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Abstract. In a dome illumination system, many different images can be  

captured in pixel register from the same viewpoint, each illuminated from a dif-

ferent direction. This is a much richer representation than a single image, and 

has many applications in cultural heritage for the digitising and display of ob-

jects that are flattish with surface relief, such as coins, medals, fossils, rock art, 

incised tablets, bas reliefs, engravings, canvas paintings, etc. The image sets can 

be used in three ways: (1) visualisation by interactive movement of a virtual 

light source over the enclosing hemisphere; (2) 3D reconstruction of the object 

surface; (3) modelling of the specular highlights from the surface and hence  

realistic rendering. 
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1 Dome Photography 

It has long been recognised that illumination incident at low angles can help to visual-

ise the relief on surfaces. In the study of canvas paintings it has been used for examin-

ing the artist’s technique [1], identification of retouching [2] and detection of forgery 

[3]. In astronomy the oblique direction of the sun’s rays has shown the structure of 

craters on the moon [4]. In archaeology raking light has been used to reveal inscrip-

tions on marble and stone that were otherwise invisible [5]. In palaeographic studies 

of incised wooden and lead curse tablets from the Roman empire, directional illumi-

nation has been used to enhance the marks left by the stilus [6]. Generally it has been 

employed in an empirical way, with the observer or photographer moving the object 

relative to the light source (or vice versa) until the desired effect was achieved.  

Directional lighting has also been key to the measurement of angular reflectance dis-

tributions from the surfaces of materials. In a gonioreflectometer, by moving the source 

of illumination relative to the sample and/or detector, the bidirectional reflectance dis-

tribution function (BRDF) can be obtained. Ward developed an automated system for 

BRDF measurement with a movable light source and rotating sample, under a hemi-

spherical mirror [7]. Malzbender showed how directional illumination could be used in 

a systematic way for digital photography [8]. He built an illumination dome at HP Labs 

from an acrylic hemisphere of diameter 18 inches (45 cm) with 24 fixed flash lights. 

The camera was mounted at the ‘north pole’ and the object placed on a horizontal sur-

face beneath. This enabled sets of 24 images to be taken in pixel register. 
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The UCL Dome is an acrylic hemisphere of nominal diameter 1030 mm, fitted with 

64 flash lamps, each mounted on a separate circuit board (Fig. 1). The lamps are distrib-

uted around the hemisphere, arranged in three tiers of 16, one tier of 12, and one tier of 

4 lights at approximately equal intervals. The lowest tier produces raking light across 

the equatorial plane (<10°), whereas the highest tier is nearly polar (>80°). The Nikon 

D200 digital camera is mounted on a rigid steel frame above the dome. 

Fig. 1. (left) Hemispherical dome with the camera mounted above the north pole, with 64 flash 

lights on circuit boards, connected by ‘daisy chain’ ribbon cables; (right) flash lamp firing 

Because both the cam-

era mounting point and the 

lamp positions are fixed, 

the dome geometry can be 

characterised precisely. 

Although the original con-

cept design called for the 

flash lights to be placed at 

regular intervals over the 

surface of the hemisphere, 

the positions of the lamps 

in the actual dome, as 

constructed, differ from 

the ideal. Three techniques 

were employed for the 

geometric calibration of 

flash light positions in the 

dome: (1) the shadow cast 

by a vertical pin onto graph paper; (2) multi-image photogrammetry with retro- reflective 

targets; and (3) multi-image photogrammetry using the flash lights themselves as targets. 

It was found that although photogrammetric methods could locate individual target coor-

dinates to an accuracy of 20 microns, the uncertainty of locating the centroids of the flash 

lights was approximately 1.5 mm [9]. This result is considered satisfactory for photometric 

imaging purposes. 

Fig. 2. Coordinates of 64 flash lamp centroids plotted on he-

mispherical dome, with representation of lens and sensor (top) 
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2 Visualisation of Surfaces 

The set of images from the dome can be used to visualize 

the effect of moving a virtual light source over the object, 

illuminating its surface from any angle in the hemisphere. 

The question is how to interpolate the 64 angles of the 

lights in the dome to achieve a continuous movement? One 

approach would be to make an azimuthal equidistant pro-

jection of the lamp coordinates onto the equatorial plane 

and then to triangulate the network (Fig. 3). The image 

intensity could then be estimated as a weighted linear 

combination of the three nearest neighbours of the pro-

jected virtual light source. Better results could be obtained 

by fitting surface patches to the intensity distribution. 

