, is a challenging problem for many rea-

sons. In contrast to most prior work on information

extraction (Sarawagi, 2008), templatic documents

do not contain much prose. Approaches that work

well on natural text organized in sentences can-

not be applied directly to such documents where

spatial layout elements like tables and grid format-

ting are commonplace. Understanding spatial rela-

tionships is critical for achieving good extraction

performance on such documents. Moreover, these

documents are usually in PDF or scanned image

formats, so these presentation hints are not explic-

itly available in a markup language. Techniques

that are successful on HTML documents such as



6496

web pages, including traditional wrapper induction

approaches (Dalvi et al., 2011), are therefore not

immediately applicable.

Recently, there has been a surge in research in-

terest in solving this extraction task adapting tech-

niques in natural language processing (Liu et al.,

2019), computer vision (Davis et al., 2019), or com-

binations thereof (Katti et al., 2018). In contrast to

this body of work, we propose an approach based

on representation learning for this task. We first

generate extraction candidates for each target field

using its associated type (e.g., all dates as candi-

dates for invoice_date). We then use a neural

network model to learn a dense representation for

each extraction candidate independent of the field

to which it belongs. We also learn a separate repre-

sentation for the field itself, and use the similarity

between the candidate and field representations to

score the candidate according to how likely it is to

be the true extraction value for that field.

The design of our extraction system rests on a

few observations about how information is often

laid out in form-like documents (see Section 2).

An advantage of our representation learning ap-

proach is that it allows us to encode certain priors

we developed based on these observations into the

architecture of the neural network and its input fea-

tures (see Section 4). In fact, our experiments show

that our proposed neural architecture outperforms a

more naive MLP baseline using the same input fea-

tures by about 10 F1 points on the extraction task

for two different domains (see Section 6). Further-

more, the learned candidate representations are also

meaningful and lend themselves to interpretation,

as we show by delving into some loss cases.

2 Observations about Forms

We make three key observations about form-like

documents that inform our design.

Observation 1 Each field often corresponds to a

well-understood type. For example, the only likely

extraction candidates for the invoice_date

field in an invoice are instances of dates. A cur-

rency amount like $25.00 would clearly be incor-

rect. Since there are orders of magnitude fewer

dates on an invoice as there are text tokens, limit-

ing the search space by type dramatically simplifies

the problem. Consequently, we use a library of de-

tectors for several common types such as dates,

currency amounts, integers, address portals, emails

addresses, etc. to generate candidates.

Observation 2 Each field instance is usually as-

sociated with a key phrase that bears an apparent

visual relationship with it. Consider the invoice ex-

cerpt in Figure 1(c). It contains two date instances,

only one of which is the true invoice_date,

as indicated by the word “Date” next to it. Simi-

larly, in the bottom-right invoice excerpt, we are

easily able to distinguish between the invoice num-

ber (indicated by “Invoice #”) and the purchase

order number (indicated by “PO #”). We call such

indicative words key phrases.

Proximity is not the only criterion that defines a

key phrase. For instance, the word “Date” is not the

nearest one to the true invoice_date instance

in Figure 1(c); the document number in the line

above and the page number below are clearly closer.

It is also not the case that the key phrase always

occurs on the same line; Figure 1(a) shows a case

where the key phrase “DATE” occurs just above

the true invoice_date. An effective solution

needs to combine the spatial information along

with the textual information. Fortunately, in our

experience, these spatial relationships exhibit only

a small number of variations across templates, and

these tend to generalize across fields and domains.

Observation 3 Key phrases for a field are largely

drawn from a small vocabulary of field-specific

variants. In a corpus of invoices we collected, we

observed that, as exemplified by the samples in Fig-

ure 1, about 93% of the nearly 8400 invoice date

instances were associated with key phrases that in-

cluded the words “date” or “dated” and about 30%

included “invoice”. Only about 7% of invoice dates

had neither of these words in their key phrases.

