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Abstract

The problem of representation and approximation of linear operators by means
of modification in the time-frequency domain is considered. Before turning to the
discrete and sub-sampled case, a complete characterization of linear operators by
means of a twisted convolution in the continuous time-frequency domain is sug-
gested. Subsequently, existing results on approximation by time-frequency multi-
pliers are reviewed. To overcome the limitations imposed by these multipliers, two
more general constructions are proposed, termed multiple Gabor multipliers and
Twisted Spline type functions. Conditions ensuring the existence of optimal mul-
tiple Gabor multipliers are given. As the constructions suggested in this paper are
mainly based on the Weyl-Heisenberg group, twisted convolution plays a central
role in the results described in this paper.

Key words: Operator approximation, spreading function, twisted convolution,
Gabor multiplier, optimal multiplier

1 Introduction

The usual goal of time-frequency transforms is to provide efficient representa-
tions for functions or distributions, in terms of weighted sums of atoms which
are well localized in both time and frequency domains. The analyzed func-
tion or distribution is then characterized by the corresponding time-frequency
coefficients, from which it is synthesized by the synthesis map. Concrete ap-
plications can be found mostly in signal analysis and processing (see [1,2,22]
and references therein), but recent works in different areas such as numerical
analysis may also be mentioned (see for example [5,6] and references therein).
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Time-frequency analysis of operators, by far less developed, has enjoyed in-
creasing interest during the last few years. Efficient time-frequency operator
representation remains very challenging, despite a number of theoretical re-
sults.

Starting from the time-frequency representations, both continuous and dis-
crete, of functions, it is an obvious first guess for operator representation,
to change the coefficients in the time-frequency domain before resynthesizing
the signal. This idea is at the heart of so-called time-frequency multipliers,
for which the modification of the coefficients obtained by the time-frequency
transform is restrained to be multiplicative. This restraint naturally leads to
a very restrictive, be it important, class of operators, which are well-described
by these representations.

Here, we start from a completely different point of view: motivated by a com-
plete characterization of linear operators in the continuous short-time Fourier
transform domain via a twisted convolution, we generalize the idea of time-
frequency multipliers in several directions. In a few words, a Gabor multiplier
is characterized by an analysis window, a synthesis window and a bounded
sequence, which we shall call a mask, or time-frequency transfer function. For
a given analysis window, the synthesis window may be adapted to accommo-
date time-frequency shifts, if the operator under study involves such shifts. In
addition, several synthesis windows may be introduced to improve the quality
of the approximation. We develop a construction that provides, under suitable
assumptions on the windows, the optimal family of masks for a given Hilbert-
Schmidt operator and a given family of synthesis windows. On the other hand,
if the analysis window and a mask are fixed, one or several synthesis window
may be constructed that yield a good Gabor multiplier or multiple Gabor
multiplier approximation of a given Hilbert-Schmidt operator. Although the
straightforward generalization of the operator representation in the continuous
time-frequency domain via a twisted convolution is not possible, it turns out
that in both cases, we end up dealing with some discrete version of the twisted
convolution. This stems from the fact that the constructions we present here
respect the structure imposed by the Heisenberg group.

This paper is organized as follows. The next section gives a review of the time-
frequency plane and the corresponding continuous and discrete transforms. We
then introduce the concept of Gelfand triples, which will allow us to consider
operators beyond the Hilbert-Schmidt frame-work. The section closes with the
important statement on operator-representation in the time-frequency domain
via twisted convolution with an operator’s spreading function. Section 3 in-
troduces time-frequency multipliers and gives a criterion about their ability
to approximate linear operators. Section 4 represents the main new insights in
generalizations of Gabor multipliers. We conclude with the prospect of gener-
alizations and applications which will be presented in future work.
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2 Operators from the Time-frequency point of view

Whenever one is interested in the frequency content of a signal or operator
which is desired to be time-localized at the same time, one is naturally led to
the notion of the time-frequeny plane, which, in turn, is closely related to the
Weyl-Heisenberg group.

2.1 Preliminaries: the time-frequency plane

The starting point of our operator analysis is the so-called spreading function
operator representation. This operator representation expresses linear oper-
ators as a sum (in a sense to be specified below) of time-frequency shifts
π(b, ν) = MνTb. Here, the translation and modulation operators are defined
as

Tbf(t) = f(t− b) , Mνf(t) = e2iπνtf(t) , f ∈ L2(R) .

These operators generate a group, called the Weyl-Heisenberg group

H = {(b, ν, ϕ) ∈ R× R× [0, 1]} , (1)

with group multiplication

(b, ν, ϕ)(b′, ν ′, ϕ′) = (b + b′, ν + ν ′, ϕ + ϕ′ − ν ′b) . (2)

The specific quotient space P = H/[0, 1] of the Weyl-Heisenberg group is called
phase space, or time-frequency plane, which plays a central role in the subse-
quent analysis. Details on the Weyl-Heisenberg group and the time-frequency
plane may be found in [13,23]. In the current article, we shall limit ourselves
to the basic irreducible unitary representation of H on L2(R), denoted by πo,
and defined by

πo(b, ν, ϕ) = e2iπϕMνTb , (3)

and we also denote by π(b, ν) = πo(b, ν, 0) the restriction to the phase space.
We refer to [3] or [16, Chapter 9] for a more detailed analysis of this quotient
operation.

The left-regular (and right-regular) representation(s) generally plays a central
role in group representation theory. The Weyl-Heisenberg group being uni-
modular, its left and right regular representations coincide, we thus focus on
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the left-regular one, acting on L2(H) and defined by

[L(b′, ν ′, ϕ′)F ](b, ν, ϕ) = F (b− b′, ν − ν ′, ϕ− ϕ′ + b′(ν − ν ′)) . (4)

Denote by µ the Haar measure. Given F,G ∈ L2(H, dµ), the associated (left)
convolution product is the bounded function F ∗G, given by

(F ∗G)(b, ν, ϕ) =
∫

H

F (h)[L(b, ν, ϕ)G](h) dµ(h) . (5)

After quotienting out the phase term, this yields the twisted convolution on
L2(P):

(F♮G)(b, ν) =

∞∫

−∞

∞∫

−∞

F (b′, ν ′)G(b− b′, ν − ν ′)e−2iπb′(ν−ν′) db′dν ′ . (6)

The twisted convolution, which admits a nice interpretation in terms of group
plancherel theory [3] is non-commutative (which reflects the non-Abelianess
of H) but associative. It satisfies the usual Young inequalities, but is in some
sense nicer than the usual convolution, since L2(R2)♮L2(R2) ⊂ L2(R2) (see [13]
for details).

As explained in [18,19] (see also [14] for a review), the representation πo is
unitarily equivalent to a subrepresentation of the left regular representation.
The representation coefficient is given by a variant of the short time Fourier
transform (STFT), which we define next.

