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A formal

ABSTRACT

technique for the representation of tasks such that the

potential concurrency of the task is detectable, and hence exploitable,

during the exec

sented as a pai

ution of the task is described. Instructions are repre-
~ A
r of binary vectors, d and e, which completely describe -

the sources and sinks specified by the instruction. Tasks are repre-

sented as square matrices, M, called ordering matrices. The values of

the elements of these matrices are used to dynemically indicate the

necessary ordering of the execution of instructions.

‘It is shown how several different types of ordering matrices,

‘each type havin

g the capability of exhibiting different amounts of

~ ~ .

potential concurrency, can be calculated from the d and e vectors of

the instruction

s of a task using "linear algebraic-like" operations.

For example; inter-cycle independencies can be detected with a ternary

ordering matrix. This matrix can~be'extended to dynamically detect

opportunities for reassigning the resources specified by certain in=-

structions to increase the amount of potential concurrency.

Experimental results are presented showing the relative capa-

bility of each

rency. ‘These t

of these matrix-types for exhibiting potential concur-

echniques-afe shown to produce somewhat greater amounts

of potential concurrency than other known dynamic techniques. How-

ever, the amounts of potential concurrency found are less than those

reported for preprocessing detection techniques.



I. INTRODUCTION

ComputersIperform_complex computations on values kept in devices
called memories and place new (computed) values into these memories.
The completion of these complex computations requires meny "steps"
Each of these steps is described by an jnstruction and the performance
of a step is called the execution of an instruction. The'ordered col-
lection of all of the instructions required to describe a certain com-
plex coﬁputationAis called a task. The completion of a complgx computation
by a computer is called executioh of a task. |

If the execution of instructions on a certain computer occurs in
such a way that only one instruction is in the process of being executed
at any partlcular time, then execution of instructions is said to be

sequential, or serial, If, however, more than one instruction is in

the process of being executed at a given time, then this execution is
said to be concurrent¥ The opportunities existing in a tésk for in-
structioné to be executed concurrently while preserving the determinacy
of the values éomputed by the task are said to constitute the concurrency
of the task. |

This paper w1ll describe several techniques for detecting and

representing: concurrency through the use of specialized matrices called
"ordering" matrices. That is, for a given task having certaiﬁ properties,
it will be shown how this'task can be represented with an ordering

matrix and how the opportunities for concurrently executing the in-

structions of the task may be thereby detected.




The detection of concurrency involves analyzing a task to detect
thosé instructions which are "independent" or can be made to be in-
dependent. Informally, two instructions are independent if no operand
of one is calculated by the other.(this end other definitions will be
made formally later). Independent instructions éan be executed con-
currently because they will calculate the same valueslas they would
if executed sequentially. |

The basic conditions sufficient for independence were first
formalized by Bernstein (3). He divided the variable names specified
by instructions in a task into four sets and definéd independence in
terms of conditions which must be satisfied by these sets. More com-
plex conditions for detecting concurrency have since.been developed
(9, 19, 20). These conditions specify, for example, when variable
names should be reassigned to enhance the opportunities for concurrency,
when different iterations 6f a DO_LOOP may be executéd concurrently,
"and how t; change the form of expressions so that more concurrency
will result.

?he implementation of the detection algorithm is very critical
with respecf to realizing a net benefit (task execution speedup, or
resource utilization improvément) from appliéation of the algorithms.
One ‘approach that has been investigated is to implement the algorithm
in software and use it to analyze complete tasks beforé execution of

the tasks (preprocessing) in a menner similar to that used in compilation.



Kuck, Muraoka, and Chen (9) have simulated such a preprocessing con-

“currency enalysis algorithm. They used concurrency conditions con-

siderably more complex than the Bernstein‘conditions (e.g., DO_LOOP
analysis, variable name reassignment, tree height reduction for
arithmetic expfessions; etc.) and found task execution speed-ups of

as much as ten-to-one and, in some cases, more. Only limited data

on the time and space overhead involved with their analysis is availa-
ble. Thus, it is uncertain under what conditions their techniques
will be profitable, and what the net profit will be.

A different approach, proposed by Tjaden and Flynn (19), is to
implement the detection algorithm in hardware, and perform the agalysis.
on'small-séts'of snstructions (ten or less) during the execution of a
task. A simulation of the Bernstein conditions and an algorithm for
reassigning variable names showed that a nearly two—fo—one ngt average
speedup of task execution can be achieved. The space overhead of
this dynaﬁic approach should be less than that of the preprocessing
approach. Since only a small portion of a task is analyzed at any
one time in the dynamié approach, only a small amount of information
(re;ative to the preprocessing approach) must be remembered, implying
a smallér hardware overhead for the dynamic approach.

Closely related to the choice of an implementation approach
is the choice of a regresentation'of the concurrency detected during

the analysis of a task. Representation refers here to the data structures



required to be present in the computer to indicate the opportunities
_for concurrency and to control the concurrent execution of the instruc-
tions. One such data structure that has received considerable attention
because of its theoretical properties is the directed graph. 1In this
structure, each node of the graph represents an instruction, and the
links between nodes (or the absence thereof) represent opportunities

for concurrency.

Another data structure which has been studied for représenting
concurrency, is the matrix. As first described by Leiner (10), each
instruction in a task, Ii’ corresponds to row i and column i of a
matrix, M. Each element of the matrix, Mij’ is giveh a value thch
indicates whether or not the execution of Ii must precede that of IJ'
These matrices are called precedence matrices.

The regular structure of matrices makes theﬁ well suited for
integrated circuit implementation in hardware. However, the numSer
of matrix élements required to represent a task grows as the square
of the number of instructions in the task. Graphs are less well
suited for implementation in hardware, but will take less space than

graphs, assuming some minimum average number of links incoming and

outgoing to the nodes of the graph. Thus, for a preprocessing imple-
mentation where large tasks are to be analyzed and the results stored
in some general memory, the graph representation would seem to be a

better representation choice than the matrix. On the other hand, for:
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e dynamic implementation, where small subtasks of a.large task are
analyzed using hardwired algorithms, the matrix representation is
preferable.

This paper will be concerned with the dynamie detection of con-
currency using (what will be called) "ordering"vmatrices. Equations
will be derived for calcﬁlating the orderins matrix for a given task,
thus detecting the concurrency in the task. A."simple" ordering matrix,
capable of representing relatively small amounfs of potential concurrency,
will first be derived. The calculation of this matrix Qiil then be
successively extended to include the representation of intercycle inde-
' pendencies, shadow-effects (used to reassign resources), end relaxed
constraints on braneh instructions. Experimental resu;ts shoying the
relative capaﬁility of each of these techniques for representing po-
,tential'concufrency will then be given.

In the interest of brevity many details wili be omitted in the
following aiscussion. These details may be found in Reference»(25).'

In particular, this reference shows hew tasks can be represented as
a hierarchy of levels of subtasks‘such that the size of any subtask
is bopnded by an arbitrary constant value, and an ordering matrix for

& subtask at any level can be computed.



