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Abstract

Methods of deep neural networks (DNNs)

have recently demonstrated superior perfor-

mance on a number of natural language pro-

cessing tasks. However, in most previous

work, the models are learned based on ei-

ther unsupervised objectives, which does not

directly optimize the desired task, or single-

task supervised objectives, which often suf-

fer from insufficient training data. We de-

velop a multi-task DNN for learning represen-

tations across multiple tasks, not only leverag-

ing large amounts of cross-task data, but also

benefiting from a regularization effect that

leads to more general representations to help

tasks in new domains. Our multi-task DNN

approach combines tasks of multiple-domain

classification (for query classification) and in-

formation retrieval (ranking for web search),

and demonstrates significant gains over strong

baselines in a comprehensive set of domain

adaptation.

1 Introduction

Recent advances in deep neural networks (DNNs)

have demonstrated the importance of learning

vector-space representations of text, e.g., words and

sentences, for a number of natural language process-

ing tasks. For example, the study reported in (Col-

lobert et al., 2011) demonstrated significant accu-

racy gains in tagging, named entity recognition, and

semantic role labeling when using vector space word

∗This research was conducted during the author’s internship at

Microsoft Research.

representations learned from large corpora. Fur-

ther, since these representations are usually in a low-

dimensional vector space, they result in more com-

pact models than those built from surface-form fea-

tures. A recent successful example is the parser by

(Chen and Manning, 2014), which is not only accu-

rate but also fast.

However, existing vector-space representation

learning methods are far from optimal. Most pre-

vious methods are based on unsupervised objectives

such as word prediction for training (Mikolov et al.,

2013c; Pennington et al., 2014). Other methods use

supervised training objectives on a single task, e.g.

(Socher et al., 2013), and thus are often constrained

by limited amounts of training data. Motivated by

the success of multi-task learning (Caruana, 1997),

we propose in this paper a multi-task DNN approach

for representation learning that leverages supervised

data from many tasks. In addition to the benefit of

having more data for training, the use of multi-task

also profits from a regularization effect, i.e., reduc-

ing overfitting to a specific task, thus making the

learned representations universal across tasks.

Our contributions are of two-folds: First, we pro-

pose a multi-task deep neural network for represen-

tation learning, in particular focusing on semantic

classification (query classification) and semantic in-

formation retrieval (ranking for web search) tasks.

Our model learns to map arbitrary text queries and

documents into semantic vector representations in

a low dimensional latent space. While the general

concept of multi-task neural nets is not new, our

model is novel in that it successfully combines tasks

as disparate as operations necessary for classifica-



tion or ranking.

Second, we demonstrate strong results on query

classification and web search. Our multi-task rep-

resentation learning consistently outperforms state-

of-the-art baselines. Meanwhile, we show that our

model is not only compact but it also enables ag-

ile deployment into new domains. This is because

the learned representations allow domain adaptation

with substantially fewer in-domain labels.

2 Multi-Task Representation Learning

2.1 Preliminaries

Our multi-task model combines classification and

ranking tasks. For concreteness, throughout this pa-

per we will use query classification as the classifica-

tion task and web search as the ranking task. These

are important tasks in commercial search engines:

Query Classification: Given a search query Q,

the model classifies in the binary fashion as to

whether it belongs to one of the domains of inter-

est. For example, if the query Q is “Denver sushi”,

the classifier should decide that it belongs to the

“Restaurant” domain. Accurate query classification

enables a richer personalized user experience, since

the search engine can tailor the interface and results.

It is however challenging because queries tend to be

short (Shen et al., 2006). Surface-form word fea-

tures that are common in traditional document clas-

sification problems tend to be too sparse for query

classification, so representation learning is a promis-

ing solution. In this study, we classify queries into

four domains of interest: (“Restaurant”, “Hotel”,

“Flight”, “Nightlife”). Note that one query can be-

long to multiple domains. Therefore, a set of bi-

nary classifiers are built, one for each domain, to

perform the classification. We frame the problem

as four binary classification tasks. Thus, for do-

main Ct, our goal is binary classification based on

P (Ct| Q) (Ct = {0, 1} ). For each domain t, we

assume supervised data (Q, yt = {0, 1} with yt as

binary labels.1

Web Search: Given a search query Q and a docu-

ment list L, the model ranks documents in the order

1One could frame the problem as a a single multi-class clas-

sification task, but our formulation is more practical as it al-

lows adding new domains without retraining existing classi-

fiers. This will be relevant in domain adaptation (§3.3).

of relevance. For example, if the query Q is ”Denver

sushi”, model returns a list of documents that satis-

fies such information need. Formally, we estimate

P (D1|Q), P (D2|Q), . . . for each document Dn and

rank according to these probabilities. We assume

that supervised data exist; I.e., there is at least one

relevant document Dn for each query Q.