An alternative approach is to fit a continuous function 

to all intensity values over the hemisphere. Malzbender showed that the intensity 

distribution over all angles of the hemisphere could be approximated by a biquadratic 

function with six parameters, in a method he called polynomial texture mapping 

(PTM). Singular value decomposition (SVD) is applied to determine the projection of 

each of the lamp vectors onto the biquadratic components, and then regression with 

least-squares minimisation to obtain the six coefficients for each pixel [9]. PTM as-

sumes separability of the reconstruction function, with a constant ‘base colour’ per 

pixel modulated by an angle-dependent luminance factor: 

I Θ , Φ , , ,                                            (1) 

for R(u,v) and similarly for G(u,v) and B(u,v). The dependence of the luminance on 

light direction is modelled by the biquadratic function: 

  , ; ,   (2) 

where ( , ) are projections of the normalised light vector into the local texture coor-

dinate system ( , ) and  is the resultant luminance. A separate set of six coefficients 

( - ) is fitted to the image data for each pixel and stored in the PTM file at the 

same spatial resolution as each of the original images. For reconstruction in the 

viewer software, the position of the virtual light source is expressed in coordinates 

( , ) and the intensity of every pixel calculated by Eq. (2). The PTM has the same 

spatial resolution as each of the original images, but has a low resolution in the angu-

lar space of incident illumination, because the n directions of the image set are  

approximated by only 6 coefficients at each pixel. 

PTM has found favour with the museum and cultural heritage community because 

it provides a convenient and attractive way to visualise objects in collections. The 

interactive control of lighting direction in the viewer software facilitates perception of 

the surface structure compared to static photographs, thereby enhancing the legibility 

of surface relief and inscriptions [10]. The illusion of a 3D surface lit by a movable 

light source is compelling, even though there is no underlying 3D representation. 

Fig. 3. Delaunay triangula-

tion of X,Y coordinates of 

azimuthal equidistant projec-

tion of dome lamps 
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Fig. 4. Angular distributions of intensity, plotted in the azimuthal equidistant projection, for 

four approximations to the measured intensity distribution. The black dots represent actual 

reflected intensity of the 64 lamps. All intensities are normalised to a maximum of 100. 

An improved method of fitting the directional distributions was introduced by 

Gautron et al [11] by limiting the domain of the orthogonal basis functions of spherical 

harmonics to a hemisphere instead of the full sphere. These hemispherical harmonic 

(HSH) functions provide a more compact and accurate way of representing hemispheri-

cal distributions than the biquadratic function used in PTM. They have since been 

widely adopted for a variety of computer graphic applications where only half of the 

spherical distribution needs to modelled, such as the representation of BRDFs, environ-

ment map rendering of non-diffuse surfaces and global-illumination computation. 

HSH components are expressed as functions of angles for azimuth  and co-

latitude  over the hemisphere [12]. Good results are obtained with sixteen compo-

nents, which include four first-order, five second-order and seven third-order terms. 

Fitting of the coefficients follows the same SVD-based procedure as for PTM, and 

can be applied to the image luminance (weighted sum of R,G,B channels) to provide 

the angular modulation at each pixel of a constant R,G,B colour value. These compo-

nents can be conveniently visualised by projecting the hemisphere onto a plane 

through an azimuthal equidistant projection. Comparison of the HSH and PTM ren-

derings (Fig. 4) shows that HSH (2nd-order with nine coefficients) gives a better rep-

resentation of the directionality of the surface, with higher contrast for local gradients. 

How many images are needed to give an accurate rendering of the angular reflec-

tance distribution in PTM or HSH? Ideally one should capture images with illumina-

tion from all necessary angles but no more. The challenge is to reduce the number of 

photographic image samples that need to be acquired while preserving the power of 
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the digital model to represent the object realistically. A full BRDF analysis requires a 

systematic sampling of a four-dimensional space, with both illumination and view 

angles able to range over the full hemisphere. In the PTM and RTI scenarios, the view 

direction is always fixed (usually at the zenith, perpendicular to the centre of the  

object surface) and only the illumination direction is variable. 

