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Abstract

& This article addresses the representation of numerical
information conveyed by nonsymbolic and symbolic stimuli.
In a first simulation study, we show how number-selective
neurons develop when an initially uncommitted neural
network is given nonsymbolic stimuli as input (e.g.,
collections of dots) under unsupervised learning. The
resultant network is able to account for the distance and
size effects, two ubiquitous effects in numerical cognition.
Furthermore, the properties of the network units conform in
detail to the characteristics of recently discovered number-
selective neurons. In a second study, we simulate symbol

learning by presenting symbolic and nonsymbolic input
simultaneously. The same number-selective neurons learn to
represent the numerical meaning of symbols. In doing so,
they show properties reminiscent of the originally available
number-selective neurons, but at the same time, the
representational efficiency of the neurons is increased when
presented with symbolic input. This finding presents a
concrete proposal on the linkage between higher order
numerical cognition and more primitive numerical abilities
and generates specific predictions on the neural substrate of
number processing. &

INTRODUCTION

Basic numerical abilities have been demonstrated in a
variety of animal species, with highly similar character-
istics across species (Dehaene, Dehaene-Lambertz, &
Cohen, 1998). First, when two numbers have to be
compared, a distance effect, meaning that two numer-
osities are easier to discriminate when the distance
between them is larger, is obtained robustly. Second, a
size effect is obtained in the same tasks: For a given
distance, comparison is easier when numerosities are
smaller. Both effects hold for a variety of species (for a
review, see Dehaene et al., 1998). Moreover, in humans,
the distance and size effects are obtained with symbolic
(Moyer & Landauer, 1967) and nonsymbolic stimuli
(Buckley & Gillman, 1974). Hence, the distance and size
effect do not depend on species or on knowledge of a
symbolic system, such as language. This observation
favors the hypothesis that a core system for numerical
processing (a ‘‘number sense’’; e.g., Dehaene, 2001) has
been internalized in the brains of various animal species
under evolutionary pressure. The fact that these prop-
erties prevail when humans use symbols to express
quantitative information has led to the hypothesis that
high-level human numerical abilities are rooted in these
biologically determined mechanisms by linking symbolic
representational systems to evolutionary basic and ab-
stract number representations (Dehaene, 2002).

Different hypotheses regarding the nature of this num-
ber sense have been put forward. Gallistel and Gelman

(1992) proposed that internal number representations
code quantity in a linear way: Equal distances between
numbers are represented by equal distances in the rep-
resentation. This assumption can explain the distance
effect, because numbers that are close to each other will
have overlapping distributions of activation, hence, it will
be difficult to discriminate between them. To account for
the size effect, Gallistel and Gelman assume scalar vari-
ability in the mapping from sensory input to this linear
representation. This means that for larger numbers,
variability is larger, leading to more noisy representations
of larger numbers, and thus, the size effect follows.

As an alternative to scalar variability, compressed
coding has been proposed, according to which numbers
are represented on a scale that is more compressed for
larger numbers (e.g., a logarithmic scale; Dehaene,
2003). This leads to a less accurate representation and
a worse discriminability of large numbers relative to
small numbers, and hence to a size effect. At a behav-
ioral level, scalar variability and compressed coding lead
essentially to the same predictions (Dehaene, 2003), but
recent single-cell recording data (Nieder & Miller, 2003;
Nieder, Freedman, & Miller, 2002) provide support for
compressed coding.

Nieder et al. (2002) recorded from neurons in the
lateral prefrontal cortex of rhesus monkeys during a
visual delayed match-to-numerosity task (numerosity
refers to the case where numerical information is
conveyed by the number of objects in a display rather
than by a symbol). The authors found that many of
these neurons consistently preferred (responded mostGhent University
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strongly to) a specific number of objects. The critical
properties of these number-selective neurons are the
following. First, they act like filters over numerosity:
Neurons that are most responsive to a particular
numerosity x also react somewhat weaker to numer-
osities x � 1 and x + 1, still somewhat weaker to x �
2 and x + 2 and so on. This property can account for
the distance effect, because if numbers are farther
apart, this will lead to less overlap in the distribution
of activation and thus to better discrimination. A
second property is that tuning curves are increasingly
broader for larger numerosities. This increasing band-
width is consistent with the size effect, because larger
numbers will have broader tuning curves, leading to
more representational overlap, and thus will be more
difficult to discriminate than smaller numbers. Third,
these tuning curves are positively skewed: For exam-
ple, for a neuron-preferring quantity x, its response
rate was stronger when quantity x + 1 was presented
rather than x � 1. As discussed in the authors’ follow-
up study (Nieder & Miller, 2003), the latter property
is critical in differentiating between scalar variability
and compressed coding. In particular, a scalar variabil-
ity account predicts symmetric tuning curves, whereas
compressed coding predicts the observed asymmetric
positive skewing. In this way, Nieder and Miller (2003)
provided evidence in favor of a compressed coding
of numerosity.

Despite the significant progress that has been made
by the discovery of these numerosity detectors and the
detailed description of their processing characteristics,
many questions remain unanswered. First, what kind of
input is needed for these numerosity detectors? For
example, neurons in parietal cortex are known to en-
code the spatial location of objects. Can numerosity
detectors work on this information, or is an intermediate
processing stage necessary? Second, can such numeros-
ity detectors be learned? The fact that the ability to
detect numerosity is present in a wide range of species
and early in life (see Dehaene et al., 1998, for a review)
seems to point to an innate sense of number (Dehaene,
2002). An alternative is that this ability is easily and
quickly learned and is therefore omnipresent. Third,
what is the relation with symbolic cognition? Several
authors (e.g., Spelke, 2002; Dehaene, 2001) have sug-
gested that human numerical abilities are built on a
primitive number sense shared with other animals. If so,
how is this accomplished?