2. THE ABSTRACT MODEL

2.1 Definitions
Computers are thought of as being composed of two types of
resources:
1. storage resources (s-resources), which preserve values
over time, and
2. transformational resources (t-rgéources), which transform
values obtained from storageAreséurcés (the sources of the
t-resource) and place the results into storége resources
(the sinks of the t-resource).
Resources are used to perform computations; Computations are speci-
fied by instructions.

Definition 2.1: An instruction, I, is:

a. &a specification of a set of transformational resources, a set
qf sources for these transformational resources, and a set
o} sinks for these transfqrmationai resources, and
- b. an ordering relation (partial brvtotal) over the set of trans-
formational reéources.
Complex computations generally require more than one instrﬁction
for their specification. Such complex computations are spégified by

tasks.



Definition 2.2: A task, T, is:

a. .a specification of a set of instructions, and
b. ‘an ordering relation (partiél or total) over this set of
instructions.

It should be noted that a task is also an instruction, since if is an
ordered set of ordered sets of specifications for resources. Similarly,
an instruction is a task because each specification in an instruction-
for a t-resource and its associated sources and sinks is also an
.instfuction. |

The ordering relation of a task (énd hence, of an instruction)
defines an initial.execution sequencing of the instructions of the

" task. The fulfillment'of the transformations specified by an instruc-

tion is called execution of the instruction. If the ordéring relation
defined over the set of instructions of a task is a partial orderiﬁg,
there will be, in general, several initial execution sequences defined
for the taék. Execution of the instructions specified by a task is
termined execution of the task.

Let the set of instructions specified by the task be.indexed
by the'positiveAintegers so that Ii is a particular instruction and
1 < i <N, vhere N is the number of instructions in the task. Let the
ordering relation, "®", be ihterpreted such that if I. ®I,,1i#J, then

17

I, must appear in the sequence before I For a partial ordering relation

i
it may be the case that Ii &I

y°

y end I e I, but I, I anda L ¢ I ("g"

means no ordering is defined). In this case more than one initial



execution sequence is defined. That is, the sequences Ii’ Ij’ Ik and

Ii’ Ik’ Ij are both initial sequences under the above ordering relation.

The fact that I, and Ik are not ordered with respect to each other and

J

that tasks must be deterministic implies that these instructions may

be executed at the same time (concurrentlx) or in any order and still

preserve determinacy.
If the ordering relation is total, then only one initial execution

~ sequence is defined, called here the serial execution seguence. Although

concurrent execution cannot occur under a total ordering relation, it
is often‘possible to transform the total ordering relation into a par-
tial ordering relation in such a way that the same values are computed
under the partial orderiné as under the total. The major concern of
this work is in finding efficient procedures for'transforming total

ordering relations into partial ordering relations while maximizing the .

possibility for concurrent eiecufions. 'The tgrm potentiél concurrency
will be uséd to refer to the chances for concurrent execution under an
ordering relation.

Execution of a task under an Qrdering relation involves an inter-
action between the ordering relation and fhe instructions specified.
That is, the actual sequence in whiéh eiécutions are made may be dif-
ferent from the initial seéuence defined by thg ordering relation. This
difference is because the execution of branch instructions can cause
the orderings, I, © IJ’ to be altered. TReference (25) formally classifies

branch instructions into two types, forward and backward, by how they



aelter the orderings of the relation. ‘Branch instructions are informally

characterized here by the relative’position of tﬁe instruction.to which
the branch instruction transfers’control,«called the destination of
the branch.instruction. " If a branch instruction, Ii’ has a destination,
Id’ d#i +‘1, in the serial execution sequence ;ucﬁ that i‘é d, If'is
a forward branch instruction,'qtherwise it is a backward branch
instruction. | |

It is assumed that branch"instructioﬁs may have at ﬁost two possible
. destinations, referred to as fhe egpiicit and the implicit destination.
The explicit destination, I, of branch instruction, Iié is the destina-
tion such that 4 # 1 + 1. The implicit destination is instruction Ii+1'
The assumption of only'two possible destinafions involves no loss of
generality since a branch instruction with several explicitldestinations
 can be thought of as several branch instructions;

It is élso assumed that the explicit destination of a branch
insfruction cannot change. Thus, execution of a branch instruction
must effectively choose one of two partiéular instructions in the tésk
as the "next" to be exeéuted, and can never choose any other instructions.

Backward branch instructions can cause certain sub-sequences of
the initial serial execution sequence t§ be execufed more than once.
Thus, these sub-sequences may appear more than once in the actual exe-

cution sequence.
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‘Definition 2.3: A cycle is any sub-sequence of the initial serial

gxecution sequence which appears more than once in the actual execution
sequence. Each occurrence of a cycle is called an iteration of the
cycle.

Conversion of a totally ordered task to a partially ordered one
must be done in such a way that detérminacy of the resulting execution
sequences with re;pect té the original serial sequence is preserved.
The following definition is the key to converting total orde?ing

relations into partial ordering relations.

Definition 2.4: Two instructions, Ii and IJ’ are independent

-if and only if no sink of-Ii is & source of I, and no sink of I, is a

J J

source of Ii' Otherwise Ii and IJ'are dependent.

It is clear that independent instructions need not be ordered with
respéct to each other in the partial ordering;since they will compute -
the same values fegafdless of the order in which they are executed.

: Dependenf instruétions, however, must bé ordered with respect to each
other to preser&e determinacy.

When Ii and Ij are dependent, a dependepcz is said to exist be-
tween them. From definition 2.4, dependencies exist when a sink of

one instruction is a source of the other. Dependencies are here

classified into two types, data and procedural. Procedural dependencies

ere caused only by branch instructions,‘while date dependencies can be

caused by both branch and non-branch instructions. Branch instructions
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are thought of as calculating velues which either deactivate or reactivate
certaln orderings in the ordering relation. |
Definition 2.5: Suppose that the s-resource denoted by T is a
sink of Ii and a source of Ij' Theg there is a dependency between
Ii and IJ' If Ii is a branch iqstruction ggg.rx is the sink used by
'Ii for the values which effect orderings, then the dependency is a

procedural dependengx,‘ Otherwise the dependency is a data dependency.

Procedural dependencies must be treated differently from data de-
pendencies.. This difference in treatment is because data dependencies
indicateithe neeessity of observing & specific order of execution,
while'procedufal dependencies indicate that there is an uncertainty

as to whether or not an instruction.Should be executed. The s—reeources
’into which branch instructions place deactivation—reaetivation values

are called IC-resources.

There is a special type of independency caused by backward branch
instructiens. Instructions which belong to the same cycle, but are
independent in different jterations of the cycle will be called

cyclically independent. Techniques for detecting this inter~cycle

independence are complicated by the fact that, in general, only after
the execution of a backward 5raneh.is it known if another iteration of
a c&cle should be executed. Thus, this detection must be done dynaﬁically
(that is, while the task is being executed)
To simplify the discussion it will be assumed that actual execution

sequences are such that no instruction computes a value which is not
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later used as an operand (input value in source resources) by some other
instruction. This assumption simplifies the detection of independence.
Reference (25) discusses the implications of this assumption, and extends
the results of this paper to the more general case when the assumption»
is not made.