Gunawardane et al analysed the 

sampling of both view and lighting 

directions and whether methods for 

interpolation could be improved if 

both view and lighting information 

were available [13]. They con-

ducted a data-driven study in 

which a test object was illuminated 

by a hemispherical dome with 64 

tungsten lights. The object sat on a 

turntable and a full set of 64 im-

ages was captured for 360 rota-

tional angles of the object, at 1° 

intervals for a total of 23,040 im-

ages. The complete image set was 

then sub-sampled for intervals of 

both lighting and view angles and the errors calculated between HSH fittings of both the 

full and subsampled image sets. The results (Fig. 5) indicated that the minimum number 

of lamps is approximately 10, 20, 36 and 56 for the 1
st
 to 4

th
 harmonic orders respec-

tively. The pitfall in interpolation of images from different lighting directions was found 

to be that errors in flow vectors caused pixels to move to incorrect positions, producing 

visible tearing artifacts and structural discontinuities. 

Drew et al observed that for non-Lambertian phenomena matrix factorisation 

methods can produce inaccurate surface normals and lighting directions [14]. Because 

the basic PTM method relies on a matte surface and linear regression, it fails to model 

phenomena such as inter-reflections, specularities and shadows. Increasing the degree 

of the PTM polynomial model, for example by the use of HSH basis functions, may 

help to model these effects but at the expense of degrading the interpolated results at 

non-sampled light directions due to over-fitting. For finding the matte part of the 

photometric model, they used the Least Median of Squares (LMS) method, which 

provides automatic identification of outliers, both specular highlights and shadows. 

Knowledge of the inlier pixel values means that the recovered surface albedo, chro-

maticity and surface normals are robust, in the sense of ignoring outlier contributions 

and thus more accurately mapping surface reflectance, colour and shape. They also 

altered the polynomial used in PTM so as to generate a subset of three regression 

coefficients that is exactly correct in the case when the inliers are Lambertian. 

Brady et al developed an alternative method of visualizing the relief of incised tab-

lets, called shadow stereo, after observing how a professional palaeographer exam-

ined a stilus tablet, holding it horizontally on his upturned palm to be illuminated at a 

grazing angle, and slowly rotating it to change the angle of elevation [15]. 

Fig. 5. Error vs number of lights for four orders of 

hemispherical harmonics (Gunawardane, 2009) 
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3 3D Reconstruction 

The image sets captured in the dome contain information about the geometry of the 

object surface. The photometric stereo technique enables the normal at each point to be 

determined for a single viewpoint, using the principle that the intensity of reflected light 

depends on the angle of incidence of the light onto the surface and the reflectance factor. 

With a perfectly Lambertian surface and in the absence of noise, only three intensity 

values , ,  from non-coplanar light sources with unit direction vectors , ,  

would be sufficient to solve for both the normal direction  and the surface albedo : ·  | | cos  (3) 

where   is the angle between the normal and lamp vector i. In practice, normals 

calculated in this way from three light directions exhibit an unacceptable level of 

noise and vary widely according to the particular combination of lamps selected. Bet-

ter results can be obtained for noisy image data by calculating normals for many trip-

lets of light sources. By selecting suitable combinations of three lamps, candidates for 

the normal can be calculated for every pixel. For a non-Lambertian surface, however, 

the above method gives incorrect results, because the effect of surface gloss is to  

exaggerate the apparent gradient of the surface. 

A new method for estimating normals has been developed, which is robust and 

adapts to the presence of both shadows and surface gloss [12]. First all of the intensity 

values at a pixel are extracted from the image set and treated as a vector. The intensity 

values are then sorted into ascending order and the cumulative sum calculated. The 

subset of lamps is selected for which the normalised cumulative values lie between 

two thresholds, nominally 0.10 and 0.25. These thresholds are chosen to select a re-

gion of the sorted distribution that follows the slope of the cumulative sorted cosine, 

i.e. related to the diffuse component of the reflection. Fig. 6 shows the results of ap-

plying the technique to a 19
th

-century terracotta roundel of Chopin, and the derived 

gradients P = ( / ) and Q = ( / ), encoded in false colour. 

 

Fig. 6. (left) Photometric normal vectors in false colour (Nx red, Ny green, Nz blue); (right) 

False colour composite of gradients (P red, Q green) 
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A novel method for integrating the gradients to reconstruct height was introduced 

by Frankot & Chellappa [16], using the Fourier transform to regularise (i.e. to enforce 

integrability of) the gradients in the frequency domain. This is neatly implemented in 

Matlab by a few lines of code, taken from the library developed by Kovesi [17]. 

