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Abstract. This paper focuses on a representation result for divergence-free vector

fields. Known results are recalled, namely the representation of divergence-free vector

fields as curls in two and three dimensions. The representation proposed in the present

paper expresses the vector field as an exterior product of gradients and remains valid in

arbitrary dimensions. Links to computer graphics and to partial differential equations

are discussed.

1. Introduction. The aim of this paper is to study properties of vector fields having

zero divergence, with particular emphasis on the representation of such vector fields

in terms of a potential (which may be vector-valued). More precisely, a divergence-

free vector field in R
n is expressed locally as an exterior product of n − 1 gradients;

see Theorem 5.3. This representation appears sometimes in textbooks on mechanics

(especially fluid mechanics) and electromagnetism is a somewhat vague formulation; see

the bibliographical comments at the end of Section 4. One motivation for seeking this

type of representation result comes from computer graphics; see Section 3. Another

motivation is related to elliptic partial differential equations; see Section 6.

The outline of the paper is as follows. Section 2 presents known representation re-

sults for curl-free vector fields and for divergence-free vector fields. In Section 3 some

remarks are made on drawing two- and three-dimensional vector fields, with particular

emphasis on divergence-free vector fields. Section 4 gives an intuitive description of the

representation of a three-dimensional divergence-free vector field as the exterior product

of two gradients; some bibliographical comments are included. In Section 5 the main

representation result is stated and proven (Theorem 5.3). Section 6 discusses limitations

of the results here presented and points out directions for future research.

Throughout this paper, Ω will be an open subset of Rn. If ϕ : Ω → R is a differentiable

function, we shall denote as usual by ϕ,i its partial derivative with respect to xi. If

�g : Ω → R
n is a vector field, we shall denote by gi its components; thus, gi,j will denote

the derivative of the ith component of �g with respect to xj .
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310 CRISTIAN BARBAROSIE

2. Known representation results. Let �g : Ω → R
n be a C1 vector field. We say

that �g is curl-free if

gi,j = gj,i , ∀ i, j ∈ {1, 2, . . . , n} .
Remark 2.1. The above formula describes only the notion of a curl-free vector field,

but does not define the curl of an arbitrary vector field. The curl of an arbitrary vector

field �g can be defined in several different ways. If n = 2, curl�g is the scalar function

g1,2 − g2,1 (the sign may vary from author to author). If n = 3, curl�g may be viewed as

the vector field whose components are (g1,2−g2,1, g2,3−g3,2, g3,1−g1,3) (again, signs may

vary from author to author). A more sound definition, valid for arbitrary dimension, is

to view curl�g as the n × n anti-symmetric matrix of entries gi,j − gj,i (1 ≤ i, j ≤ n).

Whatever the formal definition chosen, one must have in mind that curl�g has n(n−1)/2

components.

It is well known that a curl-free vector field is locally a gradient. This representation

can be extended to a global one if certain conditions hold on the behaviour of �g at

the boundary of Ω. More precisely, the integral of the tangential component of �g on

each connected component of ∂Ω should vanish in order for a global potential ϕ to exist

(defined in the entire Ω). These conditions are automatically verified if Ω is contractible.

These conditions can be dropped if one allows ϕ to be a multi-function.

Another direction for generalizing this representation result has to do with the reg-

ularity that we assume on �g. The regularity can be lowered, in which case the partial

derivatives should be interpreted in the weak sense. If one takes �g ∈ L2(Ω), the same

local representation holds for a potential ϕ ∈ H1(V ). Or, for �g ∈ H−1(Ω), a potential is

shown to exist in L2(V ). See [3], section 2-6 and Corollary 2 in section 7-7.

We now focus on the notion of divergence. The divergence of an n-dimensional vector

field �j : Ω ⊂ R
n → R

n is defined as div�j = j1,1 + j2,2 + · · ·+ jn,n.

If n = 2, there is a simple mapping between the operators curl and divergence. Let

us define the matrix

R =

[
0 −1

1 0

]

representing a 90◦ rotation in the plane. If �j and �g are two-dimensional vector fields,

then

divR�g = curl �g , curlR�j = div�j .