In the present article, an answer is sought to these
three questions using insights obtained from a modeling
study. First, we argue for a specific type of intermediate
representational layer between sensory input and numer-
osity detectors. Using this insight, we describe how
numerosity detectors may arise in an initially uncommit-
ted neural network. The network was equipped with an
unsupervised competitive learning rule, and different
numerosities (stimuli consisting of a number of objects)

were repeatedly presented to this network. We found
that the network developed numerosity detectors that
are able to account for the distance and size effect, and
the detectors exhibited the properties reported byNieder
and Miller (2003) and Nieder et al. (2002). This is de-
scribed in Simulation 1. After the numerosity detec-
tors had developed, we presented symbolic input (e.g.,
verbal number labels) in conjunction with the nonsym-
bolic numerosities in Simulation 2. The same network
nodes that represented a given numerosity also learned
to represent the value of the corresponding symbol.
Similarities and differences in the neural coding of sym-
bolic and nonsymbolic stimuli were observed. Implica-
tions for symbolic and nonsymbolic numerical cognition
are discussed.

INPUT TO NUMEROSITY DETECTORS:
EVIDENCE FROM BACKPROPAGATION

Individuation and enumeration of elements in a visual
display depends on spatial processing. For instance,
Trick and Pylyshyn (1994) showed that the ability to
immediately extract numerosity from a visual display
(i.e., subitizing) is hampered when the to-be-enumerat-
ed objects are presented concentrically at the same
spatial position. Therefore, we take a simple spatial
location coding system as input, in which one unit
corresponds to one location. With regard to the numer-
osity detectors, a detector tuned to numerosity 1 should
be activated when exactly one object in one location is
presented; a detector tuned to numerosity 2 should be
activated when two objects in two different locations are
presented; and so on. However, it is impossible to
obtain a direct linear mapping from such a spatial
location coding system to a set of numerosity detectors
without assuming additional processing mechanisms.
The reason is that whether an input unit should or
should not activate a specific numerosity detector de-
pends on the activation of other input units. For exam-
ple, activation of an input unit should lead to activation
of a detector for numerosity 2, but only if exactly one
other input unit is active as well. In this sense, numer-
osity detection is a generalization of the classical exclu-
sive—or problem (Minsky & Papert, 1969). The fact that
these problems are not linearly separable makes it
impossible to solve them with a direct linear mapping
from input to output values. The most straightforward
solution (e.g., Minsky & Papert, 1969) is to assume an
intermediate processing layer.

The next question, then, is what kind of intermediate
layer would constitute a computationally efficient way
to allow spatially individuated elements to be mapped
onto numerosity detectors. To answer this question,
we trained a backpropagation network that was pre-
sented the locations of objects in the input layer and
was required to give the corresponding numerosity as
output.
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Model Description

The model is depicted in Figure 1A: In the input layer,
there are five nodes, each corresponding to a particular
spatial location. In the output layer, there are also five
nodes, one for each possible numerosity. For example, if
two input units are active, the required output is activa-
tion of the numerosity—two detectors in the output
layer, with no activation for any other output unit. The
hidden layer contains five nodes. Each hidden node
receives a linear combination of the values in the input
layer, which is then transformed according to a sigmoid
function 1/[1 + exp(�in� u)], where ‘‘in’’ represents the
input to that node and u is a threshold value. The output
layer receives a linear combination of these hidden layer
values, and it transforms its input with the same sigmoid
function. For simplicity, no threshold was used for the
output units, but results were similar with thresholds.

Learning Procedure

The backpropagation algorithm adapted all weights
(input to hidden and hidden to output) and thresholds
by minimizing a least-squares error function. After each
adaptation step, weights were decreased by a fraction of
0.02%, which amounts to a weight decay procedure
(Plaut, McClelland, Seidenberg, & Patterson, 1996).
Weights were initially set at random values. The network
was presented 100,000 trials.

Results and Discussion

After training, the output units learned to selectively
respond to the presented numerosity with 100% accura-
cy (see Figure 1C for a graphical illustration).

An interesting property emerged at the level of the
hidden field: All connection weights to a given hidden

unit were approximately equally strong (mean standard
deviation of the weight values to the different nodes was
0.05). This implies that each of the five hidden units
responded in a monotonous manner to numerosity,
four in an increasing way (with stronger activation for
increasing number of objects, see Figure 1B for graphical
illustration), and one in a decreasing way (with weaker
activations for increasing number of objects). Based on
these two properties, the hidden units can be called
summation units, because each unit sums the activation
of the input units without distinguishing between input
units. Some hidden units add in an additive manner
(more objects, more activation), and others ‘‘add’’ in a
subtractive manner (more objects, less activation). In
this way, summation units are sensitive to numerosity,
but not selective to numerosity: They are a type of
analog magnitude representation (Moyer & Landauer,
1967), with the amount of activation reflecting the
presented numerosity. Hence, summation coding seems
to provide an efficient intermediate step to generate the
required numerosity-selective output. An intermediate
layer with similar properties was assumed in the neuro-
nal models of Ahmad, Casey, and Bale (2002) and
Dehaene and Changeux (1993). Recently, Romo and
Salinas (2003) have described neurons in the somato-
sensory, medial premotor, and prefrontal cortex, whose
firing rate was monotonously related to the frequency of
vibrotactile stimulation. This supports the biological
plausibility of neuronal summation coding.