2.2 Vector Representation and Properties

Detection of independence of instructions requires knowledge of
the source and sink resources of thé instructions. Let the storage
resources be indexed by the positive integers so that each s-resource

has a unique index. The symbol "ri" will be used to refer to the s-
resource whose index is "i". For any instruction, IJ,_two binary

vectors, eJ and 4, are defined as follows:

J

~ { 1iff r, is @ sink of I

e,. = { J
J3 "{ 0 otherwise

~ { 1 iff r, is a source of I
d,. = { i J
Ji { 0 otherwise

Thus, the set of storage resources are thought of as a "resource space"
‘A ~ '

and the vectors eJ and 4, for each instruction, I

J 3’
space. The symbols "e" and "3" denote that fact that ey indicates the

are vectors in this

~

~

s-resources whose values are effected (altered) by Ij’ and dJ indicates
the s-resources upon which Ij depends for values. Initially the stor-
age resource space will bevallowed to have only one IC storage resource,

denoted by Tio Every instruction'will be assigned ryc 88 a source,




O

»

and every branch instruction (and only branch instructions) will have

rIC as a sink. Section S will consider the general situation in which

many IC resources are provided, and will show how thesé resources may
be usefully (in a way which enhances the chances of detecting independ-
encies) assiéned as the sources and sinks of instructionms.

For the purposes of this paper, instructions will be considered
to be completely characterized by these vectors 3 and ;. This charac-
terization allowslthe independence (and dependence) of two instructions
to be expressed mathematically. The following Lemma follows trivially
from Definition 2.8. |

Lemma 2.1: Two instructions, Ii and Ij’ are indepéndent iff

ei'dJ = ejfdi = 0, and are dependent otherwise.

It is assumed that the multiplication indicated is the Boolean

scalar product operation. That is,.the.scalar product of the vectors

‘ is taken, using the Boolean multiplication and addition operations.
| .

|

|

.General oﬁeratibns on binary metrices will be defined in Section 3.




-1k -

3. CALCULATION OF ORDERING MATRICES

3.1 Definition and Formal Method

An n X m Boolean matrix is a matrix of n rows and m columns whose

elements are either 0 or 1. The operations "V" and "A" on 0 and 1 will

have their normal Boolean algebraic meaning. The following operations

on Boolean matrices are defined:

l.

3.

L,

Matrix Product - Let A be an n X p Boolean matrix and B be a
P X m Boolean matrix. Then the matrix product, A*B, is given
by

._ B).. = v P ( ’
Union - Let A and B be n X m Boolean matrices. Then the union,
AVB, is given by

(AVB)1y = AyyVBy,

Intersection - Let A and B be n X m Boolean matrices. Then the
intersection, AAB, is given by

(AAB)iJ = AiJABiJ

Transposition At = Transpose A

A direct-ordering relation between two instructions, Ix and Iy,

is defined in terms of the independency of these two instructions. As

Leiner (10) has pointed out, there are two kinds of ordering relations,

direct and implied. Let the relation "must be ordered directly with"

be denoted with the symbol "<>".



Definition 3.1: Ix<>Iy iff Ix and Iy are not independent. Let

the relation '"need not be ordered directly with" be denoted with the
symbol "<¥". Then Ix<?‘Iy iff I, end Iy are independent.

If it is the case that Ix<7Iy, but Ix<>Iz and Iz<>Iy’ then there
;s an implied ordering necessary between Ix and Iy' Leiner (10) and
Marimont (12) show how implied ordering relations can be determined
from the direct-ordering relations. We will be concerned only with
direét—ordering relations in the sequel.

It should be noted that "<>" is not a partial ordering relation
because it is not transitive. Nevertheless, Ix<>Iy'will be referrgd
to here as an "ordering" because it will be used to cause the execu-
tion of Ix and Iy to bé qrdered with‘respect to each other. This
séqtion-will develo? cquitions under which Ix<>Iy is to be interpreted
as Ix 3] Iy or Iy 4] Ix’ where "@" is the precedence relation (a partial
ordering relation) of Section 2.

Definition 3.2: The non-cyclic Ordering Matrix, MT, for a task;

T, with N instructions is an N X N Boolean matrix such that:

T , 1liff Ii<>Ij
0 otherwise
A formula for the calculation of MT‘from the source and sink

vectors of the instructions of T is now derived. The superscript, T,

‘will be dropped unless its absence may be confusing.
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Let E be the Boolean matrix whose ith row is‘ei for 1<i<N, and

let Y be-the Boolean matrix whose ith column is di for 1<i<N,

01 <>I, i i . = . = .
Lemma 3.1 Ii IJ iff either (E Y)iJ 1l or (E Y)Ji 1, or both

i
By definition 3.1, Ii<>IJ iff Ii and IJ are not independent.

~ A " ~ A

Then from Lemma 2.1 either ei'dJ =1 or eJ°di = 1, or both.

Proof': (E.Y)ij = ei'dJ, and (E'Y)Ji = eJ'd .

Q.E.D,
2 < i = ¢ =
Lemma 3.2 Ii ?IJ'iff (E 1r)i.j (E Y)Ji 0
Proof: Compliment of Lemma 3.1.
Theorem 3.1: M = E-YV(E*Y)t
T e
Proof: .Mij = (E Y)iJV(E Y)Ji from definition 3.2 and'
Lemmas 3.1 and 3.2. Therefore, M = (E°Y)V(E°Y)t.
Q.E.D.

It should be noticed that the matrix M is éymmetric. Thus, iﬁ
terms of information, either the ﬁpper—right or lower-left triangular
matrix obtaiﬁed from M contains éll of the inf@rmation about instruction
orderings contained in the matrix. Let R be the upper right triangular-
ized matrix formed from M by setting to 0 all elements on and below the
main diagonal. The matrix R'has»very similaer properties to the incidence
matrix 6f the acyclic graph of a sérially drdered program under the
element interpretation: if Rij = 1, then Ii must precede IJ’ otherwise
no precedence is required. Matrices having the above element interpreta-

tion are called Precedence matrices.



Let LT“be the lower-left triengularixed matrix formed from M'Il by

setting to 0 all elements on and above the main diagonal. L is the
precedence matrix of a task T' with the same instructions as T, but with
‘a serial ordering exactly opposite.(i.e., Ix Q Iy iff x—l=y).‘ This fact
will be central to the algofithm for executing programs with cycles, to
be presented in the next sub-section.