See [11], section 15.3, for an intuitive presentation of the effect of a 90◦ rotation on a

two-dimensional field.

Thus, in two dimensions, any result on curl-free vector fields applies to divergence-free

vector fields by means of a 90◦ rotation, the converse also being true. In particular, any

divergence-free vector field is locally of the form R∇ϕ.

In higher dimensions there is no correspondence between the curl and the divergence

of a vector field. As explained in Remark 2.1, the curl of a vector field consists of

n(n−1)/2 scalar functions, while the divergence is only one scalar function. Thus, when

one specifies that a certain vector field has zero curl, much more information is provided

than for zero divergence.

Very little is known about divergence-free vector fields in dimension n ≥ 4. Some

results are known in the literature for three-dimensional divergence-free vector fields.
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Theorem 2.2 ([9], Theorem 3.2). Let Ω ⊂ R
3 be a bounded open set satisfying the

Lipschitz condition. Let �j : Ω → R
3 be a vector field whose components belong to L2(Ω)

such that div�j = 0 in Ω and ∫
Γi

〈�j, �n〉 = 0 , i = 1, 2, . . . ,m ,

where the integral should be understood in the sense of traces. Γ1,Γ2, . . . ,Γm are the

boundaries of the m holes of Ω, and �n is the unitary vector normal to Γi. Then, there is

a vector field �ϕ ∈ H1(Ω;R3) such that �j = curl �ϕ, that is,

j1 = ϕ2,3 − ϕ3,2,

j2 = ϕ3,1 − ϕ1,3,

j3 = ϕ1,2 − ϕ2,1.

(2.1)

It seems impossible to generalize the representation �j = curl �ϕ for dimensions higher

than three. This is one motivation for looking for different representations of divergence-

free vector fields. Another motivation is presented in the next section.

3. Drawing vector fields. This topic (computer graphics) may seem unrelated to

the subject of the present paper. However, when trying to draw vector fields nicely (that

is, in a mathematically meaningful manner), one gets a feeling about their structure.

Drawing a vector field is a challenging task for those who do not content themselves

with a fuzzy collection of arrows. The best way to represent a vector field is by drawing

its trajectories, alone or tagged with tangent arrows. But choosing the right distance

between trajectory lines is not easy. One often gets zones with a high density of lines, and

other zones too empty. When the vector field has zero divergence, there is a physically

sound way of representing the magnitude of the vectors with the aid of the distance

between trajectories. Zones with high intensity correspond to small interline distance,

while zones where the vector field has small magnitude correspond to a large distance

between trajectories.

In two dimensions, this effect is easy to achieve if we remember that the vector field �j

is the rotated gradient of a scalar potential ϕ. After computing ϕ, it suffices to draw its

level lines (for equally spaced level values). These lines are trajectories of �j, and there is

an obvious relation between the interline distance and the magnitude of the gradient of

ϕ, which is equal to the magnitude of �j.

Can we generalize the above procedure for a three-dimensional vector field having zero

divergence? The physical interpretation linking the intensity of the field to the density

of drawn trajectories still holds. But the representation �j = curl �ϕ does not help to

choose and draw trajectory lines. We need a different type of representation. We want

a function γ whose level lines are trajectories of �j. This means that the “potential” γ

should take values in R
2. Thus, the level sets of each component of γ would be surfaces,

and intersections of these surfaces would be trajectories of �j.

Although there is no point in drawing vector fields in dimension n > 3, the procedure

would be the same: a “potential” γ should be constructed (taking values in R
n−1), points

should be chosen in γ(Ω), and the corresponding level lines should be drawn.
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As a side note, we mention that arbitrary vector fields (having divergence not nec-

essarily zero) can be drawn using a similar technique. In zones where the divergence

is positive, additional flow lines should start in order to increase the line density (thus

decreasing the interline distance). In zones where the divergence is negative, some flow

lines should be ended in order to decrease the line density. One systematic way to do

this is to approximate the divergence of the vector field by a linear combination of Dirac

masses, with weights of equal absolute value. At each positive Dirac mass, a new flow

line should be started; near each negative Dirac mass, a flow line should be ended.