Similarly, 87% of the nearly 2800 due_date in-

stances in our corpus had key phrases that con-

tained the word “due” and 81% contained “date”.

We found similar patterns for all other fields we

investigated. The fact that there are only a small

number of field-specific key phrases suggests that

this problem may be tractable with modest amounts

of training data.

While these observations are applicable to many

fields across different document types, there are

several exceptions which we plan to tackle in future

work.

3 Extraction Pipeline

We leveraged the observations laid out in Section 2

to build a system to solve the information extraction

task for form-like documents. Given a document
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and a target schema, we generate extraction candi-

dates for each field from the document text using

the field type. We then score each candidate inde-

pendently using a neural scoring model. Finally,

we assign at most one scored candidate as an ex-

traction result for each field. We discuss the stages

of this pipeline here, and delve into the architecture

of the scoring model in Section 4.

3.1 Ingestion

Our system can ingest both native digital as well as

scanned documents. We render each document to

an image and use a cloud OCR service1 to extract

all the text in it.

The text in the OCR result is arranged in the

form of a hierarchy with individual characters at

the leaf level, and words, paragraphs and blocks

respectively in higher levels. The nodes in each

level of the hierarchy are associated with bounding

boxes represented in the 2D Cartesian plane of

the document page. The words in a paragraph are

arranged in reading order, as are the paragraphs

and blocks themselves.

3.2 Candidate Generation

In Section 2, we made the observation that fields in

our target schema correspond to well-understood

types like dates, integers, currency amounts, ad-

dresses, etc. There are well-known techniques to

detect instances of these types in text, ranging from

regular expression matching and heuristics to se-

quence labeling using models trained on web data.

We associate each field type supported by our

system with one or more candidate generators.

These generators use a cloud-based entity extrac-

tion service2 to detect spans of the OCR text ex-

tracted from the documents that are instances of

the corresponding type. For example, every date

in an invoice becomes a candidate for every date

field in the target schema, viz. invoice_date,

due_date and delivery_date.

Since the recall of the overall extraction system

cannot exceed that of the candidate generators, it

is important that their recall be high. Precision is,

however, largely the responsibility of the scorer

and assigner.

3.3 Scoring and Assignment

Given a set of candidates from a document for each

field in the target schema, the crux of the extraction

1cloud.google.com/vision
2cloud.google.com/natural-language

task is to identify the correct extraction candidate

(if any) for each field. While there are many ap-

proaches one could take to solve this problem, we

made the design choice to break it down to two

steps: first, we compute a score ∈ [0, 1] for each

candidate independently using a neural model, then

we assign to each field the scored candidate that is

most likely to be the true extraction for it.

This separation of scoring and assignment al-

lows us to learn a representation for each candidate

based only on its neighborhood, independently of

other candidates and fields. It also frees us to en-

code arbitrarily complex business rules into the

assigner if required, for example, that the due date

for an invoice cannot (chronologically) precede its

invoice date, or that the line item prices must sum

up to the total.

For brevity, we omit the details of the assignment

module and report results using a simple assigner

that chooses the highest-scoring candidate for each

field independently of other fields.

4 Neural Scoring Model

The scoring module takes as input the target field

from the schema and the extraction candidate to

produce a prediction score ∈ [0, 1]. While the

downstream assignement module consumes the

scores directly, the scorer is trained and evalu-

ated as a binary classifier. The target label for a

candidate is determined by whether the candidate

matches the ground truth for that document and

field.

An important desideratum for us in the design of

the scorer is that it learns a meaningful candidate

representation. We propose an architecture where

the model learns separate embeddings for the can-

didate and the field it belongs to, and where the

similarity between the candidate and field embed-

dings determines the score.

We believe that such an architecture allows a

single model to learn candidate representations that

generalize across fields and document templates.

