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Representation of a finite graph by a set of intervals
on the real line

by
C. G. Lekkerkerker and J. Ch. Boland (Amsterdam)

1. Introduction. Let there be given a finite family of sets
Ay, Agy eny 4n. The sets may be thought of as subsets of a given set.
For each pair of indices i,j (i % j) the sets A;, 4; may overlap or may
not overlap. We wish to establish necessary and sufficient conditions
in order that the family {4 be representable by a family of intervals
0y, ..., an on the real line, in such a way that

aGna =9 if and only it A4;~A;#09,

¢ denoting the empty set. It is immaterial whether we take the intervals
a; to be open or closed.

An equivalent but more transparent formulation of the problem
is obtained, if we take what is known in algebraie topology as the one-
dimensional skeleton of the merf of the family {4;}. This is a graph &
congisting of n points aj, .., s, such that, for each two indices <,7
(i#4 i,7=1,2,..,7), the two points a;, a; are joined if and only if
the corresponding sets 4., 4; meet. Two points a;, a; which are joined
will also be called neighbouring points, or neighbours, and we shall write
a; v ;. Olearly, the relation » is symmetric. Our problem then takes the
following form:

ProprEM. To decide for which graphs G = {ay, 8g, ...y Ga} # 8 possible
to assign to each point a; an interval o; on the real line, in such & way that

%) amo;#@ if and only if agva;  (PFE§; T=1,..,0).

Any graph possessing the above property will be called represeniable
(by intervals).

We note that it is convenient for our purposes to define the relation »
only for (certain) pairs of distinet points. More generally, one could write
a; » a; it the corresponding sets A;, 4; meet, including the case that the
indices are equal. Then, clearly, the relation » is reflexive, Now, we can
conceive & graph @ abstractly as a set on which an arbitrary binary
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relation » is defined. From this standpoint, we are dealing here exclusively
with the case that the relation » is symmetric and nonreflexive,

In this paper we shall prove two theorems each of which gives an
angwer to the problemn stated above (theorems 3 and 4). They are of the
following type. Let the concepts of subgraph, path, irreducible cycle,
neighbour of a path be defined as in section 2; we emphasize that we
use the concept of a subgraph in a rather restricted sense. Then we have

1. A finite graph & is representable by intervals if and only if it
fulfills the following two conditions

(a) G does mot contain an irreducible eycle with more than three
points,

(B) if @y, a,, @, are three points of &, which are mutually distinet
and no two of which are neighboiiring points, then at least one a: is
a neighbour of every path connecting the two other points.

II. A finite graph @ is representable by intervals if and only if it
does. not contain a subgraph which is one of the graphs I, II, I, IV,,
Vr listed in fig. 5.-

Tn our considerations an important réle will be played by the notion
of a simplicial point of a graph (see definition 1). Such a point can be
geen as an end-point of the graph. It turned out that graphs which are
subjected to the single condition («) always contain simplicial points
(see theorems 1, 2 and lemma 6). In other words, there always exist such
points in G if & is admitted to contain triangles but not irreducible cycles
of “length’ greater than 3.

In the last section of thiz paper practical methods will be sketched
by which we can decide whether a given graph is representable. These
methods will be based on propesition I formulated above. We shall derive
upper beunds for the number of operations needed for the verification
of («) and (B). A remarkable faet is that in the case of the condition (a)
the larger number of operations is required. In general, this number is
of the order O(n?), whereag, if only (x) is known to hold true, the veri-
fication of (B) does not need more than O(n®) operations.

The problem. formulated at the beginning of this introduction was
put by the American biologist S. Benzer. He was concerned with the
fine-structure of genes. The problem is whether the sub-elements of genes
are linked together in a linear order. He could deal with this problem
suceesfuily for a certain microorganism. Of these microorganisms, there
are o standard form and mutants, the latter arising if a certain connected
portion of the genefic structure jis blemished. By recombination tests,
i6 is possible to decide whether the blemished parts of two given mutants
overlap or not. Thus, for a large number of portions of the genetic struc-
ture, the experiments lead to data as to whether any two of these portions
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overlap or not. The problem is to decide whether these data are compatible
with a linear structure of the gene.

Professor de Groot drew onr attention to Benzer’s problem. He
tound the forbidden graphs with the exeeption of V, (n>>1) and his
work was continued by the authors of this paper. The second auther
found and proved theorems 3 and 4. His proofs were simplified by the
first author, who introduced in this context the notion of a simplicial
point. Sections 4 and 7 are entirely due to the first author.

2. Notations and definitions. In the following G will always
be a finite graph.

It a, b are two (distinet) neighbouring points of the graph @, then
we write

avh.
The relation » is symmetric.

A subgraph of @ is a graph H such that each point of H belongs to ¢
and that, for two distinet points a, b  H, the relation a » b is true whenever
it is true in G- In other words, if @ is conceived abstractly as a finite set
of elements, together with a certain set of non-ordered pairs {«,b), then
H is obtained from & by removing certain elements and those pairs for
which at least one constitnent does not belong to H.

By the union of two subgraphs H, and H, of G that subgraph H
of @ iz meant which consists of the points belonging to at least one of
H,, H,. This union depends on &: if a, b are two points in H which do not
belong to the same graph H;, then the relation ¢ » b may or may nob
hold in H, and this cannot be decided from the structure of H, and _H,
alone. We therefore write H = [H, v H,lg. Only if no confusion can arise,
we shall simply write H, v H,. o

The' eomplement of a subgraph H of & is denoted by G'\H; it is the
subgraph of @ consisting of the points in @ which do not beleng to H (1).
We have (H v (A\H)lg = G-

The graph consisting of & single point & is denoted by {a}.