We do not assume that the backpropagation learning
mechanism is a biologically plausible way for the crea-
tion of summation neurons; the simulation does, how-
ever, show that summation coding is a computationally
natural solution to solve the problem of numerosity
detection. A similar distinction between featural sensitiv-
ity and selectivity, as used here, has been demonstrated
for other features, for example, speed processing: As

Figure 1. (A) Structure of

backpropagation model.

Amount of black in network

node indicates amount of
activation. (B) On the abscissa,

the different possible

numerosities are shown (1–5).
The ordinate shows the mean

activation of a hidden unit over

all possible input layer

configurations leading to that
particular numerosity.

Tuning curves of two

representative hidden field

units are shown. (C) See
(B), but for two

representative number

field units.
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noted by Chey, Grossberg, and Mingolla (1998), speed-
sensitive cells are found in the monkey retina and LGN,
but speed-selective cells are only found higher up in the
processing stream, in the striate cortex (Orban, Ken-
nedy, & Bullier, 1986) and, particularly, in area MT
(Maunsell & Van Essen, 1983). This further underlines
the fact that a succession of featural sensitivity and
featural selectivity is a biologically plausible processing
chain to extract and represent gradually more refined
information from raw sensory information.

UNSUPERVISED LEARNING MODEL

Given its computational efficiency and biological plausi-
bility, we used summation coding as a starting point for
the construction of an unsupervised learning model.
With this model, we intended to answer the questions of
learnability of number-selective neurons (Simulation 1)
and the grounding of symbolic numerical representa-
tions (Simulation 2). The unsupervised model architec-
ture is depicted in Figure 2. It consists of a summation
field (similar to the hidden field of the previous section),
a number field, and a symbol field. The number field
receives input from the other two. Because Nieder et al.
(2002) obtained neural recording data for numerosities
1–5 only, and because our aim was to model the neural
data, we also used numbers from 1 to 5. However, very
similar results were obtained when the network was also

trained with larger numerosities. Each of the three fields
is now discussed separately.

Summation Field

Clearly, a visual image first passes through a preproces-
sor before it is ready for numerical analysis. Because the
operation of such a preprocessor is beyond the scope of
this article, we did not implement this stage (see Chey
et al., 1998; Dehaene & Changeux, 1993, for possible
implementations). Rather, the model starts from the
presumed result of this preprocessing stage, namely, a
pattern of activation over a set of summation coding
nodes (see above). This activation pattern is then nor-
malized, meaning that the length of the activation vector
equals 1. For example, if the pattern of activation is
originally (1, 1, 0, 1, 0), with length

ffiffiffi
3

p
, after normaliza-

tion, it is (1, 1, 0, 1, 0)/
ffiffiffi
3

p
= (0.58, 0.58, 0, 0.58, 0), with

length 1. Normalization is a common assumption in
many computational models (e.g., McNellis & Blumstein,
2001) and can be obtained neurally by lateral inhibition
within the summation field (Usher & McClelland, 2001).

The number of summation nodes activated upon
presentation of a particular number of objects was equal
to two times this number. This is an instance of the
‘‘additive’’ summation coding obtained in the backpro-
pagation network. For example, when a display with one
object was shown, two nodes were activated in the
summation field; two additional nodes were activated
upon presentation of two objects and so on (see
Figure 2). Because numerosities could range from 1 to 5
in the simulations, 10 summation field nodes were
implemented. Similar results were obtained with differ-
ent numbers of summation nodes.

Symbolic Field

Symbols are related in an arbitrary manner to their
corresponding quantity: The physical appearance of a
symbol bears no numerical information. Similarly, two
different symbols are related in an arbitrary manner to
each other as they give no indication as to the difference
between their respective quantities. To incorporate these
two key properties, representations in the symbolic field
for different numbers were chosen in an arbitrary man-
ner. In particular, number 1 was coded by one arbitrarily
chosen symbolic field unit, number 2 by another unit, and
so on. Because our simulations used numbers 1 to 5, the
symbolic field consisted of five nodes.

Number Field

Activation of a particular number field node is a linear
function of the activation in the two input layers. In
particular, we used y =

P
iwi xi where y is the activation

value of a number field node, index i ranges over input
nodes (in summation and symbolic fields), xi is the

Figure 2. Structure of unsupervised learning model, with summation

field, symbol, and number fields. Note that four hidden units are

activated for numerosity 2, because in our implementation, we used
a coding scheme where each extra object activates two extra

summation field units.
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activation of input node i, and wi is the connection
weight between node i and the number field node.
There were 500 nodes in the number field. A relatively
large number was taken here to make sure that averages
calculated over nodes with a given number preference
would be sufficiently stable.

Learning Rule

Connections between input field (summation or sym-
bolic) and number field nodes were initially uncommit-
ted: half of them were 0 and the other half had a value
randomly selected from a uniform distribution over (0, 1).
Unsupervised learning was applied on this originally
uncommitted network. The following principles are im-
plemented in the learning rule. After activation is passed
on from an input field (summation field in Simulation 1;
summation and symbolic field in Simulation 2) to the
number field, each connection between an input and
number field node is changed by an amount that de-
pends on two factors: the activation of the number field
node and the activation of the input node. Concerning
the first factor, weights attached to more active number
field nodes are changed more. The rationale is that active
number field nodes already partially code for the input
pattern and that therefore the number node’s weights
should be adapted to make them even more responsive
to the input pattern. Weights connected to less active
number units are changed to a lesser degree. With
respect to the second factor, the principle is that a weight
will change more if it deviates more from the input value.
If a weight is already close to the activation value of the
input node, it is not substantively changed. In particular,
if the activation value of an input node equals x and
the weight from this node to a number field node is w,
the difference x � w will partly determine how strong-
ly the value w should change. If w is already close to x,
then x � w � 0, and the resultant change will be small.

