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ABSTRACT

A formal technique for the representat
ion of tasks such that the

potential concurrency of the task is 
detectable, and hence exploitable,

during the execution of the task is
described. Instructions are repre-

A

sented as a pair of binary vectors, d
 and e, which completely describe

the sources and sinks specified by th
e instruction.  Tasks are repre-

sented as square matrices, M, called 
ordering matrices.  The values of

the elements of these matrices are us
ed to dynamically indicate the

necessary ordering of the execution o
f instructions.

It is shown how several different typ
es of ordering matrices,

, each type having the capability of exhibiting different amounts  of

  A

potential concurrency, cah be calcula
ted from the d and e vectors of

the  instructions  of  a task using "linear algebraic-like" operations.

For example, inter-cycle independenci
es can be detected with a ternary

ordering matrix. This matrix can be extended to dynamically detect

opportunities for reassigning the res
ources specified by certain in-

structions to increase the amount of p
otential concurrency.

Experimental results are presented sh
owing the relative capa-

bility of each of these matrix-types 
for exhibiting potential concur-

rency.  These techniques are shown to
 produce somewhat greater amounts

of potential concurrency than other k
nown dynamic techniques.  How-

ever, the amounts of potential concur
rency found are less than those

reported for preprocessing detection t
echniques.

-.Ill----I
lv
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I.  INTRODUCTION

Computers perform complex computations on value
s kept in devices

called memories and place new (computed) valu
es into these memories.

The  completion of these complex computations requires many "steps".

Each of these steps is described by an instruc
tion and the performance

of a step is called the execution of an instru
ction.  The ordered col-

lection of all of the instructions required to
 describe a certain com-

plex computation is called a task.  The complet
ion of a complex computation

by a computer is called execution of a ta
sk.

If the execution of instructions on a certain c
omputer occurs in

such a way that only one instruction is in the process of being executed

at any particular  time, then execution of instructions  is  said to  be

sequential, or serial.  If, however, more tha
n one instruction is in

the process of being executed at a given t
ime, then this execution is

said to be concurrent.  The opportunities exis
ting in a task for in-

structions to be executed concurrently while p
reserving the determinacy

of the values computed by the task are said to cons
titute the concurrency

of the task.

This paper will describe several techniques fo
r detecting and

representing concurrency through the use of
 specialized matrices called

"ordering" matrices.    That  is,  for a given task having certain properties,

it will be shown how this task can be represente
d with an ordering

matrix and how the opportunities for concurren
tly executing the in-

structions of the task may be thereby dete
cted.
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The detection of concurrency involves analyzing a task to detect

those instructions which are "independent" or can be made to be in-

dependent.  Informally, two instructions are independent if no operand

of one is calculated by the other (this and other definitions will be

made formally later).  Independent instructions can be executed con-

currently because they will calculate the same values as they would

if executed sequentially.

The basic conditions sufficient for independence were first

formalized by Bernstein (3).  He divided the variable names specified

by instructions in a task into four sets and defined independence in

terms of conditions which  must be satisfied by these sets. More com-

plex conditions for detecting concurrency have since been developed

(9, 19, 20).  These conditions specify, for example, when variable

names should be reassigned to enhance the opportunities for concurrency,

when different iterations of a DO_ OOP may be executed concurrently,

and how to change the form of expressions so that more concurrency

will result.

The implementation of the detection algorithm is very critical

with respect to realizing a net benefit (task execution speedup, or

resource utilization improvement) from application of the algorithms.

One approach that has been investigated is to implement the algorithm

in software and use it to analyze complete tasks before execution of

the tasks (preprocessing) in a manner similar to that used in compilation.

5
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Kuck, Muraoka, and Chen (9) have simulated such a preprocessing con-

currency analysis algorithm.  They used concurrency conditions
 con-

siderably more complex than the Bernstein conditions (e.g., DO_LOOP

analysis, variable name reassignment, tree height reduction f
or

arithmetic expressions, etc.) and found task execution speed-u
ps of

as much as ten-to-one and, in some cases,
more. Only limited data

on the time and space overhead involved with their analysis is
 availa-

ble.  Thus, it is uncertain under what conditions their techn
iques

will be profitable, and what the net profit will be.

A different approach, proposed by Tjaden and Fl
ynn (19), is to

implement the detection algorithm in hardware, and perform th
e analysis

on small sets of instructions (ten or less) during the execut
ion of a

task.  A simulation of the Bernstein conditions and an algori
thm for

reassigning variable names showed that a nearly two-to-one net
 average

speedup of task execution can be achieved.  The spa
ce overhead of

this dynamic approach should be less than. that of the preprocessing

approach.  Since only a small portion of a task is analyzed a
t any

one time in the dynamic approach, only a small amount 
of information

(relative to the preprocessing approach) must be remembered, 
implying

a smaller hardware overhead for the dynamic approach.

Closely related to the choice of an implementation approach

is the choice of a representation of the concurrency det
ected during

the analysis of a task.  Representation refers here to the da
ta structures

.
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required to be present in the computer to indicate the opportunities

for concurrency and to control the concurrent execution of the instruc-

tions. One such data structure that has received considerable attention

because of its theoretical properties is the directed graph.  In this

structure, each node of the graph represents an instruction, and the

links between nodes (or the absence thereof) represent opportunities

for concurrency.

Another data structure which has been studied for representing

concurrency, is the matrix.  As first described by Leiner (10), each

instruction in a task, Ii' corresponds to row i and column i of a

matrix, M.  Each element of the matrix, Mij' is given a value which

indicates whether or not the execution of Ii must precede that of I .

These matrices are called precedence matrices.

The regular structure of matrices makes them well suited for

integrated circuit implementation in hardware.  However, the number

of matrix elements required to represent a task grows as the square

of the number of instructions in the task. Graphs are less well

suited for implementation in hardware,    but    will    take less space    than

graphs, assuming some minimum average number of links incoming and

outgoing to the nodes of the graph.  Thus, for a preprocessing imple-

mentation where large tasks are to be analyzed and the results stored

in some general memory, the graph representation would seem to be a

better representation choice than the matrix.  On the other hand, for

U
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a dynamic implementation, where small subtasks 
of a large task are

analyzed using hardwired algorithms, the matri
x representation is

preferable.

This paper will be concerned with the dynamic detection of co
n-

currency using   (what  will be called) "ordering" matrices. Equations

will be derived for calculating the ordering matr
ix for a given task,

thus   detecting the concurrency  in  the  task. A "simple" ordering matrix,

capable of representing relatively small amount
s of potential concurrency,

will first be derived. The calculation of this matrix will then be

successively extended to include the representa
tion of intercycle inde-

pendencies, shadow-effects (used to reassign resources), and 
relaxed

constraints on branch instructions.  Experiment
al results showing the

relative capability of each of these technique
s for representing po-

tential concurrency will then be given.

In the interest of brevity many details will 
be omitted in the

following discussion.  These details may be fo
und in Reference (25).

In  particular, this reference shows how tasks  can be represented  as

a hierarchy of levels of subtasks such that th
e size of any subtask

is bounded by an arbitrary constant value, and
 an ordering matrix for

a subtask at any level can be computed.

b
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2.  THE ABSTRACT MODEL

2.1  Definitions

Computers are thought of as being composed of two types of

resources:

1.  storage resources (s-resources), which preserve values

over time, and

2.  transformational resources (t-resources), which transform

values obtained from storage resources (the sources of the

t-resource) and place the results into storage resources

(the sinks of the t-resource).

