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REPRESENTATION OF COMPACT AND WEAKLY
COMPACT OPERATORS ON THE SPACE OF

BOCHNER INTEGRABLE FUNCTIONS

KEVIN T. ANDREWS

If X* has the Radon-Nikodym property, then for every
compact operator T: Lλ(μ, X) ->Y there is a bounded function
g: Ω -> L(X, Y) that is measurable for the uniform operator
topology on L(X, Y) such that

T(f) = ( fgdμ

for all / in Lx(μt X). The same result holds for weakly
compact operators if X* is separable Schur space. These
representations yield Radon-Nikodym theorems for operator
valued measures and a generalization of a theorem of D. R.
Lewis.

The representation of linear operators on the Banach space
L^μ, X) of Bochner integrable functions, has been the object of much
study for the past forty years. Dunford and Pettis began this
investigation in 1940 [6] with the representation of weakly compact
and norm compact operators on Lλ{μ) by a Bochner integral. Their
work was based on an earlier paper of Pettis [9] and was comple-
mented by the work of Phillips [11]. More recently, the theory of
liftings has been used by Dinculeanu [5] and others to obtain a
representation for the general linear operator on Lx(μ, X). In this
paper we will use methods in the spirit of Dunford, Pettis, and
Phillips to show that if X* has the Radon-Nikodym property, then
the compact operators on L^μ, X) are representable by measurable
kernels and if X* is a separable Schur space (i.e., weakly convergent
sequences converge in norm) then the weakly compact operators on
Ljiμ, X) are representable by measurable kernels. As corollaries,
we obtain a Radon-Nikodym theorem for operator-valued measures
and a generalization of a theorem of D. R. Lewis [4, p. 88] on
weakly measurable functions that are equivalent to norm measurable
functions.

Throughout this paper (Ω, Σ, μ) is a finite measure space and
X, Y and Z are Banach spaces with duals X*, Y*, and Z* respec-
tively. The space of all bounded linear operators from X to Y will
be denoted by L(X, Y). The subspaces of L(X, Y) consisting of all
the weakly compact and norm compact operators from I to 7 will
be denoted by W(X, Y) and K(X, Y). The space L^μ, X) is the
space of μ-Bochner integrable functions on Ω with values in X and
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Loo(μ, X) is the space of X-valued μ-Bochner integrable functions on
Ω that are essentially bounded. An operator T:L1(μ,X)—>Y is
representable by a measurable kernel if there is a bounded measurable
g: Ω -> L{X, Y) such that

T(f) = Bochner - \ fgdμ .

From this, it follows shat | |Γ | | = ||flr||co [5, p. 283]. Recall that a
Banach space is weakly compactly generated if it is the closed linear
span of one of its weakly compact sets. Finally, note that if π is
a partition of Ω into a countable number of disjoint elements of Σ
and if / is in Lλ{μ, X), then the function Eπ: L^μ, X) -> Lx(μ, X)
defined by

( fdμ

(here the convention 0/0 = 0 is observed) is a linear operator.
Most of the first lemma is well-known so we omit the proof.

LEMMA 1. For each countable partition π, the operator Eπ is a
contraction on Lx(μ, X) and Lco(μ, X). Moreover, if the partitions
are directed by refinement, then

lim \\Eπ(f) - / | | x = 0 for all f in Lx{μ, X)
π

lim \\Eπ{f) - /iμ = 0 for all f in L^μ, X)

Before stating the main theorem we require a preliminary de-
finition. A function g in Loo(μ, L(X, Y)) is said to have its essential
range in the uniformly (weakly) compact operators if there is a
(weakly) compact set C in Y such that g(ω)x e C for almost all ω in
Ω and x in X with \\x\\ <: 1.

THEOREM 2. Let X* have the Radon-Nikodym property. Then
there is an isometric isomorphism between the space of compact
operators K(Lλ{μ, X), Y) and the subpace of Loo(μ, K(X, Y)) consisting
of theose functions whose essential range is in the uniformly compact
operators. In fact, T in KiL^μ, X), Y) and g in Loo(μ, K(X, Y))
are in correspondence if and only if

T(f) = ( fgdμ for all f in L,(μ, X) .