We can conceptualize the learned representation of

a candidate as encoding what words in its neighbor-

hood form its associated key phrase since, apropos

Observation 2, the spatial relationships between

candidates and their key phrases are observed to

generalize across fields. On the other hand, the

embedding for a field can be conceptualized as

encoding the key phrase variants that are usually

indicative of it, apropos Observation 3.

cloud.google.com/vision
cloud.google.com/natural-language
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Figure 2: Neighbor ‘Invoice’ for invoice_date

candidate with relative position (−0.06,−0.01).

4.1 Candidate features

We would like our model to learn a representa-

tion of a candidate that captures its neighborhood.

Accordingly, the essential features of a candidate

are the text tokens that appear nearby, along with

their positions. We use a simple heuristic to de-

termine what OCR text tokens we consider to be

the neighbors of a given candidate: we define a

neighborhood zone around the candidate extending

all the way to the left of the page and about 10%

of the page height above it. Any text tokens whose

bounding boxes overlap by more than half with the

neighborhood zone is considered to be a neighbor.

As shown in Figure 2, we represent the position

of a candidate and each of its neighbors using the

2-D Cartesian coordinates of the centroids of their

respective bounding boxes. These coordinates are

normalized by dividing by the corresponding page

dimensions so that the features are independent of

the pixel resolution of the input documents. We

calculate the relative position of a neighbor as the

difference between its normalized 2-D coordinates

and those of the candidate. An additional feature

we found to be helpful is the absolute position of

the candidate itself.

An important design choice we made is to not

incorporate the candidate text into the input. Note

that this text was already the basis for generating

the candidate in the first place. Withholding this

information from the input to the model avoids ac-

cidental overfitting to our somewhat-small training

datasets. For instance, since the invoices we col-

lected were all dated prior to 2019, it is possible

that providing the date itself as input to the model

could cause it to learn that true invoice_date

instances always occur prior to 2019.

4.2 Embeddings

As shown in Figure 3 (a)-(d), we embed each of the

candidate features separately in the following ways.

Figure 3: Neural Scoring Model. Pos. = Positional,

Cand. = Candidate, Embed. = Embedding

The neighboring text tokens are embedded using a

word embedding table. Each neighbor relative po-

sition is embedded through a nonlinear positional

embedding consisting of two ReLU-activated lay-

ers with dropout. This nonlinear embedding allows

the model to learn to resolve fine-grained differ-

ences in position, say between neighbors sharing

the same line as the candidate and those on the line

above. The candidate position feature is embedded

using just a linear layer. We also use an embedding

table for the field to which a candidate belongs.

In a model with embedding dimension d, the

sizes of each neighbor’s word and position embed-

dings are set to be d. We experimented with dif-

ferent sizes for the word and position embeddings,

but it did not make a significant difference. For

simplicity of exposition, we use the same value for

both. Since each candidate is padded to have the

same number of neighbors, say N , we denote the

neighbor embeddings {h1,h2, . . . ,hN}, with each

hi ∈ R
2d. We also set the sizes of the candidate

position embedding as well as the field embedding

to be d.

Neighbor Encodings It is important to note that

the initial neighbor embeddings hi (Figure 3 (d))

are independent of each other. In order to cap-

ture interactions between neighbors, we employ

self-attention (Vaswani et al., 2017), allowing each

neighbor to have its embedding affected by all oth-

ers. This is useful, for example, for the model to

downweight a neighbor that has other neighbors

between itself and the candidate.

We pack the neighbor embeddings hi into a

matrix H ∈ R
N×2d, then transform these em-
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bdeddings into query, key and value embeddings

through three different linear projection matrices

Wq, Wk and Wv ∈ R
2d×2d.

qi = hiWq K = HWk V = HWv

For each neighbor i, its query embedding qi

and the key embeddings K are used to obtain the

attention weight vector αi ∈ R
N as follows.

αi = Softmax

Ç

qiK
T

√
2d

å

The self-attended neighbor encoding h̃i ∈ R
2d

(see Figure 3(e)) for neighbor i is a linear combina-

tion of the value embeddings, V ∈ R
N×2d, using

the above attention weights for all the neighbors

h̃i = αiV .