Resources are used to perform computations.  Camputations are speci-

fied by instructions.

Definition 2.1:  An instruction, I, is:

a.  a specification of a set of transformational resources, a set

of sources for these transformational resources, and a set

of sinks for these transformational resources, and

b.  an ordering relation (partial or total) over the set of trans-

formational resources.

Complex computations generally require more than one instruction

for their specification.  Such complex computations are specified by

tasks.

2
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Definition 2.2:  A task, T, is:

a.  a specification of a set of instructions, and

b.  an ordering relation (partial or total) over this set of

instructions.

It should be noted that a task is also an instruction, since it is an

ordered  set of ordered  sets of specifications for resources. Similarly,

an instruction is a task because each specification in an instruction

for a t-resource and its associated sources and sinks is also an

instruction.

The ordering relation of a task (and hence, of an instruction)

defines an initial execution sequencing of the instructions of the

task.  The fulfillment of the transformations specified by an instruc-

tion is called execution of the instruction. If the ordering relation

defined over the set of instructions of a task is a partial ordering,

there will be, in general, several initial execution sequences defined

for the task.  Execution of the instructions specified by a task is

termined execution of the task.

Let the set of instructions specified by the task be indexed

by the positive integers so that Ii is a particular instruction and

1<i<N, where N i s the number of instructions in the task.  Let the

ordering relation, "@",be interpreted  such  that   if   Ii   O I  ,i·4  j,   then

Ii must appear in the sequence before I .  For a partial ordering relation

it  may  be  the  case  that  Ii  0  I   and  Ii  0  Ik'  but  I   0  I   and  I   0  Ij   ("0"

means no ordering is defined).  In this case more than one initial
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execution sequence is defined.  That is, the sequences Ii' I , Ik and

Ii, Ik' I  are both initial sequences under the above ordering relation.

The fact that I  and Ik are not ordered with respect to each other and

that tasks must be deterministic implies that these instructions may

be executed at the same time (concurrently) or in any order and still

preserve determinacy.

If the ordering relation is total, then only one initial execution

sequence is defined, called here the serial execution sequence.  Although

concurrent execution cannot occur under a total ordering relation, it

is often possible to transform the total ordering relation into a par-

tial ordering relation in such a way that the same values are computed

under the partial ordering as under the total. The major concern  of

this work is in finding efficient procedures for transforming total

ordering relations into partial ordering relations while maximizing the

possibility for concurrent executions.    The term 'potential concurrency

will be used to refer to the chances for concurrent execution under an

ordering relation.

Execution of a task under an ordering relation involves an inter-

action between the ordering relation and the instructions specified.

That is, the actual sequence in which executions are made may be dif-

ferent from the initial sequence defined by the ordering relation.  This

difference is because the execution of branch instructions can cause

the orderings, Ii @ I , to be altered.  Reference (25) formally classifies

branch instructions into two types, forward and backward, by how they        
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alter the orderings of the relation.  Branch instructions are informally

characterized here by the relative position of the instruction to which

the branch instruction transfers control, called the destination of

the branch instruction.      If a branch instruction.   Ii,  has a destination,

Id, d 4 i+1, i n the serial execution sequence such that i<d,  If is

a forward branch instruction, otherwise it is a backward branch

instruction.

It is assumed that branch instructions may have at most two possible

destinations, referred to as the explicit and the implicit destination.

The explicit .destination, Id' of branch instruction, I - is the destina-i'

tion such that d 4 i. + 1.  The implicit destination is instruction I
i+1'

The assumption of only two possible destinations involves no loss of

generality since a branch instruction with several explicit destinations

can be thought of as several branch instructions.

It is also assumed that the explicit destination of a branch

instruction cannot change.  Thus, execution of a branch instruction

must effectively choose one of two particular instructions in the task

as   the   "next"   to be executed,   and can never choose any other instructions.

Backward branch instructions can cause certain sub-sequences of

the initial serial execution sequence to be executed more than once.

Thus, these sub-sequences may appear more than once in the actual exe-

cution sequence.

b



-10-

Definition 2.3:  A cycle is any sub-sequence of the initial serial

execution sequence which appears more than once in the actual execution

sequence. Each occurrence of a cycle is called an iteration of the

cycle.

Conversion of a totally ordered task to a partially ordered one

must be done in such a way that determinacy of the resulting execution

sequences with respect to the original serial sequence is preserved.

The following definition is the key to converting total ordering

relations into partial ordering relations.

Definition 2.4:  Two instructions, Ii and I , are independent

if and only if no sink of Ii is a source of I  and no sink of I  is a

source of Ii.  Otherwise Ii and I  are dependent.

It is clear that independent instructions need not be ordered with

respect to each other in the partial ordering since they will compute

the same values regardless of the order in which they are executed.

Dependent instructions, however, must be ordered with respect to each

other to preserve determinacy.

When Ii and I  are dependent, a dependency is said to exist be-

tween them.  From definition 2.4, dependencies exist when a sink of

one instruction is a source of the other.  Dependencies are here

classified into two types, data and procedural.  Procedural dependencies

are caused only by branch instructions, while data dependencies can be

caused by both branch and non-branch instructions.  Branch instructions
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are thought of as calculating values which 
either deactivate or reactivate

certain orderings in the ordering relation.

Definition 2.5: Suppose that the s-resource denoted by rx is a

sink of Ii and a source of I .  Then there 
is a dependency between

Ii and I .  If Ii is a branch instruction a
nd rx is the sink used by

Ii for the values which effect orderings, t
hen the dependency is a

procedural dependency.  Otherwise the depen
dency is a data dependency.

Procedural dependencies must be treated dif
ferently from data de-

pendencies.  This difference in treatment i
s because data dependencies

indicate the necessity of observing a speci
fic order of execution,

while procedural dependencies indicate that
 there is an uncertainty

as to whether or not an instruction should b
e executed. The s-resources

into which branch instructions place deacti
vation-reactivation values

are called IC-resources.

There is a special type of independency cau
sed by backward branch

instructions.  Instructions which belong to
 the same cycle, but are

independent in different iterations of the 
cycle will be called

cyclically independent.  Techniques for det
ecting this inter-cycle

independence are complicated by the  fact  that, in general, only after

the execution of a backward branch is it kn
own if another iteration of

a cycle should be executed.  Thus, this det
ection must be done dynamically

(that is, while the task is being executed
).

To simplify the discussion it will be assum
ed that actual execution

sequences are such that no instruction comp
utes a value which is not
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later used as an operand (input value i
n source resources) by some other

instruction.  This assumption simplifi
es the detection of independence.

Reference (25) discusses the implicati
ons of this assumption, and extends

the results of this paper to the more g
eneral case when the assumption

is not made.