A point @ will be called & neighbour of a subgraph H of & and we
shall write

avH,
if a¢ # and avb for some point b < H.

We further use the following terms:

path: W = 8,8, ... ax: any subgraph of @, such that ¢iv &
{4 =1, ..., k—1); it is not required that a; + & for all § # 43

trreducible path: o path a,a, ... ap such that a;s a; it i 4§ and
a; v a; only if § =441;

eycle: a path of the form ¢, ... Gxda;

() Confer the previous definition of a gubgraph.
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" irreducible cycle: a cycle a,a;, ... azay such that a; # ag if 454§ and
a;va; only if § =441 or i (k—1}

siar 8(a) = [8(e)le of @ point & ¢ G: the subgraph of & consisting
of o and all meighbours of a;

star S(H) = [S(H)le of o subgraph H of G: the subgraph of & whose
points are given by the points of H and the neighbours of H (2);"

simple: a graph @, such that avb for every two distinet points
a, b of 4.

We can now define the coneepts which play a central réle in our
investigations.

Depnrrion 1. Let a « G. Then o is called a simplicial point of G,
if §(e) is a simplex.

DEFINITION 2. A graph & is called acyclie, if it does not contain an
irreducible cyele with more than three points.

DEFINITION 3. A graph @ is called asieroédal (*) if it containg three
distinet points @, a;, a; and three paths W, Wy, W, such that, for
i=1,2,3,

(i) W; connects the two points a; (j # ¢);

(if) @; is not a neighbour of Wy (4).

Sueh a triple of points a,, &y, a5 i3 called an asteroidal triple.

DEF.'INI’I.‘ION 4. Let @ be a graph. Suppose that there exists a get I
of open intervals on the resl line such that the following properties hold:

(i) there is a one-to-one correspondence between the points a,b, ...
of ¢ and the intervaly a, §, .. of I} :

(ii) two intervals o, § intersect if and only if the corresponding points
a, b satisfy av b.

_Then G is called repregentable and I is called a model of . I, in
particular, the union of the intervals of I' is an interval, then I' ig called
connected.

Finally, we wish to introduce the eoncept of duplication of a graph.
Let.H be & subgraph of @. Then we form 2 new graph K by taking two
copies of G and Ify identifying corresponding points of H. In particular,
# a,b are two points of K\H, then the relation a»b subsists if and only
{f a,b Ifelox,lg to the same copy of G and a»b ig frue in G. We say that K
is obtained by duplication of G with vespect to H.

) T.he above construction will only be carried out in the case that H
is a gimplex.

) We eould also write S(H) = [ S (a)g.

. acq

() This term was suggested by the sim

. plest examples of graphs of the t; -

suleree. Compa.rle e.g. the diagrams I, IV,, V, (see fig. 5). . o e o
() In particular, none of the relations ava, (§ # §) holds.
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3. Some lemmas. _

TEymA L. If @ is an acycic graph and @ ay ...axa is o cycle in G,
with k=4, then we necessarily have

(i) ay=ay o7 ayvdag OF

(i) ap =a; oF @yva; jor some i with 4 <i <Rk,

Proof. For k = 4 the lemma is true, as the cyele is not irreducible,
by definition. Now let %> 4 and guppose that for mo i 4 we have
a4, = &; OT &4 v a;. Then, since the cycle is reducible, there must be two
indices 4", " with

Gy =y OF @pvap, <i'—1,¢& F#2,
Then we can make a shorter cycle, in which a,, 4y, a; all occur and in
which ai, a} oceur as one point or as successive points. Asguming the
lemma to be true for this cyele, we must have @, = a, OF & ¥ 5. Hence,
the lemma follows by induction on k.

Levwa 2. Each path a0, ... ag, with ax 7 ay, conlains an irreducible
path with the same endpownts.

Proof. Put i, — 1. Take the maximal index 4, with a » a;,, there-
after the maximal index i, with a;vas, ete. Then the path a;a;¢,...
is irreducible.

TEMMA 3. Let G be an acyelic graph. If cayas...axc (075 for
i=1,2,..,k) 15 & cyole in & and d,a, ... o 8 an irreducible path, then
we have cva; for i=1,2,..,k

Proof. By lemma 1, with ¢ instead of a;, we have ¢ v a; for some 4
with 1 < 4 < k. Then ca, ... a;¢ and ¢a; ... ax¢ are cycles of the same type
as the given one. The lemma now follows by induction.

Lenra 4. Let @ be an aeyclic graph, and let SCE be a simplex.
Further, let K be the graph obiained by duplicating @ with respect to 8.
Then K is acyclic. Furthermore, each point a<S which has a neighbour
in @\8, is not a simplicial point of K.

‘Proof. A eycle ¢ in K which has a point in each of the two copies
of @ is clearly not irredneible. From this the first assertion follows. The
second assertion is also clear.

4. Existence of simplicial points. We begin by proving the
following fundamental

TerorEM 1. Each (finite) acyclic graph contains a simplicial point ().

Proof. We use induction on the nuniber of points. Let & be an acyclic
graph with « > 1 points, and suppese that the theorem is true for graphs
with less than n points. Then we shall prove that & has a simplicial point.

