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Introduction. Let K be an infinite perfect field of characteristic
different from 2, let B be a quaternion division algebra over K, and
let £—& denote the canonical involution of the first kind on 8. Let V
be a finite-dimensional right vector space over 8.

A quaternion skew-hermitian form H over B is a sesquilinear form
on VXV,ie., Hisa map from VXV to 8B such that

(i) H(x, y1+32)=H(x, y1) +H(x, v2) and H(x, yo) =H(x, y)a for
all x, y, y1, 2 in V and « in B;

(ii) H(x, y)=—H(y, x) for all x, y in V. Let {xl, e, x,.} be a
basis for V over 8. We say that H is nondegenerate if the reduced
norm in M,(®B) of the matrix (H(x;, x;)) is not zero. Associated to
such a nondegenerate form H are 3 invariants, the dimension of V
over B, dimg(V), the discriminant of H, 8(H), and the Clifford
algebra of H, €.

Let G be a simply connected semisimple algebraic group (in some
GL(m, K)) which is defined over K and let p:G—GL(V/®B) be an
absolutely irreducible representation of G defined over K into the
group of all nonsingular 8B-linear endomorphisms of V. We shall
assume that there is a nondegenerate quaternion skew-hermitian
form H on V which is invariant with respect to p(G).

The purpose of this paper is to describe the Clifford algebra of the
invariant form H in terms of p, G, and the Steinberg group associated
to G. In a previous paper, we have described dimg(V) and 6(H) in
such a way and have indicated how representations such as p arise
[2, Theorem 1.2]. The invariant 4(G) plays an important role in our
study and so we recall some of its properties in §1. In 2, we define
the invariant € using the representation p. Jacobson first constructed
the Clifford algebra of a quaternion skew-hermitian form [4]. In this
paper, however, we shall follow a method due to Satake [6]. We give
some examples in §3 with special emphasis on the case where G is
absolutely simple.

1. The invariant v(G). A connected semisimple algebraic group G;
defined over K is said to be K-quasi-split (or of Steinberg type) if
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there is a Borel subgroup B in G; defined over K. Let & =Gal(K/K)
(where K denotes the algebraic closure of K). It is known that there
is a quasi-split group G; defined over K which is isomorphic to G over
K. Furthermore, the isomorphism f:G—G; can be chosen so that
(f-Y7of=1,, (for each 0 &E®) where g, &G and I, (k) =g.hg,~! for
all 2 in G. 1t follows that for each o, 7 in @, there is an element ¢, ,
in Z(G), the center of G, such that gig, =¢, g, The mapping (o, 7)
—¢,.. from @ X to Z(G) is a 2-cocycle of ® in Z(G) whose cohomol-
ogy class (¢,.,) is independent of G; and f. This class is denoted by
v(G) and has been studied by Satake [5], [7].

THEOREM. Let G be a simply connected semisimple algebraic group
defined over K and let p:G—GL(V/B) be an absolutely irreducible
representiaiion of G defined over K which preserves a quaternion skew-
hermitian form H (defined over K). Let G, be the quasi-split group asso-
ciated to G, let f:G—G, be an isomorphism defined over K such that
(f) of=1I,, where g, EG, and let v(G) = (¢,.). Then there exists an
absolutely irreducible representation py:Gi—GL(V)) defined over K
which preserves a nondegenerate symmetric bilinear form S, (defined
over K). Furthermore, the following conditions hold:

(i) There is an absolutely irreducible representation M:End(V/B)
—End(V,) defined over K such that M(p(g)) = (p1 0 f)(g) for all gEG.

(ii) The central simple division algebra B is characterized by the
property that c(B) (the Hasse invariant of B) = ((p1 0 f)(¢s..)).

(iii) The invariants of H are dimg(V) =% dim V; and 6(H) =A(S)).

This result is Theorem 1.2 in [2] However, the construction of p;
and statements (i) and (ii) are due to Satake [7]. We shall later extend
this theorem to include a description of €.

COROLLARY. If G, is a split group, then 6(H) =1.

Proor. It follows from (ii) that p:(Z(G:))# {1} Hence, S; has
maximal Witt index [3, Lemma 1.1]; this completes the proof.