2.2  Vector Representation and Propert
ies

Detection of independence of instructi
ons requires knowledge of

the source and sink resources of the
instructions. Let the storage

resources be indexed by the positive i
ntegers so that each s-resource

has   a unique index. The symbol   "r "   will  be  used to refer to the s-

resource whose index is "i".  For any
instruction, I ,

two binary

A  

vectors, e  and d  are defined as follo
ws:

j         j

-          {  1 iff ri is a sink of Ij

eji
=

{  0 otherwise
{

{  1 iff ri is a
source of I 

dji -

{  0 otherwise
{

Thus,  the  set of storage resources are thought  of  as a "resource space"

- A

and the vectors e  and d  for each ins
truction, I , are vectors in this

j         j                            
        j

space. The symbols   "e"  and "d" denote  that  fact  that
e 

indicates  the
r.

s-resources whose values are effected 
(altered) by I , and d  indicates

the s-resources upon which I  depends 
for values. Initially the stor-

J

age resource space will be allowed to 
have only one IC storage resource,

denoted by rIC.  Every instruction will
 be assigned rIC as a source,

t
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and every branch instruction (and only branch 
instructions) will have

r   as a sink. Section 5 will consider the general situation 
in which

IC

many IC resources are provided, and will show 
how these resources may

be usefully (in a way which enhances the chanc
es of detecting independ-

encies) assigned as the sources and sinks of i
nstructions.

For the purposes of this paper, instructio
ns will be considered

to be completely characterized by these vectors
 d and e.  This charac-

terization allows the independence (and depend
ence) of two instructions

to be expressed mathematically.  The following 
Lemma follows trivially

from Definition 2.8.

Lemma 2.1:  Two instructions, Ii and I , are inde
pendent iff

- -     -

ei'd  = e 'di = 0, and are dependent otherwise.

It is assumed that the multiplication indicate
d is the Boolean

scalar product operation.      That   is, the scalar product   of the vectors

is taken, using the Boolean multiplication and addition operations.

General operati6ns on binary matrices will be defined in Section 3.

b
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3.  CALCULATION OF ORDERING MATHICES

3.1  Definition and Formal Method

An n X m Boolean matrix is a matrix of n rows and m columns whose

elements are either  0  or  1. The operations   "V"  and  "A"  on  0  and  1  will

have their normal Boolean algebraic meaning.  The following operations

on Boolean matrices are defined:

1.  Matrix Product - Let A b e a n n X p Boolean matrix and B b e a

p X m Boolean matrix.  Then the matrix product, A•B, is given

by

(A•B) =    V   P    (AikABkj)ij    k=1

2.  Union - Let A and B b e n X m Boolean matrices.  Then the union,

AVB, is given by

(AVB)   = A VB
ij    ij  ij

3.  Intersection - Let A and B b e n X m Boolean matrices.  Then the

intersection, AAB, is given by

(AAB)   = A  AB
ij    ij  ij

4.  Transposition At = Transpose A

A direct-ordering relation between two instructions, Ix and I ,

is defined in terms of the independency of these two instructions.  As

Leiner (10) has pointed out, there are two kinds of ordering relations,

direct and implied.  Let the relation "must be ordered directly with"

be  denoted  with the symbol   "<>".
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Definition 3.1:  Ix<>I  iff Ix and I  are not independent.  Let

the relation "need not be ordered directly with" be denoted with the

symbol  "<0".    Then  Ix<fI   iff  Ix  and  I are independent.

If it is the case that Ix<fI , but Ix<>Iz and Iz<>I , then there

is an implied ordering necessary between Ix and I .  Leiner (10) and

Marimont (12) show how implied ordering relations can be determined

from the direct-ordering relations.  We will be concerned only with

direct-ordering relations in the sequel.

It should be noted that "<>" is not a partial ordering relation

because it.is not transitive.  Nevertheless., Ix<>I  will
be referred

to here as an "ordering" because it will be used to cause the execu-

tion of I* and I  to be ordered with respect to each other.  This

section will develop conditions under which Ix<>I  is to be interpreted

as I  @l o r I@ Ix, where "@" is the precedence relation (a partialX Y Y

ordering relation) of Section 2.

T
Definition 3.2:  The non-cyclic Ordering Matrix, M , for a task,

T, with N instructions is an N X N Boolean matrix such that:

MT      i j  1 iff I <>I

ij
(0 otherwise

TA formula for the calculation of M  from the source and sink

vectors of the instructions of T is now derived.  The superscript, T,

will be dropped unless its absence may be confusing.

-
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Let E be the Boolean matrix whose ith row is e. for 1<i<N, and1

let Y be the Boolean matrix whose ith column is d. for 1<i<N.
1

Lemma 3.1:  I.<>I  iff either (E•Y) = 1 or (E•Y) . = 1, or both.1   j                 ij             jiA - -    -

Proof:  (E Y)   =e *d, and (E•Y) . =e   d.ij    i  j           jl    j  i

By definition 3.1, I.<>I  iff I. and I  are not independent.1    j        1        j- - -

Then from Lemma 2.1 either ei'd  = 1 or e od- = 1, or both.j   1

Q.E.D.

Lemma 3.2:  I.<0I  iff (E•Y) = (E4Y)   = 0
1   j          ij        ji

Proof:  Compliment of Lemma 3.1.

Theorem 3.1:  M = E·YV(E•Y)t

T
Proof:  M   = (E•Y)  V(E•Y) . from definition 3.2 andij        ij      jl

Lemmas 3.1 and 3.2. Therefore, M  = (E�Y)V(E.Y)t.

Q.E.D.

It should be noticed that the matrix M is symmetric.  Thus, in

terms of information, either the upper-right or lower-left triangular

matrix obtained from M contains all of the information about instruction

orderings contained in the matrix.  Let R be the upper right triangular-

ized matrix formed from M by setting to 0 all elements on and below the

main diagonal.  The matrix R has very similar properties to the incidence

matrix of the acyclic graph of a serially ordered program under the

element interpretation:  if R   = 1, then Ii must precede I . otherwiseij                         j'

no precedence is required.  Matrices having the above element interpreta-

tion are called Precedence matrices.
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Let LT-be the lower-left triangularixed matrix formed from MT by

setting to 0 all elements on and above the main diagonal.  L is the

precedence matrix of a task T' with the same instructions as T, but with

a serial ordering exactly opposite (i.e., Ix @ I  iff x-l=y).  This fact

will be central to the algorithm for executing programs with cycles, to

be presented in the next sub-section.

The orderings in M caused by procedural dependencies are very

restrictive. In the development of the sink vector, e, for branch

instructions, knowledge of specific branch destinations was not assumed.

Rather, it was specified that all branch instructions have as a sink

a particular s-resource, rIC (equivalent in function to the instruction

counter of serial computers), and that all instructions have r as a
IC

source.  The result of this modeling of procedural dependencies is that

the orderings of M specify that all instructions must be directly ordered

with respect to each branch instruction.  This property will be important

in the execution of instructions from M under the condition that inter-

cycle independencies (independence between two instructions active in

different iterations of a cycle) are ignored.  It will, in fact (as we

shall see in the next sub-section), guarantee that all instructions

previous  to a branch instruction are executed before the branch.

The procedural ordering relations in M are too restrictive for the

detection of inter-cycle independencies.  A matrix of ordering relations,

M', is required ·such that

1.     the actual oz·derings reflect   only data dependencies,   (no  pro-

cedural orderings are made in the ordering matrix), and
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4

2.  branch instructions are somehow flagged in the ordering matrix

so that they can be easily identified as branch instructions.