Definition 1 Let g ∈ L2(R), g 6= 0. The STFT of any f ∈ L2(R) is the
function on the phase space P defined by

Vg(b, ν) = 〈f, π(b, ν)g〉 =

∞∫

−∞

f(t)g(t− b)e−2iπνt dt . (7)

This STFT is obtained by quotienting out [0, 1] in the group transform

V
o

g (b, ν, ϕ) = 〈f, πo(b, ν, ϕ)g〉 . (8)

The integral transform V o
g intertwines L and πo, i.e. L(h)V o

g = V o
g πo(h) for

all h ∈ H. The latter relation still holds true (up to a phase factor) when πo

and V o
g are replaced with π and Vg respectively.
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It follows from the general theory of square-integrable representations that
for any g ∈ L2(R), g 6= 0, the transform V o

g is (multiple of) an isometry
L2(R) → L2(P), and thus left invertible by the adjoint transform (up to a
constant factor). More precisely, given h ∈ L2(R) such that 〈g, h〉 6= 0, one
has for all f ∈ L2(R)

f =
1

〈h, g〉

∫

P

Vgf(b, ν) π(b, ν)h dbdν . (9)

We refer to [1,16] for more details on the STFT and signal processing appli-
cations.

The STFT, being a continuous transform, is not well adapted for numerical
calculations, and is conveniently replaced with the Gabor transform, which is
a sampled version of it. To fix notation, we outline some steps of the Gabor
frame theory and refer to [2,16] for a detailed account.

Definition 2 (Gabor transform) Given g ∈ L2(R) and two constants a0, ν0 ∈
R

+, the corresponding Gabor transform associates with any f ∈ L2(R) the se-
quence of Gabor coefficients

Vgf(mb0, nν0) = 〈f,Mnν0Tmb0g〉 = 〈f, gmn〉 , (10)

where the functions gmn = Mnν0Tmb0g are the Gabor atoms associated to g and
the lattice constants b0, ν0.

Whenever the Gabor atoms associated to g and the given lattice Λ = b0Z×ν0Z

form a frame, 1 the Gabor transform is left invertible, and there exists h ∈
L2(R) such that any f ∈ L2(R) may be expanded as

f =
∑

m,n

Vgf(mb0, nν0)hmn . (11)

The status of the STFT as intertwining operator between the representations
L and πo of H does not have any simple counterpart when STFT is replaced

1 The operator

Sgf =
∑

m,n∈Zd

〈f, Mmb0Tnν0g〉Mmb0Tnν0g

is the frame operator corresponding to g and the lattice defined by (b0, ν0). If Sg

is invertible, the family of time-frequency shifted atoms Mmb0Tnν0g, m, n ∈ Z, is a
Gabor frame for L2(R).

5



with Gabor transform. However, connections between Gabor representations
of operators and twisted convolutions will appear below.

2.2 The Gelfand triple (S0,L
2, S ′

0)

We next set up a framework for the exact description of operators we are in-
terested in. In fact, by their property of being compact operators, the Hilbert
space of Hilbert-Schmidt operators turns out to be far too restrictive to con-
tain most operators of practical interest, starting from the identity. Although
the classical triple (S ,L2,S ′) might seem to be the appropriate choice of
generalization, we prefer to resort to the Gelfand triple (S0,L

2, S ′
0), which has

proved to be more adapted to a time-frequency environment. Additionally, the
Banach space property of S0 guarantees a technically less elaborate account.

Definition 3 Let S (Rd) denote the Schwartz class. Fix a non-zero “window”
function ϕ ∈ S (Rd). The space S0(R

d) is given by

S0(R
d) = {f ∈ L2(Rd) : ‖f‖S0 := ‖Vϕf‖L1(R2d) <∞}.

The following proposition summarizes some properties of S0(R
d) and its dual,

the distribution space S ′
0(R

d).

Proposition 1 S0(R
d) is a Banach space and densely embedded in L2(Rd).

The definition of S0(R
d) is independent of the window ϕ ∈ S (Rd), and dif-

ferent choices of ϕ ∈ S (R) yield equivalent norms on S0(R
d).

By duality, L2(Rd) is densely and weak∗-continuously embedded in S ′
0(R

d) and
can also be characterized by the norm ‖f‖S′

0
= ‖Vϕf‖L∞.

In other words, the three spaces (S0(R
d),L2(Rd), S ′

0(R
d)) is a special case of

a Gelfand triple [15] or Rigged Hilbert space. For a proof, equivalent charac-
terizations, and more results on S0 we refer to [8,7,11].

Via an isomorphism between integral kernels in the Banach spaces S0, S
′
0 and

the operator spaces of bounded operators S ′
0 7→ S0 and S0 7→ S ′

0, we obtain,
together with the Hilbert space of Hilbert-Schmidt operators, a Gelfand triple
of operator spaces, as follows. We denote by B the family of operators that
are bounded S ′

0 → S0 and by B′ the family of operators that are bounded
S0 → S ′

0. We have the following correspondence between these operator classes
and their integral kernels κ:

H ∈ (B,H ,B′)←→ κH ∈ (S0(R
d),L2(Rd), S ′

0(R
d)) .
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For all further details on the Gelfand triples just introduced, we again refer
to [11], only mentioning here, that one of the reasons for investigating oper-
ator representation on the level of Gelfand triples instead of just a Hilbert
space framework is the fact, that S ′

0 contains distributions such as the Dirac
functionals, Shah distributions, pure frequencies or just time-frequency shifts!

Subsequently, we will usually assume that the analysis and synthesis windows
g, h are in S0. This is a rather mild condition, which has almost become the
canonical choice in Gabor analysis, for many good reasons. Among others,
this choice guarantees a beautiful correspondence between the ℓp-spaces and
corresponding modulation space [16], which in the ℓ2-case means, that an S0-
window is automatically a Bessel-atom for arbitrary lattices - a property which
is useful and far from true for L2-functions.

2.3 The spreading function representation, and its connections to short time
Fourier representation

The so-called spreading function representation expresses operators in (B,H ,B′)
as a sum of time-frequency shifts. More precisely, one has (see [16, Chapter 9]):

Theorem 1 Let H ∈ (B,H ,B′); then there exists ηH ∈ (S0(R
2),L2(R2),S ′

0(R
2))

such that

H =

∞∫

−∞

∞∫

−∞

ηH(b, ν)π(b, ν) dbdν . (12)

For H ∈ H, the correspondence H ↔ ηH is isometric, i.e. ‖H‖H = ‖ηH‖L2(P).

Remark 1 For H ∈ B, the decomposition given in (12) is absolutely conver-
gent, whereas, for H ∈ B′, it holds in the weak sense of bilinear forms on S0.
When ηH ∈ L2(P), H is a Hilbert-Schmidt operator, and the above integral is
defined as a Bochner integral.

The spreading function is intimately related to the integral kernel κ = κH of
H via

ηH(b, ν) =

∞∫

−∞

κH(t, t− b)e−2iπνt dt (13)

κH(t, s) =

∞∫

−∞

ηH(t− s, ν)e2iπνt dν (14)
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The spreading function is also related to the Kohn-Nirenberg symbol σH of H
via a symplectic Fourier transform

ηH(b, ν) =

∞∫

−∞

∞∫

−∞

σH(t, ξ)e2iπ(νt−ξb) dtdξ , (15)

and to its Weyl symbol [13] via a similar transformation. Notice that all these
transforms, being isometries for for Hilbert-Schmidt operators, extend to uni-
tary Gelfand triple isomorphisms, see [11].