As in Vaswani et al. (2017), we use a normal-

ization constant of
√
2d to improve stability. We

project the self-attended neighbor encodings to a

larger 4× 2d dimensional space using a linear pro-

jection with ReLU nonlinearity, and then project

them back to 2d.

4.3 Candidate Encoding

We combine the N neighbor encodings of size 2d
each to form a single encoding of size 2d for the

entire neighborhood. Since we already capture in-

formation about the relative positions of the neigh-

bors with respect to the candidates in the embed-

dings themselves, it is important to ensure that the

neighborhood encoding is invariant to the (arbi-

trary) order in which the neighbors are included in

the features. Our experiments indicate that max-

pooling the neighbor encodings together was the

best strategy, slightly beating out mean-pooling.

Next, we obtain a candidate encoding (see Fig-

ure 3(f, h, i)) by concatenating the neighborhood

encoding ∈ R
2d with the candidate position em-

bedding ∈ R
d and projecting (through a ReLU-

activated linear layer) back down to d dimensions.

Candidate Scoring The candidate encoding is

expected to contain all relevant information about

the candidate, including its position and its neigh-

borhood. By design, it is independent of the field to

which said candidate belongs. This neural network

is, however, trained as a binary classifier to score

a candidate according to how likely it is to be the

true extraction value for some field and document.

Drawing inspiration from prior work in metric

learning (Kulis, 2013), given a field with embed-

ding f ∈ R
d and its candidate with encoding c ∈

Corpus Split # Docs # Templates

Invoices1
Train 11,390 11,390
Validation 2,847 2,847

Invoices2 Test 595 595

Receipts
Train 237 141
Validation 71 47
Test 170 46

Table 1: Invoices and Receipts corpora

R
d, we compute CosineSimilarity(c, f) ∈ [−1, 1].

Finally, the model’s prediction is simply a (con-

stant) linear rescaling of this similarity so that the

scores lie in [0, 1]. The model is trained using bi-

nary cross entropy between this prediction and the

target label as the loss function.

Intuitively, this architecture ensures that the pos-

itive candidates for a field cluster together near

its field embedding, and that these clusters are set

far apart from each other. We use TSNE (Maaten

and Hinton, 2008) to visualize this phenomenon in

Section 6.2.

5 Datasets

To analyze the performance of our model, we used

datasets belonging to two different domains, sum-

marized in Table 1.

Invoices We collected two corpora of invoices

from different sources. The first corpus, Invoices1,

contains 14,237 single-page invoices. Each invoice

was from a different vendor, so the documents do

not share any common templates. Documents from

the same vendor are generated from the same tem-

plate. The second corpus, Invoices2, contains 595

documents belonging to different templates, with

no templates in common with Invoices1. In all of

our experiments, we used a 60-40 split of templates

in Invoices1 as our training and validation sets, and

all the templates in Invoices2 as our test set.

We asked human annotators to provide us ground

truth extraction results for the fields shown in Ta-

ble 2. The candidate generator associated with each

field type was used to generate examples, which

were then labeled using the ground truth.

About 95% of documents and fields present

the training set had at least one positive example

produced by our candidate generators. The field-

level recall of our candidate generators varies from

about 87% for invoice_id to about 99% for

invoice_date. Improving the recall of candi-

date generators is part of our ongoing effort.
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While the candidate generators have reason-

ably high recall, their precision varies dramat-

ically from field to field. For common fields

like invoice_date and total_amount that

are present in nearly all documents, we gen-

erate fewer than ten negatives for each posi-

tive example. On the other hand, for rare

fields like total_tax_amount as well as for

fields with low-precision candidate generators

such as the alphanum candidate generator for

purchase_order, there can sometimes be

dozens of negatives for each positive. Overall,

since the negatives far outnumber the positives,

we found it helpful to randomly downsample nega-

tives in the training set to keep at most 40 negatives

for each positive per field. The negatives in the

validation and test sets were not downsampled.

