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Introduction. Let K be an infinite perfect field of characteristic

different from 2, let S3 be a quaternion division algebra over K, and

let £—>| denote the canonical involution of the first kind on S3. Let V

be a finite-dimensional right vector space over S3.

A quaternion skew-hermitian form H over S3 is a sesquilinear form

on FX V, i.e., H is a map from FX V to S3 such that

(i) H(x, yi+y2)=H(x, yx)+H(x, y2) and H(x, ya)=H(x, y)a for

all x, y, y\, y2 in V and a in S3;

(ii) H(x, y) = —H(y, x) for all x, y in V. Let {xi, • • • , xn} be a

basis for V over S3. We say that H is nondegenerate if the reduced

norm in il7n(S3) of the matrix (H(xt, xf)) is not zero. Associated to

such a nondegenerate form H are 3 invariants, the dimension of V

over S3, dimsB(F), the discriminant of H, 8(H), and the Clifford

algebra of H, E.

Let G be a simply connected semisimple algebraic group (in some

GL(m, K)) which is defined over K and let p:G—>GL(F/33) be an
absolutely irreducible representation of G defined over K into the

group of all nonsingular S3-linear endomorphisms of V. We shall

assume that there is a nondegenerate quaternion skew-hermitian

form H on V which is invariant with respect to p(G).

The purpose of this paper is to describe the Clifford algebra of the

invariant form H in terms of p, G, and the Steinberg group associated

to G. In a previous paper, we have described dim»(F) and 8(H) in

such a way and have indicated how representations such as p arise

[2, Theorem 1.2]. The invariant 7(G) plays an important role in our

study and so we recall some of its properties in §1. In 2, we define

the invariant E using the representation p. Jacobson first constructed

the Clifford algebra of a quaternion skew-hermitian form [4]. In this

paper, however, we shall follow a method due to Satake [6]. We give

some examples in §3 with special emphasis on the case where G is

absolutely simple.

1. The invariant y(G). A connected semisimple algebraic group Gi

defined over K is said to be K-quasi-split (or of Steinberg type) if
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there is a Borel subgroup B in G\ defined over K. Let ® = Gal(K/K)

(where K denotes the algebraic closure of K). It is known that there

is a quasi-split group G\ defined over K which is isomorphic to G over

K. Furthermore, the isomorphism /:G—»Gi can be chosen so that

(f~iyof = Ig<, (for each aE&) where g,EG and I„c(h) = gJig<Tl for

all h in G. It follows that for each a, t in @, there is an element c„,T

in Z(G), the center of G, such that glgr = cCiTgCT. The mapping (<r, t)

—>c„,T from ©X© to Z(G) is a 2-cocycle of © in Z(G) whose cohomol-

ogy class (c„,T) is independent of G\ and /. This class is denoted by

7(G) and has been studied by Satake [5], [7].

Theorem. Let G be a simply connected semisimple algebraic group

defined over K and let p:G—>GL(F/93) be an absolutely irreducible

representation of G defined over K which preserves a quaternion skew-

hermitian form H (defined over K). Let G\ be the quasi-split group asso-

ciated to G, let /:G—>Gi be an isomorphism defined over K such that

(f~c) o/ = /0<r where g„EG, and let y(G) = (c„,T). Then there exists an

absolutely irreducible representation pi:Gi—>GL(Fi) defined over K

which preserves a nondegenerate symmetric bilinear form Si (defined

over K). Furthermore, the following conditions hold:

(i) There is an absolutely irreducible representation M:End(V/$$)

—>End(Fi) defined over K such that M(p(g)) = (pi of)(g) for all gEG.
(ii) The central simple division algebra 33 is characterized by the

property that c(33) (the Hasse invariant of 33) = ((pi o/)(c„.T)).

(iii) The invariants of H are dima(F) = J dim Vi and 8(H) =A(5i).

This result is Theorem 1.2 in [2]. However, the construction of pi

and statements (i) and (ii) are due to Satake [7]. We shall later extend

this theorem to include a description of S.

Corollary. If G\ is a split group, then 8(H) = 1.

Proof. It follows from (ii) that pi(Z(Gi))^ {1}. Hence, Si has

maximal Witt index [3, Lemma 1.1 ]; this completes the proof.