The spreading function representation of operators provides an interesting
time-frequency implementation for operators, stated in the following proposi-
tion. It turns out to be closely connected to the tools described in the previous
section, in particular twisted convolution and STFT.

Proposition 2 Let H be in (B,H ,B′), and let η = ηH be its spreading
function in (S0(R

2),L2(R2), S ′
0(R

2)). Let g, h ∈ S0(R) be such that 〈g, h〉 = 1.
Then H may be realized as a twisted convolution in the time-frequency domain:
for all f ∈ (S0(R),L2(R), S ′

0(R)),

Hf =

∞∫

−∞

∞∫

−∞

(ηH♮Vgf) (b, ν)MνTbh dbdν . (16)

Proof: The proposition follows from the spreading function representation (12)
of H, combined with the STFT representation (9) of f . A change of variables
yields (16). ♠

Remark 2 If f ∈ L2(R) and H ∈ H , then Vgf , VgHf and ηH ∈ L2(R2),
which is in accordance with the fact that L2♮L2 ⊆ L2.
If f ∈ S0(R), hence Vgf ∈ L1(R2), then H may be in B′, such that ηH ∈
S ′

0(R
2), whereas, as Hf can only assumed to be in S ′

0, VgHf ∈ L∞. This
leads to the inclusion S ′

0♮L
1 ⊆ L∞, which may easily be verified directly.

On the other hand, if f ∈ S ′
0(R), i.e., Vgf ∈ L∞(R2), and H in B, such that

ηH ∈ S0(R
2), and, as Hf is in S0(R), VgHf ∈ L1(R2). Here, this leads to the

conclusion that we have, at least for f ∈ S ′
0(R):

S0♮Vgf ⊆ S0. (17)

Although it is known that Vgf is not only L∞(R2), but also in the Amalgam
space W (FL1, ℓ∞) for f ∈ S ′

0(R) and g ∈ S0(R),[7], it is not clear, whether
(17) also holds for functions F ∈ W (FL1, ℓ∞), which are not on the range
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of S ′
0(R) under Vg. This and other interesting open questions concerning the

twisted convolution of function spaces are currently under investigation 2 .

Remark 3 Notice that Proposition 2 implies that the range of Vg is invariant
under left twisted convolution. Notice also that this is no longer true if the left
twisted convolution is replaced with the right twisted convolution. Indeed, in
such a case, one has

Vgf♮ηH = VH∗gf .

Hence, one has the following simple rule: left twisted convolution on the STFT
amounts to acting on the analyzed function f , while right twisted convolution
on the STFT amounts to acting on the analysis window g. It is worth noticing
that in such a case, applying V ∗

g to Vgf♮ηH yields the analyzed function f , up
to some (possibly vanishing) constant factor.

Remark 4 Notice also that twisted convolution in the phase space is asso-
ciated with the true translation structure. Indeed, time-frequency shifts take
the form of twisted convolutions with a Dirac distribution on P:

δb0,ν0♮Vgf = VgMν0Tb0f .

This corresponds to the usage of engineers, who use to “adjust the phases”
after shifting STFT coefficients.

2.4 Finite STFT and matrix representations

Similar developments can be made in the finite case, i.e. for performing time-
frequency analysis of vectors and matrices. Indeed, the STFT may be de-
veloped as well in the Hermitian space C

N , using the finite version of the
Weyl-Heisenberg group

HN = ZN × ZN × ZN , (18)

with group law

(m,n, ϕ)(m′, n′, ϕ′) = (m + m′, n + n′, ϕ + ϕ′ − n′b) , (19)

all operations being understood modulo N . Defining periodic discrete trans-
lation and modulation operators by

Tmx[k] = x[(k −m)[mod N ]] , Mnx[k] = e2iπkn/Nx[k] ,

2 H. Feichtinger and F. Luef. Twisted convolution properties for Wiener amalgam
spaces. In preparation, 2007.
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the time-frequency shifts MnTn, m,n = 0, . . . N − 1 form a projective repre-
sentation of HN on C

N .

The corresponding STFT is defined as before. Given an analysis window g ∈
C

N , the corresponding STFT associates to any x ∈ C
N the vector Vgx ∈ C

N×N

defined by

Vgx[m,n] =
N−1∑

k=0

x[k]e−2iπnk/Ng[k −m] , (20)

all sums and differences being understood modulo N .

Homomorphisms of C
N also admit a spreading function decomposition, which

takes the following simple form: the family of operators

{MnTm, m, n ∈ ZN}

is an orthonormal basis of Hom(CN). Every H ∈ Hom(CN) is characterized
by a spreading function ηH ∈ C

N2
, such that

H =
N−1∑

m,n=0

ηH [m,n]MnTm .

The counterpart of Proposition 2 in this context is as follows. Let H ∈
Hom(CN), and let ηH be its spreading function. Let g ∈ C

N be a unit norm
vector. Then H may be realized as a twisted convolution in the time-frequency
domain: for all x ∈ C

N ,

Hx =
∑

m,n

(ηH♮Vgx) [m,n]MnTng ,

where the discrete twisted convolution is defined as

F♮G[m,n] =
N−1∑

m′,n′=0

F [m′, n′]G[m−m′, n− n′]e−2iπm(n−n′)/N , F,G ∈ C
N .

Remark 5 Note that, naturally, in the finite discrete case, all the function
spaces introduced in the former section coincide.

3 Time-Frequency multipliers

Section 2 has shown the close connection between the spreading function rep-
resentation of Hilbert-Schmidt operators and the short time Fourier transform.
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However, the twisted convolution representation is generally of poor practical
interest in the continuous case, because it does not discretize well. Even in the
finite case, it relies on the full STFT on C

N , which represents vectors with N2

STFT coefficients, which may be far too large in practice, and sub-sampling
is not possible in a straightforward way.

Time-frequency (in particular Gabor) multipliers represent a valuable alter-
native for time-frequency operator representation (see [12,20] and references
therein for reviews). We analyze below the connections between these repre-
sentations and the spreading function, and point out some limitations, before
turning to generalizations.

3.1 Definitions and main properties

Let g, h ∈ S0(R) be such that 〈g, h〉 = 1, let m ∈ L∞(R2), and define the
STFT multiplier Mm;g,h by

Mm;g,hf =
∫

P

m(b, ν)Vgf(b, ν) π(b, ν)h dbdν, (21)

This clearly defines a bounded operator on (S0(R),L2(R), S ′
0(R)). The function

m is usually called in the mathematics literature the upper symbol of the
operator. In more signal processing oriented terms, m is also called the time-
frequency transfer function, or the mask of the multiplier.

Similarly, given lattice constants b0, ν0 ∈ R
+, set πmn = π(mb0, nν0) = Mnν0Tmb0 .