Proof Let T be in KiL^μ, X), Y). Notice that for any par-
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tition π, f in L^μ, X), and g in Loo(μ, X*) = (L^μ, X))*, we have that

\EJJ)gdμ = \/Eπ(g)dμ .

It follows from this that the adjoint of TEπ is EπT*. Now, if the
partitions π are countable, we have that

lim EJ = / for all / in L»(μ, X*)

by Lemma 1. Since \\Eπ\\oo ^ 1, this limit is uniform on compact
sets. By Schauder's theorem, T*:F* —> Loo(μ, X*) is compact and so

limJE'iTV = Γj/*
π

uniformly for \\y*\\ ̂  1. Therefore,

lim EπT* = T*

in the operator norm. Since EπT* = (TEπ)*9 it follows that

lim TiS'* = Γ

in operator norm.
Now, for each countable partition π9 define gπ: Ω —> L(X, F) by

Then for each partition π, α> in Ω, and α? in X with ||aj|| ^ 1, we have
that gπ(ω)x £ T{f: f in L^/i, X), \\f\\, <, 1}. Since Γ is compact, it
follows that gπ(ω) is in K(X, Y) for each partition π and ω in iλ
Moreover, one easily sees that

TEJJ) = \/9*dμ

for all simple functions / in L^μ, X) and thus for all functions /
in L^μ, X). Hence if πt and π2 are two partitions, then

(TEtι - TEπ2)(f) -

Since

lim 112!^ - TE^\\ = 0,
πuπ2

an appeal to [5, p. 283] establishes that
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lim ||firri - gH\U = Km | | TEH - TEπ%\\ = 0 .
πVπ2 πVπ2

Thus the net (gx) is Cauchy in the norm of Loo(μ, K(X9 Y)). It follows
that there is a g in L«>(j", iΓ(X, Y")) such that

l i m \\gπ - fir||oo = 0
π

and so

lim \ fgπdμ = ί /ί/djw
π 1Ω JΩ

for all / in Lx(μ, X). We also have, for almost all ω, that

g(ω)xQT{f:feL1(μ9X)y\\f\\^l}

for all x in X with ||aj|| ^ 1. Hence the essential range of g consists
of uniformly compact operators. Finally, Lemma 1 ensures that

T(f) - lim TEπ{f) = lim ( fgπdμ = \ fgdμ .
r. π JΩ JΩ

Conversely, suppose that g: Ω —> K(X, Y) is a bounded measurable
function such that there is a compact set C (zY with sr(ft))# in C for
almost all ω in Ω and all $ in X with ||cc|| <Ξ 1. Without loss of
generality, we may assume g(co)x is in C for all a) in Ω. Define

T(f) =

for feL^μ, X). Another appeal to [5, p. 283] shows | |Γ | | = ||g||oo.
Let

be a simple function in L^μ, X) with | | / | | 5ί 1 i.e.,

Then

Άf) = I sr/ώ^ - Σ S g(ω)x4μ(ω)
JΩ ι=l JEt

is in co C by [4, p. 48]. Since coC is compact by Mazur's theorem,
the operator T is compact. This completes the proof.
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That X* has the Radon-Nikodym property is necessary as well
as sufficient for the first part of the above proof. Indeed, if each
T in KζLjiμ, X), Y) is representable by a Bochner integrable g in
Loo(μ, K(X, Y)), then taking Y to be the scalars shows that L^μ, X)* =
Loo(μ, X*) which implies [4, p. 98] that X* has the RNP. An
immediate consequence of Theorem 2 is a Radon-Nikodym theorem
for certain operator valued measures.