4. Divergence-free vector fields in three dimensions. The above considerations

lead to the following idea: given a three-dimensional vector field �j with zero divergence,

we are looking for two scalar functions γ1 and γ2 such that, at each point x ∈ Ω, the

vector �j (x) is tangent to the corresponding level surfaces. This means that the gradients

of γ1 and of γ2 at x should be orthogonal to �j (x).

As a consequence of the above considerations, it is natural to look for γ1 and γ2 such

that

�j (x) = ∇γ1(x) ∧∇γ2(x) , ∀ x ∈ Ω ,

where ∧ denotes the exterior product between two vectors in R
3:

�a ∧�b =

⎡
⎣a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

⎤
⎦ .

Before discussing the existence or construction of the potential γ : Ω → R
2, we shall

make various remarks.

Note that it is a trivial matter to check that, given any two functions γ1 and γ2 in

C1(Ω), the vector field ∇γ1 ∧ ∇γ2 has indeed zero divergence:

div (∇γ1 ∧ ∇γ2) = (γ1,2γ2,3 − γ1,3γ2,2),1+ (γ1,3γ2,1 − γ1,1γ2,3),2

+ (γ1,1γ2,2 − γ1,2γ2,1),3 = 0.

Taking into account the algebraic definition of the exterior product of n−1 vectors in

R
n, one can see that the representation �j = ∇γ1 ∧∇γ2 of three-dimensional divergence-

free vector fields is a natural generalization of �j = R∇ϕ for two-dimensional divergence-

free vector fields.

Note also that the quantity ∇γ1 ∧ ∇γ2 depends on γ1 and γ2 in a nonlinear man-

ner (unlike previous representations; for instance, curl �ϕ depends linearly on �ϕ). This

nonlinear character brings new difficulties, which show up when one tries to lower the

regularity of the functions (suppose γ1, γ2 ∈ H1; then ∇γ1∧∇γ2 ∈ L1, not L2), and also

when one studies the problem of nonuniqueness of the representation.

Divergence-free vector fields appear often in fluid mechanics textbooks (these fields are

called “solenoidal”), mostly as curls of other vector fields (recall that in three dimensions

any curl has zero divergence). The idea of the representation �j = ∇γ1 ∧ ∇γ2 appears

sometimes in a rather vague formulation. H. Lamb describes (in [5], Chapter VII, section

167) the structure of the solenoidal vector field given as the exterior product of the

derivatives of the pressure and of the reciprocal of the density; he attributes the result to
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Fig. 1. Rectification of a smooth vector field

V. Bjerkenes, Vid.-Selsk. Skrifter, Kristiania, 1918. In [6], Section 3.12, M. Narasimhan

leaves the proof of the existence of this representation as an exercise for the reader to

carry out (Problem 1).

It should be noted that the representation �j = ∇γ1 ∧ ∇γ2 is related to the so-called

Clebsch representation for velocity fields; see [5], [7] and [10].

In [12], the author states that any solenoidal vector field �j can be represented locally

as ∇γ1 ∧∇γ2. The proof presented is very intuitive and lacks mathematical rigour.

A purely geometric argument, based on differential forms, is given in [8]: the authors

assert that any closed (n−1)-form can be written (locally) as the exterior product of n−1

1-forms. The authors make the following remark: “the representation of �j in terms of

n−1 arbitrary functions is the most economical one” (the notation has been adapted).

Unfortunately, the proof presented in [8] is wrong.

The authors of [7] make the following assertion: “This representation of a divergence-

free vector field was introduced by Euler.”

The paper [4] gives a thorough discussion of three-dimensional solenoidal vector fields

from the point of view of differential geometry.

5. The main representation result. We begin by presenting a result on arbitrary

vector fields (having divergence not necessarily zero).