 

Fig. 7. (left) Oblique view and (right) elevation of Chopin surface reconstructed by the basic 

Frankot & Chellappa integration of gradients in the frequency domain 

Applying this technique to the Chopin gradients (Fig. 6 right) yields a 3D surface that 

is continuous and is recognisably Chopin, but is distorted over the whole area with the 

height greatly amplified. Fig. 7 (left) shows an oblique view, which looks very plausi-

ble, but when the same structure is viewed in elevation (Fig. 7 right) it is seen that the 

height range is from -27.6 to +79.9, an overall maximum height of 107.5 mm, compared 

with the true maximum height above the baseplane of 22.5 mm. Also there is a false 

undulation of the base with a period of approximately one cycle over the whole width. 

The problem is that although the photometric gradients give a good representation of the 

spatial frequencies in the surface, right up to the Nyquist frequency, they are not accu-

rate for very low frequencies of a few cycles over the full object diameter. Such fre-

quencies are represented in the Fourier plane by only a few sample points close to the 

(shifted) origin. Errors in these frequencies can result in ‘curl’ or ‘heave’ in the base-

plane, even though the superimposed higher spatial frequencies may be accurate. 

 

Fig. 8. (left) Using a height measuring gauge; (right) Heights of selected points in mm, super-

imposed on an image of the Chopin terracotta taken under all lights in Tier 3 
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The solution is to replace the inaccurate low frequencies of the photometric nor-

mals by the more accurate low frequencies of a surface constructed from a few known 

heights [18]. This can be conveniently achieved from the values measured by a digital 

height gauge (Fig. 8) by first interpolating them to produce a smooth ‘hump’ and then 

transforming into the frequency domain by an FFT (Fig. 9). 

 

 

Fig. 9. (left) Smooth surface of hump produced by interpolation of measured points; (centre and 

right) Log(power) distribution of spatial frequencies of hump and photometric gradients 

The low spatial frequencies of the gradients from the Frankot-Chellappa integration 

are replaced by the corresponding frequencies from the hump. Rather than an abrupt 

change at a given threshold frequency, they are blended over a radial distance in the 

range 1.5 to 4.0 pixels by a linear interpolation function (Fig. 10 left). The power of  

the high frequencies from the gradients is scaled by the ratio of the low/high power in 

the region affected, in order to maintain the correct overall power distribution. 
 

 

Fig. 10. (left) Cross-over of low and high frequency components; (right) Reconstructed surface 

Differences between the 16 values 

measured by the height gauge and  

the reconstructed values at the same 

positions are well distributed (Fig. 11), 

ranging from -1.31 to +1.92 mm with 

mean zero, mean-of-absolutes 0.61 and 

stdev 0.83. Even better results can be 

obtained by using the point cloud from a 

3D scanner to provide the geometric 

basis of the low frequency components in 

the reconstruction. 

Conclusion

Fig. 11. Measured and reconstructed heights

and their differences (mm)
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4 Specular Modelling 

The image sets captured in the dome, illuminated from 64 known directions over the 

hemisphere, contain information about the directionality of reflection from an object 

surface. The aim is to model the luminance variation at each point on the object sur-

face as a function of the angle of illumination, in such a way that the reconstructed 

images are indistinguishable from the original photographs. This would also enable 

views of the object to be ‘relit’ for a continuous range of illumination angles in  

between those of the fixed lamps in the dome. 

The decorative test object used in this study was a polished brass dish, 125 mm in 

diameter, embellished in the Damascene fashion with inlaid copper and silver ara-

besques (Fig. 12 left).  There is a significant trade-off in choosing the exposure setting 

when photographing the object in the dome: if too low then most of the non-specular 

pixels are of very low intensity (as in this case) and hence greatly affected by sensor 

noise; if too high then most of the specular pixels are over-exposed, producing the 

maximum output value and causing blooming in neighbouring pixels by spill-over of 

photoelectrons in the sensor. 