Then, for m ∈ ℓ∞(Z2), the corresponding Gabor multiplier is defined as

M
G
m;g,hf =

∞∑

m=−∞

∞∑

n=−∞

m(m,n)Vgf(mb0, nν0) πmnh . (22)

Note that the definition of time-frequency multipliers can of course be given for
g, h ∈ L2(R), many nice properties only apply with additional assumptions
on the windows. Abstract properties of such multipliers have been studied
extensively, and we refer to [12] for a review. One may show for example that,
whenever the windows g and h are at least in S0, if m belongs to L2(P) (or
ℓ2(Z2)) then the corresponding multiplier is an Hilbert-Schmidt operator and
maps S ′

0(R) to L2(R).

The spreading function of time-frequency multipliers may be computed ex-
plicitly.

Lemma 1 (1) The spreading function of the STFT multiplier Mm;g,h is given
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by

ηM
m;g,h

(b, ν) = M (b, ν)Vgh(b, ν) , (23)

where M is the symplectic Fourier transform of the transfer function m

M (t, ξ) =
∫

P

m(b, ν)e2iπ(νt−ξb) dbdν .

(2) The spreading function of the Gabor multiplier M
G
m;g,h is given by

ηG
M

m;g,h
(b, ν) = M

(d)(b, ν)Vgh(b, ν) , (24)

where the (ν0
−1, b0

−1)-periodic function M (d) is the symplectic Fourier
transform of the transfer function m

M
(d)(t, ξ) =

∞∑

m=−∞

∞∑

n=−∞

m(m,n)e2iπ(nν0t−mb0ξ) .

Proof : We prove the result in the STFT case, the other case is obtained
following the same lines and replacing integrals with sums. Assume that m ∈
L2(P), and set M = Mm;g,h. Let us first write, for f ∈ L2(R)

Mf(t) =
∫

e2iπν(t−s)g(s− b)h(t− b)m(b, ν)f(s) dbdνds ,

so that the integral kernel of M takes the form

κ(t, s) =
∫

P

e2iπν(t−s)g(s− b)h(t− b)m(b, ν) dbdν .

The spreading function is then obtained by Fourier transformation

η(b, ν) =

∞∫

−∞

κ(t, t− b)e−2iπνt dt

=
∫

e2iπξbg(t− b− x)h(t− x)m(x, ξ)e−2iπνt dtdxdξ

=
∫

P

e2iπ(ξb−νx)m(x, ξ) dxdξ

∞∫

−∞

h(s)g(s− b)e−2iπνs ds

= M (b, ν) Vgh(b, ν) ,

which concludes the proof. A similar calculation yields the same expression in
the Gabor case.
By virtue of that fact that for g, h ∈ S0, Vgh is certainly in L1(P) and even
in the Wiener amalgam space W (C,L1), hence in particular continuous, the
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expressions for the spreading function given in the lemma are always well-
defined. ♠

Remark 6 These expressions are easily generalized to Gabor frames associ-
ated to arbitrary lattices Λ ⊂ R

2. In such situations, the spreading function
takes a similar form, and involves some discrete symplectic Fourier transform
of the transfer function m, which is in that case a Λ⊥-periodic function, Λ⊥

being the dual lattice of Λ.

Notice that as a consequence of Theorem 1, one then has the following “in-
tertwining property”

VgMm;g,hf = (M Vgh)♮Vgf .

Remark 7 It follows from the above calculations that the spreading functions
of STFT and Gabor multipliers must have specific forms, and that not any
Hilbert-Schmidt operator may be implemented as Gabor multiplier. For exam-
ple, let us assume that the analysis and synthesis windows have been chosen,
and let η be the spreading function of the operator under consideration.

• In the STFT case, if the analysis and synthesis windows are fixed, the
decay of the spreading function has to be fast enough (at least as fast as
the decay of Vgh) to ensure the boundedness of the quotient M = η/Vgh.
Such considerations have led to the introduction of the notion of underspread
operators [21] whose spreading function is compactly supported in a domain
of small enough area.
• In the Gabor case, the periodicity of M (d) imposes extra constraints on the

spreading function η.

3.2 Approximation by Gabor multipliers

The possibility of approximating operators by Gabor multipliers in Hilbert-
Schmidt sense depends on the properties of the rank one operators associated
with time-frequency shifted copies of the analysis and synthesis windows.

Let g, h ∈ S0(R) be such that 〈g, h〉 = 1. Let λ = (b1, ν1) ∈ P, and consider
the rank one operator (oblique projection) Pλ defined by

Pλf = g∗

λ⊗〉hλf = 〈f, gλ〉hλ , f ∈ (S0(R),L2(R, S ′

0(R) . (25)

Direct calculations show that

Lemma 2 The kernel of Pλ is given by

κPλ
(t, s) = gλ(s)hλ(t) , (26)
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and its spreading function reads

ηPλ
(b, ν) = e2iπ(ν1b−b1ν)

Vgh(b, ν) . (27)

The following result characterizes the situations for which time-frequency rank
one operators form a Riesz sequence, in which case the best approximation by
a Hilbert-Schmidt operator is well-defined.

Proposition 3 Let g, h ∈ L2(R), with 〈g, h〉 6= 0, let b0, ν0 ∈ R
+, and set

U(t, ξ) =
∞∑

k,ℓ=−∞

∣∣∣∣∣Vgh

(
t +

k

ν0

, ξ +
ℓ

b0

)∣∣∣∣∣

2

. (28)

The family {Pmb0,nν0 , m, n ∈ Z} is a Riesz sequence if and only if there exist
real constants 0 < A ≤ B <∞ such that for almost all (t, ξ),

0 < A ≤ U(t, ξ) ≤ B <∞ . (29)

We call this condition the U condition.

Proof : The family {Pmb0,nν0 , m, n ∈ Z} is a Riesz sequence if there exist
constants 0 < A ≤ B <∞ such that for all c ∈ ℓ2(Λ),

A‖c‖2 ≤

∥∥∥∥∥∥

∑

λ∈Λ

cλPλ

∥∥∥∥∥∥

2

≤ B‖c‖2 .

We have that

∥∥∥∥∥∥

∑

λ∈Λ

cλPλ

∥∥∥∥∥∥

2

=
∑

λ,µ

cλcµTr(PλP
∗

µ)

=
∑

λ,µ

cλcµ

∞∫

−∞

∞∫

−∞

κλ(t, s)κµ(t, s) dtds

=
∑

λ,µ

cλcµ〈gλ, gµ〉〈hλ, hµ〉

Taking λ = (b, ν) and µ = (b′, ν ′), a direct calculation yields

〈gλ, gµ〉 = e2iπ(ν−ν′)b
Vgg(b− b′, ν − ν ′) ,

so that ∥∥∥∥∥∥

∑

λ∈Λ

cλPλ

∥∥∥∥∥∥

2

=
∑

(b,ν),(b′,ν′)∈Λ

cbνcb′ν′ U(b− b′, ν − ν ′) ,
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where we have set
U(b, ν) = Vgg(b, ν)Vhh(b, ν) .

Specializing to the lattice Λ = Zb0×Zν0, denote by U the discrete symplectic
Fourier transform of the sequence {U(mb0, nν0), m, n ∈ Z} of samples of U ,
i.e.

U(t, ξ) =
∑

m,n

U(mb0, nν0)e
2iπ(nν0t−mb0ξ) .