A set of "transition rules" for M' will be developed in the next section

such that instructions can be correctly ordered and executed from M'

even though M' has such limited procedural information.  M' is called

a cyclic ordering matrix.

Let "<>" be the relation such that I <>I iff there is a data
i- j

dependency between Ii and I .  Then, for a task T of N instructions, and

11-i,  jiN

(1 iff I.<>I

Mij
1-j

(0 otherwise
-

Let IC be a binary vector of dimension N such that

f
1 iff I. is a branch instruction

IC.        « 1

1
0 otherwise

#
"

IC is called the IC flag vector.

Calculation of M' may be done through the equation of Theorem 3.1,

but a restriction on the resource space and a redefinition of the

matrices E and Y are required.  The resource space is restricted such

that rIC is the first component of the space.  Then IC is just the first

column of the matrix E under the previous definition of E.  Formally,

IC =E
j  jl

Let

UE   i f j 4 1
E '                  =                        i j
ij

.1

C  0   otherwise
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and

(Y  ifi#l
Y,                        -1    ij
ij         (0 otherwise

Thus, the rows of E' and the columis of Y' correspond to e and d with

all procedural information removed. It follows  then,  that

Theorem 3.2:  M' = (E'•Y')V(E'•Y')t

Note:  The elements on the main diagonal of the ordering matrices have

no meaning here and will henceforth assumed to be zero.  This assumption

will impose the restriction that an instruction, Ii' may hever be exe-

cuted concurrently with itself.

3.2  Executably Independent Instructions

An instruction, Ii' in a task, T, can be executed whenever there

are no instructions in T which must be ordered ahead of it.

Definition 3.3:  An instruction, Ii, in task T, is executably

independent if and only if all orderings between Ii and all other instruc-

tions preceding Ii in the actual execution sequence have been deactivated.

Since necessary instruction orderings are represented with an

ordering matrix, the primary interest here is in properties of ordering

matrices from which can be deduced executable independence.  To this end

we state (proof is in Reference 25)):

Theorem 3.3:  Let M be an ordering matrix for a task T of N

instructions.  If all elements of column i of M are equal to zero, then

Ii is executably independent.

.

1-                                                                                                                                                                                                                  .1
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3.3  Execution of Instructions from Ordering Matrices

3.3.1  Restriction to the Case of Non-Cyclic Independencies

This subsection will be concerned with the execution of instruc-

tions from an ordering matrix under the restriction that all instructions

of an iteration of a cycle must be executed before any instructions of

the next iteration may be executed.  Thus programs are not restricted

to being cycle-free.  Rather, the execution algorithm has the restriction

that orderings of only a single iteration of a cycle can be represented,

thus  allowing the detection  of only "non-cyclic independencies".    This

restriction allows a very simple execution algorithm, at the expense of

a decrease in potential parallelism.

The elements of an ordering matrix, as derived in Theorem 3.1,

indicate when an ordering of instructions is necessary, but do not tell

how to make the ordering.  That is, if M = 1 then it is known that
ij

instructions Ii and I  must have their execution ordered, but it is not

known which instruction to execute first. The determination of this

precedence is made from the initial serial ordering in the non-cyclic

case.  Whichever instruction of the two precedes the other in the serial

ordering should be executed first to guarantee correctness. Because of

the way index values were chosen for instructions, the instruction with

the smallest index value (i.e., if i<j, execute Ii first, else I ) is

executed first.

5
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Given a non-cyclic ordering matrix, M, the upper right triangularized

matrix, R, formed from M correctly presents the precedence relations for

instructions under the interpretation:     if  Rij  =  1,  then  Ii must precede

I  (written Ii @ Ij).  One can see that the precedence relations of

R  insure  that all instructions serial.ly preceding a branch instruction,

Ix, are constrained to precede the execution of Ix.  Let Ii be an in-
A     -

struction preceding Ix (so i<x).  Since ex'di =1, Mxi =1=M Since
ix'

i<x, R.  = M.  = 1.  Thus Ii 0 Ix as determined by the relations of R1X 1X

and I. @ I Vi<X.
1 X

Theorem 3.3 also applies to R.  That is, if column i of R has all

elements set to zero then Ii is executably independent.

Consider a task T being executed from a precedence matrix, R, and

assume for the moment that T has no branch instructions.  Suppose Ii E T

was found executably independent, and was executed.  The execution of

Ii has removed precedence orderings for those instructions which must

be directly ordered after Ii.  This fact can be reflected in R by noticing

that if Ii @ I , then Rij = 1.  That is, the non-zero elements of row i

are the precedence orderings deactivated by the execution of Ii.  De-

activation of these orderings is equivalent to setting to zero all

non-zero elements of row i.  Let R(i) be the matrix formed from R by

setting all non-zero elements of row i to zero.

A simple algorithm for the execution of T from R is:

1.  Find all executably independent instructions by finding

all columns in R with all zero elements.
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2.  Execute these instructions concurrently.

3.  After an instruction, Ii, is executed, form R = R(i).

4.  Go to 1.

The execution of branch instructions will introduce some complexity

into the above algorithm. Let T be a task in which at least one in-
b

struction,   I ,   is a branch instruction.     Let  R   be the precedence matrix

for Tb. Suppose that Ix is executed from R  and is a forward branch to

I .  The execution of Ix will deactivate the precedence orderings in

row x just as for a non-branch instruction.  However, the execution of

I  also causes the instructions between Ix and I  to be skipped over.

These instructions will not be executed (unless there is a later branch

backward) so their precedence orderings should be deactivated by taking

R = R(x, x+1, x+2, ..., y-1).

Suppose Ix is executed from R  and is a backward branch to I , and
that all instructions preceding  Ix  have been

executed  (Vi | i<x,   Ii  has

been executed).  The execution of Ix transfers control to I  and resultsW

in the reactivation of all orderings I. @I- w<i, j<x and i<j.  If1   j,

precedence orderings are deactivated by setting elements to zero, it

bwill be impossible to determine which orderings,of R  should be reactivated.

Obviously, to handle backward branches the original orderings must be
b

saved when R is modified after execution of instructions. To this end

we define the following two operations which implement deactivation and

reactivation.

/6

l -
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Definition 3.4:  RESET (A  ) defines a new value, A;  of theij

named element, Aij' of a ternary matrix, A, as follows:

'0 if A,  = 0
1j

At = <'2 if A.   = 1
ij                ij

2 i f A  =2
c      ij

All other elements of A remain unchanged.

Definition 3.5:  SET (Aij) defines a new
value, A; , of the names

element, Aij' of a ternary matrix, A, as follows:

'0 if A.  = 0
1 j                             ·

A'     =     ·< 1 if A.   = 1
ij                 lj

 1 if A.  = 21j

All other elements of A remain unchanged.

These operations are defined for ternary matrices (matrices with

element values of 0, 1, or 2), and may be applied simultaneously to more

than one element name by providing a set of element names as a parameter.

For example, RESET (row i), SET (row j in columns x through x+y).

The matrices M and R are henceforth redefined to be ternary, with

binary initial element values as calculated by Theorem 3.1.  The mean-

ing of R(i) is redefined to be RESET (row i of R), rather than set all

non-zero elements of row i to zero.  The operation SET (row i of R) is

denoted by R(i).