(¥} The theorem is no longer true for infinite graphs, as is seen from the example
@ = {w)”, with neighbour relations axvars: (k= 0, £1, £2,..)-

Fundamenta Mathematicae, T. LI 4


GUEST


50 0. &, Lekkerkerker and J. Ch. Boland
Let b be an arbitrary point of @& and let @ be a simplicial point of
G\[b}. Put G = G\{b} and 8y(a) =[8(a)]e-

Tirst, we dispose of some trivial cases. If we do not have a » b, then o
is also & simplicial point of @. More generally, if some point e« 8,(a) has
no neighbour in A\Sy(a), then 8(¢) = Sy(a), and so ¢ is & simplicial point
of @ If, on the other hand, bv¢ for each point ¢e §i(a), then S(a)
= 8i(a) v {b} 8 & simplex, so that a is a simplicial point of &. Henceforth,
we may restrict ourselves to the case that the following three properties
hold:

(i) avb;

(ii) each point ¢ 7 a of 8y(a) has at least one neighbour in G\§(a);

(iif) there is a point ¢, & in §(a), such that not b»e,.

We now consider the graph G\Sy(2). It need not be connected. We
denote by O, the component of G\ S8 (a) which containg the point b, and
put O, = @\(S(a} v 0). We shall prove that ceB8ya), ovCy, implies
that ¢+ b.

Let ¢ be a point in 8y(a), with ¢» 0, and let d;, be a neighbour of ¢
in ;. If ¢ = o or 4, = b, then there is nothing to prove. Hence we may
suppose that ¢ 7 a and d, == b. Then, since dy, b € 0; and €, is connected,
there is & path d; ... dxb in Oy, with b= d; for i=1,..., % (k > 1). Now
bacd, ... dxb is a cycle. Further, we do not have a = d;, nor avd;, for
any 4= 1,2, .., ¥, a8 the only neighbours of a are given by b and the
points s a of §(a). Then lemma 1, with {8, 6., @} = {b, &, ¢}, learns
that e»b (see fig. 1).

Tt follows now from (iii) that there is a point ¢, ¢ S;(e), which is not
& neighbour of ¢, Then, by (ii), this point has & neighbour in C,. This
implies that O, is not empty. Now define

8, = graph of the points ¢ ¢ §,(¢) with ¢,»C;, but not ¢,» C,,
8y ==graph of the points c,e8y(a) with v 0y, ¢v Cs,
8; = graph of the points cze8{a) with ¢ v C;, but not ¢ 0,

Then, by {ii}, 8§ v 85 v §; = 8j{z). Farther, the subsimplices §, and S
are not empty, a8 a € §; and ¢; e 8;. The subsimplex §, may be empty.
Next, we wish to duplicate a suitable part of the graph & (see fig. 2,
where each §; is represented by a single point). The gubgraphs €, and
Ugv.S, are disjoint and are separated by the simplex 8§, v 8,. More
precisely, each point of §; u 8, hag a neighbour in C;, by the definition
?f 8, .a.nd 8,, and algo a neighbour in C, v 8,, becauge 8, v 8§, v §; = Sy(a)
 isa mmPlu, Similarly, the snbgraphs O; v 8, and 0, are digjoint, whereas
each point of S, u 8, has 2 neighbour in both of them.
Note that, by what we have proved above, in both cases the two
subgraphs and the separating gimplex are non-empty.
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Tn at least one case the two subgraphs considered do not have the
game number of points. Call them H; and H, and let; #, have the smaller
pumber of points. Denote by & the separating simplex. Now we duplicate
H,w 8 with respect to 8. This gives a new graph K.

By lemma 4, K is acyclic, because H, v 8C# is aeyclic. Further,
¥ has less than o points. Henee, by our induction hypothesis, K has
a simplicial point s. By the last elause of lemma 4, gince each point of §
has a neighbour in Hy, the point ¢ does not belong to 8. Then [S(s)lx
= [8(s)]mus = [8(s)]e. Consequently, s is & simplieial point of &

The case % = 1 is trivial. So the theorem has been proved.

4
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Fig. 2

We shall now investigate whether there are more simplicial points
in a given acyclic graph G. . :

A gsimple consequence of definition 1 is the following

LEMMA 5. Let G be a graph. If 8 s a connected subgraph of G and
each point of 8 is a simplicial point of G, then 8 is a simplex. All points
of 8 have ihe same star,

Proof. Let a, b, ¢ be three different points of § with e+ b, bre.
Then, since b is simplicial, we pecessarily have a» e, and so {a, b, ¢} is
a simplex. It is clear that, by a repetition of the argument, we find that §
is a simplex.!

Next, let a,b be two distinct points of 8. If ¢va and ¢+ b, then
e»b, a8 a is simplicial. It follows that any two points of § have the
game sbar. : .

TUsing the principle of duplieation one eagily deduces from theorem 1
that an acyclic graph with more than one point must have at least two

4!*
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simeplicial points. More generally, this principle leads to a proof of the
following

Levma 6, Let G be an acyclic graph, which is not a simplex. Then G
contains o non-neighbouring simplicial points.

Proof. We may, clearly, suppose that G is connected. Lot a be
a simplicial point of &, and let 8’ denote the subsimplex of points ¢ « §(a),
which have no neighbour in ¢\§(a). These points ¢ are just the points
of §{(s) which are simplicial points of &.

We have 8’ =0, as a8, and 8 # §(a), as otherwise we ghould
have G = 8(a). Now we duplicate & with respect to §'. In virtue of
lemma 4 and by the choice of &, we then get a graph K which is acydlie
and which has no simplicial point in &'. Then K has a simplicial point

outside 8. Thiz point corresponds

with a simplicial point b ¢ & of Q.

Then, by the choice of §’, b¢ S(a).
! This proves the lemma.

Fig. 3 There are various examples of
acyclic graphs with exaectly two
simplicial points. For example the graphs which can be represented by
a diagram of one of the following types:

1. a broken line (= an irreducible path);

2. a polygon with all diagonals through one given vertex;

3. & polygon with all diagonals except one;

4. figures like fig. 3.