Notice that this defines a ν0
−1 × b0

−1-periodic function. From the inverse dis-
crete symplectic Fourier transform, we obtain

∥∥∥∥∥∥

∑

λ∈Λ

cλPλ

∥∥∥∥∥∥

2

= b0ν0

∫

�

|C(t, ξ)|2U(t, ξ) dξdt ,

where C is the discrete symplectic Fourier transform of c

C(t, ξ) =
∑

m,n

cmne
2iπ(nν0t−mb0ξ) ,

and � is the fundamental domain of the adjoint lattice Λ⊥

� = [0, ν0
−1[×[0, b0

−1[ .

From the above calculations we deduce that U(t, ξ) must be bounded below
by a constant A > 0. for all t, ξ.
Hence, we have the following intermediate result: the family {Pmb0,nν0 , m, n ∈
Z} is a Riesz sequence if and only if

0 < A ≤ U(t, ξ) ≤ B <∞ , for almost all (t, ξ) (30)

for some positive constants A < B. Let us now compute

Û(ξ, t) =

∞∫

−∞

∞∫

−∞

Vgg(b, ν)Vhh(b, ν)e−2iπ(νt+bξ) dbdν

=
∫

h(x)g(y)h(x− b)g(y − b)e2iπν(x−y)e−2iπ(νt+bξ) dbdνdxdy

=
∫

h(x)h(x− b)g(x + t)g(x + t− b)e−2iπξ(x−y)dxdy

= |Vgh(−t, ξ)|2

Finally, we obtain the result by applying the Poisson summation formula

U(t, ξ) =
∑

k,ℓ

|Vgh(t + k/ν0, ξ + ℓ/b0)|
2 ,
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which concludes the proof. ♠

Remark 8 The intermediate result (30) has already appeared before, see [9].

Similar results may be derived for non-square lattices Λ; the U condition then
has to be replaced with an analogous condition, involving periodization with
respect to the dual lattice Λ⊥ of Λ.

It turns out, that the approximation of a given operator via a standard min-
imization process yields an expression, which is only well-defined if the U
condition (29) holds.

Theorem 2 Assume that Vgh and b0, ν0 ∈ R
+ are such that the U condi-

tion (29) is fulfilled. Then the best Gabor multiplier approximation (in Hilbert-
Schmidt sense) of H ∈ H is defined by the time-frequency transfer function
m whose discrete symplectic Fourier transform reads

M (b, ν) =

∑
∞
k,ℓ=−∞ Vgh (b + k/ν0, ν + ℓ/b0) ηH (b + k/ν0, ν + ℓ/b0)

∑
∞
k,ℓ=−∞ |Vgh (b + k/ν0, ν + ℓ/b0)|

2 (31)

Proof: Let us denote as before by � the rectangle � = [0, ν0
−1[×[0, b0

−1[, and
set V = Vgh for simplicity of notations. The Hilbert-Schmidt optimization is
equivalent to the problem

min
M∈L2(�)

‖ηH −MV ‖2 .

The latter squared norm may be written as

‖ηH−MV ‖2 =

∞∫

−∞

∞∫

−∞

|ηH(b, ν)−M (b, ν)V (b, ν)|2 dbdν

=
∞∑

k,ℓ=−∞

∫∫

�

|ηH(b + k/ν0, ν + ℓ/b0)M (b, ν)V (b + k/ν0, ν + ℓ/b0)|
2 dbdν

=
∫∫

�

[∑

k,ℓ

|ηH(b + k/ν0, ν + ℓ/b0)|
2

− 2ℜ
(
M (b, ν)

∑

k,ℓ

ηH(b + k/ν0, ν + ℓ/b0)V (b + k/ν0, ν + ℓ/b0)
)

+ |M (b, ν)|2
∑

k,ℓ

|V (b + k/ν0, ν + ℓ/b0)|
2
]

From this expression, the Euler-Lagrange equations may be obtained, which
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read

M (b, ν)
∑

k,ℓ

|V (b+k/ν0, ν+ℓ/b0)|
2 =

∑

k,ℓ

ηH(b+k/ν0, ν+ℓ/b0)V (b+k/ν0, ν+ℓ/b0) ,

and the result follows. ♠

Remark 9 Note that, although technically only defined for Hilbert-Schmidt
operators, the approximation by Gabor multipliers can formally be extended
to operators from B′, see [12, Section 5.8]. In the finite discrete case which is
of relevance in practice, this insight can be realized.

4 Generalizations: multiple Gabor multipliers and TST spreading
functions

It has become clear in the last section that most operators cannot exactly be
realized as a STFT or Gabor multiplier. Even if the analysis and synthesis
windows as well as lattice constants have been carefully adjusted, so that the
corresponding time-frequency projection operators form a Riesz sequence, they
do not necessarily provide good approximations. An example for operators
which are poorly represented by this class of multipliers are those with a
spreading function that is not “well-concentrated”. These are, in technical
terms, overspread operators.

Guided by the desire to extend the good approximation quality that Gabor
multipliers warrant for underspread operators to the above-mentioned class
of their overspread counterparts, we introduce two classes of generalized TF-
multipliers.

In the first approach, operators in (B,H ,B′) are approximated using a sum
of Gabor multipliers, with various synthesis windows (a similar approach has
been followed by D. Marelli 3 .) This amounts to the use of more than one
synthesis windows to account for the overspread character of the operator.
The approximation is set up by Gabor multipliers with a fixed analysis win-
dow, synthesis windows with different (fixed) time-frequency localizations, and
tunable masks.

In the second approach, a covariant spline type approximation of the spreading
function of the operator is used. This ultimately leads to the adaptation of the
synthesis windows to the properties of the operator of interest, with a fixed
mask.

3 Private communication
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4.1 Varying the mask: Multiple Gabor multipliers

Coming back to the language of the previous section, we consider the problem
of approximating a Hilbert-Schmidt operator, not by a single Gabor multiplier,
but by a linear combination of such multipliers, using a fixed family of synthesis
window.

Definition 4 (Multiple Gabor Multipliers) Let g ∈ S0(R) and a family
of reconstruction windows h(j) ∈ S0(R) as well as corresponding time-frequency
transfer functions mj be given. Operators of the form

M =
∑

j

M
G
mj ;g,h(j) . (32)

will be called Multiple Gabor Multipliers (MGM for short).

In the sequel, the discrete symplectic Fourier transforms of mj will be denoted
by Mj, and the vector with Mj as coordinates will be denoted by M .
Theorem 2 may be extended to the situation of Multiple Gabor Multipliers as
follows.

Proposition 4 Let g ∈ S0(R) and h(j) ∈ S0(R), j = 1, . . . J be such that for
almost all b, ν, the matrix Γ(b, ν) defined by

Γ(b, ν)jj′ =
∑

k,ℓ

Vgh(j)(b + k/ν0, ν + ℓ/b0)Vgh
(j′)(b + k/ν0, ν + ℓ/b0) (33)

is invertible.

Let H ∈ (B,H ,B′) be an operator with spreading function η ∈ (S0(R
2),L2(R2), S ′

0(R
2)).

