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Representation of probabilistic outcomes during
risky decision-making
Giuseppe Castegnetti1,2,3✉, Athina Tzovara 1,2,4,5,6, Saurabh Khemka1,2, Filip Melinščak1,2,

Gareth R. Barnes 6, Raymond J. Dolan 6,7 & Dominik R. Bach 1,2,6,7

Goal-directed behaviour requires prospectively retrieving and evaluating multiple possible

action outcomes. While a plethora of studies suggested sequential retrieval for deterministic

choice outcomes, it remains unclear whether this is also the case when integrating multiple

probabilistic outcomes of the same action. We address this question by capitalising on

magnetoencephalography (MEG) in humans who made choices in a risky foraging task. We

train classifiers to distinguish MEG field patterns during presentation of two probabilistic

outcomes (reward, loss), and then apply these to decode such patterns during deliberation.

First, decoded outcome representations have a temporal structure, suggesting alternating

retrieval of the outcomes. Moreover, the probability that one or the other outcome is being

represented depends on loss magnitude, but not on loss probability, and it predicts the

chosen action. In summary, we demonstrate decodable outcome representations during

probabilistic decision-making, which are sequentially structured, depend on task features, and

predict subsequent action.
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T
hinking before acting is a prerequisite of wise choices, most
educators would say. The cognitive instantiation of this
notion in goal-directed behaviour is the prospective eva-

luation and subsequent comparison of the available options,
before selecting appropriate actions1–5. To elucidate the neural
underpinnings of prospective outcome evaluation, extensive
research has investigated which brain networks represent the
possible outcomes of an action, establishing contributions from
various prefrontal areas and a prominent role for the orbito-
frontal cortex (OFC)6–12. In many naturalistic environments,
action-outcome transitions are probabilistic. In this case, goal-
directed choices require retrieval of multiple possible action
outcomes to compute expected action values4,13–15. How this is
instantiated in neural circuits remains elusive. Here, we test the
hypothesis that these multiple outcomes are retrieved
sequentially.

Our hypothesis is based on a similarly structured and well-
studied problem: the choice between multiple actions with
deterministic outcomes. In this case, multiple outcomes need to
be evaluated as well, although they must be compared rather than
integrated. In this case, there is a body of evidence for sequential
outcome retrieval. First, manipulating differential attention to the
outcomes during deliberation affects choice16–18. This led to the
hypothesis that (internal or external) attentional focus biases
choice towards the attended option19,20, which is supported by
reports of selective representation of the attended value21–24.
Independent of this attentional mechanism, animal electro-
physiology10–12,25 and human neuroimaging6,15,26–29 suggest
that neural outcome representations are reinstated during
choice deliberation, and this process has been proposed to be
sequential30. Further support to the sequential structure of out-
come evaluation comes from research on spatial navigation. At
spatial choice points, rodent hippocampi reinstate the different
trajectories to remembered goals one after the other; which tra-
jectory is reinstated more often predicts immediate future
behaviour31,32.

In summary, a large body of literature suggests that choice
between multiple deterministic actions is at least partly based on
sequential outcome retrieval across species, even though the
neuronal mechanism of the ensuing choice is under debate33.
From a computational point of view, sequential representation
may be advantageous because it scales to larger number of
options and avoids computational inaccuracy deriving from
attempting to represent all options simultaneously3.

Here, we hypothesised that the same would also be the case for
evaluation of probabilistic outcomes following a single action in a
biologically relevant scenario. We used a previously established
loss/reward decision-making task embedded in a grid-world
approach/avoidance conflict computer game34–36. The task
mimics the natural scenario of foraging under predation risk and
may, therefore, be particularly relevant to understand biological
decision-making37–39. Since evaluation of multiple action out-
comes is required only in model-based decisions, and some
avoidance actions appear to be habitual40, we note that there is
evidence for at least partly model-based control in foraging under
predation38,39, including the particular task we use here34,35. In
this task, a human agent can decide whether, and how rapidly, to
approach a spatial location to obtain a constant reward, under
risk of being virtually attacked by a predator and incurring a
variable loss34,36. Loss probability and magnitude are manipu-
lated independently. With this task, we sought to assess the
existence of sequential outcome representations during choice
deliberation. Given the effect of internal attention on determi-
nistic choice3,19, we further hypothesised that which outcome was
being represented more often could be influenced by task fea-
tures, and relate to the ensuing action.