Formally, weight adaptation was implemented as fol-
lows. The weight wij from input node i to number field
node j is updated as

�wij ¼ a� exp½�bð ymax � yjÞ� � ðxi �wijÞ ð1Þ

where xi is the activity of input field node i and the
parameter a is a fixed learning rate set at 0.25. The factor
exp[�b( ymax � yj)] indicates how strongly this particular
weight should change relative to the other weights.
Here, yj is the response of number field node j, and ymax

is the maximal response over the number field nodes.
The constant b is a sensitivity parameter that determines
the degree of differentiation between weight changes.
For large b, only the weights attached to the maximally
responding number field nodes will be adapted, whereas
for smaller b, other weights will be adapted too. The
factor exp[�b( ymax � yj)] ensures an appropriate
amount of differentiation between the changeability of

number field nodes. In particular, for the most active
node (which should be changedmost), it equals 1, and for
the least active node (which should be changed least), it is
about 0.

After application of Equation 1, weights from the
input field feeding into number field unit j are (approx-
imately) normalized. In particular, a weight vector w
feeding into a number field node is transformed as w/
(kwk + 0.001), with 0.001 added to avoid division by 0.
The results to be presented in Simulations 1 and 2 are
stable with respect to changes in parameter settings.

Our learning rule can be described as a Hebbian-like
learning rule (see Wallis & Rolls, 1997). It also resembles
the well-known Kohonen learning rule (Kohonen, 1995),
with the exception that we assume no topographic
ordering among the output nodes. In our algorithm,
the amount of change of a nonwinning output node is
not determined depending on its distance to the winning
node, as is the case in a Kohonen rule, but rather
depending on the activation value of the nonwinning
node itself (similar to the neural gas algorithm; Martinetz
& Schulten, 1991). The significance of this change is
clarified later.

SIMULATION 1: THE DEVELOPMENT
OF NUMBER-SELECTIVE NEURONS

In the first simulation, we investigated whether neu-
ronal number-selectivity could be achieved spontane-
ously, and if so, whether it would be characterized by
the same properties as those reported by Nieder and
Miller (2003) and Nieder et al. (2002). For this pur-
pose, only nonsymbolic summation-coded input was
given. For 1000 trials, numerosities from 1 to 5 were
randomly presented to the model. The sensitivity
parameter b was set to 20. After learning, the model
was tested by presenting each pattern (numerosities
1–5) again. The activation value of each number field
node was then recorded for further analysis. Fifteen
different replications with different random starting
values were run, and we describe the mean values
over these 15 replications. The trends to be described
were obtained in individual replications as well.

Results and Discussion

The results clearly show that unsupervised learning led
to the spontaneous development of nodes that are tuned
to a specific numerosity. Importantly, these number-
selective nodes exhibit the same properties as those
described by Nieder and Miller (2003) and Nieder et al.
(2002). We first report results on filtering, increasing
bandwidth, and positive skewing, followed by Nieder
and Miller’s analyses to distinguish linear from loga-
rithmic coding. Details of the statistical tests are provided
in the Methods. In the text, we just report the p values
of these tests.
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Filter Property

Figure 3A shows the mean activation value of the
number field nodes as a function of the distance to each
node’s preferred numerosity. The activation value for
numerosities other than the preferred numerosity grad-
ually diminishes as the distance increases ( p < .001).

Why does the model show the filter property? Numer-
osities are represented as vectors in the 10-dimensional
space of the summation field (because there are 10
summation field units), and vectors that code for similar
numerosities are represented as vectors that are close
together also. In particular, the distance between vectors
increases monotonously as a function of the distance in
numerosity (with or without normalization in the input
field). Because the mapping from the summation to the
number field is smooth (linear), this closeness will be
preserved, and units that prefer a given numerosity will

also tend to respond relatively strongly to a nearby
numerosity. From this property, the distance effect
follows in a straightforward manner. Numerosities that
are close to each other, lead to strongly overlapping
distributions of activation, and therefore will be harder
to discriminate than numerosities that are farther apart.

Increasing Bandwidth

The mean bandwidth equals 2.92. Figure 3B shows that
bandwidth size is strongly correlated with preferred
numerosity (see also Figure 3C). A nonparametric test
shows that increasing bandwidth is a robust model
property ( p < .001). It follows from the fact that larger
numbers are encoded by smaller activation values, be-
cause the summation field vectors are normalized. From
this property, it follows that a ‘‘disagreement’’ between

Figure 3. (A–E) Results for
nonsymbolic input. (F–J):

Results for nonsymbolic

input. (A, F) Normalized

responses (as defined by
Nieder et al., 2002) as a

function of the distance

between sample number
and preferred number.

(B, G) Bandwidth of units as

a function of preferred

number. (C, H) Normalized
response as a function of

sample number for units

preferring a particular

number. (D, I) Goodness-
of-fit values (r2) for the four

fitted models (linear, power

function x1/2, power function

x1/3, and logarithmic).
(E, J) Estimated standard

deviations for the four

models. Dashed lines denote
fitted regression lines.
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the input vector and the vector of weights feeding into a
number field unit matters less for larger numerosities.
Therefore, a response to near numbers will be relatively
larger for larger numbers. This property accounts for the
size effect, because larger numbers have larger band-
widths and will be more difficult to discriminate than
smaller numbers.