REMARK. The invariant A is defined as follows: let g=dim V, and
let {e;, - - -, e,} bea K-rational basis of V1. Then A is the equivalence
class of (—1)¢=D2det(S;(ey, ¢;)) in K*/(K*)? where K*is the multi-
plicative group K — {O } .

2. The invariant €. We denote the Clifford algebra of S; by C and
the algebra of “even elements” in C by C*. Let Spin(V3, S)) denote
the “spin group” of S; and let m:Spin(Vi, S$)—SO(V;, Si) be the
canonical homomorphism. It is well known that = is defined over K
and has kernel {41, —1}. Since G is simply connected, there is a
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(polynomial) map p,:G—Spin(Vi, S1) such that 7 o p,=p1 0 f. We
put A.,=p,(g-Y) and B,=w(4.,)=(p1of)(g-?). It follows that
(p1 0 f)?(g) = B,(p1 0 f)(g) B; ! for each s &® and all g&G; hence, since
G is connected pJ(g) = A.p,(g) A" for each ¢ E® and all g&G. From
this we see that AJA,=p,(c;!)4,r for each o, 7E®. The elements
2,..=p,(c;}) are in the center of C* but may not be in the center of C.

Let 9, be the automorphism of C* given by 4,(§) =A4,£4;* for
each £E€ Ct. Since the elements 2,,, are in the center of C*, we have
479.=49,. and, therefore, the mapping c—9, is a 1-cocycle of @ in
Aut(C*) and gives rise to a K-form €. There is an isomorphism
h:6@—C* such that k° o h—1=4, for each ¢ in ©.

We set K'=K(AY?) and &' =Gal(K/K’). From statement (i) in
§1, it follows that dim V=0 (mod 2). Hence, C is a central simple
algebra over K and C* decomposes over K’ into a direct sum of two
central simple algebras C, and C; which are equivalent to C over K’.
This decomposition gives rise to a decomposition € =G,+¢; of the
algebra € as a direct sum of two central simple algebras over K’.

We shall now determine the invariant ¢(€;) over K’. Let
hi: Ci— M (21, K) be an isomorphism of C; onto a full matrix algebra;
the mapping 4 is defined over K. By the theorem of Skolem-Noether,
hi o hit=1y, (for each ¢ in §’) where M, is a nonsingular 27=1X 271
matrix. It follows that M; M, =d, .M, where d, . is a diagonal matrix.
The invariant ¢(C;) over K’ is the cohomology class (d,.;) over K'.

If ¢EC+, we denote by &’ the projection of £ on ;. The mapping
k1o k gives an isomorphism of €, onto a full matrix algebra and
(k1o k)" -(ho h)~'=1Iy, where N,=M,m(A;). From this it follows
that N;N,=e,.N,. where e, .=d,.h:i(2, ).

Let w; and w; be the “spin representations” of Spin(Vy, S;). These
representations come from the canonical representations of C* on the
ideals Cy and C,. Hence, ki (2, ) may be identified with w;(z,.7).

REMARK. The representations w; o p, and w; o p, of G are, in gen-
eral, not absolutely irreducible. However, let \;, Ay, - - -, A, be the
positive weights relative to some ordering with multiplicities of
p1of. Then it is well known that the highest weight of w; o p, (resp.
w20p,) is 3+ -+ - FNaa+N) (resp. Fa+ - - - +N1—Ay)). In-
deed, the weights of w; 0 p, (resp. wz 0 p,) are $(E M+ - -« £X,1EN,)
with an even number (resp. odd number) of minus signs.

We shall now state our results on the invariants €, and €. In
doing so, we shall use the assumptions and notation of the theorem.

ProPOSITION. The cohomology class ¢(€;) (=1, 2) over K’ is given
by the equation ¢(C.) =¢(C:) (wio ps(cs1))-
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COROLLARY 1. If Gy is a split group, then c(€:) = (w; o p.(c;L)).

PRroOOF. As we saw in the corollary to the theorem (§1), the form
S1 has maximal Witt index and so ¢(C:;)~1. This completes the proof.

COROLLARY 2 (JAcOBsON). The following relations on §; and G,
hold over K':

(i) if n=0 (mod 2), then §;~1 (j=1, 2) and §,QC,~B;

(ii) if n=1 (mod 2), then €@ C:~1 and €;~B (j=1, 2).