To address these questions, we harnessed the temporal reso-
lution of magnetoencephalography (MEG), which has been suc-
cessfully used to decode off-line replay of action trajectories in
humans41,42. We followed this approach to decode outcome
representations by multivariate analysis of MEG sensor signals.
Although much previous work on deterministic action outcomes
and their values has focused on orbitofrontal cortex6,10–12,27,
there is evidence for widespread cortical representation of
anticipated and experienced outcome values13,43–45, such that we
did not spatially constrain our analysis.

Results
We recorded MEG while participants played an approach/
avoidance conflict computer game36 (Fig. 1a). On each trial, a
reward token appeared. Collecting the token (approach choice)
entailed a small probability that the player was caught by a virtual
predator (loss probability: low, medium, high). This probability
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Fig. 1 Approach/avoidance conflict task. a Top: Loss probability (indicated

by the frame colour) and magnitude (number of red diamonds) are shown

at trial start, while reward magnitude is always one token. The player

(green triangle) is located at the safe position at the bottom corner of the

grid and an inactive predator (grey circle) is located at the top corner. After

a random time interval, a token appears either on the left or the right side,

and disappears after another random time interval. Bottom: If the player

leaves the safe position to approach the token, one of three outcomes

ensues: a positive outcome P, if the player collects the token and safely

returns to the initial position; a negative outcome N, if the predator wakes

up and catches the player, causing the loss of a number of tokens; or a rare

neutral outcome (not shown), in which the token disappears before the

player can reach it. Alternatively, the player can decide to not perform an

action and avoid the token. The trial ends 1000ms after the disappearance

of the token. b Behavioural results. Approach rate (left) and average

approach latency (right) for each loss probability and magnitude; error bars

represent the standard error of the mean (s.e.m.). See Table 1 for inference

statistics.
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was signalled by the frame colour and learned by experience
beforehand (Fig. 1a). Being caught caused the loss of a variable
number of reward tokens, which was explicitly signalled at the
bottom of the screen (loss magnitude: 0–5 tokens). Loss prob-
ability and magnitude were randomly balanced on a trial-by-trial
basis. At the end of the game, cumulative earnings from six
randomly selected trials were paid out at a rate of 6 GBP per
collected token. Behavioural results are summarised in Table 1
(ref. 36). Participants were more likely to approach when loss
probability and loss magnitude were smaller (Fig. 1b). Smaller
loss probability and magnitude also resulted in shorter approach
latency (Fig. 1b), although, notably, this is not reward-
maximising under task instructions34,35.

Next, we sought evidence for outcome representations. To this
end, we trained participant-specific multivariate classifiers to
distinguish the field patterns elicited at the MEG sensors after
participants encountered the outcomes. To minimise an impact of
eye blinks, we followed a previous approach41 and selected the
participant-specific set of 135 MEG channels that contained the
smallest amount of artefacts (Fig. 2a). Retaining all channels
followed by topography-based artefact-correction in a supporting
analysis (which is similar to ICA-based artefact-correction)46

yielded very similar results. Classifiers were trained to distinguish
the two frequent outcomes that could follow an approach action:
N (negative: participant caught) or P (positive: token collected).
Neutral outcomes of this action (token missed) were overall rare
(Table 2) and not analysed. We first trained classifiers separately
for each 10-ms time bin during a 0–750 ms interval after onset of
outcome presentation and examined the temporal profile of
classification performance in terms of balanced accuracy. We
chose balanced accuracy as a metric because the number of P and
N exemplars was unequal. Regardless of the relative number of
samples in the training set, chance level for balanced accuracy is
0.5, as this score is computed as the average proportion of correct
classification for each of the two outcomes. This provides more
reliable accuracy estimates for classifiers built on unbalanced
datasets47. Group-level balanced accuracy peaked around 300 ms
after outcome onset (Fig. 2b), implying that MEG field patterns at
this time point provided maximal discrimination between P and
N. We then optimised the participant-specific regularisation
coefficient λ of the logistic regression (Supplemental Fig. 1) to
build the final pattern classifiers based on data from this time bin
(see Fig. 2a for the distribution of channels contributing to this
classification). For these classifiers, cross-validated peak accuracy
was 0.70 ± 0.02 (mean ± s.e.m.). Since the negative outcome N
was much rarer than the positive outcome P, and electromagnetic
brain activity 310 ms after an event is observed after oddballs (i.e.,
rare events48) we sought to explore whether classification was

indeed capturing a neural response to outcome identity, or
instead a surprise signal associated with the rarer event. To this
end, we reasoned that if our classifier was capturing a surprise
signal, this would result in higher classification accuracy when the
negative outcome is rarer (i.e., more surprising), as was the case
with lower loss probabilities. We thus divided the training set
according to loss probability and trained separate classifiers for
each set. We found that baseline-to-peak classification accuracy
was higher in the context of higher loss probability (Fig. 2c). This
pattern is not consistent with a surprise-related explanation of the
classification and supports the notion that we are classifying
outcomes based on their identity.