Then the functions Mj yielding optimal approximation of the form (32) may
be obtained as

M = Γ−1 · B , (34)

where B is the vector whose entries read

Bj0(b, ν) =
∑

k,ℓ

η(b + k/ν0, ν + ℓ/b0)V j0(b + k/ν0, ν + ℓ/b0). (35)

Proof: The proof follows the lines of the Gabor multiplier case. The optimal
approximation of the form (32), when it exists, is obtained by minimizing

‖η−
∑

j

MjVj‖
2 =

∑

k,ℓ

∫

�

|η(b+k/ν0, ν+ℓ/b0)−
∑

j

Mj(b, ν)Vj(b+k/ν0, ν+ℓ/b0)|
2 dbdν
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where one has set Vj = Vgh
(j). Setting to zero the Gâteaux derivative with

respect to M j0 , we obtain the corresponding variational equation

∑

j

Mj(b, ν)
∑

k,ℓ

Vj(b + k/ν0, ν + ℓ/b0)V j0(b + k/ν0, ν + ℓ/b0) = Bj0(b, ν) ,

where Bj(b, ν) are as defined in (35). Provided that the Γ(b, ν) matrices are
invertible for almost b, ν, this implies that the functions Mj for optimal ap-
proximation of the form (32) may indeed be obtained as in (34). ♠.

We shall be particularly interested in the special case of hj being time-frequency
translates of a fixed window function, i.e.

h(j)(t) = π(bj, νj)h(t) = e2iπνjth(t− bj) . (36)

More specifically, if the reconstruction windows are TF-shifted versions of a
single window h, where the TF-shifts are taken on the dual lattice of Λ =
b0Z × ν0Z, the matrix Γ turns out to enjoy quite a simple form. To fix some
notation, let

Amn(b, ν) =
∑

k,ℓ

e2iπm[ν−ℓ/ν0]
V (b− k/ν0, ν − ℓ/b0)

× V (b− (k −m)/ν0, ν − (ℓ− n)/b0),

and introduce the right twisted convolution operator

K♮
A(b, ν) : M (b, ν)→M (b, ν)♮A(b, ν).

Theorem 3 Let g, h ∈ S0 as well as b0, ν0 be given. Furthermore, let h(j) =
π(m

ν0
, n

b0
)h. Then the variational equations read

M (b, ν)♮A(b, ν) = B(b, ν) . (37)

Hence, if for all b, ν ∈ R
2, the discrete right twisted convolution operator K♮

A

is invertible, the best MGM approximation of an Hilbert-Schmidt operator with
spreading function η is given by the family of transfer functions

Mmn(b, ν) =
[
(K♮

A(b, ν))−1B(b, ν)
]
mn

,

where B is given in (35).

Proof: First consider the case (36) where h(j) = π(bj, νj)h, and set for simplic-
ity V = Vgh. Then

Vj(b, ν) = e−2iπbj(ν−νj)Vgh(b− bj, ν − νj) ,
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and the matrix Γ takes the form

Γ(b, ν)jj′ =
∑

k,ℓ

exp (2iπ[bj(ν + ℓ/b0 − νj)− bj′(ν + ℓ/b0 − νj′)])

× V (b− bj + k/ν0, ν − νj + ℓ/b0)

× V (b− bj′ + k/ν0, ν − νj′ + ℓ/b0)

Now assume that the sampling points (bj, νj) are taken on the dual lattice, i.e.
bj = m/ν0, bj′ = m′/ν0, νj = n/b0 and νj′ = n′/b0. Then the latter expression
reads

Γ(b, ν)mn;m′n′ =
∑

k,ℓ

e2iπ[m(ν+(ℓ−n)/b0)/ν0−m′(ν+(ℓ−n′/b0)/ν0)]

× V (b− (m− k)/ν0, ν − (n− ℓ)/b0)

× V (b− (m′ − k)/ν0, ν − (n′ − ℓ)/b0)

= e−2iπm′(n−n′)/b0ν0 Am−m′,n−n′(b, ν) ,

withA as defined in (37). Therefore, in this situation, the variational equations
gives (37), which concludes the proof. ♠

Notice that the invertibility of the right twisted convolution operator above is
the direct generalization of the U condition (29). Actually, following the lines
of the discussion in Section 3, one may prove the subsequent result.

Corollary 1 The family of rank one projectors

P
(j)
λ : f ∈ L2 7−→ 〈f, gλ〉h

(j)
λ , λ ∈ Λ⊥, j = 1, . . . J

is a Riesz sequence if and only if the right twisted convolution operator K♮
A is

invertible.

Remark 10 It is quite obvious that the condition in the proposition directly
generalizes Proposition 3. Whenever for each j the single system of projection
operators defined by g∗

λ⊗h
(j)
λ f , establishes a Riesz basis and the single systems

do not overlap too much, an overall Riesz basis can be expected. Intuitively,
and observing the result of Proposition 3, these considerations must lead to
an invertible matrix Γ, which is diagonally dominant.

Example 1 As an example, we consider a situation, in which the approxima-
tion of a given operator which is not underspread, namely a convolution with
a sinusoid, is performed by a Multiple Gabor multiplier of the following sim-
ple form. We use 5 synthesis windows, which are time- respectively frequency
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Fig. 1. Spectrogram of the five synthesis windows used in Example 1

Fig. 2. Approximation by Gabor multiplier and Multiple Gabor multiplier

translates of the analysis window g on 5 points of the dual lattice:

(0, 0), (0, 1/b0), (0,−1/b0), (1/ν0, 0), (−1/ν0, 0) .

The spectrogram of the five windows, that is, Vgh
(j), j = 1, . . . , 5, is depicted

in Figure 1. The sampling density of the Gabor family used for analysis was
chosen to be critical. The approximation quality was compared to the ap-
proximation by a simple Gabor multiplier both at critical density and with
redundancy 4.5. In both cases, the multiple Gabor multiplier model yields bet-
ter results: the error ε defined by ε = ‖CC −M‖/‖CC‖, where CC denotes
the given convolution operator and M its approximation was 0.6525 for M
the multiple Gabor multiplier approximation (with critical density), 0.9940
for the redundancy 1 case and 0.8473 for the redundancy 4.5 case of approx-
imation by a simple Gabor multiplier. This approximation behavior can also
be recognized when we take a look at the result of the operators applied to a
random vector, shown in Figure 2. The dash dotted graph shows the result of
true convolution, the dashed one the approximation by a Gabor multiplier and
the solid line the result of the approximation by Multiple Gabor multiplier.
Although this is a prototypical rather than an example of practical relevance,
it shows, that multiple Gabor multiplier have the potential to better approx-
imate overspread operators than Gabor multipliers.

4.2 Varying the synthesis window: TST spreading functions

In the approach described above, the synthesis windows of the MGMs were
fixed functions, and the transfer functions were optimized. We now discuss a
different approach, in which a single transfer function is given, and the MGM
is defined by adapted synthesis windows. These rely on the notion of Twisted
Spline Type functions.