It is apparent from the above discussion that the meaning of

Ri  = 2 in a precedence matrix, R, is that the precedence ordering

-d
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between Ii and I  has been deactivated.  Thus, Theorem 3.3 as it applies

to precedence matrices is restated as:

Lemma 3.3:  If R is the precedence matrix for task T and if all

elements of column i of R are either 0 or 2, then Ii is executably

independent.

The complete algorithm for executing a task from its non-cyclic

matrix is:

Algorithm 3.1: Given a precedence matrix,   R,   for  task   T

1.  Find all executably independent instructions using Lemma 3.4

and execute them concurrently.

2.  After execution of each instruction (Ii) do

a.  If I. is a non-branch instruction put1

R = R(i)

b.  If Ii is a branch forward to I  put

R = R(i, i+1, i+2, ..., y-1)

c.  If Ii is a branch backward to Iw put

R  =  R(Q,  w+1,   ...,  x-I)

3.  Go to 1.

It should be emphasized that Step 2 is performed after the execution

of each instruction is completed.  Each of the executably independent

instructions found in Step 1 may have a different execution time, and

some of them may have their execution delayed due to a lack of transfor-

mational resources.  Waiting to initiate Step 2 until all instructions

.1
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of Step 1 have been executed could result in a decrease in the concur-

rency realized.  Thus, Step 2 should be performed every time an instruc-

tion completes execution.

The Appendix presents an example of execution of a task from the

non-cyclic ordering matrix.

3.3.2  Execution Using Cyclic Independencies

The ordering relations of cyclic ordering matrices, M', have

been derived in such a way that branch instructions will be executably

independent if all previous data-dependencies have been satisfied for

the branch instructions.  Thus, a branch instruction, Ix' may be executed

before some previous instruction, Ii' has been executed.  If the branch

is backward to I  (Ix creates a cycle) then we will have a situation

where an instruction, I , precedes a second instruction, Ii' in the

serial ordering, but Ij must be ordered after I. if there is a data1

dependency.  The orderings below the main diagonal in M' are used to

preserve the correct ordering in a situation such as this.

Definition 3.6: A
branch-subset, I  , of a task, T, is a

serially ordered subset of the instructions of T, I I ...  I
i'  i+1'    '  j-1'

I  such that I  is a branch instruction, Ii-1 is a branch instruction,

and for i,2, ilk<j, I  is not abranch instruction.  If i=1 then

I.   = I  is not defined so it need not be a branch instruction.
1-1    0

Each branch-subset is disjoint and every instruction in T is in

a branch-subset (assuming that the last instruction of a program is

 

always equivalent  to a transfer  to the operating system ).

1&
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Definition 3.7:  An activation of instructions is the execution

of a branch instruction. The set of instructions activated, called the

activated subset,  is a serially ordered subset  of a branch
subset,  Hb 

such   that the first instruction   of the subset,   Ix'
for ii:KSJ  ,   is   the

destination of the branch, and the last instruction of the subset is

I  (I  is by definition a branch instruction).j    j

An instruction will not be considered for execution until it has

been activated.  Multiple activations of the instructions of a cycle

b
will be allowed.  That is, if I  is a branch backward to I in H

j                         i+Y     ij

then I  may be executed whenever it is executably independent, regard-j

less of whether  all  of the instructions,  I  for  i+yfk<j  have been

executed.

The algorithm for execution of a task from M' is the same as

Algorithm 3.1 except that the rules for setting and resetting elements

of the ordering matrix are more complex. In general, only subsets of

a row or column are set or reset when an instruction is executed. The

boundaries of branch-subsets are found using the IC-flag vector.  Three

other variables for each column of M' are required to keep track of the

activations and executions of each instruction.  Reference (25) gives

a detailed statement and proof of the rules for controlling the elements

of M', along with an example of their use.

2
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4.  DYNAMIC STORAGE REASSIGNMENT AND COMPUTED ADDRESSING

4.1  Storage Reassignment

4.1.1  Shadow-Effects

Reassignment of the storage resources effected by an instruction

is useful in uncovering concurrency in a task because it can create
-    -

situations such that for two instructions Ii and I  (i < j), e •di = 0·

This section will describe a modification to the calculation of

ordering matrices which permits dynamic reassignments to be made, and

discusses the mechanisms necessary for making them.  See References (13,

19, 20) for other approaches to this problea.

Lemma 4.1:  For any two instructions, Ii and I  (assume I2 precedes.L

I  in that portion of the sequence of interest) in a task T, the sinks

of I  may be reassigned to permit concurrent execution of Ii and I - 6 -    "

if ei'd  = 0 and e •di = 1.  The pair of instructions Ii' I  is said

to have the shadow-effects property.

Proof:  Since the sinks of any instruction may be reassigned at

any time, the problem here is to prove that only under the above

conditions will this reassignment be useful in the sense that con-

current execution may result.  The fact that concurrent execution of

Ii and I  may result from reassignment of the sinks of I  follows from
6     -

the condition that ei'd  = 0.  The reassignment of the sinks of I  to

spare resources effectively produces a new effect vector, e , for I -     I

such   that   e  ·d i=   0,
thus permitting concurrent execution   of   Ii   and

I  because Ii and I  are now independent.
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Under any other conditions reassignment would not be useful.

If e.'d  = 1, then Ii is calculating an operand to be used by I , so no
1j

concurrency is possible.  If e 'di = 0 then concurrency may be possible

(if e  d  = 0), but no reassignment of the sinks of I  is necessary
i   j

to permit this concurrency.
Q.E.D.

The shadow-effects property is really a binary relation between
instructions. This relation  will be denoted  with the symbol  "<".     Thus,

Ii<I  means that Ii need
not directly precede I  if the

sinks of I  are
reassigned.

Lemma 4.1 states that it is necessary that the shadow-effects

property exists for a reassignment to be useful.  The existence of

this property is not, however, sufficient to guarantee a useful reassign-

ment.  Sufficient conditions for useful reassignment of the sinks of

I  are that the shadow-effects property exists between I  and all in-3                                                                         3
structions preceding I  in the actual execution sequence and for whichj

a reactivated ordering exists, since only then will reassignment cause

executable independency.

If an instruction, I , has more than one storage resource as aj

sink, and I.<I , then all of the sinks of I  must be reassigned. If1 j         j

no spare resources exist for at least one of the sinks of I , then noj

reassignment may take place.  Most machine language instructions have

only one sink, so the above limitations are not overly restrictive.

.1
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4.1.2  Ordering Matrices for Shadow Effects

4.1.2.1  Calculation of the Matrix

We now define a new ordering matrix, S, which represents the

shadow-effects property.
The elemehts of S take one of five possible

values (0, 1, 2, 3, 4) the values 3 and 4 being associated with the

relation <.
'.    - -     -

0 iff Ii <1 Ij => ei'dj = ej'di = 0
-    -

1 iff I. 0 I => e 'd  = 1
1     j      i  j

Si  =    2 iff I. 0 I  and is deactivatedi     j - -

3 iff Ii < I  => ei'd  = 0 and ej'di = 1

4 iff I. < I  and is deactivated
1     j

There are now two ways in which an instruction, I , may be executably

independent.  Two instructions, Ii and I  are said to be completely

independent if Ii >I .  Similarly, Ii and I  are said to be partially

independent if I.<I .  Then I  is completely executably independent
1  j           j

if and only if Vi 0 j, either I.</>I  or I  G I  and is deactivated, or1 j i     j

I.<I  and
is

deactivated.  Also, I 
is partially executably independent

1

if  and only if Hi  #j  such that  I.<I   and Vk,  k 4  i 4 j either Ik</>Ij,
1j

or Ik<I , or Ik 0 Ij and is deactivated.  I  is effectively made com-

pletely executably independent by reassigning the sinks of I  to sparej

resources.