To build the classifier, we had collapsed across all loss prob-
ability and magnitude conditions. Previous work has shown that
salient manipulations of the context, as well as the associative
structure of outcome predictions, can affect the coding scheme
under which outcomes are represented10,11,49. Thus, it is possible
that successful classification is specific within experimental con-
ditions and does not generalise. To explore this possibility, we
employed a cross-classification approach: we trained data on all
loss probability or magnitude levels except one and tested the
classifier on the left-out condition. In this way, the classifiers had
never seen the loss probability or magnitude level they were being
tested on. Even in this case, the classifiers’ performance remained
robustly above chance (Supplemental Fig. 2) and on the same
order of magnitude as the performance obtained with all condi-
tions collapsed in the same training set (Fig. 2b). This suggests that
our classifier is based on features of the outcome representation
that are shared between different experimental conditions.

To explore the neural regions that most likely generated the
MEG field patterns that contribute to outcome classification, we
used a beamforming approach to reconstruct the most likely
neural sources of the sensor-level MEG data. Source activity was
reconstructed within a temporal window centred at the peak of
the classification performance (i.e., 310 ms post-outcome), and
with 100 ms duration. As a result, we found stronger source-level
activity during presentation of (rarer) negative compared to
positive outcomes predominantly in a large cluster centred the
right dorsolateral PFC and extending to the OFC (peak voxel in
MNI space: [30,38,40], t22= 8.22, p < 0.001 whole-brain corrected
for FWE; Fig. 2d) while a smaller source centred between the
visual cortex and the cerebellum displayed the opposite pattern
(i.e., P >N; [−8, −98, −22], t22= 6.39; p < 0.010). It therefore
appears likely that the classifiers predominantly captured differ-
ential activity in prefrontal regions, including OFC and dorso-
lateral prefrontal cortex (dlPFC), which have been often
implicated in the representation of behavioural outcomes6,11,12,27,
as well as visual areas44,45.

We then used these classifiers to decode MEG field patterns
recorded during choice deliberation (Fig. 1a). Since the reward
token appeared at a random time point during deliberation, we
separately extracted data before and after token appearance. The
first epoch (trial start) spanned 0–1500 ms after trial onset.
Epochs during which the token appeared were discarded; this
exclusion was independent from the experimental conditions by
design. From a total of 540 epochs per participant, an average of
305 epochs were retained. Secondly, we analysed an epoch of
0–300 ms after token onset (token appearance) and discarded all
epochs during which a movement occurred or the token had
disappeared. An average of 522 epochs per participant were
retained for this second analysis. Since approach latency depen-
ded on experimental condition (Fig. 1b), so did the exclusion of
trials. However more than 93.3% of trials were retained for any
individual experimental condition (Supplemental Fig. 3).

Our classifier assigned a probability of P or N representation to
every time point. To verify that these decoded time series

Table 1 Effect of loss manipulations on behaviour (approach

action, and approach latency).

F p df

Approach action

Loss probability 27.85 <0.001 2; 12,380

Loss magnitude 438.78 <0.001 5; 12,380

Loss probability x

loss magnitude

7.18 <0.001 10; 12,380

Approach latency

Loss probability 3.54 0.029 2; 9,082

Loss magnitude 20.84 <0.001 5; 9,082

Loss probability x

loss magnitude

2.29 0.019 10; 9,082

We show fixed-effects F-tests from a loss probability x loss magnitude (generalised) linear

mixed effects model with random subject intercept.
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contained a neural representation of the action outcomes, we first
tested whether their temporal structure deviated from chance. To
do so, we computed the autocorrelation at different lags and
compared it with the autocorrelation of time series decoded using
classifiers built on permuted trial labels. This analysis was
restricted to trial start epochs (0–1500 ms from trial start), whose
longer duration allowed a better evaluation of the autocorrelation.