We created a vocabulary of the 512 most fre-

quent tokens, case-normalized, taken from the

OCR text of the documents in Invoices1. The vo-

cabulary also includes special tokens for numbers

([NUMBER]), out-of-vocabulary tokens ([RARE])

and padding ([PAD]). Despite the small size of

this vocabulary, it covered at least 95% of words

that occurred in key phrases across the entire corpus

where excluded words were usually OCR errors.

Receipts We also evaluated our model using a

publicly-available corpus of scanned receipts pub-

lished as part of the ICDAR 2019 Robust Reading

Challenge on Scanned Receipts OCR and Infor-

mation Extraction3. This corpus contains 626 re-

ceipt images with ground truth extraction results

for four fields, viz., address, company, date

and total. Using the company annotation as the

template mapping, we found that these documents

belong to 234 templates. The largest template con-

tains 46 receipts and about half the documents be-

long to 13 templates with more than 10 documents

each. On the other hand, nearly 70% of templates

only have a single document. In all of our exper-

iments, we used a 60-20-20 split of templates as

our training, validation and test sets respectively,

sampling at most 5 documents from each template.

Our target schema for this extraction task con-

sists of the date and total fields. We generated

labeled examples for these two fields using a vocab-

ulary created as above from the 512 most frequent

terms in the OCR text of the receipts. The fields in

this dataset did not suffer from the label imbalance

problem highlighted above for invoices.

3rrc.cvc.uab.es/?ch=13

6 Experiments

In this section, we evaluate our scoring model with

respect to our two key desiderata. First, in Sec-

tion 6.1, we show that our model is able to help the

extraction system generalize to unseen templates.

Then, in Section 6.2, we probe the model to show

that it learns meaningful internal representations.

In the experiments described below, we trained

models using the Rectified Adam (Liu et al., 2020)

optimizer with a learning rate of 0.001 for 50

epochs. For both the Invoices and Receipts datasets

described in Section 5, we used the training split

to train the model, the validation split to pick the

model with the best hold-out loss, and the test split

to report performance metrics.

6.1 Generalization to unseen templates

We measured the performance of our model’s scor-

ing predictions using ROC AUC on the test split.

We also analyzed its performance in the context

of the overall extraction system using the accuracy

of the end-to-end extraction results as measured

by the maximum F1 score over all decision thresh-

olds, averaged across all fields in the target schema

shown in Table 2.

To demonstrate the benefits of our proposed neu-

ral architecture over a naive approach, we use two

different baseline models for encoding a candidate

and scoring it. The bag-of-words BoW baseline

incorporates only the neighboring tokens of a can-

didate, but not their positions. The MLP base-

line uses the same input features as our proposed

model, including the relative positions of the candi-

date’s neighbors, and encodes the candidate using

3 hidden layers. Both these baselines follow our

representation learning approach, encoding the can-

didate and the field separately. Just as in our model,

the final score is the cosine distance between the

candidate and field encodings, normalized to [0, 1]
using a sigmoid.

We chose the dimension size for each model

architecture using a grid-based hyperparameter

search. All the metrics we report were obtained

from performing 10 training runs and picking the

model with the best validation ROC AUC.

Table 2 summarizes the results of this per-

formance comparison. On both our evaluation

datasets, our model showed a significant improve-

ment over the baselines by both metrics. For the

invoice corpus, our model outperforms the BoW

baseline by about 1 point in the scorer ROC AUC,

rrc.cvc.uab.es/?ch=13


6501

Corpus Field Field Type
Train Test Scorer ROC AUC End-to-End Max F1

# +ves % +ves BoW MLP Ours BoW MLP Ours
In

v
o

ic
es

amount_due currency 5,930 4.8% 0.967 0.968 0.973 0.800 0.789 0.801
due_date date 5,788 12.9% 0.977 0.973 0.984 0.835 0.850 0.861
invoice_date date 13,638 57.4% 0.983 0.986 0.986 0.933 0.939 0.940
invoice_id alphanum 13,719 6.8% 0.983 0.988 0.993 0.913 0.937 0.949
purchase_order alphanum 13,262 2.2% 0.959 0.967 0.976 0.826 0.851 0.896
total_amount currency 8,182 12.5% 0.966 0.972 0.980 0.834 0.849 0.858
total_tax_amount currency 2,949 7.5% 0.975 0.967 0.980 0.756 0.812 0.839