Such examples, as well as lemma 6 and its proof, suggest that the
simplicial points are to be sought at the ““extremities” of the graph {cf.
also lemma 7 in section 5). We can give a more precise meaning to this
statement by proving the following theorem 2 (which is eagily seen to
be a generalization of lemma 6).

THEOREM 2. Let G be an acyolic graph. Let H be a connected subgraph
of G and suppose that 8 (H) is not empty. Then G\S(H) contains a point s
which is a simplictal point of .

FProof. Let m be the number of points of G\S(H). We shall prove
the theorem by induction on m.

First, let m = 1. Then 6\§(H) consists of one point, ¢ say. Let by, b,
be two distinet neighbours of a. Then these points belong to & (H), but

?xot to H, as a¢ S(H). Hence, there exists a Path W=1¢,...c; (k= 1)
in #, such that

bive,, byvoy.

Now consider the cycle abio; ... oxbyo. Since a is not a neighbour

f)f W, .it follows from lemma 1 that wo must have b, » by. It follows that 8(a)
18 a simplex, ie. that ¢ is a simplicial point of G.

icm®

53

Representation of o finite graph by a set of intervals

Now, let m > 1, and suppose that the theorem holds true if A\S(H)

has less than m points.

Tet b be an arbitrary point of A\S(H) and put & = \{b}, 8,(a)
= [S(a)]e- Let @ be a simplicial point of Gy in GN\S(H). If not a ¥,
then ¢ is a simplicial point of G. Hence we may suppose

arb.

We consider the components of G\Si(a). Let 0, be a cqmponent
containing some point of H. Now H is connected and H n‘Sl(a) is emp?sy,.
as a ¢ §(H). Henee C; contains the whole graph H. Then it also containg
S(HNS8,(a). We now distinguish two cases.

-

P
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«
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i

I

|

Si{a)

|

| >~

S('H)

Fig. 4

Oase 1. \Sy(a) is connected, i.e. \S{a)= C,. In pa.rtieula.r'b € q,.
Then, a8 in the proof of theorem 1, it is true that ce 8,(a), ¢» C; implies
¢v b. There are two possgibilities. ‘ ‘

Case 1a. ¢v O, for each point ¢ ¢ §y(a). Then @ is & simplicial point
of G.

Case 1b. There iz a point ¢ 7 @ in Sya), such that not ¢» 0.
Then, a fortiori, ¢, is not a neighbour of H, and so ¢, ¢ S(H). Further,
S(e) = Si(a). Hence g, is a simplicial point of G.

Oase 2. \S,(a) is not connected. Let C, be a gecond component

a) and let D = Cpw Sy(a).
o Géi;( s)ubgra,ph D ig ei:her ;. simplex not containefi in Sl(fz) or else,
by lemma 8, it has two non-neighbouring simplicial pon.lts, Awhm].:n ca.I'mlot
both belong to Sy(a). Hence, there is a point 8 ¢ ¢, which is a siraplicial
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point of D. It does not belong to S(H), because S(H) is contained
in €, w Sa). Further, [S(s)lp = {§(s)]g, and so s iz a simplicial
point of &

So, in all cases there is a simplicial point of & in. G\S{H). This proves
the theorem.

5. Representability of graphs. In this gection we wish to
derive a criterion for representability. Here the notion of asteroidal graph
will come in. We shall further have to consider two types of simplicial
points. Therefore, we define

DEFINITION 5. A simplieial point a of a graph G is called strongly
simpliciel it 6\8(q) is connected, and weakly simplicial if G\ S{a) is not
connected. Further, an acyclie graph @ is called extremal if it is con-
nected and if all its simplicial points are strongly simplicial.

Tf a graph @ formed by points a, b, ... is representable, then we shaill
denote the corresponding intervals in a model I' by corresponding Greek
letters a, g, .... The left-hand and right-hand end points of an interval
will be denoted by I(a),r(e) respectively. Then, by an end-interval of
a model I" we shall mean an interval a e I' such that either

(i) 7(8) > l(a) for each interval eI, or

(i) 1{p) < r(w) for each interval el

In these cases, o is a left-hand or a right-hand endinterval respectively.

LEMMA T. If @ is representable and a is o strongly simplicial point of
@G, then, in each model I' of G, a i8 an endinlerval.

Proof. First observe that any model of a connected graph is eon-
nected. Now consider the simplex §(a). If G = S(a), then the assertion
is trivial. If not, then take in I"' the submodel of G\§(a). It is connected,
and no interval meets a. From this and the definition of S(a) it follows
that a is an enditerval. ;

We now come to the main result of this section.

THEOREM 3. A graph G is represeniable if and enly if ot is acyelic

and not asteroidal.

Proof. The proof of the “only if” part is easy. Indeed, let there
be a model I' of G. First, suppose that @ containg an irreducible cycle
Ayl .. Gy, with & > 4. Then, in I, the intervals a,, a; ave disjoint. The
‘interval o, meets both a; and ey, but no interval gy, with j > 3, while
these intervals oy connect o, and a,. This is impossible. Hence, ¢ is
acyclic. :

_Next, suppose that ¢ contains an asteroidal triple (ay, a5, @5). In I,
‘the intervals a;, g, o are mutually disjoint. So, without loss of generaliby,
‘We may suppose that o, separates o, and o;. Then a, meets the image
in I" of each path W, connecting g, and a,, and so d,» W, for each choice
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of W,. This contradicts the definition of asteroidal triple. Hence, & is
not asteroidal.

Conversely, let & be an acyclic graph which is not asteroidal. Then
we shall prove, by using theorem 1, that & is representable. We distinguish
two cases.