The ofderings in M caused by procedural dependencies are very
" restrictive. In the develobment of the sink vector, ;, for branch
instructions, knowledge of specific(branch destinations wae not assumed.
Rather, it was specified that all branch instructions have as a sink
a particular s-resource, Tro (equivalent in function to the instruction

counter of serial computers), and that all instructions have r_. as a

IC

source. The result of this modeling of procedural dependencies is that

' the orderings of M specify that all instructions must be directly ordered
with resnect to each branch instruction. This property will be important

| in the execution of instructione from M under the condition that inter-
cycle independencies (independence between nﬁo instrnctions actiye in
different iterations of a cycle) efe ignored. Tt Vill, in fact (as we

. shall see in the next sub-section), guarantee that all instructions

previous to a branch instnuetion are executed before the branch.'

Theiprocedural ordering relations in M are too restrictive for the
detection of inter—cycle independencies. A matiix‘of ordering relations,

M', is required -such that

1. the actual orderings reflect enly data dependencies, (no'pro-

 cedural orderings are made in the ordering matrix), and
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2. branch instructions are somehow flagged in the ordering matrix
so‘that they can be easily identified as branch instructions.
A set of "transition rules" for M' will be developed in the next section
such that instructions can be correctly ordered and executed from M'
even though M' has such limited procedural information. M!' is called
a cyclic drdering matrix.

Let "<>" be the relation such that I ,<>I, iff there is & data

i—3
dependency between Ii and IJ’ Then, for a task T of N instructions, and

1<, -

1 iff I,<T
M! 1=
1J 0 otherwise

"~

Let IC be a binary vector of dimension N such that

liff Ii is a branch instruction
ICi = .
0 otherwise

A

IC is called the IC flag vector.

Calculation of M' may be done through the equation of Theorem 3.1,
but a restriction on the resouice space and a redefinition of the

matrices E and Y are required. The resource space is restricted such
. ~

that 1o is the first componeﬁt of the space. Then IC is just the first -

column of the matrix E under the previous definition of E. Formally,

A

ICJ=EJl.

Let

E;, if J #1
E!, = iy
1 0 otherwise



Y., ifi1#1 ‘
_ iJ ? : 1

0 otherwise

Yij
Thus, the réws of E' and the columns of Y' correspond to ; and 3 with
all procedural information remé?ed.',It follows then, that
Theorem 3.2: M' = (E'-Y')V('E!‘-Y')t
ﬁote: The elements on the main diagonal of the ordering matrices have
novmeanihg here and will henceforth assumed to be zero. This assumption

will impose the restriction that an instruction, Ii’ may never be exéf

cuted concurrently with itself.-

3.2 Executably Independent Instructions

are no instructions in T which must be ordered ahead of it.

Definition 3.3: An inétruction, Ii’ in task T, is execufablx
independent if and only if all orderings between Ii and all othér ihstrucQ
tions preceding Ii in the actual execution squence have been deactivated.

Since necessary instruction orderings aré represented with an

ordering matrix, the primary interest here is in properties of ordering

‘matrices from which can be deduced executable independence. To this end

we state (proof is in Reference 25)):

An instruction, Ii’ in a task, T, can be executed whenever there |
Theorem 3.3: Let M be an ordering matrix for a task T of N
|

instructions. If all elements bf column i of M are equal to zero, then

: Ii is executebly independent.
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3.3 Execution of Instructions from Ordering Matrices

3}3.1 Restriction to the Case of Non-Cyclic Independencies

This subsection will be concerned with the execution of instruc-
tions from an ordering matrix under the restriction that all instructions
of an iteration of a cycle must be executed before any instructions of
the next iteration may be executed. Thus programs are not restricted
to being cycle-free. Rather, the execution algorithm has the restriction
that orderings of only a single'iteration of a cycle can be represented,
thus allowing the detection of only "non-cyclic independencies". This
restriction allows a very simple execution algorithm, at the expense of
a decrease iﬁ potentiél parallelism.

The elements of an ordering matrix, as derived in Thecrem 3.1,
indicate when an ordering of instructions is necessary, but do not tell
how to meke the ordering. That is, if Mij = 1 then it‘is known that
instructions Ii and IJ must have their execution ordered, but it is not
known which instruction to execute first. The determiﬁation of this
precedence is made from the initial serial ordering in the non-cyclic
case. Whichever instrﬁction of the two precedes the other in the serial
ordering should be executed first to guarantee correctness. Because of
~ the way index values were chosen for instructions, the instruction with
the smallest iﬁdex value (i.e., if i<, execute I, first, else IJ) is

executed first.



Given a non-cyclic ordering matrix, M, the upper right triangﬁlarized
matrix, R, formed from M correctly presents the precedence relations for
instructions under the interpretation: if RiJ = 1, then Ii must precede
IJ (written Ii 9] Ij)' One can see that the precedence relations of
R insure that all instructibns serially preceding a branch instruction,

Ix’ are constrained to precede the execution of Ix' Let I, be an in-

_ i
3 i ] < i . = = = \ .
struction preceding I (so i<x). Since e d =1, My =1 M, - Since
i< .= o= 1. i
ix, Rix Mix 1. Thus Ii ® Ix as deter@lned by the relations of R

and Ii 3] Ix Vi<x.

Theorem 3.3 also applies to R. That is, if column i of R has all
elements set fo zero then'Ii is eiecutably independent.

Consider a task T being executed from a precedence matrix, ﬁ, and
assume for the moment that T has no branch instructions. Suppose Ii €T
was found executably independent, and was executed. The execution of
Ii has removed precedence orderings for those instructions which must
be directiy ordered after ;if This fact can be reflected in R by noticing

that if Ii € I,, then Ri = 1. That is, the non-zero elements of row 1

J’ J
are the precedence ordérings déactiyatéd by the execution of I;. De-
~ activation of these orderings is equivalent to setting to zero all
non-zero elements of row i. Let R(i) be the matrix formed from R by
getting all non;zero elemenfs of row i to zero.

A simple algorithm for the execution of T from R is:

1. Find alllexecutably independent instructions by finding

all columns in R with all iero elements.
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'2. Execute these instructions concurrently.
3. After an instruction, I,, is executed, form R = R(i).
b, Go to 1.

The execution of branch instructions will introduce some complexity
into the above algorithm. Let Tb be a task in which at least one in-
struction, Ix’ is a branch instruction. Let Rb be the precedeﬁce matrix
for Tb. Suppose that I is exeéuted from R° and is a forward branch to
Iy' The execution of Ix will deactivafe the precedence orderings in
row x just as for a non-branch instruction. However, the executibn of
Ix also cﬁuses the instructiops between Ix and Iy to be skipped over.
These instructions will not be executed (unless there is a later branch
backward) so their pfecedence orderings should be deactivated by teking
R = R(x, x+1, x+2, ..., y-1). |

Suppose Ix is executed from Rb and is a backward branch to Iw’ and
that all instructions Preceding Ix have been executed (Vi|i<x, Ii has
‘been execﬁted). The gxecution of Ix transfers control to~Iw and results
in the reactivation of all orderings Ii € IJ’ w<i, J<x and i<j. 1If
precedence orderings are deactivéted by setting elements to zero, it
will be impossible to determine which orderings of Rb should Be'reactivated.
Obviously, to handle backward brancheé thé original orderings must be
saved when Rb 1s modified after execution of instructions. To this end
we define the following two operations which implément deactivation and

reactivation.