We used cluster-level correction50 to test whether autocorrelation
deviates from chance anywhere within the tested interval; the
location of the effect is reported for illustration. We found that
representation probability was more autocorrelated than chance
for time lags up to ~150 ms (two-sided cluster-level permutation
test, p < 0.010), and less than chance after 200 ms (p < 0.010;
Fig. 3a). Next, we mapped the reconstructed probability at each
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Fig. 2 Classifier construction. a Distribution of the participant-specific set of 135 sensors that contained the fewest eye blinks. Warm-coloured sensors

were retained more frequently. b Average balanced classification accuracy (thick black line) with its standard error of the mean (grey shade), obtained

from n= 21 participants, as a function of time elapsed after outcome onset (t= 0). For selection of the post-outcome time bin, the Lasso coefficient λ was

set arbitrarily to 0.025. At the resulting peak time bin (310ms), λ was then optimised to build the classifier used for decoding, resulting in an average

balanced accuracy of 0.70 ± 0.02 (mean ± s.e.m.; black dot). c Same as in b, but after dividing the training set according to loss probability. Classification

accuracy is particularly low when negative outcomes are rare (low). Inset: comparison of the baseline-to-peak accuracy at 310ms for each threat

probability. d Source reconstruction of brain activity around the time bin used for building the classifier (310ms), computed with a beamforming algorithm

on an interval of 100ms duration. Figure shows brain regions where broadband oscillatory power (1–50 Hz) was higher for the negative outcome (N, warm

colours) or for the positive outcome (P, cold colours). Results are corrected for whole-brain family-wise error (FWE) at p < 0.05. Copyright (C) 1993–2004

Louis Collins, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University.

Table 2 Outcome distribution.

0 1 2 3 4 5

Low

P: 24.3 ± 2.4 P: 25.0 ± 3.1 P: 24.7 ± 2.9 P: 19.7 ± 8.6 P: 14.7 ± 10.4 P: 12.7 ± 10.7

N: 2.9 ± 1.4 N: 2.3 ± 1.1 N: 1.9 ± 1.6 N: 1.5 ± 1.2 N: 1.2 ± 1.2 N: 0.7 ± 1.1

F: 1.6 ± 1.3 F: 1.3 ± 1.2 F: 1.7 ± 1.2 F: 1.7 ± 1.4 F: 1.1 ± 1.1 F: 1.1 ± 1.5

Medium

P: 23.0 ± 2.3 P: 23.0 ± 3.1 P: 21.8 ± 4.3 P: 19.5 ± 6.5 P: 13.1 ± 9.4 P: 9.9 ± 9.2

N: 4.4 ± 2.1 N: 4.3 ± 2.2 N: 4.1 ± 2.3 N: 3.7 ± 2.1 N: 2.2 ± 2.2 N: 1.4 ± 2.1

F: 2.0 ± 1.4 F: 1.7 ± 1.6 F: 1.1 ± 1.0 F: 1.2 ± 0.9 F: 1.1 ± 1.0 F: 0.7 ± 1.1

High

P: 18.9 ± 2.7 P: 17.9 ± 5.2 P: 16.6 ± 7.6 P: 12.9 ± 8.4 P: 9.7 ± 8.7 P: 7.0 ± 7.7

N: 8.1 ± 2.7 N: 7.2 ± 3.3 N: 5.0 ± 2.9 N: 3.7 ± 3.1 N: 3.1 ± 2.8 N: 2.0 ± 2.6

F: 1.4 ± 1.2 F: 1.3 ± 1.0 F: 1.1 ± 0.9 F: 1.3 ± 1.4 F: 0.5 ± 0.7 F: 0.6 ± 0.9

Listed are the occurrences of each outcome for approach trials (mean ± standard deviation; P: positive; N: negative; F: failed) for each combination of loss probability (low, medium, high) and

magnitude (0–5).
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deliberation time point into the outcome most likely to be
represented (i.e., positive if p(P) > pchance; Negative if p(N)= 1 – p
(P) > 1 – pchance), and analysed the duration of epochs of steady
representation. The distribution of this duration was biased
towards longer-lasting epochs, compared to chance (two-sample
Kolmogorov–Smirnov test, p < 0.001; Fig. 3b). Consistent with
this, the average number of representational transitions per trial
was lower than chance (all 100 permuted classifiers produced a
higher average number of transitions; i.e., p < 0.010; Fig. 3c).