Case 1. @ isextremal (this implies that & is connected). By theorem 1,
it has a simplicial point. By lemma 6, if ¢ is not a simplex, it even has
two non-neighbouring simplicial points. But it cannot have three simplicial '
points a,, @, a5, no two of which are non-neighbouring points. For, by
hypothesis, these points would be strongly simplicial, and so a;, ax conld
be connected by a path net meeting 8{a;) ({4, ], k) any permutation of
(1,2, 3)), so that & would be asteroidal, against hypothesis.

Consequently, it suffices to prove the following

ASSERTION. A graph @ which is acyclic and exiremal and which does
not contain three non-neighbouring simplicial points, is representable.

We shall do this by using induetion on the number of points, say ».
I % = 1, then the assertion is trivially true. Now take n > 1 and suppose
that the assertion holds for graphs with less than w» points.

Let ¢ be simplieial point of @ and let §; be the subsimplex consisting
of those points of §(z) which are simplicial points of G.

Put
8, = 8{a\B, G=0\8, G=aASa)=0\5.

Then & = G, w 8, is connected and aecyclic. We investigate its simplicial
points. First, let b € G, be a simplicial point of ¢,. Then, since not b 8y,
[8(b)]¢ = [8(b)]s,- Consequently, b is a simplicial point of G. Now take
two arbitrary points ey, 0, in G\S(p). Since b is a strongly simplicial
point of @, there exists a path W in G\§(b) connecting the points ¢, ;.
By lemma 2, there iy an irreducible path W’ which is a subgraph of W
and which connects ¢, ¢,. This path cannot contain a point of §;.

Hence, it is contained in G\S§(b). It follows that b is & strongly
simplicial point of G.

On the other hand, s simplicial point of G which belongs to G is
also a simplicial point of G- .

Next, let a point def, be a simplicial point of G. Write Si(d)
= [8(d)]g,. Let G:\8y(d) have k components Gy, ..., Ox (k= 0). For each 1,
the graph C;u 8 (d) is not a simplex (because of C; = @) and so, by
lemma 6, C;w §,(d) has a simplicial point e ¢ 8i(d). Then e;¢ 8. It is
easy to see that

[S(e)lorom@ = [8(6:)le, = [Stedla .

Hence, ¢; is a simplicial point of & (¢ =1,2,..., k). Then, by our hypo-
theses, we must have & = 0 or 1, Le. d is a strongly simplicial point of G
(note that it may happen that k =0, ie. G = §{d}).
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Combining the results obtained so far, we see that &, is extremal.
It is also acyclic. Further, it has simplicial points outside §,; moreover,
the simplicial points of @, belonging to G\, form a simplex. Tt follows
from lemma 6 that Gy has a simplicial point de 8, (*). Also, by our in-
duction hypothesis, there is a model I3 of G;. In this model, d is repre-
gented by an endinterval §, on account of lemma 7. Let it be a left-hand
enditerval. Since 8, is contained in S (d) and Sy(d) is a sinoplex, we can
produce to the left, in I, the intervals corresponding with §,; this does
not give rise to new overlappings. We can do this and add an interval ¢
in such a way that a meets exactly the intervals of §,. Representing
every point of §; by such an interval o« we get a model of &. ‘

Case 2. ¢ is not extremal. We may suppose that each proper sub-
graph of @ is representable. Let ¢ be a weakly simplicial point of @& Put
8 = 8(a)\{a} and denote the components of N\ S(a) by 0y, ..., 0% (k= 2).
It is convenient to call a point ¢ « G\ S(a) a full neighbour of 8 and to
write ¢ 7 S, if we have ey ¥ for each point b ¢ 8.

‘We shall apply the induction hypothesis in two different ways.

‘We first consider some trivial cages. Let I, be a model of G\{a} and
let & be the intersection of the intervals corresponding with points of §.
If no C; contains a point ¢ with ¢¥ 8, then § is not met by other intervals
and so a model I' is obtained by adding to I3 an interval a == 3. If, 01;
the other hand, there is an index 7, such that each point ¢e O; iy a full
neighbour of 8, then we argue as follows.

In I3, each interval y of O; meets 8. Further, these intervals form
) connectt?d model, and they do mnot intersect other intervals of A\S(a).
We can diminish arbitrarily the dimensions of the submodel of 0; in I3.
We can do this and add an interval « to I in such a way that we obtain
a model of G.

It follows that we may restrict ourselves to the cage that there is

an.index i, such that some points of C; are jull neighbours of 8 and some
points are not. We put

G=G0\a}, G=8)v0.

By induction, there are models I, I, of G, G, respectivaly. First
congider I. Sij%ce a i8 & strongly simplicial point (lmé G:, a ila; an endyiinter:ai
of I, say a right-hand endinterval. Thers is an interval y in I, which
does not meet & as there is 'a point in ¢, which is not a full neighbour of §
we.choose one for which 7(y) iz minimal. Let 2, be the get of interva.l;
which correspond with points of § and which meet y {Z, may be empty)
and let X(a) be the submodel of § (@) in I',. Then each interval set l"'éz‘

(*} Note that, b s '
loast +w0 points. 1 by our hypotheses, G\8(a) = @\8 is not empty, so that & has at
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obtained from I, by producing arbitrarily to the left one or more intervals
of X, and arbitrarily to the right one or more intervals of X{a}), is again
a model of @,. For this does not canse new overlappings, because ¥ and o
are endintervals.

Next, consider I,. Tt contains some model of G\{a}; let ", 8" be
the intervals im I' corresponding with the intervals y, é, respectively, -
in I',. Then 5, 8’ do not meet; without loss of generality we may suppose
that #{y') < 1{¢"). On the real line, where I is sitnated, we choose an
interval # such that each interval of C; is wholly contained in & and that
each interval of each Oy (j # 4) falls outside £ Then 7(£) and 1(£) only
belong to intervals of 8(a), and each interval of § intersects £, as there
js a point in ¢; which is a full neighbour of 8. We prove that 1(£) can only
belong to intervals of 8, (corresponding with ).

