REVISTA MATEMATICA de la
Universidad Complutense de Madrid

Volumen 7, nimero 2: 1994
http://dx.doi.org/10.5209/rev_REMA.1994.v7.n2.17733

Representation of Locally Convex Algebras

L. OUBBI

ABSTRACT. We deal with the representation of locally convex algebras.
On one hand as “subalgebras” of some weighted space CV(X) and on the
other hand, in the case of uniformly A-convex algebras, as inductive limits of
Banach algebras. We also study some questions on the spectrum of a locally
convex algebra.

INTRODUCTION

A locally convex algebra is an algebra together with a Hausdorff
locally convex topology such that the multiplication of E is separately
continuous. We denote by M (resp. M%) the assumed nonvoid set
of all continuous (resp. algebraic) characters of E. Endowed with the
weak topology generated by E, M and M# are Hausdorff completely
regular spaces. M will be called the spectrum of £ and M# its alge-
braic spectrum. This work consists of three independant sections. In [9],
conditions are given under which £ is embedded algebraically {and topo-
logically) in some C{X) with the compact open topology or a weaker
topology. A.C. Cochran shows in [4] that every semisimple uniformly
A-convex algebra E can be embedded continuously, via the Gelfand map
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G, in some subspace H of C(M )} with a weighted topology. The hypoth-
esis of the semisimplicity is not enough in Cochran’s result. Contrarily
to an affirmation of Cochran, there are semisimple uniformly A-convex
algebras wich are not strongly semisimple. In fact if ¥ is the alge-
bra C®(R) with the topology defined by the seminorms (/5)n>0, where
L(f) = % 1f(@)ldz if n > 0 and Io(f) = sup,eoy f(2)], S € E,
then F is a semisimple uniformly A-convex algebra whose spectrum M
is homeomorphic to [0, 1], hence E is not strongly semisimple, and it is
easily seen that E can not be embedded even algebraically in C{0,1].
We give, in the first part of this work, a correct statement and an im-
provement of Cochran’s result. We show that every strongly semisimple
locally convex algebra (l.c.a.) E can indeed be embedded continuously
(as a locally convex algebra) in some weighted space CV(X) (CV(X)
need not be itself a l.c.a.), and, with some additional conditions, that £
is even dense in CVp(X). The second section gives a representation of
locally complete uniformly A-convex algebras as inductive limits of Ba-
nach algebras. This sharpens a result of [11], where the author assumes
that E is sequentially complete and has an identity,"and describes very
well the structure of uniformly A-convex algebras. The last section is
devoted to some questions on the spectrum M and its behaviour with
respect to M#. We show, for example, that if E has an identity such
that an element z in F is invertible whenever z does not belong to the
kernel of any continuous character, then M is dense in M#. In such a
situation, M is equibounded if and only if M# is equibounded.

1. REPRESENTATION OF LOCALLY CONVEX
ALGEBRAS

A locally convex algebra F is said to be strongly semisimple if z = 0
whenever x(z) = 0 for every x € M. Such an algebra is necessarily
commutative and Hausdorff. We will denote by G the Gelfand map of E.
It is defined from F into C(M) by G(z) := z with Z(f) = f(z), fe M.
It is clear that G is one to one if and only if E is strongly semisimple. If
T. denotes the topology of uniform convergence on the equicontinuous
subsets of M, G is continuous into (C{M), 7.} [8]. Moreover [9], G is
open into C(M) with the compact open topology if and only if every
equicontinuous subset H of the topological dual E’ of E is contained in
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a multiple of the closed convex hull of some equicontinuous subset of M.
In particular, £ must be m-convex.

Now, let X be a Hausdorff completely regular space. A nonnegative
upper semi-continuous function on X is called a weight. A family of
weights is called a Nachbin family if:

1. For every z € X, there is v € V such that v(z) # 0.

2. Forany v1,v3 € V and r > 0, thereis v € V such that max(rv,,7v;) <
v.
We will consider the following weighted spaces:

CV(X):={f € C(X): for every v € V, vf is bounded},
CVo(X) :={f € C(X): for every v € V, vf vanishes at infinity }.

Endowed both with the weighted topology 7, defined by the semi-
norms

By(f) = sup{o(z)|f(z)l, z € X}, vV,

CVo(X) is a closed subspace of CV{X). Moreover, if we put W :=
VCY, where Cf is the set of all nonnegative functions on X vanishing
at infinity, we get a Nachbin family such that CV(X) is continuously
embedded in CWy(X).

If £ is a commutative Hausdorfl locally convex algebra, then its
spectrum M is a Hausdorff completely regular space. Using an idea of
(4], we get

1. Proposition. If E is strongly semisimple, then there exists a
Nachbin family on M such that E is continuously embedded, via G, in
CV(M). Moreover, (G(E),7,) is a locally convex algebra.