 

Fig. 12. Damascene dish: (left) image illuminated by four lamps in tier 5 of dome; (centre) 

normal vectors in false colour; (right) albedo 

The normal vector and albedo were computed for every pixel (Fig. 12 centre and 

right). The normals are quite subtle because most of the surface is horizontal and the 

relief of the decoration is shallow. The albedo is surprisingly dark and chromatic, 

representing the diffuse ‘base colour’ of the metal without any specular component. 

The ‘specular quotient’ is calculated as the ratio between the actual intensity for 

each lamp direction and the intensity that would be produced by a perfect diffuser in 

the same direction. The more shiny the surface, the greater the quotient value (Fig. 13 

left). The specular direction vector is calculated as a weighted sum of the lamp vec-

tors exceeding a threshold, multiplied by the corresponding specular quotient values. 

The same weighted sum gives the colour of the specular reflection (Fig. 13 right). For 

most materials this would be the same colour as the illumination, i.e. white, but for 

metals the specular component carries the colour of the metal. Here for the Damas-

cene dish the colours of the brass, copper and silver are clearly defined. 
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Fig. 13. (left) Specular quotient = ratio of specular/diffuse intensities; (centre) specular colour; 

(right) Specular direction vectors in false colour 

The resulting specular direction vectors 

(Fig. 13 right) have the same general ap-

pearance as the normals (Fig. 12 centre) but 

are more chromatic because the specular 

gradients are greater with respect to the view 

vector. In conventional practice in computa-

tional photography it is almost universally 

assumed that the specular angle should be 

exactly double that of the normal, and for a 

perfect mirror this would of course be true. 

But the surfaces of real objects have a meso-

structure with fine texture and granularity. 

One pixel as sampled by the camera may 

span a number of micro-facets at different 

angles, which reflect light differently from 

the incident illumination. 

The approach taken here is to use the ideal specular (at double the angle of the nor-

mal) as a guide to where the specular angle should be. A weighted sum is taken of all 

lamp vectors within a cone of 45° around this direction, weighted by their quotient val-

ues. It is clear from scatter-plotting the specular vs normal angles for a random selection 

of 10,000 pixels (Fig. 14) that there is a considerable amount of variation around the 

line of slope 2 (i.e. specular angle = 2x normal angle), which is a genuine indication of 

the roughness of the surface. Pixels with low values of specular quotient (blue in the 

figure) generally have a greater scatter. Some clustering onto the five tier angles of the 

dome is evident in the pixels of high quotient values (red in the figure). The figure sug-

gests that the maximum normal angle that can be quantified by the photometric stereo 

technique is c.35°, with corresponding maximum specular angle of c.70°. 

In the general case the bidirectional reflectance distribution function (BRDF) has 

four degrees of freedom, giving the reflectance of the surface at any viewpoint when 

illuminated from any direction. In the case of dome imaging, however, the viewpoint 

is fixed with the camera always at the ‘north pole’ of the hemisphere and the object 

lying in the equatorial plane. So the problem is simplified to finding a two-

dimensional function of the reflectance factor toward the camera, given the normal 

Fig. 14. Specular vs normal angles, classi-

fied by quotient value
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and lamp vectors. A further simplification is to assume that the function of reflectance 

is isotropic and therefore rotationally symmetric, i.e. dependent only on the radial 

angle  from the peak but not on the phase angle around the peak. The required func-

tion needs to be positive, continuous and monotonic, with a peak at 0 and as-

ymptotic to zero as 90° (excluding the Fresnel component at grazing angles). 

The model adopted to fit the specular peak 

is based on the Lorentzian function,  

because it naturally conforms to the observed 

shape and is mathematically convenient [12]. 

In particular the broad flanks enable the scat-

tered light at perispecular angles to be mod-

elled more effectively than the Gaussian 

function, which falls too quickly to zero. The 

comparison can be seen by fitting both func-

tions empirically to the distribution (Fig. 15). 

An offset in the X axis has been made to 

accommodate the horizontal scatter, and  

the scale factors (divisors of X value) are 

different. But it is clear that the Gaussian 

approaches zero too rapidly and therefore 

underestimates the reflected intensity in the 

critical intermediate angles between peak and flank. The Lorentzian can be written as a 

function of three variables: 

                            (4) 

where  is the amplitude of the peak,  is the scale factor (horizontal spread), and  is 

a constant (uplift). 