Positive Skewing

Figure 3C also shows that positive skewing holds in our
model nodes: For nodes that prefer quantity x, the re-
sponse to quantity x + 1 was always stronger than the
response to quantity x � 1 (and similarly for quantities
x+2, x� 2). The test for positive skewing yields p< .001.

Why is this property observed in the model? Let us
assume that an input vector and number field unit
weight vector mismatch in exactly two places. Then,
the response of the number field unit will be stronger if
the input has two nonzero values more than the unit
than if the input has two nonzero values less. The result
is that filtering curves will be positively skewed.

Linear or Logarithmic Scaling?

In their follow-up article, Nieder and Miller (2003)
specifically contrasted the linear and logarithmic scaling
hypotheses. We will now apply these authors’ analyses
to our own simulated data.

Gaussian functions were fitted on the tuning curves
for each set of units that prefers a given numerosity
separately. Four transformations of the numbers 1 to 5
were used: (1) linear coding, which amounts to no
transformation; (2) transformation by raising each num-
ber by a power 1/2; (3) by a power 1/3; and (4)
logarithmic transformation. Goodness-of-fit values (r2)
for the four models are shown in Figure 3D. Linear
coding resulted in the worst fit, followed by the two
power functions, and logarithmic compression yields the
best fit, consistent with the findings on the neuronal
data (see Nieder & Miller, 2003, their Figures 5 and 6).
The three nonlinear coding schemes (power and loga-
rithmic) fit reliably better than the linear one (Wilcoxon’s
signed rank test, p < .001).

The reason for the superiority of the nonlinear trans-
formations is that they symmetrize positively skewed dis-
tributions, such as the distributions shown in Figure 3C.
As a result, Gaussian functions, which are inherently
symmetric, give a better fit to the data for the nonlinearly
transformed models than the linear one, because the
latter cannot fit the asymmetries in the filtering curves.

The estimated standard deviations of the Gaussian
functions for the four models and the five numerosities
are shown in Figure 3E. As can be seen, the standard
deviations for linear coding tend to increase, but for the
three other coding systems, the standard deviations are
more or less constant, in line with the findings of Nieder

and Miller (2003). Besides increasing bandwidth, the fact
that the standard deviations are increasing for the linear
model ( p < .001) is yet another indication that the filter
functions show increasing variability with increasing nu-
merosity. This is clearly predicted by Gallistel and Gel-
man’s (1992) scalar variability assumption, but also by
Dehaene’s (2003) compressed coding assumption. How-
ever, the superior fit of the nonlinear coding schemes
over the linear one favors compressed coding over scalar
variability because scalar variability predicts symmetric
filtering curves when no transformation occurs.

At this point, the model bears many resemblances to
that developed by Dehaene and Changeux (1993). Like
that model, the present model has a summation-coding
scheme between visual input and numerosity detectors.
Also like that model, numerosity detectors exhibit com-
pressive scaling. Unlike their model, however, we have
given an explicit rationale for summation coding (see
backpropagation study) and trained the mappings from
summation coding to numerosity rather than setting
them by hand.

In sum, the properties of our number field nodes
showed a striking similarity to the properties of the
neurons described by Nieder and Miller (2003) and
Nieder et al. (2002). Hence, we can conclude that
unsupervised learning leads to the development of what
has been called an internal ‘‘mental number line,’’ which
subjectively scales nonsymbolic numerical input in a
logarithmic rather than a linear way. However, as noted
by Dehaene (2001), the notion of a mental number line
should not be taken too literally. Indeed, Nieder et al.
observed that there was anatomically no topographic
ordering among the number-sensitive neurons. Neither
was such a topographic ordering observed in the model
data, because we used a learning rule in which the
distance between number field nodes is irrelevant.

To conclude, we have shown how, with a simple
learning rule and relatively few trials, number-selective
neurons with compressed scaling can emerge in an
initially undedicated neural network. Nevertheless, as
will be shown in the next section, one should be careful
to extrapolate this scaling property to other input
modalities as, for example, symbolically (e.g., verbally)
presented numbers.

SIMULATION 2: LEARNING TO REPRESENT
THE MEANING OF SYMBOLS

Whereas animals and young infants typically experience
numbers only in the form of numerosities, children also
learn to attach different symbols to different numeros-
ities. For example, when four objects are presented, a
child may learn to associate the auditory label ‘‘four’’ to
this particular numerosity, and later also the written
labels ‘‘four’’ and ‘‘4.’’ Now that we have a model that
captures the details of how neurons can represent
numerical information when trained with nonsymbolic
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input, this model provides an ideal opportunity to
investigate how the exclusively human ability to repre-
sent numerical information by means of symbols may
originate from these early available representations.

To simulate the developmental stage where children
learn to associate symbols with numerosities, nonsym-
bolic and symbolic input were presented together to the
model, starting from its state after Simulation 1. For
example, on a particular trial, ‘‘four’’ could be presented
both as a numerosity and as a symbol. Numerosities and
symbols are represented in the summation field and
symbolic field, respectively (see Figure 2). During sym-
bol learning, the summation to number field con-
nections obtained from Simulation 1 can either be
preserved or allowed to change. In the absence of any
strong a priori developmental arguments, we simulated
both situations. Because the results were very similar,
we only report simulation results with changeable sum-
mation to number field mappings.

Fifteen replications were performed. The initial
weights of each of the replications were the final values
obtained after the 15 replications of Simulation 1 (i.e.,
replication 1 in Simulation 2 started with the final values
of replication 1 in Simulation 1, and so on). On each
simulation, numerosities 1–5 were chosen at random for
1000 trials. The sensitivity parameter b was set to a lower
value (=2) than in Simulation 1, because the extra
symbolic input in Simulation 2 results in more differen-
tiation between number field nodes. After learning, the
model was again tested by presenting each numerosity
and symbol, and the activation values of number field
units were recorded.