Proof. Let (Py)xer be a family of seminorms defining the topology

of E. Set, for every A € I" and every x € M:

ua(x) = { lixilBe = S“P{I'X(z)l, Py(z) <1} if x € Efo
+00 otherwise
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where BY is the polar of the unit pseudo-ball By of Py and E’Bg its
linear hull. Then u, is a lower semi-continuous function on M and
vx 1= gyt (with 2 = 0) is a weight. Put V := {rvx : r > 0 and
A € I'}. This is a Nachbin family. In fact, if x € M, then thereis A€ T
and ¢ > 0 such that |x(z)| < ¢Px(z), Yz € E. Therefore x € E;ag
and then p,(x) < +oo. Hence vy(x) # 0. Moreover, if Py, < Py, then
vy < vyr. Consider now the space CV (M) with the weighted topology
7.. Tz € E, A €T and r > 0 satisfy z € B, then:

~ Ix(z)
Py(z) = sup —————
(2) zeM, SUPyepm, IX(¥)|

Ix(2)|
SUp === = T
xem, [x(¥)]

where M := M N Ef,. Hence G(E) C CV(M) and for every z € E
b

and A € T, P, (%) £ Py(z), whence the continuity of G. To show that
(G(E),r.) is a locally convex algebra, it suffices to show that for every
z € F and X € T, there are ¢ > 0 and A’ with v,|Z] < cvy. But if for
every y € E, Py(zy) < rPx(y), then 2zB,: C B, and for every x € M,
we have:

If x ¢ My, va(x) = 0 and then »,|Z| < cv, for every a € I' and ¢ > 0.
Now if x € M.,

@l
n(lx(z)| = supyem—‘-X(y)'

|x()|
= supyep,, Ix(32y)l
1

T
SupyEB“

o -

Remark. If E has an identity, CV(M) contains the constant func-
tion 1. then the weights v, are bounded on M. Actually, they even
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vanish at infinity. Indeed, the set {x € M : wvi(x) > €} is exactly
M n(eB,)°. Since M is closed in E', the result is a consequence of the
Banach-Alaoglu theorem.

M, in the proof of 1. is exactly the set of all Py-continuous char-
acters. It is also the set where v, does not vanish. If M, is P,-
equicontinuous (in particular if E is m-convex), then it is equal to the
support supp vy of vy and inf{va(x), x € M»} # 0, hence the weighted
topology 7, is stronger than the topology of uniform convergence on the
Myss. If, in addition, E has an identity, these topologies coincide.

2. Proposition. If (E,(Pi)xer) is a strongly semisimple lc.a.
with identity such that every M, is Py-equicontinuous, then E is con-
tinuously embedded in CVo(M). If, in addition, E has an involution *
such that x(z*) = x(z), for everyz € E and x € M, then G(E) is dense
in CVo(M).

Proof. Let z € F, ¢ > 0 and A € T be given. If va(x)|x(z)| > ¢,
then

Ix(z}| > epa(x} = € sup [x(¥)l,
y€EB,

and Y is necessarily in M,. Moreover, there is a real number ¢ such that
|¥{y)] < ¢ for all 4» € M) and y € Bx. Then M), is compact and so is
the set

N(Az)i={yp € M : ua(¥)|l¥(z)] > €}
Therefore T belongs to CVo(M ). The density of G(E) derives from a
classical density theorem for CV5(X) (cf. [12], Theorem 3.2 page 284).

By considering the Nachbin family W = VC, one can show that if
E is strongly semisimple with identity and has an involution * such that
x(z*) = x(z) for every x € M and z € E, then E is dense in CWy(M)
and the embedding map is continuous.

3. Proposition. Let E be strongly semisimple such that for every
A€, thereis M € T and ¢ > 0 so that for every z € E there is x € My
with

Pr(z)x(¥)] < elx(=)|Pr(y), v € E.
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Then E can be algebraically and topologically embedded in CV(M).

Proof. We only have to show that G~! is continuous. Let A € T
be given. There is A’ and ¢ > 0 such that:

Vz € E, 3x € My : Pa(z)Ix(y)| < elx(=)|Px(y), Yy € E.

Then
Pa(z)Ix(w) < elx(z)l, Vy € Bw.

x(z =
Hence Pi(z) < cméé,%‘[ﬂ?ﬂ < ¢Py (%) and we are done.

