REPRESENTATIONS OF ALGEBRAIC GROUPS PRESERVING QUATERNION SKEWHERMITIAN FORMS

FRANK GROSSHANS

Introduction. Let K be an infinite perfect field of characteristic different from 2 , let \mathfrak{B} be a quaternion division algebra over K, and let $\xi \rightarrow \xi$ denote the canonical involution of the first kind on \mathfrak{B}. Let V be a finite-dimensional right vector space over \mathfrak{B}.

A quaternion skew-hermitian form H over \mathfrak{B} is a sesquilinear form on $V \times V$, i.e., H is a map from $V \times V$ to \mathfrak{B} such that
(i) $H\left(x, y_{1}+y_{2}\right)=\overline{H\left(x, y_{1}\right)}+H\left(x, y_{2}\right)$ and $H(x, y \alpha)=H(x, y) \alpha$ for all x, y, y_{1}, y_{2} in V and α in \mathfrak{B};
(ii) $H(x, y)=-\overline{H(y, x)}$ for all x, y in V. Let $\left\{x_{1}, \cdots, x_{n}\right\}$ be a basis for V over \mathfrak{B}. We say that H is nondegenerate if the reduced norm in $M_{n}(\mathfrak{B})$ of the matrix ($H\left(x_{i}, x_{j}\right)$) is not zero. Associated to such a nondegenerate form H are 3 invariants, the dimension of V over $\mathfrak{B}, \operatorname{dim}_{\mathfrak{B}}(V)$, the discriminant of $H, \delta(H)$, and the Clifford algebra of H, © .

Let G be a simply connected semisimple algebraic group (in some $\mathrm{GL}(m, \bar{K}))$ which is defined over K and let $\rho: G \rightarrow \mathrm{GL}(V / \mathfrak{B})$ be an absolutely irreducible representation of G defined over K into the group of all nonsingular \mathfrak{B}-linear endomorphisms of V. We shall assume that there is a nondegenerate quaternion skew-hermitian form H on V which is invariant with respect to $\rho(G)$.

The purpose of this paper is to describe the Clifford algebra of the invariant form H in terms of ρ, G, and the Steinberg group associated to G. In a previous paper, we have described $\operatorname{dim}_{\mathfrak{B}}(V)$ and $\delta(H)$ in such a way and have indicated how representations such as ρ arise [2, Theorem I.2]. The invariant $\boldsymbol{\gamma}(G)$ plays an important role in our study and so we recall some of its properties in §1. In 2, we define the invariant \mathbb{G} using the representation ρ. Jacobson first constructed the Clifford algebra of a quaternion skew-hermitian form [4]. In this paper, however, we shall follow a method due to Satake [6]. We give some examples in §3 with special emphasis on the case where G is absolutely simple.

1. The invariant $\gamma(G)$. A connected semisimple algebraic group G_{1} defined over K is said to be K-quasi-split (or of Steinberg type) if

Received by the editors April 17, 1969.
there is a Borel subgroup B in G_{1} defined over K. Let $(\mathcal{F})=\mathrm{Gal}(\bar{K} / K)$ (where \bar{K} denotes the algebraic closure of K). It is known that there is a quasi-split group G_{1} defined over K which is isomorphic to G over \bar{K}. Furthermore, the isomorphism $f: G \rightarrow G_{1}$ can be chosen so that $\left(f^{-1}\right)^{\sigma} \circ f=I_{a_{\sigma}}$ (for each $\sigma \in(\mathcal{B})$ where $g_{\sigma} \in G$ and $I_{\theta_{\sigma}}(h)=g_{\sigma} h g_{\sigma}{ }^{-1}$ for all h in G. It follows that for each σ, τ in \mathcal{B}, there is an element $c_{\sigma, \tau}$ in $Z(G)$, the center of G, such that $g_{\sigma}^{\tau} g_{\tau}=c_{\sigma, \tau} g_{\sigma \tau}$. The mapping (σ, τ) $\rightarrow c_{\sigma, \tau}$ from ($) \times(\mathbb{B})$ to $Z(G)$ is a 2-cocycle of $(\mathbb{B}$ in $Z(G)$ whose cohomology class ($c_{\sigma, \tau}$) is independent of G_{1} and f. This class is denoted by $\gamma(G)$ and has been studied by Satake [5], [7].