2.2 The Proposed Multi-Task DNN Model

Briefly, our proposed model maps any arbi-

trary queries Q or documents D into fixed low-

dimensional vector representations using DNNs.

These vectors can then be used to perform query

classification or web search. In contrast to exist-

ing representation learning methods which employ

either unsupervised or single-task supervised objec-

tives, our model learns these representations using

multi-task objectives.

The architecture of our multi-task DNN model

is shown in Figure 1. The lower layers are shared

across different tasks, whereas the top layers repre-

sent task-specific outputs. Importantly, the input X
(either a query or document), initially represented as

a bag of words, is mapped to a vector (l2) of dimen-

sion 300. This is the shared semantic representation

that is trained by our multi-task objectives. In the

following, we elaborate the model in detail:

Word Hash Layer (l1): Traditionally, each word

is represented by a one-hot word vector, where the

dimensionality of the vector is the vocabulary size.

However, due to the large size of vocabulary in real-

world tasks, it is very expensive to learn such kind

of models. To alleviate this problem, we adopt the

word hashing method (Huang et al., 2013). We

map a one-hot word vector, with an extremely high

dimensionality, into a limited letter-trigram space

(e.g., with the dimensionality as low as 50k). For

example, word cat is hashed as the bag of letter tri-

gram {#-c-a, c-a-t, a-t-#}, where # is a boundary

symbol. Word hashing complements the one-hot

vector representation in two aspects: 1) out of vo-

cabulary words can be represented by letter-trigram

vectors; 2) spelling variations of the same word can

be mapped to the points that are close to each other

in the letter-trigram space.

Semantic-Representation Layer (l2): This is a

shared representation learned across different tasks.

this layer maps the letter-trigram inputs into a 300-
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Figure 1: Architecture of the Multi-task Deep Neural Network (DNN) for Representation Learning:

The lower layers are shared across all tasks, while top layers are task-specific. The input X (either a query or

document, with vocabulary size 500k) is first represented as a bag of words, then hashed into letter 3-grams

l1. Non-linear projection W1 generates the shared semantic representation, a vector l2 (dimension 300) that

is trained to capture the essential characteristics of queries and documents. Finally, for each task, additional

non-linear projections W t
2 generate task-specific representations l3 (dimension 128), followed by operations

necessary for classification or ranking.

dimensional vector by

l2 = f(W1 · l1) (1)

where f(·) is the tanh nonlinear activation f(z) =
1−e−2z

1+e−2z . This 50k-by-300 matrix W1 is responsible

for generating the cross-task semantic representation

for arbitrary text inputs (e.g., Q or D).

Task-Specific Representation (l3): For each

task, a nonlinear transformation maps the 300-

dimension semantic representation l2 into the 128-

dimension task-specific representation by

l3 = f(Wt
2 · l2) (2)

where, t denotes different tasks (query classification

or web search).

Query Classification Output: Suppose QC1 ≡
l3 = f(Wt=C1

2 · l2) is the 128-dimension task-

specific representation for a query Q. The proba-

bility that Q belongs to class C1 is predicted by a

logistic regression, with sigmoid g(z) = 1
1+e−z :

P (C1|Q) = g(Wt=C1

3 ·QC1) (3)

Web Search Output: For the web search

task, both the query Q and the document D are

mapped into 128-dimension task-specific represen-

tations QSq and DSd . Then, the relevance score is

Algorithm 1: Training a Multi-task DNN

Initialize model Θ : {W1,W
t
2
,Wt

3
} randomly

for iteration in 0...∞ do
1. Pick a task t randomly

2. Pick sample(s) from task t
(Q, yt = {0, 1}) for query classification

(Q,L) for web search

3. Compute loss: L(Θ)
L(Θ)=Eq. 5 for query classification

L(Θ)=Eq. 6 for web search

4. Compute gradient: ∇(Θ)
5. Update model: Θ = Θ− ǫ∇(Θ)

end

The task t is one of the query classification tasks or web search

task, as shown in Figure 1. For query classification, each train-

ing sample includes one query and its category label. For web

search, each training sample includes query and document list.