Detection of partial and complete executable independence by

examining the columns of S follows directly from the above discussion.

We collect the necessary conditions in the form of:



-30-

Lemma 4.2:  Let S be an ordering matrix for a task T.  I  in T

is completely executably independent iff column j of S has no elements

set to 1 or 3.  I  is partially executably independent iff column j hasj

at least one element set to 3 and no elements set to 1.

Proof: of this lemma follows that of Theorem 3.3 and will be

omitted here.

The SET and RESET operations introduced tn Chapter 3 are extended,

so that SET(3) = 3, SET(4) = 3, RESET(3) = 4, and RESET(4) = 4.

Matrix S can be calculated from the data effects matric, E' and

the data dependency matrix Y' in a manner very similar to the way in

which M' is calculated. First, a new logical function,  * , of two

Boolean variables, vi and v  is defined as follows:

V.                 V1        j..     vi v vj

0 0 0

0 1 3
1 0 1

111

Theorem 4.1: Let S  be the matrix S with all elements SET.
I

That is SI = SET(S).  Then SI = (E'�Y') (E'�Y')t.

Proof:  Follows from the definition of S, of * , and from the

I         -               -
fact that S = e •d 6 e •d . Q.E.D.ij    ijvj  i

.1
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We illustrate this theory with an example:

I: R   := A 01101111

I2
: R  : =R +B 30131111

13
: C  :=

R S I=     3   3
0 4     3     0

Ib
:

Rl :=
D 011011

I : R  : =R +E 3113015 1 1

I6
: F  := R 3303301

After control is passed to this matrix, all elements below the main

diagonal will be reset and all elements above the main diagonal will be

set, in accordance with the rules for cyclic matrices in Reference (25).

At this point, Il will be completely executably independent, and I4

will be partially executably independent.

4.1.2.2  Removal of Redundant Orderings

Consider again the preceding example.  Suppose Il and I4 are exe-

cuted concurrently, with the sinks of Il, being reassigned to Ri·

Reference (25) describes how instructions I5 and I6 can be notified

of the resource reassignment, so assume that such a mechanism exists.

Then, I5 and I4 should be allowed to execute concurrently with

I2 and I3' respectively.  However, applying the control variable

transition rules to S will not produce this concurrency because, for

example, S25 = 1.  Also, S35 = 3,.so that even after I2 is executed,

I5 will be only partially executably independent.
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The abovo loss of concurrency occurs because some of the orderings

in S are redundant.  Orderings are calculated from Theorem 4.1 by com-

paring each instruction with every other instruction in the task.  Thus,

although I4 in the above example effectively begins a new computation,

we still compare the instructions in this new computation string (I4'

I5' I6) with those in the old computation string (Il' I2' I3).  This

comparison produces S25 = 1 because Rl is a source and a sink of both

I2 and I5.  The ordering S25 = 1 is redundant because I2 & I4 and I4 0

I5' so it is not necessary to retain the information that I2 C I5 (the

precedence relation is transitive).  The ordering S = 3 is also
35

redundant because I3 e I4 and I4 g I5.  Thus, these redundant orderings

may be removed from S without destroying any necessary ordering rela-

tions, and with the benefit of allowing the concurrent execution of

I4 and I5 with I2 and I3' respectively.

A formal method, using simple matrix operations, for removing

redundant ordering relations from ah ordering matrix is described in

Reference (25).

4.2  Computed Addressing

-

Instructions have been modeled as pairs of vectors, e and d, which

specify the sinks and sources, respectively, of the instructions.  The

instructions of real computers do not always conform to this model.  Some

real-instructions do not explicitly specify all of their sources and

sinks.  Rather, they compute the names of certain of these sources and

;
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sinks, using the values in other, explicitly stated storage resources,

as the operands of the computation.  The names of these computed re-

sources are called addresses, and the process of computing these addresses

is called computed addressing. Indexed addressing and indirect address-

ing are both forms of computed addressing.

The subject of computed addressing deserves special treatment

here because it creates special problems in representation and detection

of concurrency.  The exact resources to be used by a computed address

instruction are statically indeterminant.  This indeterminacy is due to

the fact that the values in certain resources are used to determine the

computed address.  Thus the resource names explicitly·provided by the

instruction (static information) are not enough to completely represent

the sources or sinks of a computed-address instruction.  No complete

{                   solution of the computed addressing problem which can be embodied in

the ordering matrix model is known.  Reference (25) describes a partial

solution, one involving a loss of potential concurrency, and outlines

the main problems involved in finding a complete solution.

6
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5.  RELAXING THE CONSTRAINTS OF BRANCH INSTRUCTIONS

5.1  Why the Constraints Should and Can Be Relaxed

Consider the initial serial instruction sequence shown in Figure 5.1,

part a, where I  is a forward branch to Ik.  The cyclic ordering matrix               4

model would allow only the instructions preceding I  to be active untilj

I  is executed. After execution of I  the instructions starting eitherj                                                  j

at I or  at I would be activated, depending  upon  the data provided
j+1

as input to I .  One can see, however, that the instructions starting

at  I  will be executed no matter what the outcome of I . These  in-

structions, Ix' x k, may have data dependencies with the instructions

between I  and Ik which will.inhibit their execution, but it is not

necessary to wait for the execution of I  before executing the Ix.

One can see that a forward branch instruction causes uncertainty

of the execution of only a subset of the instructions in a task.  It

is this property which we would like to take advantage of to remove the

constraints present in our current model of concurrent execution.

To determine whether the execution of an instruction, Ii' is made

uncertain  by a branch instruction, I ' involves a knowledge  of  the fil

p

explicit destination  of  L '  and the position  of Ii relative  to  this

destination. This information is more than can be determined from

the source and sink vectors as they are presently constructed.  Pre-

processing will be required to provide this extra information.  The
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approach will be to have the preprocessor produce a subfield in each

source and sink vector which has the necessary procedural dependencies

already specified.  Rather than provide a single IC storage resource in

the resource space, one IC resource, r will be provided for each
IC

i   -

branch instruction, Ii.  Component r of e. will be set to one, and
IC      1

-                       i

component r of d will be set to one for each instruction, I . which
I C.              j                                                                                                              j'

1

has a procedural dependency with Ii.  Reference (25) presents, and

proves, an algorithm for assigning these procedural dependencies.  The

algorithm constructs the vector subfields  in a single, top-down scan

of the instructions of the task.  This property allows these procedural

subfields to be constructed as the assembler outputs the serial list

of object instructions.