ProOF. As before, let w;:Spin(Vy, S1)—»GL(W,) (¢=1, 2) be the
“spin representations” of Spin(V1, S1). We shall denote by w,; the
representation (w; 0 p,)® (w;o0p,) of G on W, W; (for 7, j=1, 2).
Since ¢(C)?=1, it follows from the proposition that c¢(€;)c(G;)
= (wij(c;,)) for 4, j=1, 2. In the rest of this proof, we use the notation
of the remark preceding the proposition. Furthermore, we shall
denote by A, the highest weight of p; o f.

(i) We shall assume that =0 (mod 2). Since 1(\i+ - - - +\,)
and —31(\:+ - - - N\,) are weights of w;00p,, it follows that 0 is a
weight of wn; hence, wn(Z(G))= {1} and ¢(€y)%=1. Similarly,
FO+ - - - M) is a weight of wyop, and 3(Ai—Ne— - - - —N,) is a
weight of wsop,; hence, M1 is a weight of wi; and so (wi(c;}))
=(Mi(c; ) =c(B) by statement (ii) in the theorem. Therefore,
€, ® €~ and the proof of (i) is finished.

(ii) We now assume that #=1 (mod 2). Since M+ - - - +A\,)
and $(\i—N2— - -+ —A,) are weights of w; 0 p,, it follows as before
that ¢(C1)c(C1) = (\ilesr)) =¢(B). Similarly, 3(\+ - - - +X,) (resp.
—LI\+ - - - +N)) is a weight of wiop, (resp. wr0p,) and so
¢(€1)¢c(6,) =1. This completes the proof of the corollary.

3. An example. In this section, we shall assume that K is a field
of characteristic 0 and that G is an absolutely simple algebraic group
defined over K. If G is not of type A,, B, or D,, then quaternion skew-
hermitian representations cannot exist. For 0 is a weight of each
orthogonal representation and, therefore p(Z(G))= {1}; statement
(ii) of the theorem then cannot be satisfied. If G is of type B, or if G
is of type D, or 4, and the quasi-split group associated to G is of
Chevalley type (i.e., split) then we have the following description of
the invariants associated to (V, H): 6(H) =1 and ¢(€;) = (w; 0 p.(c; ).

It only remains to examine invariant symmetric bilinear forms on
representations of quasi-split groups of type 4, and D,. We have
described these forms in an earlier paper [2, Theorem I1.1]. Here, we
shall only give a small extension of these results.

Let G be a simply connected semisimple Chevalley group defined
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over K. The automorphism group of G is the semidirect product of a
finite group ©® and the inner automorphisms of G. The group ® can
be chosen so that each 6 in 0 is defined over K.

Let L =K(a'?) be a quadratic extension of K (where « €EK*) and
let Gal(L/K) = {1, ¢} where o(aV/?) = —a!/%. Let §E0 be such that
0>=1. The mapping of {1, ¢} to © defined by 1—1¢ and 0—# is a
1-cocycle of ® in Aut(G). Hence, there is a group G; defined over K
(which is “split” over L) and an isomorphism f:Gi—G such that
f? o f~1=0. The group G is quasi-split; each group of type D} arises
in this way.

Let p:G—SO(V, S) be an absolutely irreducible orthogonal repre-
sentation of G defined over K such that p o 6~p. We shall also assume
that p(Z(G)) # { 1 } . Then there is an absolutely irreducible orthogonal
representation p;:Gi—SO(V3, S1) of G: defined over K such that
p1i~p o f [2, Theorem I1.1.]. We shall sketch this construction. There
exists an AEGL(V, K) such that A2=1, Ap(g)A~'=p(0(g)) for all
gEG, and *ASA =S. Hence, we may find a K-rational orthogonal
basis of V such that in this basis 4 =diag(1, - - -, 1, —1, - - -, —1)
(Withr say, f—l—l'S). Let S=diag(6h R Br' ﬁr+la Ct Bn) in this
basis. Then Si= (B4, - « -, Br, &Brs1, - - -, aBa). Since p(Z(G)) = {1},
S has maximal Witt index and so A(S)=1 and ¢(S)=1. It is then
not hard to see that A(S;) =a* . If det(4) = —1, then K’ = K(A(S;) V?)
=L and over L, S,=S. Hence, if det(4) = —1, then c(S1)~1 over K'.

The facts on quadratic forms that we have used may all be found
in [1].
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