Definition 3.4: RESET (A

) defines a new value, A{J of the

i3
named element, Aij’ of a ternary matrix, A, as follows:
0 if Aij =0
' = . R
AiJ 2 if Aj_‘j 1
21if Aij =2

All other elements of A remain unchanged.
‘Definition 3.5: SET (Aij) defines a new value, A{J’ of the names

element, Aij’ of a ternary matrix, A, as follows:

0if A,, =0
i
1 = . 1 =
Aij | lif AiJ 1.
1if A,, =2
. i J

All other eleménts of A remain unchanged.

These operations are defined for ternary matrices (matrices with

element values of O,‘l, or 2), and may be applied simultanéously to more
than one element name by providing a set of element names as a parameter.
For example, RESET (row i), SET (row'j in columns x through x+y).

The matrices M and R are henceforth redefined to be ternary, with
binary initial element values as calculated by Theorem 3.1. The mean-
ing of R(1i) is redefined to be RESET (row i of R), rather than set all
non-zero elements of row i to zefo. The operation SET (row i of R) is
denoted by R(1).

It is apparent from theiabove discussion thap the meaning of

R.,, = 2 in a precedence matrix, R, is that the precedence ordering

id
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between Ii and IJ has been deacti?ated. Thus, Theorem 3.3 as it applies
tb precedence ﬁatrices is restated as:

. Lemma 3.3: If R is the precedence matrix for task T and if all
elements of column i of R are either O or 2, then Ii is executably
independent.

The complete algorithm for executihg a task from its non-cyclic
matrix is:

Algorithm 3.1: Given & precedence matrix, R, for task T

1. TFind all executably independent instructions using Lemma 3.k

and execute them concurrently. |

2. After execution of each instruction (Ii) do

a. If Ii is a non-branch instruction put
R = R(i)‘

b. If I, is a branch forward to I& put
R = R(i, i+1, i+2, ..., y-1) |

c. If I, is a branch backward to I, put
R = R(w, WL, ..., =1)

3. Go to 1;

It sﬁould be emphasized that Step 2 is performed after the execution
of each instruction is completed. Each of the executébly independent
instructions found in Step 1 may have.a different execution time, and
some of them may have their execution delayed dﬁe to a lack of transfor-

mational resources. Waiting to initiate Step 2 until all instructions



of Step 1 have been executed could result in a decrease in the concur-
rency realized. Thus, Step 2 should be performed every time an instruc-
tion completes execution.

The Appendix presents an example of execution of a task from the
non~cyclic ordering matrix.

3.3.2 Execution Using Cyclic Independencies

The ordering relations of cyclic ordering matrices, M', have
been derived in such a way that branch instructions will be executably
independent if all previous daté—dependencies have been satisfiéd for
the branch instructions. Thus, a branch instruction, Ix, may be executed
before some previous instruction,-Iig has been executed. If the branch
is backward to IJ (Ix creates a cycle) then wé will have a situation

where an instruction,‘IJ, precedes a second instruction, Ii’ in the

serial ordering, but I, must be ordered after Ii if there is a data

J
dependency. The Ordefings below the main diagonal in M' are used to
preserve the correct ordering in a situation such as this.

Definition 3.6: A branch-subset, H? , of a task, T, is a

J

serially ordered subset of the instructions of T, Ii’ Ii+l’ ceas IJ-l’

I, such that I, is a branch instruction, I is a branch instruction,

J J -1
and for i>2, i<k<y§, Ik is not a branch instruction. If i =1 then
Ii—l = Iolis not defined so it need not be a branch instruction.

Each branch-subset is disjoint and ‘every instruction in T is in
a branch-subset (assuming that the last instruction of a program is '

' always equivalent to a transfer to the operating system).




- 26 -

.Definition 3.7: An activation of instructions is the execution

of a branch instruction. The set of instructions activated, called the

activated subset, is a serially ordered subset of a branch subset, H:

J

such that the first instruction of the subset, Ix’ for i<x<j, is the
destination of fhe branch, and the last instruction of the subset is
IJ'(IJ is py definition a branch instructiqn).

An instruction will not be considered for execution until it has
been activated. Multiple activations of the instructions of a cycle
will be allowed. That is, if IJ is a 5ranch backward to Ii+y in H?J
then IJ may be executed whenever it is executably independent, regard-
less of whether all of the instructions, Ik for i+y<k<J have been
executed.

The algorithm for executioﬁ-bf a task from M' is the same as
Algorithm 3.1 except that the rulés.for setting and resetting elements
of the ordering matrix are more.complex.r In general, only subsets of
& row or column are set or reset when an instruction is.executed.A The

‘boﬁndaries of branch-subsets are found using tﬁé IC~-flag vector. Three
other variables for each column of M' are required to keep track of the
activations and executions of each instruction. Reference (25) gives

a detailed statement and proof of the rules for controlling the elements

of M', along with an example of their use.
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4. DYNAMIC STORAGE REASSIGNMENT AND COMPUTED ADDRESSING

4.1 Storage Reassignment

4.1.1 Shadow-Effects

Reassignment of the storage resources effected by an instruction
is useful in uncovering concurrency in a task because it can create

situations such that for two instructions Ii'and.IJ (i <3), e 0.

374 T
This section will describe a modification to the calculation of

ordering matrices which permits dynamic reassignments to be made, and

discusses the mechanisms necessary for making them. See References (13,

19, 20) for other approaches to this problemn.
Lemma 4.1: For any two instructions, Ii.ahd IJ (assume I, precedes

IJ in that portion of the sequenée‘éf.inﬁerést) in a task T, the éinks

of IJ<may be reassigned‘to‘permit concurrent execution’of Ii and I

J

if ei'dJ = 0 and eJ°di = 1. The ﬁair of instructions Ii’ IJ'is said

~ ~ A A "

to have the shadow-effects property.

| Proof: -Since the sinks of any instruction may be reassigned at
any time, the problem here is to prove that only undér the above
conditions will this reéssignment be useful in the éense that con-
current eXecutioﬁ ma& result, The fact that conéurrent'executioa of

Ii and Ij may result from reassignment of the sinks of I, follows from

A J
the condition that ei~d5 = 0. The reassignment of the sinks of IJ to
Spare resources effectively produces'a‘new effect vector, ej, for IJ

~ A

- such that ej'di = 0, thus permitting concurrent execution of Ii and

IJ because Ii and IJ are now independent.
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Under any other conditions reassignment would not be useful.