Overall, these results indicate that during deliberation the
outcome representations occur in epochs with longer-than-
chance duration and tend to anticorrelate with outcome repre-
sentations more than 200 ms apart. This suggests an alternating
and thus sequential neural representation of the two possible
action outcomes.

Next, we investigated whether outcome representations during
deliberation depended on loss probability and loss magnitude,
and whether they were predictive of subsequent choice. Our
classifier returned for each time point a probability that the
positive or negative outcome was represented. We evaluated
whether the probability that either outcome was represented in
the MEG activity patterns varied under different levels of loss
probability, loss magnitude, or preceding approach or avoidance
choice. To this end, we fitted a 3 × 6 × 2 (loss probability: low,
medium, high; loss magnitude: 0–5; choice: approach, avoidance)
linear mixed model to the decoded outcome representations at
each time bin. We tested for statistical significance with a non-
parametric permutation test at the cluster level. This test allows
inferring whether an effect exists anywhere within the tested
interval; the location of the effect is reported for illustration.
Results are displayed in Fig. 4. Reflecting the unbalanced training
set, decoded outcome probabilities are above 0.5 in favour of P
throughout the analysed intervals (Table 2). At trial start, the
probability of a positive rather than negative outcome repre-
sentation was further increased with lower loss magnitude. This
was evident between about 400 and 500 ms after trial start and up
to 140 ms after token appearance. In contrast, there was no
impact of loss probability, nor any interaction between prob-
ability and magnitude. Therefore, lower loss magnitude may bias
towards representing the positive outcome.

Outcome representation was also related to upcoming
choice. The probability of representing the positive (rather than
negative) outcome was higher when participants chose to
approach, rather than to avoid, around 0–200 ms after token
appearance (Fig. 4). The effect was evident immediately after

token onset, suggesting that participants had already committed
to a choice at that time.

So far, we used a classifier trained to discriminate P vs. N. This
constrained any MEG field pattern to be assigned to either of the
two outcomes, even if neither were represented. Hence, the
analysis above provided insights on the ratio of outcome repre-
sentations but was agnostic about which of the two outcome
representations was responsible for a change in this ratio. To
investigate this, we created two additional classifiers for each
participant, trained to distinguish either P or N from baseline.
Baseline exemplars were randomly selected from the inter-trial
interval at time bins during the 1000 ms preceding trial start.

Similarly to the above analysis, we sought to evaluate how the
representation of each outcome was influenced by loss probability
and magnitude, and by upcoming choice. During deliberation, the
previously demonstrated effect of loss magnitude emanated pre-
ferentially from stronger representation of positive outcome
(Supplemental Fig. 4). In particular, P vs. baseline, but not N vs.
baseline, depended on loss magnitude in the same direction (i.e.,
more pronounced representation with lower loss magnitude) and
in the same time interval (i.e., 400–500 ms) as what we observed
in the P vs. N classification (Fig. 4). In contrast, after token
appearance, representation of negative outcome was stronger
when loss magnitude was higher or when participants chose to
avoid (Supplemental Fig. 4). At the same time, this analysis
indicated that approach was preceded by increased positive out-
come representation about 1400 ms into the action selection
interval, whereas no effect of experimental condition on N vs.
baseline was found after token appearance.

Discussion
In this study, we investigated how probabilistic action outcomes
are represented during choice deliberation. Using human MEG
recordings, we trained multivariate classifiers to discriminate
patterns of neural activity that distinguished action outcomes
when they occurred. The crucial features of these activity patterns
were most likely generated in prefrontal and visual areas. We then
used these classifiers to decode outcome representations while
participants made choices, and found that they were structured in
time, consistent with an alternating retrieval. Stable outcome
representations appeared to be shorter than 150 ms, and longer
than 40 ms. The finding of potentially alternating, and thus
sequential, outcome retrieval resonates with sequential retrieval of
multiple outcomes in deterministic choice. Furthermore, we
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found that decoded outcome representations are influenced by
loss magnitude early during deliberation, whereas they predict the
ensuing choice during late deliberation and immediately before
the action.

During choice deliberation, neural outcome representations
were more autocorrelated than chance at short time lags (i.e.,
<150 ms) and less than chance at longer time lags (i.e., >200 ms).
Analysis of stable representation epochs revealed that epochs of
>40 ms duration occurred more often than expected by chance
alone. This suggests that outcome representations occur with
characteristic duration between 40 and 150ms. This value is on
the order of magnitude of fast sweeps over future spatial paths
during rodent vicarious trial and error behaviour31 and of retro-
spective replay of human non-spatial paths41,42. Notably, these
processes involve fixed sequences of more than two states, whereas
in our case there were only two possible states such that any
sequential outcome representation must be alternating. It remains
to be shown whether representation of more than two possible
action outcomes would follow a particular sequence, for example
an ordering in terms of utility, probability, or previous encounters.