COROLLARY 3. Let X* have the RNP and let G: Σ -> K(X, Y) be
a μ-continuous vector measure of bounded variation. If, for each
Eλ in Σ with μEx > 0, there exists E2 in Σ with E2 Ώ E± and
μ(E2) > 0 such that

x e l , EeΣ,EQE2, μ{E) > 0, \\x\\ £

is relatively norm compact, then there exists a Bochner integrable
g: Ω —> K(X, Y) such that

G(E) = \ gdμ

for each E in Σ.

Proof. By exhaustion [4, p. 70], the corollary is established if
for each Eλ in Σ with μ{Ex) > 0 we can find E2 in Σ with E2 £ Eλ

and μE2 > 0 and a Bochner integrable g such that

G(E) = \ gdμ
JE

for all E in Σ with E £ E2. So let Ex e Σ with μ(Ex) > 0 and select
the E2 £ Eλ guaranteed by the hypothesis. Define an operator T on
the simple functions in L^μ, X) by

if / = Σ»Λ1,Λ in
i=i

if i Φ j . Notice that if | | / | | g 1

then

and so
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G(A< Π

Άf) = Σ WxtWμiAt n E2) μ(At n.

is in

— $<ΞiEE:xeχ)EeΣ,EQE2,μ(E) > 0, ||x|| ^

a set which is compact by Mazur's theorem. Thus T has a compact
linear extension to all of L^μ, X). Hence, by Theorem 2, there
exists a Bochner integrable g: Ω —> K(X, F) such that

T(f) = \ fgdμ

for all / eLjίft X). In particular, if i? is in Σ and jδ/ Q E2, then

G(J5)flc = T(xXE) = \ gxdμ .
JE

Since g is Bochner integrable, we have, by [4, p. 47], that

- \ gdμ
JE

as required.
Our next result is a generalization of a theorem of D. R. Lewis

[4, p. 88] dealing with the equivalence of weakly measurable and
measurable functions. The proof uses the following result of Amir
and Lindenstrauss [1, p. 43]: If X is a weakly compactly generated
space and XQQ X and Γ 0 £ I * are separable subspaces, then there
is a bounded projection P: X —> X with separable range such that
Xo £ P(X) and Yo £ P*(X*).

PROPOSITION 4. Let X* and Y be weakly compactly generated
Banach spaces. If f: Ω -» K(X, Y) is a bounded function such that
for each y* in F* the function y*f( ):Ω-^X* is measurable, then
there is a bounded measurable function g: Ω —> K(X, Y) such that for
each y* in F*, y*f(-) ~ y*g(-)ti-B,.e.f (the exceptional set may depend
on y*).

Proof. We claim that the set A = {y*f( ): y* e F*, \\y*\\ ̂  1} is
compact in Lx(μ, X*). If not, then there is a sequence yt in the
unit ball of F * and δ > 0 such that

WvU( ) -i/ϊ/( )IU1(^)>δ

for mΦn. Choose a bounded projection P^F—i>F with separable
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range such that P?y* = vt for all n. Since each yίf(-): i2->X* is
measurable and hence essentially separably valued, there is a bounded
projection P 2:X*->X* with separable range and sets Ωn in Σ with
μ(Ω\ΩJ = 0 and ylf(Ωn) £ P2(X*) for every n. Now, since each f(ω)
is a compact operator we have, for all x** in X**, that f(ω)**x**
is in the natural image of Y in Y** and so we may define h: Ω —>
1Γ(X**, Γ) by h(ω)x** = PJ(ω)**P2*x**. We claim that for each ;*:**
in X**, the function /&(•)#**: Ω —>F is measurable. To see this, note
that since Px has separable range, the functions fe( )»** are separably
valued and since