Remark. The invariant A is defined as follows: let <7 = dim Vi and

let \e\, • • • ,eq\ be a i£-rational basis of V\. Then A is the equivalence

class of (-l)«<«-»2det(Si(e,-, e,)) in K*/(K*y where K* is the multi-

plicative group K— {o}.

2. The invariant E. We denote the Clifford algebra of Si by C and

the algebra of "even elements" in C by C+. Let Spin(Fi, Si) denote

the "spin group" of Si and let ir:Spin(Fi, Si)—>SO(Fi, Si) be the

canonical homomorphism. It is well known that r is defined over K

and has kernel {+1, — !}• Since G is simply connected, there is a
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(polynomial) map p,:G—>Spin(Fi, Si) such that t o p, =pi of. We
put A„=p,(g7l) and B„ = ir(A„) = (pi of)(gr1)- It follows that

(Pi °f)c(i) =Br(j>i of)(g)Brx for each cG® and all gGG; hence, since

G is connected p",(g) =A„p,(g)Arl for each <rG® and all gGG. From

this we see that AlAT=p,(c~^)A<rT for each a, tE:®- The elements

z«r,r = p,(c~T1) are in the center of C+ but may not be in the center of C.

Let 3a be the automorphism of C+ given by #„(£)= A,l-Ar1 for

each £GC+. Since the elements z,,r are in the center of C+, we have

STaST = d„T and, therefore, the mapping a-^d„ is a 1-cocycle of ® in

Aut(C+) and gives rise to a 7C-form E. There is an isomorphism

ft:S—>C+ such that h' o h~l =3, for each a in ®.

We set K'=K(A1ii) and @' = Gal(£/.£')■ From statement (i) in

§1, it follows that dim Fi = 0 (mod 2). Hence, C is a central simple

algebra over K and C+ decomposes over K' into a direct sum of two

central simple algebras Ci and C2 which are equivalent to C over K'.

This decomposition gives rise to a decomposition E = &i + S2 of the

algebra S as a direct sum of two central simple algebras over K'.

We shall now determine the invariant c(Si) over K'. Let

hi'. Ci—*M(2n~1, K) bean isomorphism of Ci onto a full matrix algebra;

the mapping hi is defined over K. By the theorem of Skolem-Noether,

h\ o hr1 = lM, (for each <x in ©') where M„ is a nonsingular 2n-1X2n_1

matrix. It follows that MIMT =d<,,rMCT where d„,T is a diagonal matrix.

The invariant c(Ci) over K' is the cohomology class (d,,T) over K'.

If £GC+, we denote by £' the projection of £ on Ci. The mapping

hi oh gives an isomorphism of 6i onto a full matrix algebra and

(hi o h)'-(hi o h)-1 = I!fir where N, = Mrhi(A'„). From this it follows

that NlNT = e„,TN„ where ec,T = d,,Thi(z'ViT).

Let «i and w2 be the "spin representations" of Spin(Fi, Si). These

representations come from the canonical representations of C+ on the

ideals Ci and C2. Hence, hi(z'riT) may be identified with «i(z„,T).

Remark. The representations wi o p, and u2 o ps of G are, in gen-

eral, not absolutely irreducible. However, let Xi, X2, • • • , X„ be the

positive weights relative to some ordering with multiplicities of

pi of. Then it is well known that the highest weight of wi o p, (resp.

w2op.) is i(Xi+ • • • +X„_i+X„) (resp. |(Xi+ • • • +X„_i—Xn)). In-

deed, the weights of coi op, (resp. w2 op,) are f(±Xi+ • ■ ■ ±X„_i±X„)

with an even number (resp. odd number) of minus signs.

We shall now state our results on the invariants Si and S2. In

doing so, we shall use the assumptions and notation of the theorem.

Proposition. The cohomology class c(E,) (* = 1, 2) over K' is given

by the equation c(S.) =c(Ci) (wt- op,(cJ,J)).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



500 FRANK GROSSHANS |Muich

Corollary 1. // Gi is a split group, then c(E.) = («,• o p,(c~])).

Proof. As we saw in the corollary to the theorem (§1), the form

Si has maximal Witt index and so c(C,)~l. This completes the proof.

Corollary 2 (Jacobson). The following relations on Si and £2

hold over K':

(i) ifn = 0 (mod 2), then S,2~l (j = \, 2) and gi<S>S2~33;
(ii) ifn = l (mod 2), then <Si®S2~l and S*~SB (j=\,2).