2. CASE OF UNIFORMLY A-CONVEX ALGEBRAS

In this section, we give a representation result in the case of uni-
formly A-convex algebras. We describe them as inductive limits of Ba-
nach algebras. M. Oudades [11] has shown, with a relatively complicated
method, that every sequentially complete unital uniformly A-convex al-
gebra E is a bornological inductive limit of Banach algebras. This means
that there is an inductive system F; of Banach algebras whose inductive
limit (as an algebra) is E and that a subset of E is bounded if and only if
it is contained and bounded in some E;. We give here a very easy proof
of this result. In fact, we show even more. We do not need an identity,
nor sequential completeness. The local completeness is sufficient for our
proof. Recall that a subset V of an algebra E is said to be A-convex if it
is absolutely convex and absorbes zV and Vz for every z € V. If V is,
in addition, idempotent, then it is called m-conver. An A-bounded [5)
set is a bounded set which is absorbed by a bounded A-convez set. An
m-bounded [13] set is defined in the same way. Every m-bounded set is
A-bounded, but the converse is not true even in a locally m-convex al-
gebra contrarily to an assertion of [5]. In fact, if E is the algebra C¢(R)
of all continuous and bounded functions on R with the compact open
topology, then theset B := {f € E: |f(z)| < |z|, z € R} is A-bounded
but not m-bounded.

If V C E is A-convex, we denote by V' theset {z € V: zV C V}.
This is an m-convex set generating the same linear space as V. If V is
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closed, so is also V'. The corner-stone in the sequel is the following easy
observation.

1. Lemma. In a uniformly A-convez algebra, every bounded set is
A-bounded.

Proof. Let (E,P} be a uniformly A-convex algebra. For every
(ap)pep € (R4 \ {0})F, put B(a):={z € E: P(z) < ap}. Thisis a
bounded set, and the collection of such sets in a base for the bounded
sets of E. but if P(zy) < ¢P(y) and P(yz) < cP(y) for all y € F and
all P € P, then zB, U B,z C ¢B,. Hence B, is A-convex.

2. Proposition. . Every Hausdorff uniformly A-convez algebra
E is bornologically the inductive limit of an inductive system (Ey)a of
A-normed algebras. If, in addition, E is locally complete, the E,s can
be chosen to be Banach algebras.

2. If E is bornological as a locally convex space, the same statement as
in . holds with “bornologically” replaced by “topologically”.

3. If E is pseudo-complete, it is a directed union of Banach algebras
with continuous injections.

Proof. With Lemma 2.1. in mind, the proof of 1. and 2. is
standard. Note just that for any closed bounded A-convex set B the
linear hull £g of B endowed with the gauge of B is an A-normed algebra,
and if F is locally complete, then the gauges of B and of B':= {z € B:
zB C B} are equivalent Banach algebra norms on Eg.

3. If E is only pseudo-complete, it is not clear that the gauges of B
and B’ are equivalent and we do not know wether the family (Eg: ); is
a topological inductive systems, where (B;); is a fundamental base for
the bounded sets in E consisting of closed A-convex sets. However E
is the union of the upward directed family (Eg:); of (Banach) algebras,
and since each B’ is bounded, the injections are continuous.

Most of the good properties of uniformly A-convex algebras can
be deduced from this proposition. In particular, every element of such
an algebra is regular (bounded of [2]), the spectrum of an element of a
pseudo-complete uniformly A-convex algebra E is compact, and if E is
locally complete, it is a pseudo-Banach algebra in the sense of [3] or a
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complete b.m.c.a. in the sense of [1] and [6]. The spectrum of such an
algebra is equibounded...

3. SPECTRUM OF A LOCALLY CONVEX ALGEBRA

If E is a commutative Hausdorff locally convex algebra, one can ask:
When is M dense in M#7 This question is suggested by the following
(counter-) examples:

1. Let E be the algebra C[0,1] of all continuous functions on [0,1]
equipped with the topology of the norm of L[0,1]. This is a commu-
tative Hausdorff l.c.a. (in fact an A-normed algebra) with identity such
that M = ¢ and M# = [0,1]. Hence M is not dense in M¥.

2. If E is the algebra H(C) of all holomorphic functions on C
equipped with the topology of uniform convergence on the closed unit
disk D, then E is a commutative strongly semisimple normed algebra
such that M is not dense in M¥.

The l.c.a. E is said to have property (W) if i) E has an identity
and an element z in F is invertible whenever = does not belong to the
kernel of any continuous character or ii) E has no identity, 0 € M, and
z € E is quasi-invertible whenever y(z) # 1 for every x € M.

1. Proppsition. Let E be a commutative Hausdorff l.c.a. with
property (W). Then, in the following cases, M is dense in M #.

1. G(E) is a C*(M)-module.
2. X = C and E_has an involution * such that for every y € M end
z € E, x(z*) = x(z).
3. K=R.

Proof. Let xo € M and ¢ > 0 be given. We have to show that
for arbitrary z1,3,...,2, € E, V(x0,%1,%2,..+,%n,€) = {x €M

x(z:)— xo(zi)| <€, i =1,2,...,n} is nonvoid. Assume first that n = 1
and that for z € £ and ¢ > 0, V(xg,7,€) = ¢. Then |x(z) — xo(2)| > ¢.