Theorem. Let G be a simply connected semisimple algebraic group defined over K and let $\rho: G \rightarrow G L(V / \mathfrak{B})$ be an absolutely irreducible representation of G defined over K which preserves a quaternion skewhermitian form H (defined over K). Let G_{1} be the quasi-split group associated to G, let $f: G \rightarrow G_{1}$ be an isomorphism defined over \bar{K} such that $\left(f^{-\sigma}\right) \circ f=I_{o_{\sigma}}$ where $g_{\sigma} \in G$, and let $\gamma(G)=\left(c_{\sigma, \tau}\right)$. Then there exists an absolutely irreducible representation $\rho_{1}: G_{1} \rightarrow \mathrm{GL}\left(V_{1}\right)$ defined over K which preserves a nondegenerate symmetric bilinear form S_{1} (defined over K). Furthermore, the following conditions hold:
(i) There is an absolutely irreducible representation $M: \operatorname{End}(V / B)$ $\rightarrow \operatorname{End}\left(V_{1}\right)$ defined over \bar{K} such that $M(\rho(g))=\left(\rho_{1} \circ f\right)(g)$ for all $g \in G$.
(ii) The central simple division algebra \mathfrak{B} is characterized by the property that $c(\mathfrak{B})$ (the Hasse invariant of $\mathfrak{B})=\left(\left(\rho_{1} \circ f\right)\left(c_{\sigma . t}\right)\right)$.
(iii) The invariants of H are $\operatorname{dim}_{\mathfrak{B}}(V)=\frac{1}{2} \operatorname{dim} V_{1}$ and $\delta(H)=\Delta\left(S_{1}\right)$.

This result is Theorem I. 2 in [2]. However, the construction of ρ_{1} and statements (i) and (ii) are due to Satake [7]. We shall later extend this theorem to include a description of \mathbb{C}.

Corollary. If G_{1} is a split group, then $\delta(H)=1$.
Proof. It follows from (ii) that $\rho_{1}\left(Z\left(G_{1}\right)\right) \neq\{1\}$. Hence, S_{1} has maximal Witt index [3, Lemma 1.1]; this completes the proof.

Remark. The invariant Δ is defined as follows: let $q=\operatorname{dim} V_{1}$ and let $\left\{e_{1}, \cdots, e_{q}\right\}$ be a K-rational basis of V_{1}. Then Δ is the equivalence class of $(-1)^{q(q-1) 2} \operatorname{det}\left(S_{1}\left(e_{i}, e_{j}\right)\right)$ in $K^{*} /\left(K^{*}\right)^{2}$ where K^{*} is the multiplicative group $K-\{0\}$.
2. The invariant ©. We denote the Clifford algebra of S_{1} by C and the algebra of "even elements" in C by C^{+}. Let $\operatorname{Spin}\left(V_{1}, S_{1}\right)$ denote the "spin group" of S_{1} and let $\pi: \operatorname{Spin}\left(V_{1}, S_{1}\right) \rightarrow \mathrm{SO}\left(V_{1}, S_{1}\right)$ be the canonical homomorphism. It is well known that π is defined over K and has kernel $\{+1,-1\}$. Since G is simply connected, there is a
(polynomial) map $\rho_{s}: G \rightarrow \operatorname{Spin}\left(V_{1}, S_{1}\right)$ such that $\pi \circ \rho_{s}=\rho_{1} \circ f$. We put $A_{\sigma}=\rho_{s}\left(g^{-1}\right)$ and $B_{\sigma}=\pi\left(A_{\sigma}\right)=\left(\rho_{1} \circ f\right)\left(g^{-1}\right)$. It follows that $\left(\rho_{1} \circ f\right)^{\sigma}(g)=B_{\sigma}\left(\rho_{1} \circ f\right)(g) B_{\sigma}^{-1}$ for each $\left.\sigma \in \mathbb{G}\right)$ and all $g \in G$; hence, since G is connected $\rho_{s}^{\sigma}(g)=A_{\sigma} \rho_{s}(g) A_{\sigma}^{-1}$ for each $\sigma \in \mathbb{J}$ and all $g \in G$. From this we see that $A_{\sigma}^{\tau} A_{\tau}=\rho_{s}\left(c_{\sigma, \tau}^{-1}\right) A_{\sigma \tau}$ for each $\sigma, \tau \in \mathfrak{G}$. The elements $z_{\sigma, r}=\rho_{s}\left(c_{\sigma, r}^{-1}\right)$ are in the center of C^{+}but may not be in the center of C.