Let b e 8(a)\8, and let B, 8’ be the corresponding intervals in I3, I}
respectively. Then $ does not meet y. Hence, B’ does not meet 5. But
it meets &'. Henee, we have 1(8") =r(y") and so 1(§)¢ §.

We can now construct a model of @ in the following way. Take Iy,
remove the part I, ~ & and then insert the model I; produce to the
left those intervals of X, which in I', contain i{£) and to the right those
intervals of Z(a) which in I contain 7({£). .

This proves the assertion and thus eempletes the proof of the theorem.

6. Structure of non-representable graphs. In this section
we follow the original idea of Professor de Groot of determining & minimal
set of graphs with the property that any graph is representable if and
only if it does not contain a graph of this set. Tt turned out that a complete
get with this property is given by figure 5; there, in each diagram,
except IIL,, we have indicated the three points which constitute an
asteroidal triple. ‘

In other words, we have the following

THEOREM 4. A graph & is representable, if and only if & does not
condain o subgraph which is one of the graphs I, 1L, TITn, T¥s, Vy (7).

Theorem 4 gives a less elegant characterization of representable
graphs than theorem 3. But it lies deeper, as in this theorem the various
types of non-representable graphs are analysed. Actually, the proof of
theorem 4 will be based on theorem 3.

Proof of theorem 4. We leave it to the reader fo check that the
graphs I, II, IV,, V, are all asteroidal (*}), and hence also, that the con-
dition is necessary. It remains to show that if ¢ i3 not representable,

("} Of course, it iz understood that no junctions are present which are indicated
in the diagrams.
(%) The cyole IIT« ig astercidal for o = 6.
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then @ eontaing one of the subgraphs listed above. So by theorem 3 the
proof of the theorem will be completed if we can deduce the following
AssERTION. Let G be a graph with the following properties:
(1) @ is acyelic;
(2) @ is asteroidal;
(3) @ is minimal, i.e. no proper subgraph is asteroidal,
Then & is one of the graph I, 1L, IV,, V,.

=

I, (0 points; n24)

s (n+4 points: 122) U (45 points; na1)

Fig. 5

Let & have the properties (1)-(3). Let (ay, a,, @) be an asteroidal
triple and let W,, W,, W, be three paths such that

(x) W; connects the two points a; (j % 4)} ..

(B) a: i3 not a neighbour of W; } (i=1,2,3).
In virtue of lemma 2, we may suppose that the paths Wy are irreducible.
Further, it follows from (3) that we have

WioeWouWy=@Q. .
' If 43¢ j, then W: contains only one point = a of S(az), as Wy is
u'redueible.’ Hence, §(ay) containg at most two points == a;. If there are
two, say aj and a’,-’_ » then we must have o} »a. For the three paths W;
constitute a cycle, in which a}, a;, & are successive pointy, a} 5 af and ay

has no other neighbours than af, af. Then an application of lemma 1
learns that af» af.

We now distinguish some cages.
Case 1. Each ¢ has t_wo neighbours. Let the W; be given by

W= aby.. 00, W,= Oabg e €18y, Wy= ayby ... Cytl, .
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We do not exclunde that b, = ¢, or b, = ¢, or b, = ¢,. If this occurs
then the corresponding path W; is called short.

We cannot have b, = ¢, a8 otherwise the third peint of S(a;) would
not occur in any W;. Hence, b;  ¢,. Similarly, b, + ¢,, by # ¢;. Further,
the points b; are mutually distinet, and also the points c;, because of
bi,6:6 Wy (i =1,2,3). So we have the sitnation of figure 6. Note that
the paths W; may have interior points in common.

ay

Fig. 8 Fig. 7

We now prove that at least two paths W; are short. Suppose that e.g.
W, and W, are not short, and consider the point e,. It is a point of
the cycle ob; ... ¢b;s ... &by ...0,. If ¢y v ¢, then we may replace W, by
Wi = ay0,0,0,. If ¢, » @ for some interior point 4 +#¢;, b, of W, or Wy,
then we may replace W, by Wi =a,0d ... a;.
In both cases, @ would not be minimal. Similarly, if by» e for sorme
interior point e % ¢, of W, or W,, G would not be minimal.
Hence,
8(oa) ~ (W v Wy) =by
and
B(bs) n (Wow W) = 5.

Tt is now easily verified that in the cycle b, ... gbs ... o1b; ... ¢; none of
the implications of lemma 1 holds. This contradiction proves that at =
least two paths are short. -

So we may suppose that W, and W, are both short (fig. 7). Suppose
that we do not have by » ¢;. Then ¢z 5 by, and then (a;, s, ¢;) 15 an astero-
idal triple in 6\ {a,}. Hence, by (3), we must have & v ¢;. Then, by lemma 3,
we have b; v ¢; for each point ¢ of the irreducible path b, ... o,. Similarly,
by v ¢ for each such point ¢.

Then @& is of the form V, (the cagse n =1 occurs if b, = o).

Case 2. One of the points a; has only one neighbour. Let a, be such
a point and let b be its neighbour. Then W, and W; necessarily contain
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the point &. If not b » Wy, then (b, a,, ay) is an asteroidal triple of LANTAR
So we have by W,. We now have to distinguish some subcages.

Case 2.1. b has & > 2 neighbours on W,. Let ¢, ¢’ be the first and
the last neighbour respectively. To b and the part ¢... ¢’ of the {irreducible)
path W, we can apply lemma 3. We can also say that a,, ¢, are not neigh-
bours of b. It follows that & contains a graph IV,. Hence, @ ig actually
of the form IV,.