Results and Discussion

Numerosity Input

After training, the number field units behaved like in
Simulation 1 if, again, only numerosity input was pre-
sented (e.g., filtering, increasing bandwidth, positive
skewing). Nevertheless, individual weights did undergo
substantial change: The mean correlation (mean taken
over the 15 replications) between preferred numerosity
over number units before and after Simulation 2 was
.124 (p < .001). The fact that this value is significantly
different from 0 indicates that the weights from Simula-
tion 1 set a bias for the weights from the summation
field in Simulation 2. The fact that the correlation is
relatively low, however, indicates that there was reorga-
nization due to the symbolic input.

Symbolic Input

After learning, the number field nodes that responded
maximally to a particular numerosity also preferred the
corresponding symbolic code. In particular, the mean
correlation between preferred numerosity and number

calculated over all number field nodes was equal to
.986 ( p < .001). Again, no topographic organization as
a function of number preference was observed. Regard-
ing the properties of number-selectivity, the following
picture emerged. When stimulated with symbolic input
only, the number field nodes still exhibited the filter
property ( p < .001), as can be seen in Figure 3F.
However, the bandwidths are smaller with symbolic
than with nonsymbolic material (see Figure 3G, mean
bandwidth = 2.00; difference with nonsymbolic band-
width, p < .001). This makes the tuning curves more
‘‘peaked’’ for symbolic input. This difference in peaked-
ness is not due to the different values of the sensitivity
parameter b that were used in Simulations 1 and 2. If
the same parameter value had been used in both sim-
ulations, the difference would have been even more
pronounced.

The fact that the filter property is preserved with
symbolic input cannot be due to similarity in the input
vectors because symbols were coded in an arbitrary
manner, and so the input vectors in this field, coding
for, say, number 1 and 2, have no greater similarity than
the input vectors for numbers 1 and 4. The reason this
property emerged nevertheless is the following. Sup-
pose numerosity 3 (in the summation field) and the
symbol for 3 (in the symbol field) are presented togeth-
er. The activation of number field nodes coding for three
will become activated, and hence, the connections
between the active symbolic field node and the number
field nodes will be adapted. However, due to the filter
property in the mapping from the summation field to
the number field, number field units coding for 2 and 4
will also be (weakly) activated. For this reason, the
connection between the symbol field node coding num-
ber three, and number field nodes that code for two and
four, will be adapted to some degree. Hence, the filter
property emerges in the symbol to number field map-
ping as well. However, because the filtering property
appears only indirectly with symbolic input, namely, as
the result of a coupling with nonsymbolic numerosity
input, the bandwidths are smaller. The discrepancy in
bandwidths means that the system originally devoted to
process nonsymbolic numerosity can represent the
same kind of information with more precision when
symbols are used. From this, the prediction follows that
the distance effect observed in number comparison
should be smaller for symbolic stimuli than with non-
symbolic stimuli, which is confirmed experimentally by
Buckley and Gillman (1974). Notwithstanding this in-
creased efficiency, symbolic representations still bear
traces of the way that neural systems were originally
shaped by nonsymbolic experience.

Contrary to the filter property, increasing bandwidth
was not transferred from nonsymbolic to symbolic
number processing (see Figure 3G). As can be seen
from Figure 3H, the degree of positive skewing was
very small compared with the skewing obtained with
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nonsymbolic stimuli (difference p < .01) but it was
systematic ( p < .001). Possibly due to the low band-
width values, it was not possible to empirically differ-
entiate the different transformation models (linear,
power, logarithmic), and all had high r2 values (about
.96, see Figure 3I). In addition, all standard deviations
were about equal over different numerosities for the
four models (see Figure 3J).

Because we observed no increasing bandwidth in
Simulation 2 with symbolic input, it remains to be shown
that a size effect is still possible with this model. Indeed,
with symbolic input, a size effect is reliably obtained in
numerical comparison, just as with numerosity input,
although the size effect does appear to be weaker with
symbolic input (Buckley & Gillman, 1974). We have
demonstrated elsewhere (Verguts, Fias, & Stevens, in
press) that the size effect observed with symbolic input
in number comparison can also be localized in the
mapping from the ‘‘mental number line’’ to output. In
that article, a network was trained in a comparison task,
and it presented symbolic numbers with frequencies
proportional to their daily-life frequencies (Dehaene &
Mehler, 1992). What we found was that the mapping
from the mental number line to output nodes exhibited
exactly the required nonlinear compressive pattern of
connection weights that is necessary to generate a size
effect. This is empirically supported by the fact that in
priming experiments with tasks that do not rely on these
mappings, but that do rely on the numerical represen-
tations (Reynvoet, Fias, & Brysbaert, 2002), distance-
related priming effects were observed that were the
same for primes smaller and larger than the target (con-
sistent with absence of pronounced positive skewing).
Moreover, the priming effects and absolute response
times did not depend on number size (consistent with
constant bandwidth over numbers; Figure 3G). Hence,
the size effect may have different origins depending
on the stimulus format: nonlinear mappings to output
in case of symbols and number field coding in addi-
tion to nonlinear mappings in the case of nonsymbolic
input.