Theorem 5.1. Let �v : Ω ⊂ R
n → R

n be a vector field of class Ck, k ≥ 1. Let x0 ∈ Ω be

a point such that �v(x0) �= �0. There exists a neighbourhood V of x0 and scalar functions

α ∈ Ck−1(V ) and S2, S3, . . . , Sn ∈ Ck(V ) such that

�v(x) = α(x)∇S2(x) ∧ ∇S3(x) ∧ · · · ∧ ∇Sn , ∀x ∈ V .

Proof. By a classical result of ordinary differential equations (rectification of a vector

field; see [1], section 7, Theorem 1 and Corollary 10), there exists a diffeomorphism S of

class Ck between a neighbourhood V of x0 and an open subset of Rn of the form I ×W

(where I is an open interval in R, and W is an open subset of Rn−1; see Figure 1) with

the property

DS(x)�v(x) = �e1 , ∀ x ∈ V .

In coordinate notation:

∂Si

∂xj
vj = ∇Si · �v = δ1i , i = 1, 2, . . . , n .
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We conclude that, for each x ∈ V , the n−1 vectors ∇S2(x),∇S3(x), . . . ,∇Sn(x)

are orthogonal to �v(x). As S is a diffeomorphism, we know that the vectors ∇Si(x),

i = 1, 2, . . . , n, are linearly independent. Hence, �v(x) is collinear with the nonzero vector

∇S2(x)∧∇S3(x)∧· · ·∧∇Sn(x), so there is a scalar (which we denote by α(x)) such that

�v(x) = α(x)∇S2(x) ∧∇S3(x) ∧ · · · ∧ ∇Sn(x) , ∀x ∈ V. (5.1)

The proof is almost completed; it remains only to prove that α ∈ Ck−1(V ). Consider the

equality ∇S1 · �v = 1 and replace �v by (5.1) in order to obtain

1 = ∇S1 ·
[
α∇S2 ∧∇S3 ∧ · · · ∧ ∇Sn

]
= α detDS.

We deduce that

α =
1

detDS
,

which provides the desired regularity for α and concludes the proof. �

Lemma 5.2. Let W = [a2, b2]× [a3, b3]×· · ·× [an, bn] ⊂ R
n−1 and let c ∈ Ck(W ), k ≥ 1.

Then, there exists an application Φ : W → R
n−1 of class Ck such that detDΦ = c.

The above result says that it is possible to deform a domain W obeying a prescribed

area deformation c. It is easy to generalize the result for any convex domain W .

Proof of Lemma 5.2. We denote by y points in W and by y′ points in [a3, b3]× · · · ×
[an, bn]; thus, y = (y2, y

′) ∈ W .

There are many possible ways of constructing Φ; we choose here to deform W in the

y2 direction only. That is, we define Φi(y) = yi for i ≥ 3 and then build Φ2 by integrating

c in y2:

Φ2(y2, y
′) =

∫ y2

a2

c(s, y′)ds.

It is easy to compute the derivatives of Φ:

∂Φi

∂yj
= δij for i ≥ 3, j ≥ 2,

∂Φ2

∂y2
= c,

∂Φ2

∂yj
(y2, y

′) =

∫ y2

a2

∂c

∂yj
(s, y′)ds for j ≥ 3,

and this concludes the proof. �
Now we turn our attention to divergence-free vector fields:

Theorem 5.3. Let �j : Ω ⊂ R
n → R

n be a Ck vector field having zero divergence (k ≥ 2).

Let x0 ∈ Ω be a point such that �j (x0) �= �0. Then there exists a neighbourhood V of x0

and n−1 scalar functions γ1, γ2, . . . , γn−1 ∈ Ck−1(V ) such that

�j (x) = ∇γ1(x) ∧ ∇γ2(x) ∧ · · · ∧ ∇γn−1(x) , ∀x ∈ V. (5.2)

Proof. Consider the representation given in Theorem 5.1:

�j (x) = α(x)∇S2(x) ∧∇S3(x) ∧ · · · ∧ ∇Sn .
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The idea of the proof is to show that, for divergence-free vector fields, it is possible to

choose the functions S2, S3, . . . , Sn in such a way that the function α becomes equal to

1. One has:

div �j = div
(
α∇S2 ∧ ∇S3 ∧ · · · ∧ ∇Sn

)
= ∇α · ∇S2 ∧∇S3 ∧ · · · ∧ ∇Sn + α div

(
∇S2 ∧ ∇S3 ∧ · · · ∧ ∇Sn

)
.