computed by cosine similarity as:

R(Q,D) = cos(QSq , DSd) =
QSq ·DSd

||QSq ||||DSd ||
(4)

2.3 The Training Procedure

In order to learn the parameters of our model, we use

mini-batch-based stochastic gradient descent (SGD)

as shown in Algorithm 1. In each iteration, a task t
is selected randomly, and the model is updated ac-



cording to the task-specific objective. This approx-

imately optimizes the sum of all multi-task objec-

tives. For query classification of class Ct, we use

the cross-entropy loss as the objective:

−{yt lnP (Ct|Q)+(1−yt) ln(1−P (Ct|Q))} (5)

where yt = {0, 1} is the label and the loss is

summed over all samples in the mini-batch (1024

samples in experiments).

The objective for web search used in this paper

follows the pair-wise learning-to-rank paradigm out-

lined in (Burges et al., 2005). Given a query Q, we

obtain a list of documents L that includes a clicked

document D+ (positive sample), and J randomly-

sampled non-clicked documents {D−
j }j=1,.,J . We

then minimize the negative log likelihood of the

clicked document (defined in Eq. 7) given queries

across the training data

− log
∏

(Q,D+)

P (D+|Q) (6)

where the probability of a given document D+ is

computed

P (D+|Q) =
exp(γR(Q,D+))

∑

D′∈L exp(γR(Q,D′))
(7)

here, γ is a tuning factor determined on held-out

data.

Additional training details: (1) Model parameters

are initialized with uniform distribution in the range

(−
√

6/(fanin + fanout),
√

6/(fanin + fanout))
(Montavon et al., 2012). Empirically, we have

not observed better performance by initialization

with layer-wise pre-training. (2) Moment methods

and AdaGrad training (Duchi et al., 2011) speed

up the convergence speed but gave similar results

as plain SGD. The SGD learning rate is fixed at

ǫ = 0.1/1024. (3) We run Algorithm 1 for 800K

iterations, taking 13 hours on an NVidia K20 GPU.

2.4 An Alternative View of the Multi-Task

Model

Our proposed multi-task DNN (Figure 1) can be

viewed as a combination of a standard DNN for clas-

sification and a Deep Structured Semantic Model

(DSSM) for ranking, shown in Figure 2. Other ways

to merge the models are possible. Figure 3 shows
an alternative multi-task architecture, where only the

query part is shared among all tasks and the DSSM
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Figure 2: A DNN model for classification and a

DSSM model (Huang et al., 2013) for ranking.

retains independent parameters for computing the

document representations. This is more similar to

the original DSSM. We have attempted training this

model using Algorithm 1, but it achieves good re-

sults on query classification at the expense of web

search. This is likely due to unbalanced updates (i.e.

parameters for queries are updated more often than

that of documents), and implying that the amount of

sharing is an important design choice in multi-task

models.

500k
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50k

300

QC1 QC2 QSq

500k

D

50k

300

DSd

Figure 3: An alternative multi-task architecture.

Compared with Figure 1, only the query part is

shared across tasks here.

3 Experimental Evaluation

3.1 Data Sets and Evaluation Metrics

We employ large-scale, real data sets in our eval-

uation. See Table 1 for statistics. The test data for

query classification were sampled from one-year log

files of a commercial search engine with labels (yes

or no) judged by humans. The test data for web

search contains 12,071 English queries, where each

query-document pair has a relevance label manually

annotated on a 5-level relevance scale: bad, fair,



Task
Query Classification Web

Restaurant Hotel Flight Nightlife Search

Training 1,585K 2,131K 1,880K 1,214K 4,084K queries & click-through documents

Test 3,074 6,307 6,199 298 12,071 queries / 897,770 documents

Table 1: Statistics of the data sets used in the experiments.

good, excellent and perfect. The evaluation metric

for query classification is the Area under of Receiver

Operating Characteristic (ROC) curve (AUC) score

(Bradley, 1997). For web search, we employ the

Normalized Discounted Cumulative Gain (NDCG)

(Järvelin and Kekäläinen, 2000).