Proof. As before, let co,:Spin(Fi, Si)^>GL(Wi) (i = l, 2) be the

"spin representations" of Spin(Fi, Si). We shall denote by w,y the

representation («< o p,) ® (wy o p.) of G on Wi®W, (for i, j = l, 2).

Since c(C)2 = l, it follows from the proposition that c(S,)c(Sy)

= (c0a(c~l)) for i, j = 1, 2. In the rest of this proof, we use the notation

of the remark preceding the proposition. Furthermore, we shall

denote by Xi the highest weight of pi of.

(i) We shall assume that m = 0 (mod 2). Since J(Xi + • • • +X„)

and — i(Ai+ • • • Xn) are weights of coiop,, it follows that 0 is a

weight of wn; hence, con(Z(G)) = {l} and c(@i)2=l. Similarly,

|(Xi+ ■ • • +X„) is a weight of coi o p, and §(Xi — X2— • • • — X„) is a

weight of w2op,; hence, Xi is a weight of «i2 and so (wi2(c~'))

= (Xi(c~J)) =c(33) by statement (ii) in the theorem. Therefore,

(£i®E2~33 and the proof of (i) is finished.

(ii) We now assume that w = l (mod 2). Since 5(Xi+ • • • +X„)

and 5(^1— X2— • • • — X„) are weights of «i o p„ it follows as before

that e(6i)c(6i) = (Xi(0)=c(®)- Similarly, §(Xx+ • • • +Xn) (resp.

— i(Xi+ • • • +X„)) is a weight of wiop, (resp. w2op.) and so

c(Ei)c(S2) = 1- This completes the proof of the corollary.

3. An example. In this section, we shall assume that K is a field

of characteristic 0 and that G is an absolutely simple algebraic group

defined over K. If G is not of type An, B„ or Dn, then quaternion skew-

hermitian representations cannot exist. For 0 is a weight of each

orthogonal representation and, therefore p(Z(G))= {l}; statement

(ii) of the theorem then cannot be satisfied. If G is of type B„ or if G

is of type Dn or An and the quasi-split group associated to G is of

Chevalley type (i.e., split) then we have the following description of

the invariants associated to (V, H): 8(H) = 1 and c((Ei) = (w,- o p,(c~lT)).

It only remains to examine invariant symmetric bilinear forms on

representations of quasi-split groups of type An and Dn. We have

described these forms in an earlier paper [2, Theorem II.l]. Here, we

shall only give a small extension of these results.

Let G be a simply connected semisimple Chevalley group defined
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over K. The automorphism group of G is the semidirect product of a

finite group 0 and the inner automorphisms of G. The group 0 can

be chosen so that each 0 in 0 is defined over K.

Let L = K(a112) be a quadratic extension of K (where a^K*) and

let Gs\(L/K) = {1, a) where a(a112) = -a"s. Let 0G0 be such that

02=1. The mapping of }l, a\ to 0 defined by 1—>1<? and a—>0 is a

1-cocycle of 0 in Aut(G). Hence, there is a group Gi defined over K

(which is "split" over L) and an isomorphism f:Gi—>G such that

/' o/-1 = 0. The group Gi is quasi-split; each group of type Dl arises

in this way.

Let p:G—»SO(F, S) be an absolutely irreducible orthogonal repre-

sentation of G defined over K such that p o 0~p. We shall also assume

that p(Z(G)) 5^ {1}. Then there is an absolutely irreducible orthogonal

representation pi:Gi—>SO(Fi, Si) of Gi defined over K such that

Pi~p of [2, Theorem II.1.]. We shall sketch this construction. There

exists an AEGL(V, K) such that A* = \, Ap(g)A-1=p(6(g)) for all

g(E.G, and *ASA=S. Hence, we may find a TC-rational orthogonal

basis of Fsuch that in this basis A =diag(l, • • • , 1, — 1, • • • , — 1)

(with, say, r+l's). Let 5 = diag(/3i, • • • , /3r, j3r+i, • • • , $n) in this

basis. Then Si = (ft, • • • , ft, aft+i, - • • , a/3„). Since p(Z(G))*{l},
S has maximal Witt index and so A(5) = l and c(S) = l. It is then

not hard to see that A(5i) =aK~r. If det(^) = -1, then K' = K(A(Si)1'i)

= L and over L, Si = 5. Hence, if det(^4) = — 1, then c(Si)~l over K'.

The facts on quadratic forms that we have used may all be found

in [1].
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