GENERAL DISCUSSION

We have argued for the existence of a summation
coding system between sensory input and numerosity
detection. We described a model that uses such a
system and showed how it can learn mappings from
both summation and symbolic input fields to a com-
mon set of number detectors. The properties of this
model were found to be consistent with both neuro-
physiological (Nieder & Miller, 2003; Nieder et al.,
2002) and behavioral data (distance and size effect).
We will now return to the three questions that were
posed in the beginning of the article concerning the
input to number detectors, the learnability of such
detectors, and the relation between symbolic numerical

cognition and elementary numerical abilities that are
shared with other animals.

Input to Number Detectors

Given that summation neurons act as a hidden layer, the
question is then how such a system can be imple-
mented. A set of neurons with the following three
properties would be able to solve the task: (1) The
neurons have large receptive fields. (2) They (spatially)
summate responses of other (earlier) neurons with
small receptive fields. The latter identify the presence
of objects in specific locations (spatial coding). (3) The
summation neurons have a differential sensitivity to
input signals. To show that these three properties are
sufficient, let us suppose we have a set of neurons that
code for the presence of an object in a particular
location. We will call them location neurons (see also
Dehaene & Changeux, 1993). Location neurons may also
be sensitive to a number of other dimensions, but for
definiteness, we assume that they only respond to
spatial location. Spatial coding can be done in various
reference frames (e.g., eye, head, body; Cohen &
Andersen, 2002). From Trick and Pylyshyn’s (1994) the-
ory that the ability to quickly enumerate a small number
of elements in a visual display is attributable to the ability
to preattentively tag a limited number of visuospatial
positions for further attentive processing, we tentatively
assume that location neurons code objects positions
in an eye-centered reference frame. Location neurons
signal the presence of an object in a small area only
(Property 2), and summation neurons add the contribu-
tions of these earlier neurons (Properties 1 and 2).
Therefore, each summation neuron works as an accu-
mulator that has monotonously stronger or weaker
input when a larger number of objects is presented.
Due to Property 3, the numerosity in the display can be
inferred from the population of summation neurons.

Although a system based on such properties has not
yet been described neurophysiologically in the context
of number detection, these properties have been re-
ported to hold for a number of neurons, most notably,
in parietal cortex. In particular, a subset of the neurons
in the lateral intraparietal area (LIP) and parietal area 7a
are plausible candidates for location and summation
neurons, respectively. In the macaque monkey, neurons
in area 7a have large receptive fields (up to 608; Siegel
& Read, 1997; Property 1). They receive input from area
LIP (Siegel et al., 1997), which contains neurons with
much smaller receptive field (Ben Hamed, Duhamel,
Bremmer, & Graf, 2001, our purported location neu-
rons; Property 2). Finally, neurons that are monoto-
nously sensitive to an increase of a particular feature
dimension have been reported in a number of cortical
areas (e.g., in auditory association cortex, Edwards,
Alder, & Rose, 2002; in areas V4 and MT, Cheng,
Hasegawa, Saleem, & Tanaka, 1994; in somatosensory,
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premotor, and prefrontal cortex, Romo, & Salinas,
2003), which verifies Property 3 at least in nonparietal
areas. It remains an issue of investigation whether
neurons with all the required properties can be located
in parietal (or other) cortical areas. If verified, this
would clarify why numerical operations have so often
been associated with parietal cortex in imaging studies
(e.g., Fias, Lammertyn, Reynvoet, Dupont, & Orban,
2003; Pinel, Dehaene, Riviere, & Lebihan, 2001). To
sum up, then, summation coding provides both a
natural and plausible intermediate stage for numerosity
detection.

Learnability of Number Detectors

Dehaene (2002) has argued for the innateness of a
number detection system on the grounds that it ap-
pears very early in life (e.g., number-selective neurons
in a kitten of 8 days old, Thomson, Mayers, Robertson,
and Patterson, 1970; number discrimination ability in
infants, Wynn, 1992) and across a wide range of species.
However, the fact that number-sensitive neurons can
develop in a simple network architecture, and after only
few learning trials, as demonstrated in this article,
shows that the innateness assumption is premature.
Each neuron whose functional properties are not fixed
and that is connected to summation neurons can, in
principle, develop number-selective properties. Note
that summation neurons themselves can also be easily
learned, as demonstrated in the backpropagation study.
On the other hand, the high consistency in cerebral lo-
calization suggests that it is predetermined which parts
of the brain become involved in quantity representa-
tion. Hence, although representational constraints are
not necessarily required, there may be innate architec-
tural constraints on which neurons come to function as
number detectors (Elman, Bates, Johnson, Parisi, &
Plunkett, 1999).

Relation with Symbolic Cognition

The use of language and other symbol systems is one of
the distinguishing features between human and animal
cognition. An open question is how symbol-processing
systems are related to more primitive cognitive systems.
One possibility is that representations and processes
underlying symbol use are distinct from primitive mech-
anisms. Alternatively, symbolic cognition may be inte-
grated in more primitive systems. In other words,
uniquely human cognitive abilities may be rooted in
rudimentary functions common to many species be-
cause of a general evolutionary advantage (Hauser,
2000). The current study focused on this issue from
the perspective of number processing.

Dehaene (2001) has proposed the hypothesis that the
use of numerical symbols is rooted in brain circuits

devoted to presymbolic processing of numerosities by
linking symbolic representational systems to a logarith-
mically scaled representation, which would then ac-
count for the size and distance effect in symbolic
number comparison.

The present study agrees with this proposal in the
sense that it shows that a neural system that was
originally devoted to process nonsymbolically presented
numerical information can learn to represent the mean-
ing of arbitrary number symbols. In doing so, our model
also shows how the representation of symbolic number
meaning comes to inherit some of the properties of
nonsymbolically construed representations. In particu-
lar, the key property that number-selective neurons act
as a filter over numerosity (meaning that such a neuron
responds maximally to its preferred numerosity and
responds less and less to more distant numerosities)
was transferred to symbol processing. This explains why
human number processing is still subject to a distance
effect, despite the fact that in principle the ability to use
symbolic systems allows to uniquely define a given
numerical value separate from other numerical values
(4 is 4, not 5).