3.2 Results on Accuracy

First, we evaluate whether our model can robustly

improve performance, measured as accuracy across

multiple tasks.

Table 2 summarizes the AUC scores for query

classification, comparing the following classifiers:

• SVM-Word: a SVM model2 with unigram, bi-

gram and trigram surface-form word features.

• SVM-Letter: a SVM model with letter trigram

features (i.e. l1 in Figure 1 as input to SVM).

• DNN: single-task deep neural net (Figure 2).

• MT-DNN: our multi-task proposal (Figure 1).

The results show that the proposed MT-DNN per-

forms best in all four domains. Further, we observe:

1. MT-DNN outperforms DNN, indicating the

usefulness of the multi-task objective (that in-

cludes web search) over the single-task objec-

tive of query classification.

2. Both DNN and MT-DNN outperform SVM-

Letter, which initially uses the same input fea-

tures (l1). This indicates the importance of

learning a semantic representation l2 on top of

these letter trigrams.

3. Both DNN and MT-DNN outperform a strong

SVM-Word baseline, which has a large feature

set that consists of 3 billion features.
Table 3 summarizes the NDCG results on web

search, comparing the following models:
2In this paper, we use the liblinear to build SVM

classifiers and optimize the corresponding parame-

ter C by using 5-fold cross-validation in training data.

http://www.csie.ntu.edu.tw/ cjlin/liblinear/

System
Query Classification

Restaurant Hotel Flight Nightlife

SVM-Word 90.91 75.82 91.17 91.27

SVM-Letter 88.75 69.65 85.51 87.71

DNN 97.38 76.81 95.58 93.24

MT-DNN 97.57 78.56 96.21 94.20

Table 2: Query Classification AUC results.

• Popular baselines in the web search literature,

e.g. BM25, Language Model, PLSA

• DSSM: single-task ranking model (Figure 2)

• MT-DNN: our multi-task proposal (Figure 1)

Again, we observe that MT-DNN performs best. For

example, MT-DNN achieves NDCG@1=0.334, out-

performing the current state-of-the-art single-task

DSSM (0.327) and the classic methods like PLSA

(0.308) and BM25 (0.305). This is a statistically sig-

nificant improvement (p < 0.05) over DSSM and

other baselines.

To recap, our MT-DNN robustly outperforms

strong baselines across all web search and query

classification tasks. Further, due to the use of larger

training data (from different domains) and the reg-

ularization effort as we discussed in Section 1, we

confirm the advantage of multi-task models over

than single-task ones.3

3.3 Results on Model Compactness and

Domain Adaptation

Important criteria for building practical systems are

agility of deployment and small memory footprint

and fast run-time. Our model satisfies both with

3We have also trained SVM using Word2Vec (Mikolov et al.,

2013b; Mikolov et al., 2013a) features. Unfortunately, the re-

sults are poor at 60-70 AUC, indicating the sub-optimality of

unsupervised representation learning objectives for actual pre-

diction tasks. We optimized the Word2Vec features in the SVM

baseline by scaling and normalizing as well, but did not ob-

serve much improvement.



Models NDCG@1 NDCG@3 NDCG@10

TF-IDF model (BM25) 0.305 0.328 0.388

Unigram Language Model (Zhai and Lafferty, 2001) 0.304 0.327 0.385

PLSA(Topic=100) (Hofmann, 1999; Gao et al., 2011) 0.305 0.335 0.402

PLSA(Topic=500) (Hofmann, 1999; Gao et al., 2011) 0.308 0.337 0.402

Latent Dirichlet Allocation (Topic=100) (Blei et al., 2003) 0.308 0.339 0.403

Latent Dirichlet Allocation (Topic=500) (Blei et al., 2003) 0.310 0.339 0.405

Bilingual Topic Model (Gao et al., 2011) 0.316 0.344 0.410

Word based Machine Translation model (Gao et al., 2010) 0.315 0.342 0.411

DSSM, J=50 (Figure 2, (Huang et al., 2013)) 0.327 0.359 0.432

MT-DNN (Proposed, Figure 3) 0.334* 0.363 0.434

Table 3: Web Search NDCG results. Here, * indicates statistical significance improvement compared to the

best baseline (DSSM) measured by t-test at p-value of 0.05.
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Figure 4: Domain Adaption in Query Classification: Comparison of features using SVM classifiers. The

X-axis indicates the amount of labeled samples used in training the SVM. Intuitively, the three feature

representations correspond to different layers in Figure 1. SemanticRepresentation is the l2 layer trained

by MT-DNN. Word3gram is input X and Letter3gram is word hash layer (l1), both not trained/adapted.