Ir ei'd = 1, then Ii is calculating an operand to be used by IJ’ SO no

J
concurrency is possible. If eJ°di = 0 then concurrency may be possible
(it ei'dj = 0), but no reassignment of the sinks of IJ is necessary
to permit this concurrency. | Q.E.D.
The shadow-effects property is really a binary relation between
instructions. This relation will be denoted with the symbol "<". Thus,
Iizij means that Ii need not directly precede IJ if the sinks of IJ are
reassigned.
Lemma 4.1 states that it is necessary that the shadow-effects
property exists fﬁr a reassignment to be useful. The existence of
this property is not, howevef, sufficient to guarantee a uceful reassign-
ment. Sufficient conditions for useful reassignment of the sinks of
IJ are that the shadow-effects propefty exists between Ij and ail in-
structions preceding IJ in the actual execution sequence and for which
a reactivated ordering exists, since only then will reassignment cause
executable independency.
If an instruction; IJ’ has more than one storage resource as a
sink,'and Iizij’ then all_of the sinks of IJ must be reassigned. If
no spare resources exist for at least one of the sinks of Ij, then no

reassignment may take place. Most machine language instructions have

only one sink, so the above limitations are not overly restrictive.




4.1.2 Ordering Matrices for Shadow Effects

4.1.2.1 Calculation of the Matrix

We now define a new ordering matrix, S, which represents the
shadow-effects property. The elements of S take one of five possihle
values (0, 1, 2, 3, 4) the values 3 and 4 being associated with the

relation <.

0 iff I, <¥ IJA=>A; :SJ = ;J~Si =0
1 iff Iils I = e, aJ =1
3313 = 2iff I © IJ and is deactivated
3 iff I, ?'IJ => ;i~33 = 0 and ;3'31 =1
iff I, < IJ end is deactivated

There are now two ways in which an instrﬁction, IJ’ may be executably

independent. Two instructions, I, and I, are said to be completely

J
independent if Ii£>1j. Similarly, I, and IJ are said to be partially

independent if Iizij' Then Ij is completely executably independent

if and only if vi # J, either Ii</>IJ or I, € _IJ and is deactivated, or

Iizi and is deactivated. Also; IJ is partially executably independent

J .
‘if and only if ¥i # J such that Iizij and Yk, k # 1 # J either;1k</>lj,
or Ik?ij’ or Ik 9 Ij and is déaqtivated. ,IJ is effectively'made conm-
pletely executably independent by reassigning the sinks of<IJ to spare
resources.

Detection of partiél dnd'éompleté executable independence by

examining the columns of S follows directly from the above discussion.

We collect the necessary conditions in the form of:
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Lemma 4.2: Let S be an ordering matrix for a task T. IJ in T
is completelx‘executably independent iff column J of S has no elements
set to 1 or 3. IJ is partially executably independent iff column J has
at least one element set to 3 and no elements set to 1.

Proof: of this lemma follows thét of Theorem 3.3 and will be
omitted here. | ‘

The SET and RESET operations introduced in Chapter 3 are extehded,
so that SET(3) = 3, SET(4) = 3, RESET(3) = b4, and RESET(M) = k.

Matrix S caﬁ be calculated from the data effects matric, E' and
the da£a dependency matrix Y' in é manner very similér to the way in

vhich M' is calculated. First, a new logical function, @ sy of two

Boolean variables, vy end v, is defined as follows:

J
Vi V4 vy @ vy
0 0 0
o 1 3
1 0 1
1 1 1

Theorem 4.1: Let ST be the matrix S with all elements SET.
That is S° = SET(S). Then ST = (E'+Y') 0 (E'y")E,
Proof: Follows from the definition of S, of @ , and from the

I = N . - .‘
fact that §;, = e;*d, Qe,-d,. Q.E.D.
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We illustrate this theory with an example:

Il : Rl = A 6 1 1 o0 1 1
12 : Rl 1= Rl + B 3 0 1 3 1 1
I, C :=R | Sp= 3 3 0 3.3 o0
Iu . Rl =D . 0O 1 1 o0 1 1
IS : Rl = Rl + E 3 1 1 3 01

Ig : F =Ry 3 3 0 3 3 o
After control ;s passed to this matrix, all‘elements below the main
diagonal will be reset and all elements above the main diagonal will be
set, in accordance with the rules for cyclic matrices in Referenée (25).
At this point, Il will be completély executably independent, and Ih
‘will be partiaily executably independent.

4.1.2.2 Removal of Redundant Orderings

Consider again the preceding examp}e. Suppose Il andAIh are exe-
cuted concurrently, with the éinks of Ih being reassigned to Ri.
Reference (25) describes how instructions I5 and I can be notifiéd
of the resource reassigpment; so assume that such a mechanism exists.
'Thén, IS and Ih should be_allowed to execute concurrently with
12 and I3, respectively. HOWever; appiying the control variable
transition rules to S will not pfoduce‘this concu}rency because, for

example, 825 = 1. Also, 835 = 3, .80 that even after 12 is executed,

I5 will be only partially executably independent.
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The abové loss of concurrency occurs because some of the orderings
in S are redundant. Orderings are calculated from Theorem L.1 by com-
paring each instructiop with every other instruction in the task. Thus,
although Ih in the above example gffectively begins a new computation,
we still compare the instructions in this new computation string (Ih’

10 Io 13). This

comparison produces 825 = 1 because Rl is a source and a sink of both

IS’ 16) with those in the o0ld computation string (I

I, and Is. The ordefing Spg = 1 is redundant because Ié €I, and I) Q
15’ so it is not necessary to retain the information that 12 & IS (the
Precedence relation is transitive). The ordering S35 = 3 is also
redundant because I3_Q Ih and Ih & IS. Thus, these redundant orderings
may be removed from S without destréying any necessary ordering rela-
tions, and with the benefit of allowing the cbncurrent execution of
Ih and I5 with I2 and 13, respectively.

A formal method, using simple matrix operations, for removing
redundant ordering relations from an ordering matrix is described in
Refefence (25).

4.2 Computed Addressing

A A

Instructions have been modeled as pairs of vectors, e end 4, which
specify the sinks and sources; respéétively, of the instructions. The
instructions of real computer§ do not always conform to this model. Some
real-instructions do not explicitly specify all of their sources and

sinks. Rather, they compute the names of certain of these sources and



sinks, using the values in other, explicifly stated storage resources,

as the operands of the computation. The names of these computed re-
sources are called addresses, and the process of computing these addresses

is called computed addressing. Indexed addressing and indirect address-

ing are buth forms of computed addressing.
The subject of computed addressing deserves special treatment

here because it creates special problems in representation and detection

- of concurrency. The exact resources to be used by a computed address

instruction are statically indeterminant. This indeterminacy is due to
the fact that the values in certain resources are used to determine the

computed address. Thus the resource names explicitly-provided by the

~ instruction (static information) are not enough to completely represent

‘the sources or sinks of a computed-address instruction. No complete

solution of the computed addressing problem which can be embodied in
the ordering matrix model is known. Reference (25) describes a partial
solution, one involving a loss of potential concurrency, and outlines

the main problems involved in finding a complete solution.
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5. RELAXING THE CONSTRAINTS OF BRANCH INSTRUCTIONS

5.1 Why the Constraints Should and Can Be Relaxed

Consider the initial serial instruction sequence shown in Figure 5.1,

part a, where I, is a forward branch to Ik' The cyclic ordering matrix

J

model would allow only the instructions preceding I, to be active until

J

I, is executed. After execution of I, the instructions starting either

J J

at I or at Ik,would be activated, depending upon the data provided

J+l

as input to I One can see, however, that the instructions starting

3"
at Ik will be executed no matter what the outcome of IJ' These in-
structions, Ix’ x>k, may have data dependencies with the instructions
between IJ and Ik which will. inhibit their execution, but it is not
necessary to waiﬁ for the execution of IJ before executing the Ix'

One can see that a forward branch instruction causes uncertainty

of the execution of only a subset of the instructions in e tack. It

is this property which we would like to take advantage of to remove the

constraints present in our current model of concurrent execution.