Let \mathscr{g}_{σ} be the automorphism of C^{+}given by $\mathscr{G}_{\sigma}(\xi)=A_{\sigma} \xi A_{\sigma}{ }^{-1}$ for each $\xi \in C^{+}$. Since the elements $z_{\sigma, \tau}$ are in the center of C^{+}, we have $\mathfrak{g}_{\sigma}^{\top} \mathcal{G}_{\tau}=\boldsymbol{g}_{\sigma \tau}$ and, therefore, the mapping $\sigma \rightarrow \boldsymbol{g}_{\sigma}$ is a 1 -cocycle of $\mathfrak{G H}$ in $\operatorname{Aut}\left(C^{+}\right)$and gives rise to a K-form ©. There is an isomorphism $h:\left(\mathfrak{C} \rightarrow C^{+}\right.$such that $h^{\sigma} \circ h^{-1}=\mathscr{g}_{\sigma}$ for each σ in $(\mathbb{J}$.

We set $K^{\prime}=K\left(\Delta^{1 / 2}\right)$ and $\mathcal{B j}^{\prime}=\operatorname{Gal}\left(\bar{K} / K^{\prime}\right)$. From statement (i) in $\S 1$, it follows that $\operatorname{dim} V_{1} \equiv 0(\bmod 2)$. Hence, C is a central simple algebra over K and C^{+}decomposes over K^{\prime} into a direct sum of two central simple algebras C_{1} and C_{2} which are equivalent to C over K^{\prime}. This decomposition gives rise to a decomposition $\mathfrak{C}=\mathfrak{C}_{1}+\mathfrak{C}_{2}$ of the algebra \mathbb{C} as a direct sum of two central simple algebras over K^{\prime}.

We shall now determine the invariant $c\left(\mathfrak{C}_{1}\right)$ over K^{\prime}. Let $h_{1}: C_{1} \rightarrow M\left(2^{n-1}, \bar{K}\right)$ be an isomorphism of C_{1} onto a full matrix algebra; the mapping h_{1} is defined over \bar{K}. By the theorem of Skolem-Noether, $h_{1}^{\sigma} \circ h_{1}^{-1}=I_{M_{\sigma}}$ (for each σ in $\left(\mathfrak{b l}^{\prime}\right)$ where M_{σ} is a nonsingular $2^{n-1} \times 2^{n-1}$ matrix. It follows that $M_{\sigma}^{\tau} M_{\tau}=d_{\sigma, \tau} M_{\sigma \tau}$ where $d_{\sigma, \tau}$ is a diagonal matrix. The invariant $c\left(C_{1}\right)$ over K^{\prime} is the cohomology class ($d_{\sigma_{, ~}}$) over K^{\prime}.