Macro-average - 14.9% 0.973 0.974 0.982 0.842 0.861 0.878

R
ec

ei
p

ts date date 258 85.5% 0.748 0.792 0.737 0.885 0.885 0.854
total currency 475 16.7% 0.834 0.796 0.889 0.631 0.607 0.813

Macro-average - 51.1% 0.791 0.794 0.813 0.758 0.746 0.833

Table 2: Performance on the test set of unseen templates for Invoices and Receipts. The best-performing architec-

ture in each case is highlighted.

which translates to about 3.6 points improvement

in the end-to-end Max F1. In fact, our model beats

the baseline in every field in our invoice target

schema as well. This difference in performance

clearly demonstrates the need to incorporate token

positions to extract information accurately from

form-like documents. Using neighbor position in-

formation, the MLP baseline is able to outperform

the BoW baseline as well, but the improvement in

end-to-end Max F1 is only about 2 points. This

result demonstrates that our proposed architecture

is better able to encode position information than a

naive MLP.

Similarly, for the receipt corpus also, our model

outperforms both the baselines. The improvement

is much larger for the total field, more than 20

points. For the date field, since there are too few

negative candidates in the dataset, all the models

have comparable performance end-to-end.

A close examination of the per-field performance

metrics in Table 2 reveals that model performance

is greatly affected by both the number of posi-

tive training candidates, as well as by the ratio

of positives to negatives. The best performance

is observed for fields that occur frequently in in-

voices (e.g., invoice_id) and where the candi-

date generator emits only a small number of neg-

atives for each positive (e.g., invoice_date).

Conversely, the fields that are hardest to extract are

those that are relatively rare and have low-precision

candidate generators, viz., amount_due and

total_tax_amount.

We also studied our model performance over

various ablation setups and found that the relative

order in which various features influence general-

ization performance is: neighbor text > candidate

position > neighbor position. This result is also

borne out by the fact that the BoW baseline, which

omits the last of these features, is quite competitive

with the other approaches.

We also compared the performance of our

proposed architecture with and without the self-

attention layer applied to the neighbor encodings.

We found that self-attention contributes greatly to

model performance for the invoice corpus: not only

did self-attention lead to a 1-point improvement in

scorer ROC AUC and a 1.7 point improvement in

end-to-end max F1, we also observed an improve-

ment in every single field in our invoice schema.

6.2 Meaningful internal representations

We investigated the internal representations learned

by our model by visualizing their 2-D projections

using TSNE. Figure 4(a) shows the representa-

tions learned for date candidates. They are colored

based on the ground truth data indicating if they be-

long to one of invoice_date, due_date, or

delivery_date. The learned encodings clearly

show three distinct (by color) coherent clusters

matching the respective field labels.

Figure 4(b) shows the candidate encodings for a

sample of positive and negative date candidates for

the invoice_date field, along with the embed-

ding for that field. It is apparent that the encodings

of the positive examples are largely clustered to-

gether whereas the sampled negatives show a more

uniform and sparse spatial distribution. Further-

more, the field embedding lies close to the cluster

of positive examples. It is interesting to note that

the field embedding lies not at the center of the

cluster, but rather at its edge, as far away as possi-

ble from the clusters of positive examples for other
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Figure 4: TSNE visualizations for (a) positive candidate encodings for the date fields in the target schema for in-

voices, and (b) positive and negative candidate encodings for invoice_date field as well as its field embedding.

(c), (d) and (e) show three cases of misclustered candidate encodings

fields. This pattern is predicted by the fact that the

loss function is essentially trying to minimize the

cosine distance between the field embedding and

its positives, while maximizing its distance from

its negatives, most importantly the positives for the

other fields.