To determine whether the execution of an instruction, Ii’ is made
uncertain by a branch instruction,'Ib, involves a knowledge of the
explicit destination of Ib’ and the position of Ii relative tq this
destinatiﬁn; This information is more than can be determined from

the source and sink vectors as they are presently constructed. Pre-

‘processing will be required to provide this extra information. The
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approach will be to have the preprocessor produce a subfield in each
source and sink vector which has the necessary procedural dependencies
already specified. Rather than provide a single IC storage resource in

the resource space, one IC resource, T1o will be provided for each

. i A
branch instruction, Ii' Component Tro of e will be set to one, and
~ i :
component_rIC of dj will be set to one for each instruction, IJ’ which
i

heas a procedural'dependency with I,. Reference (25) presents, and
proves, an algorithm for assigning these procedural dependencies. The
algorithm constructs the vector subfields in a single, top-down scan

of the instructions of the task. This property allows these procedural
subfields to be coﬁstructed as tﬁe assembler outputs the serial list

of object instructions.

Because we wish to rctain the napability of detecting inter-cycle
independencies in this model, a second uncertainty propert& of branch
instructions is important. Consider Figure 5.1 part b, vhere Ik is a
backward branch to IJ' The presence of Ik does not cause the execution
of the instructions following Ik to be uncertain. It is certain that

‘sooner or later I will branch to I ., (assuming no infinite loops).

However, I

" does cause the time of execution of the instructions fol-

lowing Ik

Ik+1' This type of uncertainty increases the complexity of the ordering

to be uncertain, since it is uncertain when Ik will branch to

matrix calculation and effects the rules for executing instructions

from the matrix.




There 1is eome evidence that the development of techniques for
modeling branch instructions with relaxed constraints on potential.
concurrency is one of the most important areas of research in this
field. Riseman and Foster (17') have data which shows that if all of
the uncertainty due to branch‘instructions could be removed, then on
the.averege as many as Tifty insﬁructions.would be executably inde;
pendent at eny particular time during the executiod of a task.. Their
study was an‘extension of fﬁe work of Tjaden and Flynn (19) who fouﬁd
that, under the constraint that no instructions following a branch
are executed until the branch is executed the average number of exe-
bcutably independent 1nstructions will be less than two. It is, of
course; impossible tc remove all of the uncertainty due to brancb in-
'sfructions. The theory of this section is an attempt to uncover some

of the potential concurrency Wthh Riseman and Foster show exists.

5.2 Calculation of and Execution from the Ordering,Matr1x

Assume that the procedural dependencies are grouped together in
a subfield of the source and sink vectors. It will be convenient to
think of these source and sink vectors as the concatenation of twa

vectors, one for data dependencies, and one for procedural. The nota-

~ ~

tion will be as follows. Whereas previously the symbols di and e, vere

used to represent the source and sink vectors for'Ii, we will now use

di and ei to indicate that these vectors include explicit procedural
snformation. The two "sub-vectors" will be denoted with a "d" super-

script for the data dependencies, and a "p" superscript for the procedural
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dependencies. That is, 4! = d? cat a° and e! = e? cat e®. ‘Ordering
i i i i i i

matrices will be formed from these vectors in a way analogous to that
of Section 3. That is, E' is the matrix whose ith row is ei, Y' is

the matrix whose ith column is d{, Ed is the matrix whose ith row

is eg, etc. We can now define two new ordering matrices for a task T.

A Data~Ordering Matrix, Md, is defined to be:

1 = gleyd @ (xdeydyt

and a Procedural-Ordering Matrix, Mp, is defined as

Notice that Md is equivalent to the ordering matrix of Chapter U, with

the excepfion that IC flags are §mitted.

It is not possible to define a single ordering matrix for a task
as the Boolean uuion of the sbove two ordering matrices because of the
uncertainty of time of execution caused by backward branch instructions.
Reference (25) shows that a third matrix, Mp' = B'Md, where B is a special
matrix defined in the reference, can be used to control the uncertainty

of time of execution.

- Thus three ordering matrices are combined into a single ordering

métrix, M¥, by taking their union under the special rule of addition,
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]
143 = 3+1 = 1. That is M* = M® vV M v M® & The special addition

‘rules reflect the fact that a procedural ordering must také priority

over a shadow-effects data ordering, ng = 3. Reference (25) gives
the transitioh rules for executing a task from M¥., The rules'are
similar to those for the cyclic ordering matrix, except that. forward

branches require very little special treatment.
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6. EXPERIMENTS AND CONCLUSIONS

6.1 Experiments
Several experiments were conducted to determine the relative
capability of the algorithms of Sections 3, 4, and 5 for detecting
potential concurrency. These experiments vere in the form of computer
simulations of the algorithms; The "tasks" for which potential con-
currency was detected were three of the certified algorithms of.the
Association.for Computing Machinery, selected at random. Théy are:
1. Algorithm 410 - an algorithm for the partial sorting of an
array (22).

2. Algorithm L17 - an algorithm for the camputation of weights
of interpolatory quadrature rules (23).

3. Algorithm 428 - an algorithm for the Hu~Tucker minimum re-
dundancy alphabetic codiné method (24).

A "typical" actuai serial execution sequence for each of the
tasks was determined by assuming values for the variables in the task
which seemed, from the description of the progfam, to 5e reésonable.
The destination chosen By each execution of each branch instruction
was determined'from the assumed variable values, and thus an actual
exepution sequénce was detenmiﬁed. .The 3 and ; vectors and the tabie
of branch instruction destinations were the input to the computer |

simulation.



Five different concurrency detection a;gorithms, corresponding
to five different methods of calculating an 6rdering matrix, were
simulated. They are:

1. M= (E‘Y)V(E‘Y)t. This is the noncyclic ordering matrix.

- It has tﬁe most restrictive modeling of branch instructions.

2. M= (E"Y')V(E"Y')t. This is the cyclic ordering matrix.

Branch instructioqs are modeled in such a way that intercycle
independencies can be detected.