If $\xi \in C^{+}$, we denote by ξ^{\prime} the projection of ξ on C_{1}. The mapping $h_{1} \circ h$ gives an isomorphism of \mathbb{G}_{1} onto a full matrix algebra and $\left(h_{1} \circ h\right)^{\sigma} \cdot\left(h_{1} \circ h\right)^{-1}=I_{N_{\sigma}}$ where $N_{\sigma}=M_{\sigma} h_{1}\left(A_{\sigma}^{\prime}\right)$. From this it follows that $N_{\sigma}^{\tau} N_{\tau}=e_{\sigma, \tau} N_{\sigma \tau}$ where $e_{\sigma, \tau}=d_{\sigma, \tau} h_{1}\left(z_{\sigma, \tau}^{\prime}\right)$.

Let ω_{1} and ω_{2} be the "spin representations" of $\operatorname{Spin}\left(V_{1}, S_{1}\right)$. These representations come from the canonical representations of C^{+}on the ideals C_{1} and C_{2}. Hence, $h_{1}\left(z_{\sigma, \tau}^{\prime}\right)$ may be identified with $\omega_{1}\left(z_{\sigma, \tau}\right)$.

Remark. The representations $\omega_{1} \circ \rho_{s}$ and $\omega_{2} \circ \rho_{s}$ of G are, in general, not absolutely irreducible. However, let $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ be the positive weights relative to some ordering with multiplicities of $\rho_{1} \circ f$. Then it is well known that the highest weight of $\omega_{1} \circ \rho_{s}$ (resp. $\omega_{2} \circ \rho_{s}$) is $\frac{1}{2}\left(\lambda_{1}+\cdots+\lambda_{n-1}+\lambda_{n}\right)$ (resp. $\frac{1}{2}\left(\lambda_{1}+\cdots+\lambda_{n-1}-\lambda_{n}\right)$). Indeed, the weights of $\omega_{1} \circ \rho_{s}\left(\right.$ resp. $\left.\omega_{2} \circ \rho_{s}\right)$ are $\frac{1}{2}\left(\pm \lambda_{1} \pm \cdots \pm \lambda_{n-1} \pm \lambda_{n}\right)$ with an even number (resp. odd number) of minus signs.

We shall now state our results on the invariants \mathfrak{C}_{1} and \mathfrak{C}_{2}. In doing so, we shall use the assumptions and notation of the theorem.

Proposition. The cohomology class $c\left(\mathfrak{G}_{i}\right)(i=1,2)$ over K^{\prime} is given by the equation $c\left(\mathfrak{C}_{i}\right)=c\left(C_{i}\right)\left(\omega_{i} \circ \rho_{s}\left(c_{\sigma, r}^{-1}\right)\right)$.

Corollary 1. If G_{1} is a split group, then $c\left(\S_{i}\right)=\left(\omega_{i} \circ \rho_{s}\left(c_{\sigma, \tau}^{-1}\right)\right)$.
Proof. As we saw in the corollary to the theorem ($\S 1$), the form S_{1} has maximal Witt index and so $c\left(C_{i}\right) \sim 1$. This completes the proof.

Corollary 2 (Jacobson). The following relations on \mathfrak{C}_{1} and \mathfrak{C}_{2} hold over K^{\prime} :
(i) if $n \equiv 0(\bmod 2)$, then $\mathfrak{C}_{j}^{2} \sim 1(j=1,2)$ and $\mathfrak{C}_{1} \otimes \mathfrak{C}_{2} \sim \mathfrak{B}$;
(ii) if $n \equiv 1(\bmod 2)$, then $\mathfrak{C}_{1} \otimes \mathfrak{C}_{2} \sim 1$ and $\mathfrak{C}_{j}^{2} \sim \mathfrak{B}(j=1,2)$.