Generally, SemanticRepresentation performs best for small training labels, indicating its usefulness in

domain adaptation. Note that the numbers -3.0, -2.0, -1.0 and 0.0 in x-axis denote 0.1, 1, 10 and 100 percent

training data in each domain, respectively.
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Figure 5: Domain Adaptation in Query Classification. Comparison of different DNNs.

high model compactness. The key to the compact-

ness is the aggressive compression from the 500k-

dimensional bag-of-words input to 300-dimensional

semantic representation l2. This significantly re-

duces the memory/run-time requirements compared

to systems that rely on surface-form features. The

most expensive portion of the model is storage of the

50k-by-300 W1 and its matrix multiplication with

l1, which is sparse: this is trivial on modern hard-

ware. Our multi-task DNN takes < 150KB in mem-

ory whereas e.g. SVM-Word takes about 200MB.

Compactness is particularly important for query

classification, since one may desire to add new do-

mains after discovering new needs from the query

logs of an operational system. On the other hand, it

is prohibitively expensive to collect labeled training

data for new domains. Very often, we only have very

small training data or even no training data.

To evaluate the models using the above crite-

ria, we perform domain adaptation experiments on

query classification using the following procedure:

(1) Select one query classification task t∗. Train MT-

DNN on the remaining tasks (including Web Search

task) to obtain a semantic representation (l2); (2)

Given a fixed l2, train an SVM on the training data

t∗, using varying amounts of labels; (3) Evaluate the

AUC on the test data of t∗

We compare three SVM classifiers trained us-

ing different feature representations: (1) Semanti-

cRepresentation uses the l2 features generated ac-

cording to the above procedure. (2) Word3gram

uses unigram, bigram and trigram word features.

(3) Letter3gram uses letter-trigrams. Note that

Word3gram and Letter3gram correspond to SVM-

Word and SVM-Letter respectively in Table 2.

The AUC results for different amounts of t∗ train-

ing data are shown in Figure 4. In the Hotel, Flight

and Restaurant domains, we observe that our seman-

tic representation dominated the other two feature

representations (Word3gram and Letter3gram) in

all cases except the extremely large-data regime

(more than 1 million training samples in domain t∗).

Given sufficient labels, SVM is able to train well on

Word3gram sparse features, but for most cases Se-



manticRepresentation is recommended.4

In a further experiment, we compare the follow-

ing two DNNs using the same domain adaptation

procedure: (1) DNN1: DNN where W1 is ran-

domly initialized and parameters W1,W2,W
t∗

3 are

trained on varying amounts of data in t∗; (2) DNN2:

DNN where W1 is obtained from other tasks (i.e.

SemanticRepresentation) and fixed, while param-

eters W2,W
t∗

3 are trained on varying amounts of

data in t∗. The purpose is to see whether shared se-

mantic representation is useful even under a DNN

architecture. Figure 5 show the AUC results of

DNN1 vs. DNN2 (the results SVM denotes the

same system as SemanticRepresentation in Figure

4, plotted here for reference). We observe that when

the training data is extremely large (millions of sam-

ples), one does best by training all parameters from

scratch (DNN1). Otherwise, one is better off using

a shared semantic representation trained by multi-

task objectives. Comparing DNN2 and SVM with

SemanticRepresentation, we note that SVM works

best for training data of several thousand samples;

DNN2 works best in the medium data range.

4 Related Work

There is a large body of work on representation

learning for natural language processing, sometimes

using different terminologies for similar concepts;

e.g., feature generation, dimensionality reduction,

and vector space models. The main motivation is

similar: to abstract away from surface forms in

words, sentences, or documents, in order to alle-

viate sparsity and approximate semantics. Tradi-

tional techniques include LSA (Deerwester et al.,

1990), ESA (Gabrilovich and Markovitch, 2007),

PCA (Karhunen, 1998), and non-linear kernel vari-

ants (Schölkopf et al., 1998). Recently, learning-

based approaches inspired by neural networks, es-

pecially DNNs, have gained in prominence, due to

their favorable performance (Huang et al., 2013; Ba-

roni et al., 2014; Milajevs et al., 2014).