Furthermore, the present work argues that the acqui-
sition of a symbolic system does not consist of merely
linking symbols to the representations devoted to non-
symbolic processing, as demonstrated by the fact that
the transfer of properties is not complete. Notwithstand-
ing the fact that symbol use inherits the filter property,
humans benefit from using symbols. We showed that the
filter property is only partially inherited in the sense that
the number-selective filters act in a more finely tuned
manner when provided with symbolic input compared
with nonsymbolic input. Consequently, the meaning of
numerical symbols can be represented with more, but
not absolute, precision. This is empirically supported by
smaller distance effects when humans compare digits
and number words as compared when they compare
collections of dots (Buckley & Gilman, 1974).

In contrast to the filter property, our model exhibits
no transfer of increasing bandwidth and only minimal
transfer of positive skewing. Because these properties
are a source of the size effect observed in number
comparison, our model makes two predictions. First,
no effects of number size are expected to emanate from
the number representations themselves when tested
with symbolic stimuli. The most clear testing conditions
of this hypothesis are provided by number priming
experiments (Koechlin, Naccache, Block, & Dehaene,
1999). A number of priming experiments shows dis-
tance-related priming, reflecting access to numerical
representations. Importantly, the nature of this priming
effect does not depend on number size ( Verguts et al.,
in press; Reynvoet et al., 2002). Second, the size effect is
expected to be smaller in symbolic than in nonsymbolic
stimuli. This seems to be the case in the results reported
by Buckley and Gilman (1974), but a systematic com-
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parison of input formats is not yet available. In Verguts
et al. (in press), we argue how the residual size effect
in symbolic number comparison is attributable to
mapping the numerical representations to a binary
(smaller than, larger than) output mechanism for num-
ber comparison.

At the neural level, we predict that neurons of the
type described by Nieder et al. (2002) exist in humans,
that they are also used for symbolic input, but that
the properties of these neurons will differ depending
on the input format. Fias et al. (2003) already verified
that in a comparison task, symbolic and nonsymbolic
material may activate the same parietal regions. Recent
studies provide evidence for a crucial involvement of
parietal areas along the intraparietal sulcus in number
processing (e.g., Pinel et al., 2001), with the fMRI
blood oxygenation level-dependent (BOLD) signal ex-
hibiting a distance effect. We hypothesize that these
regions will also be activated by nonsymbolic material,
and that the different nature of symbolic and nonsym-
bolic processing are expressed in differential BOLD
signal signatures.

To conclude, this modeling study shows how sym-
bolic cognition can be grounded in neural systems
devoted to deriving abstract information from percep-
tual input. The same neurons represent numerical in-
formation with both symbolic and nonsymbolic stimulus
formats, but differently for the two formats. This result
sheds a new and specific light on our understanding of
the systems involved in numerical processing.

METHODS

Statistical Tests

Here we describe the different tests that are used on the
model data. For each test, the relevant reference distri-
bution was generated by simulation, and the observed
test statistic was compared with this distribution. In this
way, the correct p value could be obtained.

Filtering Test

For each of the 15 replicated data sets in either Simu-
lation 1 or 2, curves as in Figure 3C or 3H were generated.
The number of violations of single-peakedness in the
tuning curves was counted. For example, with the
tuning curve for neurons preferring numerosity 3, if
the response to numerosity 1 was larger than that to
numerosity 2, this was a violation; if the response to 5
was larger than to 4, this was also a violation. The
number of such violations over the 5 numerosities and
the 15 data sets served as the test statistic. For each data
set, the maximal number of violations is 12, so the test
statistic could, in principle, range from 0 (no violations)
to 12 � 15 = 180. The reference distribution was
obtained by generating random numbers and checking

the number of violations from monotonicity in the same
way as for the data.

Increasing Bandwidth

In the nonsymbolic case, bandwidths for each of the 15
data sets (as plotted in Figure 3B) were calculated, and
the number of violations of monotonous increase over
numerosity was counted. Numerosities 1 and 5 were not
included in these calculations because the bandwidths
for these numerosities were partly based on a linear
extrapolation from the filter averages, in line with the
procedure of Nieder et al. (2002). The reference distri-
bution was obtained in the way as described in the
previous paragraph. In the symbolic case, no statistics
could be meaningfully calculated because the bandwidth
was almost always equal to 2 (see Figure 3G).

Positive Skewing

Again, the curves in Figure 3C and H were used as a
starting point, and the number of times that the re-
sponse to numerosity x � 1 was smaller than to x + 1
was counted (x being the preferred numerosity). Hence,
tuning curves for 2, 3, and 4 only could be used, and a
sign test was applied (Siegel & Castellan, 1989).

Model Fits

The fit of the different models was compared by Wilcox-
on’s signed rank test (cf. Nieder & Miller, 2003).

Standard Deviations

To check the increase in standard deviations of the
linear model, the procedure for increasing bandwidths
described above was used. In this case, however, the
standard deviations for numbers 1 and 5 were not partly
arbitrarily defined, hence, these numbers were used
here along with 2, 3, and 4.

Differences between Input Formats

Similar statistics were used to test the difference be-
tween the two input formats (symbolic and nonsym-
bolic), except that this time, the difference between the
basic test statistics for the two formats was calculated
and used as the relevant statistic.
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