But the exterior product of any n−1 gradients has zero divergence; thus

div �j = ∇α · ∇S2 ∧∇S3 ∧ · · · ∧ ∇Sn =
1

α
∇α · �j

(α is nonzero by construction). So, div �j = 0 implies ∇α ⊥ �j in each point of V .

This means that the function α is constant along trajectories of �j. Transporting this

information through the diffeomorphism S, we conclude that the function α ◦ S−1 ∈
Ck−1(I ×W ) is constant along I; it depends only on y ∈ W . We introduce the function

c ∈ Ck−1(W ) defined as c(y) = α(S−1(ζ, y)) for every y ∈ W and for arbitrary ζ ∈ I.

Now apply Lemma 2 (one can choose a smaller W which is the product of n−1 intervals)

in order to obtain Φ : W → R
n−1 of class Ck−1 such that detDΦ = c. Denote by

γ1, γ2, . . . , γn−1 the components of Φ ◦ S and compute

∇γ1 ∧∇γ2 ∧ · · · ∧ ∇γn−1 = (detDΦ)◦S ∇S2 ∧ ∇S3 ∧ · · · ∧ ∇Sn

= α∇S2 ∧ ∇S3 ∧ · · · ∧ ∇Sn = �j.

The proof is complete. �
In the above proof, one can see the nonunique character of the representation (5.2).

Let us denote by U = Φ(W ) the domain where the function γ = (γ1, γ2, . . . , γn−1) takes

values. It is an open set (as the vectors ∇γ1(x0),∇γ2(x0), . . . ,∇γn−1(x0) are linearly

independent; one can choose a smaller V if necessary). If Ψ : U → R
n−1 is a Ck

application such that detDΨ is constantly equal to 1 (a volume-preserving map), then

the components of Ψ ◦ Φ ◦ S still enjoy the same property (the exterior product of their

gradients equals �j). That is, we can characterize the nonuniqueness of γ as follows: one

may compose γ with an arbitrary volume-preserving application in R
n−1.

6. Future work and challenges. The main limitation of the result stated in The-

orem 5.3 is the nondegeneracy hypothesis �j (x0) �= �0. Unfortunately, it seems that this

hypothesis cannot be eliminated; see the counterexample presented in [7]. The necessity

of this hypothesis discourages also any attempt of proving a global representation result.

Another possible generalization of Theorem 5.3 is to lower the regularity of the func-

tions involved. For instance, it is not clear what kind of representation one should expect

for vector fields �j whose components are in L1 or in L2. Again, the hypothesis �j (x0) �= �0

looks discouraging since such a vector field is defined almost everywhere. A first step

could be to state and prove some estimates on the potentials γi, in an appropriate norm.

The author thinks that the following conjecture is true, under appropriate hypotheses.

The conjecture is stated here only for three dimensions to simplify the formulae, but it

should hold true in arbitrary dimensions. Let �j, �σ and �τ be three divergence-free vector

fields in R
3. Then there are three scalar potentials γ1, γ2 and γ3 such that, locally,

�j = ∇γ2 ∧∇γ3, �σ = ∇γ3 ∧∇γ1 and �τ = ∇γ1 ∧∇γ2.
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Finally, the numerical treatment of partial differential equations is another challenge

for the future. In elliptic problems, a state equation of the form div (a∇u) = 0 can be

replaced by a∇u = Rϕ if n = 2, or by a∇u = ∇γ1∧∇γ2 if n = 3. New unknown functions

are thus introduced, and some of the boundary conditions should be reformulated in terms

of the new unknowns. See also [2].
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