5 Specular Classification 

A detail of the specular colour image of the Damascene dish shows clearly that the 

specular highlights of the three metallic components carry the colour of the metal  

(Fig. 16 left). Scatter-plotting 10,000 points chosen at random by their colours and loca-

tions in RGB space shows (Fig. 16 right) that they lie in an oblate region around the 

long diagonal of the colour cube, i.e. the neutral axis. There is a surprising amount of 

colour variation for what appears to be a surface composed of only three materials, and 

the tonal variation is continuous from black to the lightest points at about 0.7 of full 

range. 

The pixel colours are converted from RGB via XYZ to CIELAB, assuming the 

sRGB colour space and the CIE standard 2° observer with D65 white point. Plotting 

the same points on the a*–b* chromatic plane shows that the colours of the three met-

als, brass, copper and silver, have distinctly different hue angles (Fig. 17). This pro-

vides the opportunity to segment the image pixels into four categories, corresponding 

to the three metals plus black. 

Fig. 15. Comparison of Gaussian and Lo-

rentzian functions against a real distribution 

of reflected intensities 
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Fig. 16. (left) Detail of specular colour image of Damascene dish, size 500x500 pixels; (right) 

scatter plot of 10,000 pixels in R,G,B colour space 

The simple way to classify is by hue angle around the centroid of the three category 
centres, where reddish colours in the range [-45°, +70°] correspond to copper; the yel-
low-greenish colours in [70°, 180°] to brass; and the slightly bluish colours in [180°, -
45°] to silver. A more effective method is to categorise each pixel by its nearest distance 
to one of the focal colours for the three metals. The resulting ‘posterised’ image is 
equivalent to a K-means classification with four cluster centres (including black). 

 

 

Fig. 17. (left) 10,000 pixels plotted on the CIELAB a*–b* chromatic plane, with centroids for 

the three metals; (centre) classification by hue angle; (right) classification by nearest colour 

The ability to classify different regions of a heterogeneous surface according to their 
gloss enables each region to be modelled and rendered in a different way. This is an 
important capability for objects that are made of multiple materials, such as inlays, and 
also for objects that were once homogeneous but have weathered variably across the 
surface. It is interesting to consider whether metals could be classified in the same way. 

In an attempt to differentiate the specular curves of the three metals in the Damas-
cene dish, the map generated by image classification (Fig. 17 right) was used to select 
500 random samples of each of the three metals. Curves were fitted by the Lorentzian 
model and plotted in superimposition (Fig. 18 left). All three sets of curves show a 
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Fig. 18. (left) Specular curves fitted by the Lorentzian model to 500 pixels of silver on the 

Damascene dish; (right) Characteristic curves for the three metals for peak amplitudes >15 

similar behaviour, with a few cases having peak values of very high amplitude, in 

excess of 500, but the majority much lower. 

Taking the median of each parameter in the sets for each metal for those cases 

where the amplitude exceeds 15, and using the median parameter values in the Lor-

entzian model gives the indicative curves of Fig. 18 right. The ordering of amplitude 

is: silver highest, copper second and brass lowest, but the relative differences are 

small and the variance of the curves for individual pixels is so great that these curves 

could not be used as a reliable diagnostic to determine the type of metal. The colour in 

the albedo and specular highlights is a much more reliable guide. All that one can say 

in this case is that the freshly polished silver is likely to be slightly brighter in the 

specular highlights than the other two metals. 

6 Conclusion 

A set of images in pixel register under controlled directional lighting provides a much 

richer representation of an object than a single image, because it contains information 

about both the topography and specularity of the surface. With appropriate metadata, 

including the directions of the incident light sources, camera position and lens distor-

tion, such a dataset can be considered as a valid archival representation of the object, 

with many applications for education, conservation and interpretation. 

Through an interactive visualisation technique, such as PTM, the sense of material-

ity of the object can be conveyed much more strongly than through a static image 

display. This is an example of how, as Witcomb says, “multimedia installations in 

museums can enhance … the ‘affective’ possibilities of objects” [19]. They can “act 

as releasers of memory in much the same way as objects can make unconscious 

memories conscious. This they achieve through their power to affect us by ‘touching’ 

us or ‘moving’ us.” 

Acknowledgements. Thanks to colleagues in the 3DImpact Research Group, especially 

Stuart Robson, Mona Hess and Ali Ahmadabadian, for assistance and encouragement 

in this research. 
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