Oase 2.2. b has only one neighbour ¢=£a,. Then ¢ e Wy, Also,
necessarily, ¢ ¢ Wy, c e W;. Then we do not have a,v¢ or ay»e. It follows
that @ is of the form T.

Case 2.3. b hay exactly one neighbour ¢, e W, and at least one
neighbour & ¢ W, v {&,}. We write Wy = ¢_y ... G- 01, Where oy = q,,
=t k=1, 1>1 We may suppose that d, ¢ W,

W, have the form W, = abd, ... C-pl_p—1 ... &y, Where the point
preceding ¢, is the last point of W, not belonging to W,. Then p> 0,
a8 W, = aybd, ... is irreducible and so ¢, ¢ W, {see fig. 8).

a,

F{ext, we show that ‘W, does not eontain & point d& with dv»¢ for
some 4 > 0 (then W, does not contain 3 point ¢, i > 0, either). Suppose

that there was such an index 4. Then d = b. Then .
suceessively by » replacing Wy, W,

Wi=0pu 0p... Aestiyy oo 0,
Wi=uab...deer, ... o (which do not contain G) ,

we see that (a;, a;, a5} Would be an asteroidal triple in & i
tradicts the requirement (3). ? Nl This con-
Having reached th%s point, let us consider the cage that the paxt
o0 of W, hag no neighbonr ¢¢ W,. If I =2, then we have cage 2.2,
Zv;gl] a,lereplacedsl.)y ay. I I=1, then we 2pply lemma 1 to the cycle
00 -+ C-p oon 6. BINCE MOt D=6 Or hyey (j> 0) and ¢, has no neigh-
bour ¢, ¢ << —1, we find that 6 hag at least two neighbours ob and d, on VgV
Then we have cage 2.1, with a, replaced by a,. ' N
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Consequently, we may suppose that some ¢,, ¢> 0, has a neighbour
¢¢ Wy. Then e¢ W,. Hence ¢ W,. Then o, ¢ W,, as otherwise @\ {e}
should be asteroidal. Then W, has the form W, = abe ... ¢pe1 .. &1
and it does contain neither a peint ¢, with {< 0, nor a neighbour of
such a point. Further, we do not have @' =¢' or d've’ if d'cW,, ' < W,
and &', ¢ a;, b (in the contrary case, G\{c,} would be asteroidal).

We now apply lemma 1 o the eycles epbdy ...0_p...¢, and cpbe, ... ¢
. €. The consequence is that & vd; and ¢,v e, whence, on account of (3),
G must be of the form II.

This proves the assertion and so completes the proof of theorem 4.

A simple consequence of theorem 4 is the following

COROLLARY. An acyclic graph with not more than five points is always
representable.

7. Numerical devices. In our final section we shall deal with
a practical method by which we can decide whether a given graph &
is representable. This method will be based on theorem 3. The treatment
naturally splits up into two parts: we have to decide whether or not there
are irreducible eycles in & and whether or not there are asteroidal triples
in G.

A. Examination of cyeles. We begin with a definition and
a theorem.

DerFmviroN 6. Let @ be a graph and let @ « G be arbitrary. Let
Oy, Ogy ooy O (B =TF(a) > 1) be the components of GA\S(a). Then, for
each O;, we denote by Si(e) the graph of points b with

b#a, beS{a), b»(;,

and call Sj(a) a substar of S{a).

THEOREM 5. A4 graph @ is acyclic if and only if for each point a e @
all substars Sy(x) are simplices.

Proof. First suppose that @ iz acyclic. Take any substar Si{a), and
let b, by be two distinct points of S;(a). Then there are points o, ¢z € Cy
with ¢, » by, ¢, v by. Further, there is a path W in (; connecting ¢, , ¢,. Then,
by the definition of S(a), we do not have a» W. Applying lemma 1 to
the cyele abye, ... 6,5,0 we find that b, » b,. It follows that Si(a) is a simplex.

Conversely, suppose that there is an irreducible cycle 66, ... cx0y
(k > 4) in @. Put a = ¢, and let C; be the component of A\ S (a) containing
the point ¢;. Then S{a) contains ¢, ¢; and so it is not a simplex.

Below we shall apply the following slightly different and less elegant
proposition, the proof of which offers no difficulties.

PROPOSITION. A graph @ is acyclic if, for some point a e G, the sub-
stars Si(a) are simplices and the graph G\{a} is acyclic.
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Tn order to find out whether @ is acyclic, one eould now proceed
along the following lines.

a) Choose arbitrarily @ « ¢ and determine the neighbours of a.

b) Determine the components Oy, ..., 0; in the following way. Take
any point ¢ « G\S(a). Determine the nelghbou:rs of ¢ in "\S(a), say
€3, ey O - 'Lhen take the neighbours of ¢, in G\§(e) which do not belong
to the 566 {6, +ovs Cr,}y SAY Okyt1) ey Gy TheED take € and repeatb the process
until no new pomts are found. Then one component (7 has been found.

If G\ S{a) contains a point ¢ ¢ C;, then determine in the same way a second
eomponent 0, of A\S(a) containing ¢. Repeat this until A\8(a) is ex-
hausted.

c¢) For each component C; determine the substar Sia) by taking
the points b « §{a) which have at least one neighbour in C;.

d) Check whether Si(a) is a simplex.
e) Omit ¢ and examine in the same way (A\{e). Ete.