Definition 5 (TST spreading functions) Let φ be a given function from
the function spaces (S0(R

2),L2(R2), S ′
0(R

2)) and let b1, ν1 denote positive num-
bers. A spreading function η = ηH of H ∈ (B,H ,B′), that may be written
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as

η(b, ν) =
∑

k,ℓ

αkℓφ(b− kb1, ν − ℓν1)e
−2iπ(ν−ℓν1)kb1 (38)

will be called Twisted Spline Type function (TST for short).

Remark 11 Depending on the properties of the coefficient sequence α, we
have the following function space membership of η:
If φ is in S0(R

2), it suffices to require boundedness of α in order to obtain a
spreading function in S ′

0(R
2), with unconditional convergence of the sequence

in the weak operator topology, see [17, Lemma 2.2]. Dually, if φ ∈ S ′
0(R

2) and
α ∈ ℓ1, the TST spreading function is again at least in S ′

0(R
2). On the other

hand, it is easy to see that for α in ℓ1, η will again be in S0(R
2), whenever

φ is in S0(R
2). Finally, for ℓ2-sequences α, we obtain an L2-function η for

φ ∈ L2(R2).

TST functions are nothing but spline type functions (following the terminology
introduced in [9]), in which usual (Euclidean) translations are replaced with
the natural (i.e. H-covariant) translations on the phase space P. This leads to
the following property of operators associated with TST spreading functions.

Lemma 3 Let H ∈ (B,H ,B′) be an operator associated with a TST spread-
ing function η ∈ (S0(R

2),L2(R2), S ′
0(R

2)) as in (38). Then

H =
∑

k,ℓ

αkℓπ(kb1, ℓν1)Hφ , (39)

where Hφ is the linear operator with spreading function φ.

Proof: We just have to compute

H =
∑

k,ℓ

αkℓ

∫

P

φ(b′, ν ′)e−2iπν′kb1Mν′+ℓν1Tb′+kb1 db′dν ′

=
∑

k,ℓ

αkℓ

∫

P

φ(b′, ν ′)e−2iπν′kb1Mℓν1Mν′Tkb1Tb′ db′dν ′

=
∑

k,ℓ

αkℓπ(kb1, ℓν1)
∫

P

φ(b′, ν ′)Mν′Tb′ db′dν ′ ,

which is the desired result. ♠

In a next step we assume that the basic function φ entering in the composition
of η is the spreading function of a Gabor multiplier (at least in an approximate
sense). According to the discussion of Section 3, this essentially means that η
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is sufficiently well concentrated in the time-frequency domain, and that η/Vgh
possesses the desired periodicity properties.

We denote by m = {m(m,n), m, n ∈ Z} the corresponding time-frequency
transfer function. Then for f ∈ (S0(R),L2(R), S ′

0(R)), we have

Hφf =
∑

m,n

m(m,n)Vgf(mb0, nν0)hmn ,

for some h ∈ S0. Hence

Hf =
∑

k,ℓ

αkℓπkℓ

∑

m,n

m(m,n)Vgf(mb0, nν0)πmnh (40)

=
∑

m,n

m(m,n)Vgf(mb0, nν0)
∑

k,ℓ

αkℓπ(kb1, ℓν1)πmnh

Based on this expression, we are going to pursue two different choices of the
sampling-points (kb1, ℓν1) in the TST representation of η. First, we assume
that these sampling points are taken on the primal lattice Λ. The second
choice of sampling points on the dual lattice leads to a completely different
result.

4.2.1 Gabor twisters associated with the primal lattice

The subsequent construction has first been proposed in [3]. Assume that
(b1, ν1) generate a sub lattice of Λ, i.e. b1 = rb0, and ν1 = sν0. Then, based
on (40), we may continue the calculation as

Hf =
∑

m,n

m(m,n)Vgf(mb0, nν0)
∑

k,ℓ

αkℓe
−2iπrsknb0ν0πrk+m,sℓ+nh

=
∑

p,q

Ṽgf(p, q)hpq .

Here the new Gabor coefficients Ṽgf(p, q) read

Ṽgf(p, q) =
∑

k,ℓ

αkℓWp−rk,q−sℓe
−2iπrk(q−ℓ)b0ν0 = (α♯W )pq (41)

and ♯ denotes a downsampling followed by a twisted convolution, whereas the
new coefficients Wmn are weighted copies of the original Gabor coefficients
Vgf :

Wmn = m(m,n)Vgf(mb0, nν0) . (42)
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In other words, Gabor coefficients of Hf may be obtained by the following
two-steps procedure:

(1) Weight the Gabor coefficients of f using the time-frequency transfer func-
tion m of the Gabor multiplier Hφ.

(2) Evaluate the twisted convolution of the so-obtained weighted coefficients
with the coefficients α of the TST expansion of the spreading function η
of H.

Hence, in this situation, H may be realized as a Gabor twister, i.e. a (discrete)
twisted convolution in the Gabor coefficient domain, after suitable weighting
of Gabor coefficients.

Remark 12 Similar calculations may be made when b1 and ν1 generate a
lattice containing Λ, which leads to quite the same results, with a subsampled
version of the twisted convolution product.

Remark 13 An alternative model would be given by changing the definition
of the TST spreading function as follows:

η(b, ν) =
∑

k,ℓ

αkℓφ(b− kb1, ν − ℓν1)e
−2iπℓν1(b−kb1) (43)

In a group-theoretical sense this modification corresponds to using the right
regular action of Weyl-Heisenberg group to perform time-frequency shifts on
φ rather than the left regular action.

Using the primal lattice for the sampling points, this modification leads to a
completely analog procedure in reversed order: the Gabor coefficients of the
resulting operator may be obtained by first evaluating the twisted convolution
of the Gabor coefficients of f with the coefficients α of the TST expansion of
the spreading function η and then weighting the so obtained coefficients with
the time-frequency transfer function m of the Gabor multiplier Hφ.

4.2.2 Working on the dual lattice

The dual lattice Λ⊥ turns out to be a natural choice for sampling the TST
functions. The following theorem reflects this structural fact.

Theorem 4 Let b0, ν0 ∈ R
+ generate the time-frequency lattice Λ, and let Λ⊥

denote the dual lattice. Let g, h ∈ S0 denote respectively Gabor analysis and
synthesis windows, such that the U condition (29) is fulfilled. Let H denote the
operator in (B,H ,B′) defined by the twisted spline type spreading function
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η as in (38), with b1, ν1 ∈ R
+.

(1) Assume that b1 and ν1 are multiple of the dual lattice constants. Then H
is a Gabor multiplier, with analysis window g, synthesis window

γ =
∑

k,ℓ

αkℓπ(kb1, ℓν1)h , (44)

and transfer function

m(m,n) = b0ν0

∫

�

M (b, ν)e−2iπ(nν0b−mb0ν) dbdν , (45)

with � the fundamental domain of the adjoint lattice Λ⊥, and

M (b, ν) =

∑
∞
k,ℓ=−∞ Vgh (b + k/ν0, ν + ℓ/b0) φ (b + k/ν0, ν + ℓ/b0)

∑
∞
k,ℓ=−∞ |Vgh (b + k/ν0, ν + ℓ/b0)|

2 (46)

(2) Assume that the lattice generated by b1 and ν1 contains the dual lattice:

b1 =
1

pν0

, ν1 =
1

qb0

. (47)

Then H may be written as a finite sum of Gabor multipliers

Hf =
p∑

i=1

q∑

j=1

( ∑

m≡i [mod p]

∑

n≡j [mod q]

m(m,n)Vgf(mb0, nν0)πmn

)
γij ,(48)

with at most p ·q different synthesis windows γij and the transfer function
given in (45) and (46).