Proof. As before, let $\omega_{i}: \operatorname{Spin}\left(V_{1}, S_{1}\right) \rightarrow \mathrm{GL}\left(W_{i}\right)(i=1,2)$ be the "spin representations" of $\operatorname{Spin}\left(V_{1}, S_{1}\right)$. We shall denote by $\omega_{i j}$ the representation $\left(\omega_{i} \circ \rho_{s}\right) \otimes\left(\omega_{j} \circ \rho_{s}\right)$ of G on $W_{i} \otimes W_{j}$ (for $i, j=1,2$). Since $c(C)^{2}=1$, it follows from the proposition that $c\left(\mathfrak{§}_{i}\right) c\left(\mathfrak{C}_{j}\right)$ $=\left(\omega_{i j}\left(c_{\sigma, \tau}^{-1}\right)\right)$ for $i, j=1,2$. In the rest of this proof, we use the notation of the remark preceding the proposition. Furthermore, we shall denote by λ_{1} the highest weight of $\rho_{1} \circ f$.
(i) We shall assume that $n \equiv 0(\bmod 2)$. Since $\frac{1}{2}\left(\lambda_{1}+\cdots+\lambda_{n}\right)$ and $-\frac{1}{2}\left(\lambda_{1}+\cdots \lambda_{n}\right)$ are weights of $\omega_{1} \circ \rho_{s}$, it follows that 0 is a weight of ω_{11}; hence, $\omega_{11}(Z(G))=\{1\}$ and $c\left(C_{1}\right)^{2}=1$. Similarly, $\frac{1}{2}\left(\lambda_{1}+\cdots+\lambda_{n}\right)$ is a weight of $\omega_{1} \circ \rho_{s}$ and $\frac{1}{2}\left(\lambda_{1}-\lambda_{2}-\cdots-\lambda_{n}\right)$ is a weight of $\omega_{2} \circ \rho_{s}$; hence, λ_{1} is a weight of ω_{12} and so ($\omega_{12}\left(c_{\sigma, 7}^{-1}\right)$) $=\left(\lambda_{1}\left(c_{\sigma, \tau}^{-1}\right)\right)=c(\mathfrak{B})$ by statement (ii) in the theorem. Therefore, $\mathfrak{C}_{1} \otimes \mathfrak{C}_{2} \sim \mathfrak{B}$ and the proof of (i) is finished.
(ii) We now assume that $n \equiv 1(\bmod 2)$. Since $\frac{1}{2}\left(\lambda_{1}+\cdots+\lambda_{n}\right)$ and $\frac{1}{2}\left(\lambda_{1}-\lambda_{2}-\cdots-\lambda_{n}\right)$ are weights of $\omega_{1} \circ \rho_{s}$, it follows as before that $c\left(\mathfrak{C}_{1}\right) c\left(\mathfrak{C}_{1}\right)=\left(\lambda_{1}\left(c_{\sigma, \tau}^{-1}\right)\right)=c(\mathfrak{B})$. Similarly, $\frac{1}{2}\left(\lambda_{1}+\cdots+\lambda_{n}\right.$) (resp. $-\frac{1}{2}\left(\lambda_{1}+\cdots+\lambda_{n}\right)$) is a weight of $\omega_{1} \circ \rho_{s}$ (resp. $\omega_{2} \circ \rho_{s}$) and so $c\left(\bigodot_{1}\right) c\left(\bigodot_{2}\right)=1$. This completes the proof of the corollary.
3. An example. In this section, we shall assume that K is a field of characteristic 0 and that G is an absolutely simple algebraic group defined over K. If G is not of type A_{n}, B_{n} or D_{n}, then quaternion skewhermitian representations cannot exist. For 0 is a weight of each orthogonal representation and, therefore $\rho(Z(G))=\{1\}$; statement (ii) of the theorem then cannot be satisfied. If G is of type B_{n} or if G is of type D_{n} or A_{n} and the quasi-split group associated to G is of Chevalley type (i.e., split) then we have the following description of the invariants associated to $(V, H): \delta(H)=1$ and $c\left(\mathbb{C}_{i}\right)=\left(\omega_{i} \circ \rho_{s}\left(c_{\sigma, r}^{-1}\right)\right)$.

It only remains to examine invariant symmetric bilinear forms on representations of quasi-split groups of type A_{n} and D_{n}. We have described these forms in an earlier paper [2, Theorem II.1]. Here, we shall only give a small extension of these results.

Let G be a simply connected semisimple Chevalley group defined
over K. The automorphism group of G is the semidirect product of a finite group Θ and the inner automorphisms of G. The group Θ can be chosen so that each θ in Θ is defined over K.