Popular methods for learning word representa-

tions include (Collobert et al., 2011; Mikolov et al.,

2013c; Mnih and Kavukcuoglu, 2013; Pennington

et al., 2014): all are based on unsupervised objec-

4The trends differ slightly in the Nightlife domain. We believe

this may be due to data bias on test data (only 298 samples).

tives of predicting words or word frequencies from

raw text. End-to-end neural network models for spe-

cific tasks (e.g. parsing) often use these word repre-

sentations as initialization, which are then iteratively

improved by optimizing a supervised objective (e.g.

parsing accuracy). A selection of successful appli-

cations of this approach include sequence labeling

(Turian et al., 2010), parsing (Chen and Manning,

2014), sentiment (Socher et al., 2013), question an-

swering (Iyyer et al., 2014) and translation modeling

(Gao et al., 2014a).

Our model takes queries and documents as in-

put, so it learns sentence/document representations.

This is currently an open research question, the chal-

lenge being how to properly model semantic com-

positionality of words in vector space (Huang et al.,

2013; M. Baroni and Zamparelli, 2013; Socher et

al., 2013). While we adopt a bag-of-words approach

for practical reasons (memory and run-time), our

multi-task framework is extensible to other meth-

ods for sentence/document representations, such as

those based on convolutional networks (Kalchbren-

ner et al., 2014; Shen et al., 2014; Gao et al., 2014b),

parse tree structure (Irsoy and Cardie, 2014), and

run-time inference (Le and Mikolov, 2014).

The synergy between multi-task learning and neu-

ral nets is quite natural; the general idea dates back

to (Caruana, 1997). The main challenge is in design-

ing the tasks and the network structure. For exam-

ple, (Collobert et al., 2011) defined part-of-speech

tagging, chunking, and named entity recognition as

multiple tasks in a single sequence labeler; (Bordes

et al., 2012) defined multiple data sources as tasks

in their relation extraction system. While concep-

tually similar, our model is novel in that it com-

bines tasks as disparate as classification and rank-

ing. Further, considering that multi-task models of-

ten exhibit mixed results (i.e. gains in some tasks but

degradation in others), our accuracy improvements

across all tasks is a very satisfactory result.

5 Conclusion

In this work, we propose a robust and practical rep-

resentation learning algorithm based on multi-task

objectives. Our multi-task DNN model success-

fully combines tasks as disparate as classification

and ranking, and the experimental results demon-



strate that the model consistently outperforms strong

baselines in various query classification and web

search tasks. Meanwhile, we demonstrated com-

pactness of the model and the utility of the learned

query/document representation for domain adapta-

tion.

Our model can be viewed as a general method for

learning semantic representations beyond the word

level. Beyond query classification and web search,

we believe there are many other knowledge sources

(e.g. sentiment, paraphrase) that can be incorporated

either as classification or ranking tasks. A compre-

hensive exploration will be pursued as future work.
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Grégoire Mesnil. 2014. A latent semantic model

with convolutional-pooling structure for information

retrieval. In Proceedings of the 23rd ACM Interna-

tional Conference on Conference on Information and

Knowledge Management, pages 101–110. ACM.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,

Christopher D. Manning, Andrew Ng, and Christopher

Potts. 2013. Recursive deep models for semantic

compositionality over a sentiment treebank. In Pro-

ceedings of the 2013 Conference on Empirical Meth-

ods in Natural Language Processing, pages 1631–

1642, Seattle, Washington, USA, October. Association

for Computational Linguistics.

Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio.

2010. Word representations: A simple and general

method for semi-supervised learning. In Proceed-

ings of the 48th Annual Meeting of the Association for

Computational Linguistics, pages 384–394, Uppsala,

Sweden, July.

Chengxiang Zhai and John Lafferty. 2001. A study of

smoothing methods for language models applied to

ad hoc information retrieval. In Proceedings of the

24th annual international ACM SIGIR conference on

Research and development in information retrieval,

pages 334–342. ACM.