Proof:
Let us first compute

Hf =
∑

k,ℓ

αkℓπkℓ

∑

m,n

m(m,n)Vgf(mb0, nν0)hmn

=
∑

m,n

m(m,n)Vgf(mb0, nν0)
∑

k,ℓ

αkℓπ(kb1, ℓν1)πmnh

=
∑

m,n

m(m,n)Vgf(mb0, nν0)πmnγmn ,

where

γmn =
∑

k,ℓ

αkℓe
2iπ[knb0ν1−ℓmν0b1]π(kb1, ℓν1)h (49)
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Now observe that if (b1, ν1) ∈ Λ⊥, one obviously has

γmn =
∑

k,ℓ

αkℓπ(kb1, ℓν1)h = γ00 ,m, n ∈ Z ,

i.e. the above expression for Hf involves a single synthesis window γ = γ00.
Therefore, in this case, H takes the form of a standard Gabor multiplier, with
fixed time-frequency transfer function, and a synthesis window prespribed by
the coefficients in the TST expansion. This proves the first part of the theorem.

Let us now assume that the TST expansion of the spreading function is finer
than the one prescribed by the lattice Λ⊥, but nevertheless the lattice Λ1 =
Zb1 × Zν1 contains Λ⊥. In other words, there exist positive integers p, q such
that (47) holds.
We then have

γmn =
∑

k,ℓ

αkℓe
2iπ[ knp−lmq

pq
]π(kb1, ℓν1)h (50)

and it is readily seen that there are at most pq different synthesis windows γij,

γij = γm [mod p],n [mod q] , i = 1, . . . , p; j = 1, . . . , q. (51)

The operator H may hence be written as a sum of Gabor multipliers, with one
prescribed time-frequency transfer function, which is sub-sampled on several
sub-lattices of the lattice Λ:

Λij = (pb0 · Z + i · b0)× (qν0 · Z + j · ν0), i = 0, . . . , p− 1; j = 0, . . . , q − 1,

and a single synthesis window per sub-lattice as given in (51). The resulting
expression for H is hence as given in (48).

The expression for the transfer function is derived in analogy to the case
discussed in Section 3. ♠

Remark 14 Let us observe that in this approximation, the time-frequency
transfer function m is completely characterized by the function φ used in
the TST expansion. The choice of φ therefore imposes a fixed mask for the
multipliers that come into play in equation (48).

Example 2 We first consider a situation similar to the one described in Ex-
ample 1. This means, that for a given primal lattice Λ = b0Z×ν0Z, we assume
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the representation of a spreading function by 5 building blocks:

η(b, ν) =
1∑

k=−1

αk0φ(b−
k

ν0

, ν) +
1∑

ℓ=−1

α0ℓφ(b, ν −
ℓ

b0

).

In this case, we obtain a single Gabor multiplier with synthesis window

γ00 =
1∑

k=−1

αk0π(
k

ν0

, 0)h +
1∑

ℓ=−1

α0ℓπ(0,
ℓ

b0

)h .

If we add the windows φ(b ± 1
2ν0

, ν ± 1
2b0

) to the representation of η, we are

now dealing with the finer lattice Λ = 1
2ν0

Z× 1
2b0

Z and we obtain the sum of
4 Gabor multipliers with the following synthesis windows:

γ00 =
1∑

k=−1

αk0π

(
k

2ν0

, 0

)
h +

1∑

ℓ=−1

α0ℓπ

(
0,

ℓ

2b0

)
h,

γ01 =
1∑

k=−1

αk0e
πikπ

(
k

2ν0

, 0

)
h +

1∑

ℓ=−1

α0ℓπ

(
0,

ℓ

2b0

)
h,

γ10 =
1∑

k=−1

αk0π

(
k

2ν0

, 0

)
h +

1∑

ℓ=−1

eπiℓα0ℓπ

(
0,

ℓ

2b0

)
h ,

γ11 =
1∑

k=−1

αk0e
πikπ

(
k

2ν0

, 0

)
h +

1∑

ℓ=−1

α0ℓe
−πiℓπ

(
0,

ℓ

2b0

)
h ,

and corresponding lattices: Λ00 = 2Zb0 × 2Zν0, Λ01 = 2Zb0 × (2Z + 1)ν0,
Λ10 = (2Z + 1)b0 × 2Zν0, and Λ11 = (2Z + 1)b0 × (2Z + 1)ν0.

It is important to note, that in both cases described in Theorem 4 as well
as the above example, the transfer function m can be calculated as the best
approximation by a regular Gabor multiplier - a procedure, for which fast
algorithms exist, see [10].

4.2.3 Riesz sequences of TST functions

The TST expansion for the spreading function may be written in the form

η = Kα ,

where K : ℓ2 → L2 is a discrete right twisted convolution operator. Then one
has

‖η‖2 = 〈K∗Kα,α〉 ,
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and the properties of the TST expansion depend upon the spectral properties
of the self-adjoint operator K∗K : ℓ2 → ℓ2, which is a discrete right twisted
convolution operator:

K∗Kαmn =
∑

m′,n′

αm′n′G(m−m′, n− n′)e−2iπm′b0(n−n′)ν0 = (α♮G)mn , (52)

with

G(k, ℓ) =

∞∫

−∞

∞∫

−∞

φ(b + kb0, ν + ℓν0)φ(b, ν)e2iπkb0ν dbdν .

Proposition 5 The TST functions φmn form a Riesz sequence if and only if
the right twisted convolution operator K∗K in (52) bounded above, and below
by a positive constant.

Again, we observe that the problem of approximating a Hilbert-Schmidt oper-
ator using generalized Gabor multipliers leads to the question of invertibility
of some twisted convolution operator. Quite little seems to be known currently
on this problem. Criteria in the finite case have been given in [4].

5 Conclusions and Future Work

Inspired by the representation of operators by a twisted convolution with the
operator’s spreading function in the STFT-domain, we have derived several
generalizations of the classical approximation of operators by time-frequency
multipliers. Motivated by the desire to transfer the original result to the sit-
uation of discrete time-frequency transforms (Gabor transforms), we have
achieved several results in which a discrete twisted convolution in the sampled
Gabor-domain play a central role. Often the invertibility of a discrete twisted
convolution operator is an important issue. To our knowledge, the problem of
invertibility of such operators is unsolved.
Additional future work will, on the one hand, concern the numerical real-
ization of the proposed approaches in the context of realistic examples, also
see [3]. On the other hand, the main steps of the proposed approach can be
performed on any locally compact abelian group. In particular the case of the
affine group might yield interesting results for wavelet multipliers.
Finally, in future work, non-rectangular lattices will be considered more closely
and the possibility of operator approximation in non-Hilbert space sense will
provide interesting new results for both Gabor multiplier and generalized mul-
tipliers approximation.
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