We also indicate three cases of misclustered can-

didate encodings in Figure 4(a), whose correspond-

ing invoice candidates and their neighborhoods are

excerpted below. Figure 4(c) shows a ground truth

positive invoice_date example whose encod-

ing is far from the invoice_date cluster. It is

clear from examining the invoice that this is an

error in the ground truth labels provided by the

human annotator. In fact, this date is the date

of purchase and not the invoice date. The can-

didate shown in Figure 4(d) has a candidate en-

coding that lies midway between due_date, its

true label, and invoice_date. We believe this

is explained by the fact that this date has both the

terms “Due Date” and “date of invoice” nearby,

which are usually indicative of due_date and

invoice_date respectively. Finally, Figure 4(e)

shows a true invoice_date example whose en-

coding is far away from all the field clusters. A

closer examination of the features of this candidate

showed that our OCR engine was unable to detect

the word “Date” just above the date due to scan-

ning noise. Since this crucial word was missing

from the neighbors of this candidate, the learned

neighborhood representation was clearly incorrect.

7 Related Work

Information extraction from plain text documents

for tasks like named entity recognition and relation

extraction have benefited from recent advances in

deep learning (Lample et al., 2016; Peng et al.,

2017). However, these techniques are not directly

applicable to our task on form-like documents.

Palm et al. (2017) attempts to use RNNs to extract

information from form-like documents. However,

they treat each line as a vector of n-grams limiting

the resulting accuracy.

The importance of understanding visual layout

was recognized even in the context of information

extraction of webpages in recent work (Cai et al.,

2004; Yu et al., 2003; Zhu et al., 2006; Cai et al.,

2003). The techniques developed by them are, how-

ever, not immediately applicable in our context

since we do not have access to the source markup

representation for the documents we deal with.

A common approach to solving the problem of

extracting information from form-like documents

is to register templates in a system, match new doc-

uments to an existing template, and use an extractor

learnt from said template (Chiticariu et al., 2013;

Schuster et al., 2013). The learning problem we

tackle in this paper is more ambitious; we seek to

generalize to unseen templates.

Our work is most closely related to recent at-

tempts to combine layout features with text signals.

Liu et al. (2019) use a document graph and intro-
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duce a graph combination model to combine visual

and textual signals in the document. Katti et al.

(2018) represent a document as a two-dimensional

grid of text tokens. Zhao et al. (2019) show that us-

ing grid information can be useful for information

extraction tasks. Denk and Reisswig (2019) com-

bine the grid-based approach with BERT-based text

encodings. While an apples-to-apples comparison

with these approaches is difficult without a shared

benchmark, our system has several advantages: in

contrast to the graph-based approaches (Liu et al.,

2019) we focus on the harder problem of general-

izing to unseen templates rather than dealing with

the variations within a template. Since we are not

starting with raw pixels, our approach is computa-

tionally less expensive than grid-based approaches.

Further, we do not require clever heuristics to con-

struct a multi-scale grid that is required for the

image-segmentation style abstraction to work well.

To the best of our knowledge, our approach of

using representation learning for this task is the

first of its kind. We gain many of the well-known

benefits of this approach (Bengio et al., 2013), most

notably interpretability.

8 Conclusion and Future Work

In this paper, we presented a novel approach to

the task of extracting structured information from

templatic documents using representation learning.

We showed that our extraction system using this

approach not only has promising accuracy on un-

seen templates in two different domains, but also

that the learned representations lend themselves to

interpretation of loss cases.

In this initial foray into this challenging problem,

we limited our scope to fields with domain-agnostic

types like dates and numbers, and which have only

one true value in a document. In future work, we

hope to tackle repeated fields and learn domain-

specific candidate generators. We are also actively

investigating how our learned candidate represen-

tations can be used for transfer learning to a new

domain and, ultimately, in a few-shot setting.
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