Case 1: E has an identity.
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If xo(z) = 0, then for every x € M, x(z) # 0 and then =z is
invertible. 1 = xp(zz™!) = xo(z)x0(z~!) = 0 is absurd.

If xo(z) # 0, then due to property (W), y := = — xo(z)1 must be
invertible. But this leads to the same absurdity.

Case 2: F has no identity.
The fact xo(z) =0 contradicts property (W). Suppose then

Xo(z) # 0. Hence x(F5) # 1, ¥x € M. Thus %5 is quasi-invertible,
which is impossible.
Consiser now z1,23,...,2, in E, ¢ > 0 and set:

V#(X0,21,%2,- -, Znr€) 1= {x € M¥ & [x(2:) — xo0(2:)| < ¢,

i=1,2,...,n}
This is an open neighbourhood of xp in M#*.
1. If G(E) is a C*(M)-module, consider f € C{M#) such that 0 < f <
1, f(xo) = 1 and supp f C V#(xo0,21,22,...,25,€). Choose z in E so

that xo(z) = 1 and take y with G(y) = G(z)f. Then ¢ # V(xo,¥,€) C
V(X0,%1,Z2,---,%n,€) and M is dense in M¥.

2. If £ has an involution so that x(z*) = x(z), x€ M, ¢ € Eand E
has an identity, consider the element z = X7, (2; — xo0(2:))(zF — xo(z¥)}}
of E. Then the set V(xo,z,¢) is nonvoid and for every y € M, we have:

X € V{x0,2,€) <= |x(2) ~ xo(z)| < €
= x(z)l < e
<= T |x(zi) — xo(e:)|* < ¢
= [x(2:) — xo(zi)| < €

= X € V(XOimlazZy"'vxn,G)

This shows the density of M in M¥#.
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Now, if E has no identity, consider z = L% z;2¥ — xo(z:)z] — Xo(Z:)%i.
This is an element of E and

X € V(xo,#,€) <= [Zh 1 x(z)x(z:) — xo{z:)x(zi) — xo(z)x(2:)+
+ Zhixo(z)xo(zi)] < €
= 128 (o) x(2:) = xo(#:)] = Tiaxo(@i)[xo(z:) = ()]l < ¢
= |8 (x(2:) = xo(2)(x(@:) ~ xo(z:)| < €
<= Tiqx(zi) = xo(zi)]” < e
= |x(zi) = xo(z:)| < ¢

= x € V(x0,%1,%2,..,5n,€).

Therefore V(xo,%,€) C V(X0,%1,%2,...,%n,€) and M is dense in M¥.
3. f K = R, and z* = z, the same proof as for 2. holds.

Remark. 1. Since for al.c.a. E which is locally barrelled (i.e. every
bounded set of E is contained in a bounded disk B so that (Eg,||.||8) is
barrelled), every weakly bounded subset of E' is strongly bounded [10],
every character of such an algebra with property (W) whose spectrum
is metrisable is bounded in each of the cases 1.,2., and 3. above. As a
special case, this holds if F is a commutative complete locally m-convex
algebra whose spectrum is metrisable.

2. With a similar proof as for 1. in Proposition 2.1, one can show that
if £ is a regular commutative Hausdorff l.c.a. verifying (W), then M is
dense in M#. Here F is said to be regular if for every x € M and every
closed subset F' of M with x ¢ F, there is ¢ € E such that x(z) =1
and that the restriction of G(z) to F is identically 0.

Let E be a commutative Hausdorff l.c.a. and E its completion.
A.Mallios [7] has shown that if E is also a l.c.a. and if M is locally
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equicontinuous, then M = M B holds topologically, where Mﬁ is the set

M equipped with the weak topology generated by E. IfFisalc. space

containing F as a dense subspace, then for every x € M, there is a

continuous linear functional on F the restriction of which to F coincides

with x. If we consider M, the set M endowed with the weak topology

generated by F' (notice that £’ can be identified with F'), then we are led

to the question: When does the equality M = Mp hold topologically?
With a similar proof as in 7], one can show

2. Proposition. In each of the following cases, the equality M =
Mg holds topologically:

1. M is a kn-space, and every compect subset of M is equicontinuous.
2. (C(M),7.) is complete.

As consequence of this result, if £ is m-barrelled and M a kgr-
space, then the equality above holds for every l.c. space F. In general,
the equality does not hold even for strongly semisimple uniformly A-
convex algebras. Take, for example, the algebra £ := C[0,1] with the
topology generated by the seminorms ( Pg)p, where B is a finite subset
of [0,1] and

1
Po(f) = max(uag f(=), [ 1f(@)lda), 1 € Clo,1)

Here M = [0,1] algebraically and topologically, but My is the discrete
space [0,1].
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