" Let &, §8(a) and the C; have n, m, n; points respectively (4 = 1, ..., k).
Then the points a)-d) require at most Ny 2 g(n—m), E(m 1)m, %mﬂk
operations successively. The sum of these mumbers is <

n4 (n—m)t+m(n—m)+ tm¥n—m) < Arnt+ tn24-0(n),
the expression on the left attaining its maximum for m~4n—1. 8o the.
examination requires in the aggregate not more than about ¢ (w*-+ 10n%)
operations.

B. Examination of triples. First, we prove

THEOREM 6. If G is acyclic and asteroidal, then it contains an asteroidal
triple of simplicial points,

Proof. Let (ay, a;, 6;) be an asteroidal triple and let W; be a path
in A\S(a,) connecting &, and a,. We shall apply theorem 2, with H = W,.
We have a; ¢ S(H), so that G\S(H) is not empty. Let ¢ be the component
of A\ S(H) which containg the point a,.

By theorem 2, 0 contains a point ¢f which is a simplicial point of
Cv 8(H). It also is a simplicial point of @ {confer the end of the proof
of theorem 2). Further, a; ¢ S(H) = 8(W,), and a,, a3 can be connected
by a path which does not meet &(x,) or 8(a,). Hence, (a,, a;, a) is an
asteroidal triple in @.

Repeating this procedure two tlmes, we get an asteroidal triple
{a:, a2, az) of simplicial points.

Let now ¢ be an acyclic graph. Let I’ be the set of its gimplicial
points. They form a certain number of non- neighbouring slmphces in ¢
(ie. no simplex contains a neighbour of another simplex). From each

icm
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simplex we select arbitrarily one point. Let 3 be the set of selected simpli-
cial points.

Our method for deciding whether & is asteroidal or not now consists
of the following stages.

a) For each point @ « @ examine whether S(x) is a simplex.

b) Determine the simplices of which the set of simplicial points
consists, in the following way. Take any simplicial point s, and determine
its neighbours, say s,, ..., 8y, among the other simplicial points. Repeat
this process with & simplicial point s + s,, ..., 8z,. Then select a simplicial
point in each component thus found; this gives a set X.

c) Construet a matrix (e, d) (@,b e X; 4(a,b) a suitable positive
integer) as follows. Take a ¢ I arbitrarily. Determine the components
Gy .oy Or () 0f \S(a) as in A, b). For each eomponent C, put i{a,b) = §
for all be T A O

d) Check whether for each triple (a, b, ¢) in
tions hold true:

X the following egua-

ila, b) = i(a,0), i(b,0)=1i(b,@), i{c,a)=1i(e,b)
(the graph @ is asteroidal if and only if there is a triple (g, b, ¢) in X, such
that the above equations hold).

Let @ and 2 consist of » and s points regpectively. Then the total
number of operations needed for the steps a)-d) is <

nofnEint+s(n?+sn)+ 188 << 3nf4 O(nl) .

Finally, we make the following remarks. In part B the restriction
to the set 2 —with the proviso that we know already that & is acyclic—
enables us to suppress the dimensions of the matrix i(a, b) to be con-
structed. Further, in part A we can begin by omitting the points of Z*
(which have to be determined in B); for & is acyelie if G\ X’ iv acyclic.
Then the various stages have to be performed in the following order:
B, a); A; B, b)-d). Then, apart from a term of order O (n2), the total number
of operations needed ean be egtimated by

fr(n—s)t+ {f(n— sP4-ind+ snttsPn-4s%,
which is nob larger than i mt+ $in® (note ‘that the derivative with
respect to s is negative if a—s > 4n29),

‘We have the impression that in general the method exhibited here
eannot be improved essentially.

(*) The numbering of the components ¢ is immaterial.
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Sur l'enfilage et la fixation des ensembles compacts

par
D. Zaremba (Wroclaw)

§ 1. Relations générales. F étant un espace métrique, un en-
semble X CF sera dit fizable dans H (1) lorsque, pour tout &> 0, il
exigte dans ¥ une somme finie F, =F, v Fyu ...w Fiy d’ensembles
fermés tels que d(F;)< e pour ¢=1,2,..,k(e), F;~nFy=0 pour i #§
et F, ~ 0 % & pour toute composante ¢ de X.

De plus, si pour z,{ 0, c’est-a-dire pour toute suite {es} décroissante
et convergente vers 0, les F,, qui fixent' X peuvent é&tre choisis de maniere
qu’ils forment une suite descendante, j’appelle la fixation de X monotone.

Knaster appelle un ensemble X C B enfilable dans F lorsque ¥ con-
tient un arc L-tel que L n € # @ pour toute composante C de X.

J'appelle réduit de X tout ensemble B C X tel que R ~ € # @ pour
toute composante ¢ de X. En outre, j'appelle Padduit de X I’ensemble 4
de tous les points p de F tels que (p) = Edgl C; pour une suite {C;} de

composantes de X. Ainsi défini, 4 est donc 'ensemble de tous les points
de B qui sont des points-limites des suites de points appartenant i des
composantes C; de X telles que 6(C;) tend & 0. On voit aussitét gu'un
adduit est toujours fermé, donec compact, pour des X compacts.
" désignera constamment 1’espace euclidien de dimension » > 1.
TafoRBME 1. Les irois propriétés suivantes sont équivalemtes pour
les X compacls dans &

1
@
(3}

Vewxistence d’une fization monolone de X,
Vewistence dans X d'un réduit B compact de dimension 0,
Pemistence d'un enfilage de X.
La démonstration de ce théoréme se trouve dans mon travaii 87,
p. 14.

THEOREME 2. §i un X (compact ow mon) est fizable dans C", son
addwit A est vide ou de dimension 0.

(1) of. Enaster [2], ol 1'on trouve une définition équivalente de cette notion
par des ensembles ouverts.
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