Because we wish to retain the capability of detecting inter-cycle

independencies in this model, a second uncertainty property of branch

instructions is important.  Consider Figure 5.1 part b, where I  is a

backward branch to I .  The presence of I  does not cause the execution

of the instructions following   I   to be uncertain.      It is certain  that

sooner or later I  will branch to
T (assuming no infinite loops).-k+1

However, Ik does cause the time of execution of the instructions fol-

lowing  I   to be uncertain, since  it is uncertain  when  I 
will branch  to

Ik+l.  This type of uncertainty increases the complexity of the ordering

matrix calculation and effects the rules for executing instructions

from the matrix.

.1
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There is some evidence that the development
 of techniques for

modeling branch instructions with relaxed 
constraints on potential

concurrency is one of the most important ar
eas of research in this

field.  Riseman and Foster (17) have data w
hich shows that if all of

the uncertainty due to branch instructions
 could be removed, then on

the average as many as fifty instructions w
ould be executably inde-

pendent at any particular time during the e
xecution of a task.  Their

study was an extension of the work of Tjade
n and Flynn (19) who found

that, under the constraint that no instruc
tions following a branch

are executed until the branch is executed, 
the average number of exe-

cutably independent instructions will be l
ess than two. It is, of

course, impossible to remove all of the unc
ertainty due to branch in-

structions.  The theory of this section is 
an attempt to uncover some

of the potential concurrency which Riseman 
and Foster show exists.

5.2  Calculation of and Execution from the
 Ordering Matrix

Assume that the procedural dependencies are
 grouped together in

a subfield of the source and sink vectors. It will be convenient to

think of these source and sink vectors as 
the concatenation of two

vectors, one for data dependencies, and on
e for procedural.  The nota-

tion will be as follows.  Whereas previousl
y the symbols di and ei were

used to represent the source and sink vecto
rs for Ii' we will now use

   

di and ei to indicate that these vectors include explicit procedural

i.nformation.  The two "sub-vectors" will be denoted with a "d" super-

                          script  for the

data dependencies,  and a "p" superscript  for the procedural
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6 6 - - -d-
dependencies.  That is, d; = d  cat dP and e; = ei cat eP.  Ordering

matrices will be formed from these vectors in a way analogous to that

of Section 3.  That is, E' is the matrix whose ith row is e!, Y' is
1

d
the matrix whose ith column is d!, E  is the matrix whose ith row

1

d
is e., etc.  We can now define two new ordering matrices for a task T.

1

d
A Data-Ordering Matrix, M , is defined to be:

Md = Ed.Yd * (Ed.Yd)t

and a Procedural-Ordering Matrix, MP, is defined as

M  = EP•YP V (EP·TP)t

Notice that Md is equivalent to the ordering matrix of Chapter 4, with

the exception that IC flags are omitted.

It is not possible to define a single ordering matrix for a task

as the Boolearl uttion of the above two ordering matrices because of the

uncertainty of time of execution caused by backward branch instructions.

Reference (25) shows that a third matrix, MP  = B•Md, where B is a special

matrix defined in the reference, can be used to control the uncertainty

of time of execution.

Thus three ordering matrices are combined into a single ordering

matrix, M*, by taking their union under the special rule of addition,
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1+3 = 3+1 = 1.  That is M* = MP V M  V MP '. The special addition

rules reflect the fact that a procedural ordering must take priority

over a shadow-effects data ordering, M   = 3.  Reference (25) gives

the transitioh rules for executing a task from M*.  The rules are

similar to those for the cyclic ordering matrix, except that forward

branches require very little special treatment.

6
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6.  EXPERIMENTS AND CONCLUSIONS

6.1  Experiments

Several experiments were conducted to determine the relative

capability of the algorithms of Sections 3, 4, and 5 for detecting

potential concurrency.  These experiments were in the form of computer

simulations   of the algorithms. The "tasks" for which potential   con-

currency was detected were three of the certified algorithms of the

Association for Computing Machinery, selected at random.  They are:

1.  Algorithm 410 - an algorithm for the partial sorting of an

array (22).

2.  Algorithm 417 - an algorithm for the computation of weights

of interpolatory quadrature rules  (23).

3.  Algorithm 428 - an algorithm for the Hu-Tucker minimum re-

dundancy alphabetic coding method (24).

A "typical" actual serial execution sequence for each of the

tasks was determined by assuming values for the variables in the task

which seemed, from the description of the program, to be reasonable.

The destination chosen by each execution of each branch instruction

was determined from the assumed variable values, and thus an actual
-

execution sequence was determined.  The d and e vectors and the table

of branch instruction destinations were the input to the computer

simulation.
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Five different concurrency detection algorithms, corresponding

to five different methods of calculating an ordering matrix, were

simulated. They are:

1.  M = (E Y)V(E·Y)t.  This is the noncyclic ordering matrix.

It has the most restrictive modeling of branch instructions.

2.  M = (E'oY')V(E' Y')t.  This is the cyclic ordering matrix.

Branch instructions are modeled in such a way that intercycle

independencies can be detected.                                      :

3.  M = (E'�Y') * (E'�Y')t.  This is the cyclic ordering matrix

with shadow effects.

4.  M = ((E'·Y')0 (E'·Y')t) - (R')2.  This is the same as

case 3 except redundant orderings have been removed from

the matrix.

5.     M*  =  Md-VjN  , where M  is the matrix of case 3. This is
d

the ordering matrix in which procedural orderings are explicitly

present and procedural dependencies have been assigned in a

less restrictive way than in the previous cases.

The potential concurrency realized for the execution of a task

depends not only on the way in which independent instructions are

detected, but also on the availability of resources and the way in

which these resources are allocated.  Since these experiments were

conducted to determine the relative capability of the different matrix

6

-,
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calculation _methods to detect independence, assumptions concerning  the

availability,and allocation of resources were made and held fixed.

These assumptions are:

1.  Unlimited resources, both transformational and storage,

are available.

2.  All executably independent instructions detected at time t

are allocated all of their specified resources at that time,

and no other executably independent instructions are allocated

resources until time t + T, where T is the time required for

all of the executably independent instructions found at time t

to be executed concurrently.

The variable measured by the simulator is called the rate of

independence.  It is the number of instructions in the actual execution

sequence of a task, divided by the number of instances at which instruc-

tions would be allocated resources under restriction (2) above.     Thus,

the rate of independence for a task is a number greater than or equal

to 1. It is the average number of instructions which are allocated

resources and begin executing concurrently. It should be realized that

the values found for the rate of independence would be lower if limited

resources are available, and would be higher if instructions are allocated

resources and their execution is begun as soon as they become executably

independent.  Table 6.1 shows the results of these experiments.



I. -

TASK 410 417 428 TOTALS AVERAGE

NO. INSTS.    62    48    58     168

NO. INSTS.                                            '
173 102 233 608

EXECUTED

D EN S ITY   OF
0.371 0.354 0.241

BRANCH INST.

TEST 1
1.64                 1.36   m1.21 1.22

(E·Y)V(E·Y)t
-                                                                                                       E

TEST  2                          1.4             1.59 1.83

1.61        rm

(E'·Y')v (E'·Y') t

TEST 3                                                 
         I

1.5 1.67 2.2 1.79   N

CE'·Y')6(E'·Y:)t       D m
-E I.-

TEST 4                                                     p

(E'·Y')§(E'·Y')1 1.5 1.67 2.33 1.83     E
N

-(R')2
r
6.