y*h( )x** = y*PJ( )**P2*x** = x**PJ{'TP?y*

and each f( )Pjy*: Ω-+X* is measurable, the functions /&(•)#** are
weakly measurable. An appeal to the Pettis measurability theorem
[4, p. 42] establishes the measurability of &(•)#**. Now if Fo is the
Banach space obtained by taking the closed linear span of Px Y in Y,
then yo is separable and h can be viewed as taking its values in
K(X**, YQ). Moreover, if we define S:Y~>Y0 by Sy = Pxy, then
h(ω)x** = SPJ(ω)**P*x**. Thus, if y* is in Y0*f then Λ(α))*y0* =
P2**f(ω)**P1*S*y$ is in P2X*, since the range of /(α>)*** is in X *
and P2** extends P2. Let Z - ^X* and B = {T: T in iί(X**, Γo),
T*Y0*<zZ}. We claim that 5 is separable. To see this, let U and
V denote the closed unit balls of Z* and Γo* endowed with the weak*
topologies. Since YQ and Z are separable, U and V are compact metric
spaces, and thus, so is U x V". For each T in S, define a function
JT on [7 x V by JΓ(u, v) = uΓt;. Then the map Γ -> JT is a linear
isometry of B into C([/xF) [8] and so, by [7, p. 437], B is separable.
Since the values of h in i£(X**, Fo) lie in B and ||/K^i) — Λ(α>2)||X(x**ϊF} =
WhioOj) - ^(^2)||x(x-,F0) for all ωl9 ω2 in β, the values of h in i*Γ(X**, Γ)
form a separable set. Now because h( )x** is measurable for each
x** in X**, an appeal to [5, p. 102] establishes that h is measurable.
Since h is bounded, h is Bochner integrable and so we may choose
a sequence hn of iΓ(X**, Γ)-valued simple functions such that

limί \\h ~hn\\dμ = 0 .
n JΩ

Define operators Sn and S from Loo(̂ , X**) to Y by

SU#) = \ 9Kdμ. and >S(̂ ) = f ghdμ
JΩ JΩ

for g in Loo(̂ , X**). Since each hn takes on only a finite number
of values, each Sn is a compact operator. Moreover, we have that

\h - hn\\dμ
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for all g in Lco(μ, X**). It follows immediately that the operator S
is compact. The adjoint of S is the operator y* —>y*h(-) and hence
by Schauder's theorem is also compact. But yϊh( ) = y%f( ) a.e. This
contradicts

for mΦ n and establishes that the set A is compact.
Now choose y* in F* such that yϊ( ) is dense in A. If h is

constructed as above for this sequence (yϊ), then h is measurable
and so, by Egoroίf's theorem, for all δ > 0 there is a set E in Σ
with μ(Ω\E) < δ such that ftX^ can be approximated uniformly by
simple functions. Fix δ > 0 and choose such a set E. It follows
that the sequenceyif{')1E — Vih{-)XE is relatively compact inLoo(μ, X*).
Since this sequence is Loo(μ, X*)-dense in {y*f(')XE: \\y*\\ ^ 1}, this
set is relatively compact in Loo(μ, X*).

Now define T:Y*-> L»(ji, X*) by Ty* = y*f(-)lE. Then Γ is
compact and as an operator on Lx(μ, X), T*: ̂ (μ, X)-^F** is compact.
Notice that the dominated convergence theorem ensures that T is w*
to w* sequentially continuous. Thus, if 2/** is in T*(L^9 X)), then
#** is a weak* sequentially continuous functional on Y*. But since
Y is weakly compactly generated, this means #** is a w* continuous
functional on Γ* [3, p. 148]. Hence, T*(L^f X)) is contained in Y.
Theorem 2 now produces a Bochner integrable g: E —> iΓ(X, F) such
that

*(fc) = ( kgdμ

for all k in Lx{μ, X). But, if y* is in Y*9 then T**#* = y*g. It
follows that y*g = 7/*/ a.e. on ϋ7. Since μ(Ω\E) < δ, this completes
the proof.