Let $L=K\left(\alpha^{1 / 2}\right)$ be a quadratic extension of K (where $\alpha \in K^{*}$) and let $\operatorname{Gal}(L / K)=\{1, \sigma\}$ where $\sigma\left(\alpha^{1 / 2}\right)=-\alpha^{1 / 2}$. Let $\theta \in \Theta$ be such that $\theta^{2}=1$. The mapping of $\{1, \sigma\}$ to Θ defined by $1 \rightarrow 1_{G}$ and $\sigma \rightarrow \theta$ is a 1-cocycle of Θ in $\operatorname{Aut}(G)$. Hence, there is a group G_{1} defined over K (which is "split" over L) and an isomorphism $f: G_{1} \rightarrow G$ such that $f^{\circ} \circ f^{-1}=\theta$. The group G_{1} is quasi-split; each group of type D_{n}^{2} arises in this way.

Let $\rho: G \rightarrow \mathrm{SO}(V, S)$ be an absolutely irreducible orthogonal representation of G defined over K such that $\rho \circ \theta \sim \rho$. We shall also assume that $\rho(Z(G)) \neq\{1\}$. Then there is an absolutely irreducible orthogonal representation $\rho_{1}: G_{1} \rightarrow \mathrm{SO}\left(V_{1}, S_{1}\right)$ of G_{1} defined over K such that $\rho_{1} \sim \rho \circ f$ [2, Theorem II.1.]. We shall sketch this construction. There exists an $A \in \mathrm{GL}(V, K)$ such that $A^{2}=1, A \rho(g) A^{-1}=\rho(\theta(g))$ for all $g \in G$, and ${ }^{t} A S A=S$. Hence, we may find a K-rational orthogonal basis of V such that in this basis $A=\operatorname{diag}(1, \cdots, 1,-1, \cdots,-1)$ (with, say, $r+1$'s). Let $S=\operatorname{diag}\left(\beta_{1}, \cdots, \beta_{r}, \beta_{r+1}, \cdots, \beta_{n}\right)$ in this basis. Then $S_{1}=\left(\beta_{1}, \cdots, \beta_{r}, \alpha \beta_{r+1}, \cdots, \alpha \beta_{n}\right)$. Since $\rho(Z(G)) \neq\{1\}$, S has maximal Witt index and so $\Delta(S)=1$ and $c(S)=1$. It is then not hard to see that $\Delta\left(S_{1}\right)=\alpha^{n-r}$. If $\operatorname{det}(A)=-1$, then $K^{\prime}=K\left(\Delta\left(S_{1}\right)^{1 / 2}\right)$ $=L$ and over $L, S_{1}=S$. Hence, if $\operatorname{det}(A)=-1$, then $c\left(S_{1}\right) \sim 1$ over K^{\prime}.

The facts on quadratic forms that we have used may all be found in [1].

References

1. C. Chevalley, The algebraic theory of spinors, Columbia University Press, New York, 1954. MR 15 \#678.
2. F. Grosshans, Orthogonal representations of algebraic groups, Trans. Amer. Math. Soc. 137 (1969), 519-531.
3. -, Real orthogonal representations of algebraic groups (to appear).
4. N. Jacobson, Clifford algebras for algebras with involution of type D, J. Algebra 1 (1964), 288-300. MR 29 \#5849.
5. I. Satake, On a certain invariant of the groups of type E_{6} and E_{7}, J. Math Soc. Japan 20 (1968), 322-335. MR 37 \#2759.
6. -, Quaternion skew-hermitian forms and Clifford algebras, Lecture Notes for the National Science Foundation Advanced Science Seminar on Algebraic Number Theory, Bowdoin College, Brunswick, Maine, 1966.
7. -, Symplectic representations of algebraic groups satisfying a certain analyticity condition, Acta. Math. 117 (1967), 215-279. MR 35 \#6694.

University of Pennsylvania