3. M= (E'°Y')(}(Eﬂ°¥')t. Tﬁis is tﬁe cyclic ordering matrix

with shadow effects. »

b, M= ((B'-Y') @ (E'-y")¥) - (r")Z. This is the same as

case 3 except redundant orderiﬁgs have been removed from
the matrix. |
5. M¥ = MdVMPVMP', where Md is the matrix of case 3. This is
the ordering matrix in which procedural orderings are explicitly
pﬁesent andlprdcedural dependenéies have been assigned in a
less restrictive way than in the previous cases.

The‘potential concurrency realized for the execution of a task
depends not only on the way in which independent instruétioﬁs are
détected, but also on thé aVaildbility of resourceé‘and the ﬁay in

vhich these resources are allocated. Since these experiments were

conducted to determine the relative capability of the different matrix
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calculation methods to detect independence, assumptions concerning the
availability and allocﬁtion of resources were made and held fixed.
.These assumptions are:
1. Unlimi£ed resources, both transformational and storage,
are available.
2. All executably independent instructions detected at time t
are allocated all of their specified resources at that time,
and no éther executably independent instructions are aliocated
resources until time t + T, where T is the time required for
all of the executably independent instructions found at time t
to be executedAconcurrently.'

The variable measured by the simulator is called the rate of
;ggependencea‘ It is the number of instructiéns in the actual execution
sequence of a task, divided by the numﬁer of instanpes at which iastruc-
tions would be éllocated resources under restriction {2) above. Thus,
the rate of indepéndence for a task is & number greater than or equal
to 1. It is the average number of_instructions which are allocated
resources and begin executing concurrently. It should be realized that '
the values found for the rate of 1ndependence would be lower if limited
' resources are avallable, and would be hlgher 1f instructions are allocated
resources and their executlon is begun as soon as they become executably

independent. Table 6.1 shows the results of these exberiments.
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6.2 Conclusions

‘The data obtained from the simulation and displayed in Table 6.1
"are in close agreement with other published data. TJjaden and Flynn (19),
and Riseman and;Foster (17) have simulated concurrency detection
slgorithms having theoretical potentiai'conCurrency levels similar to
" that of Test 4. Their experimental results, presented in Table 6.1,
are seen to be in ciose agréement with those found in this study.

| The relativé values of the data in Table 6.1 indicate the rela-
tive "usefulness" of each of.the.various detection techniques. Note
- that each of the_yarious techniques, arranged ihbthe order shown, did
uncover successively more pqtential_concurrency. ‘The cyclic ordering
matrix (test 2) seems to be significantly better than the noncyclic
(test 1). Inclusion of shadow effecfs wiﬁh the cyclic matrix (test 3)
yields an increase in potential concurréhc&, but by a smaller percentage
than the increase between tésts 1 and 2.

It is not qlear that the incréase in potential concurrency due to
removing redundant orderings (test L) would be worth the overhead in-
&olved (one matrix multiply and one matrix subtraction). Only one of
the tasks sﬁowed an inérease in the rafe of indgpendence, resulting in
a éhange in the averége rate of indepeﬁaence from 1.79 to 1.83.

Test 5 used the ordering matrix having procedural dependencies

explicitly assigned. Although the avérage rate of independence obtained

in this experiment (1.98) would be somewhat higher if redundant orderings



o

- L) -

ﬁere removed, it would still be very much lower than the limif of 51
established by Riseman and Foster (as discussed in Section 5). Here
again it is not clear that the overhead in calculating the matrix is
worth the increase in potential concurrency obtained.

Figure 6.1 is a graph showing the inverse relationship between rate
of independence and branch instruction density for test 5 of Table 6.1.
It is clear that techniques for producing tasks having low branch in-

struction densities are important open problems.
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APPENDIX

Algo:éthm.3.l and the use of Theorem 3.1 are illustrated in the
following example.  Suppose the following task of eight instructions

Il ‘o IB’ as shown, is to be executed.

Il . o Rl := 2
I, CYCLE RL := Rl - 1
I3‘ | R2 := o
I, LEFT SHIFT R2 BY 6
15 , " IF Rl # 0 GO TO CYCLE.
I ‘ IF R2 = 0 GO TO JUMP
I . R2 := R2
T '
' 18 JUMP ‘- R2 := B

The components of the s-resource spaceAafé IC (instruction counter),

Rl, R2, R3 (registers), o, and B (memory cells). The constants 2, 1, and
6 would be contained in meﬁory cells in a real applications, and thus
would also nofmally be associated with s-resources. .For simplicity we
.igno;e.these resourceg. Let the-compénents of the dependence and effect
vectors be ordered: IC, R1, R?, R3, a, B. Then the dependency and

A

and column i

effect matrices, Y and E are (remember row i of E is e

of Y is 4. ):
1 .
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Using Theorem 3.1 we find:

M= {TY V (TV)F} =

(=] o,




Appendix - L

Figure A.1 shows the state of R at several points éu:ing the
execution of T. We are assuming, for the sake of simplicity, that every
set of executably independent instructions found is executed concurrently
and that they all complete execution at the same time. The list of
instructions at the left of the figufe is the expanded task, ordered
as it w0u;d be if executed strictly serially, and assuming 16 is a forward
branch to Ié. The diagonal line beside the instruceion name indicates
that the instruction was found executably independent, and the number
beside the diagonel line indicates in which application of Step 1 of
the algorithm it was found executably independent. .One. can see from '
the matrix, R, tnat I1 and 13 are executab}ylindependent at the first
application'of Step 1. Part B'of»Fignre.A.i shows R after I1 and I3
haﬁe been executed and the RESET oneratiOn has been applied to rows 1
and 3. Paft C shows R just before the first bfanch instruction, I5 (back~-
ward to I ) is executed, and Part D‘shows R after the execution of I5
The precedence orderings of rows 2, 3, and 4 have been reactivated by the
SET operatlon. Part E shows R just before the last branch, I (fo;ward
“to 1 ) is executed. Finally, Part F shows R after-I6 has been executed.
Notice the precedénce orderlng caused by I7 has been reset so that 18
is executably independent.

One can see that in actual practice some mechanism to remember
which instructicns have been executed will be necessary. Reference (25)
describes such a mechanism for the cyclic orderlng matrix of the next

section.
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Part A -- Serial Instruction Stfing

11/‘1‘
1, /2
13/1
»‘14/24
1, /3
1,/ 4
13/4
14/;5
1, /6
Ig /7
1,/ 8
"Pa;; B

o 2 0 0 2 2 0 0]

o 000 1 1 0 0

0 2 2 2 2 0

' o 1 1 1 1

R = R(1,3) = |

| | 0 1 1 1

0 1 1

0o 1

I 0

FIGURE A.1l: CONCURRENT EYECUTION OF A TASK
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Part C

R = (R(1,3))(2,4) = R(1,3)(2,4)-=

Part D

R = R(1,3) (2,8 (T,3.0) =

FIGURE A.l‘(continued)
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Pait E

— —

R = R(1,3)(2,4) (Z,3,8)(2,3X (&) (5) =

Part F

‘R= R(1,3)(a,h)(E,E,F)(é,s)(h)(s)(6,7) - -

FIGURE A.l(continued)
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