Theorem 2 does not hold for weakly compact operators. To see
this, let Ω be the unit interval endowed with Lebesgue measure and
let rΛ( ) be the nth Rademacher function i.e., rn(ω) = signum(sin2wτrα>).
Consider the function g: [0, 1] —>L(4, 4) defined by g(aή(an) = (rn(ω)an)
for all (an) e 4. The function g is not essentially separably valued,
since if ωλ and ω2 are different numbers in [0, 1] there exists a
Rademacher function rn with |rΛ(α>!) — τn(a)2) \ = 2 and hence, ||flr(ft)i) —
#(<#2)IIL(̂ 2^2> = ^ Thus, (/ is not measurable. Define an operator
Γ: L,(Λ, 4) -• 4 by

Γ(/) =

and note that T is weakly compact. If T were representable by a
kernel, then that kernel would be equal to g a.e. and so g would be
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measurable, which is a contradiction. However, we can use Proposi-
tion 4 to obtain a representation theorem for weakly compact
operators by imposing further conditions on X*.

THEOREM 5. Let X* be a separable Schur space. Then there is
an isometric isomorphism between the space of weakly compact
operators W(Lx(μ, X), Y) and the subspace ofL^(μ, W(X, Y)) consisting
of those functions whose essential range is in the uniformly weakly
compact operators. In fact, T in WiL^μ, X, Y)) and g in Loo(μ,
W{X, Y)) are in correspondence if, and only if,

T(f) = \ fgdμ

for all f in L,{μ, X).

Proof. Let T be in W(Lx(μ, X), Y). By the Factorization Lemma
[2, p. 314], there is a reflexive space R and operators S: Lx(μ, X)~>
R and J: R^Y such that T = JS. Suppose S is representable by a
measurable kernel h: Ω —> L(X, R). Then T is representable by the
measurable kernel g: Ω-^ L(X, Y) given by g(ω)x — Jh{ώ)x for all
a: in I and a) in Ω. Hence, without loss of generality, we may
assume that Y is reflexive.

Let G: Σ -> L(X, Y) be the representing measure of T i.e.,
( i ) G(E)x = T(xlE) for all x i n l and E in Σ

(ϋ) T(f) = [ fdG for all / in Lt(μ, X) and
JΩ

(ϋi) HT ii = sup

An appeal to [10, p. 345] produces a bounded function g: Ω —•
L(X, Y) such that

(1) g(-)x: Ω-+Y is Bochner integrable for all x in X and

(2) G(E)x = ( g(ω)xdμ(ω) for all x in X and # in 2\

It follows quickly from the density of simple functions in Lx(μ, X)
that

T(f) =

for all / in L^μ, X). Consider, for each y* in Y*, the functions
y*g( -): 42-» X*. Since these functions are separably valued and
weak* measurable, they are measurable by [4, p. 42]. Now L(X, Y) =
iί(X, Y), since X* is a Schur space and Y is reflexive. Consequently,
Proposition 4 now produces a bounded measurable h: Ω
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such that, for each y* in Y*, y*g( ) = y*h( )μ-a.e. Thus, for all y*
in Y* and / in Lt{μ, X) we have that

(y*, Tf) = ja<y*f g(ω)f(ω))dμ(ω)

y\ h(ω)f(ω))dμ

and so

T{f) = \hfdμ .

It follows easily that

h{ώ)x S T{f: f in L ^ , -SΓ),

for almost all ω in Ω and all # in X with ||ccf| ^ 1. Hence, the
essential range of h consists of uniformly weakly compact operators.

The converse is proved in the same way as in Theorem 2 so we
omit the proof.

Our final result follows from Theorem 5 in the same way that
Corollary 3 follows from Theorem 2 so the proof is omitted.

COROLLARY 6. Let X* be a separable Schur space and let G: J?—>
K(X; Y) be a μ-continuous vector measure of bounded variation. If,
for each Ex in Σ with μE1 > 0, there exists an E2 in Σ with E2ξZ Eλ

and μ(E2) > 0 such that

_: x i n χf E i n Σf E Q E2, μE > 0, \\x\\ ^
( μE

is relatively weakly compact, then there exists a Bochner integrable
g:Ω^ K(X, Y) such that

G(E) =\ gdμ
E

for each E in Σ.
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