TEST 5 1.98   c
N

1.53 1.96 2.45

Md VMP VIVIPP                                                  ·                                     E

TJADEN & FLYNN 1.86

RISEMAN&FOSTER 1.72
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6.2  Conclusions

The data obtained from the simulation and displayed in Table 6.1

are in close agreement with other published data.  Tjaden and Flynn (19),

and Riseman and Foster (17) have simulated concurrency detection

algorithms having theoretical potential concurrency levels similar to

that of Test 4.  Their experimental results, presented in Table 6.1,

are seen to be in close agreement with those found in this study.

The relative values of the data in Table 6.1 indicate the rela-

tive  "usefulness"  of  each  of the various detection techniques.    Note

that each of the various techniques, arranged in the order shown, did

uncover successively more potential concurrency.  The cyclic ordering

matrix   (test 2) seems  to be significantly better  than tlie noncyclic

(test 1).  Inclusion of shadow effects with the cyclic matrix (test 3)

yields an increase in potential concurrency, but by a smaller percentage

than the increase between tests 1 and 2.

It is not clear that the increase in potential concurrency due to

removing redundant orderings (test 4) would be worth the overhead in-

volved (one matrix multiply and one matrix subtraction).  Only one of

the tasks showed an increase in the rate of independence, resulting in

a change in the average rate of independence from 1.79 to 1.83.

Test 5 used the ordering matrix having procedural dependencies

explicitly assigned.  Although the average rate of independence obtained

in this experiment (1.98) would be somewhat higher if redundant orderings

6

1
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were removed, it would still be very much low
er than the limit of 51

established by Riseman and Foster (as discuss
ed in Section 5).  Here

again it is not clear that the overhead in ca
lculating the matrix is

worth the increase in potential concurrency o
btained.

Figure 6.1 is a graph showing the inverse rela
tionship between rate

of indepehdence and branch instruction densit
y for test 5 of Table 6.1.

It is clear that techniques for producing tas
ks having low branch in-

struction densities are important open problem
s.

.1



BRANCH INSTRUCTION DENSITY
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APPENDIX

Algorithm 3.1 and the use of Theorem 3.1 are illustrated in the

following example.  Suppose the following task of eight instructions

Il ... I8' as shown, is to be executed.

I                  Rl := 2
1

I CYCLE Rl := Rl - 1
2

I             R2 := a
3

I4             LEFT SHIFT R2 BY 6

I              IF Rl 4 0 GO TO CYCLE
5

I6             IF R2 = 0 GO TO JUMP

i              R2 := R2
7

I JUMP R2 := B
8

i
The components 6f the s-resource space are IC (instruction counter),

Rl, R2, R3 (registers), a, and B (memory cells). The constants 2, 1, and

6 would be contained in memory cells in a real applications, and thus

would also normally be associated with s-resources.  For simplicity we

ignore these resources.  Let the components of the dependence and effect

vectors be ordered:  IC, Rl, R2, R3, a, B.  Then the dependency and
A

effect matrices, Y and E are (remember row i of E is ei' and column i

of Y is d.):
1

b
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IC    Rl    R2    R3     a     B

-

8                      0           1           0..0           0           0
1

e 2 0 1.0 0 0 0

  3 0 0 1 0 0 0

e 4 0 0 1 0 0 0
T   =

8             1      0   .  0      000
5

8             1 0 0 0 0 0
6

8                    0          0          0          1         .0          0
7

e8        _0 0      1      0   
   0      0

al £6 2 84 8 8 af a3.5 6 6
-

-

IC    1    1     1     1     1     1    -1    
 1

Rl           0           1             0             0             1             0             0             0

R2     0     0      0      1      0      1     
 1      0

Y = R3          0          0            0          
  0            0            0            0     

       0

a 0 0 1 0 0 0 0 0

8 0 0 0 0 0 0 0 1
-
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Using Theorem 3.1 we find:

0 1 0 0 1 1 0   0

11001100

0 0 0 1 1 1 1   0

0   0   1 1 1 1 1   1

M = {T·Y V (T•Y)t} = 111 111 1 1

111111
11

001 1 1 101

0 0 011110-

01001 1 0 0

0 0 001100

0001 1 1 1   0

0 0 0 0 1 1 1   1

R =
0 0 000111

000000 11      1

0 0 0 0 0 0 0   1

0 0 000000-

n

6
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Figure A.1 shows the state of R at several points during the

execution of T. We are assuming, for the sake of simpl
icity, that every

set of executably independent instruct
ions found is executed concurrently   

         -

and that they all complete execution a
t the same time. The list of

instructions at the left of the figure
 is the expanded task, ordered

as it would be if executed strictly ser
ially, and assuming I6 is a forward

branch to 18.    The diagonal line beside the instruction name indicates

that the instruction was found executa
bly independent, and the number

beside the diagonal line indicates in 
which application of Step 1 of

ut

the algorithm it was found executably
independent.

One. can see from               

the matrix, R, that Il and I3 are exec
utably independent at the first

application of Step 1.    Part Bof Figure A.1 shows R after Il and I3

have been executed and the RESET opera
tion has been applied to rows 1

and 3.   Part C shows R just before th
e first branch instruction, IS (back-

ward to I2) is executed, and Part D'sh
ows R after the execution of I5

The precedence orderings of rows 2, 3,
 and 4 have been reactivatcd by the

SET operation.   Part E shows R just b
efore the last branch, I6 (forward

to  I8)
is executed. Finally,   Part F shows R

after  ·I6  has
been executed.

Notice the precedence ordering caused 
by I7 has been reset so that I8

is executably independent.

One can see that in actual practice so
me mechanism to remember

which instructions have been executed w
ill be necessary. Reference (25)

describes such a mechanism for the cyc
lic ordering matrix of the next

section.
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Part A -- Serial Instruction String

Il / 1

I2 / 2

I/1
3

I/2
4

I5/3

I2 / 4

I3 / 4               
                     

                     
   ..

14/5

I/6
5

I6 /.7

I/8                       
                       

 '

8                           
                            

                  '

I
.
 
'

Part B

i

-

020022 0   0

0 0 01100

022220

01111

R = R(1,3) =
0 1 1   1

011

0   1

0

L

FIGURE A.1: CONCURRENT EXECUTION OF A TAS
K
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Part C

02002200

0 0 02200

0 2 2 2 2    0

0 2 222

R = (R(1,3))(2,4) = R(1,3)(2,4)·=
0 1 1    1

011

0   1

0
- .-

Part D
-

02002200

0001100

0 1 1 1 1   0

0 1 111
..,

R  =   R(1,3)(2,4) (2-,T,T)   =
0111

011

0   1

0
- -

FIGURE A.1 (continued)
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Part E
-

0 2 0 0 2 2 0   0

0002 200

0222 2    0

0 2 222

R = R(1,3)(2,4)(9,3,T)(2,3)(4)(5)  =
0 2 2    2

011

0   1

0
-

Part F
-

0 2 002200

0 0 0 2 200

0 2 2 2 2    0

022 2    2

R= R(1,3)(2,4)(2,3,F)(2,3)(4)(5)(6,7) ·=- '
0 2 2    2

022

0   2

0
-

FIGURE A.1(continued)