We have previously shown that in our task, cue-induced
hippocampal gamma oscillations, and hippocampus-prefrontal
cortex theta synchronisation, depend on loss probability36.

In contrast, the current data suggest that outcome representation
during choice deliberation depends on loss magnitude, but not on
loss probability. Specifically, the positive outcome was more
strongly represented when loss magnitude was lower. Since the
occurrence of a positive outcome in our task depended on loss
probability alone, whereas outcome representations were affected
by loss magnitude alone, it appears that the neural outcome
representations decoded here do not reflect a probabilistic model
of the task structure. Instead, they might reflect a bias in memory
recall that in turn instructs choice3,19,20. We note, however, that
such model would also predict an influence of loss probability on
outcome representation as well, something we did not find. As a
limitation of our task, loss magnitude spanned over a larger
range, had a larger influence on behavioural policy than loss
probability (Table 2 and Fig. 1b), and was unambiguously sig-
nalled in the experiment, while loss probability had to be learned
from experience and retrieved during action selection. Experi-
ments manipulating loss magnitude and probability in more
symmetric ways could help elucidating whether loss probability
biases outcome representations in a similar manner as loss
magnitude.

Positive outcome representation predicted approach from
about 1400 ms after trial initiation (Supplemental Fig. 4).
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Immediately before an action (after token appearance), negative
outcome representation predicted avoidance (Fig. 4). Intriguingly,
this might relate to models in which value-based decisions are
taken by sequential sampling from memory30, and to a model in
which attentional mechanisms engender behaviour3,19,20. In
particular, it is possible that differences in the representational
strength of the two outcomes produce an effect comparable to an
internal attentional bias, which in turn biases the evidence
accumulation in favour of the options that is attended more3,19,20.
Here, representations of the positive and negative outcome might
serve as evidence in favour of approach and avoidance, respec-
tively, suggesting that brain representations are in fact pieces of
evidence recalled from memory. Finally, the observed effect of
brain representations on behaviour is also in agreement with the
representational bias towards desired goals observed in the for-
ward sweeps of possible future paths by place cells activity in
rodents32,51. The finding that outcome representations relate to
behaviour suggests that their dynamics form an integral part of
the decision process.

To decode outcome representations, we built classifiers on data
acquired while participants were encountering the outcomes.
Accuracy of the classification was enhanced by selecting training
samples at the latency post-outcome where the group-level
accuracy peaked (i.e., 310 ms; Fig. 2b). Instead of training each
participant’s classifier at the participant-specific peaks, which
would maximise classification accuracy, this approach allows for a
straightforward interpretation of the classification results with
respect to the source localisation (Fig. 2d) and previous literature.

Notably, this 310 ms peak is slightly later than the peak at 200
ms reported in previous MEG studies using similar
methods41,52,53. A major difference between these previous stu-
dies and ours is that they employed highly differentiable visual
stimuli, whereas stimuli in our task were visually relatively similar
but had different valence. Instead, a latency of 310 ms is com-
patible with the P300 component of the event-related potential
(ERP), which has been implicated in decision-making and sti-
mulus evaluation48,54. In particular, the P300 is affected by the
uncertainty associated with a decision55 and by the magnitude of
the reward or loss coupled with a stimulus56–58. As a caveat, its
amplitude also increases with the rarity of a stimulus48,59,60.
Although in our task the negative outcome was rarer than the
positive one, it is unlikely that our classification was pre-
dominantly based on surprise-related neural activity. In this case,
more rare negative outcomes should improve classification
compared to less rare negative outcomes, but we observed the
opposite pattern (Fig. 2c). Interestingly, the baseline classification
accuracy was slightly higher for higher loss probabilities. A pos-
sible explanation is related to the structure of our task. Catch
probability increases with the time spent at the token position.
Any neural signal that is related to motor performance would
predict whether participants get caught or not, and may thus
explain this above-chance accuracy already at baseline. Never-
theless, this slight increase in baseline classification accuracy is
relatively small, compared with the accuracy that is reached when
the actual outcome is displayed.

Previous studies have found that probability and reward/loss
magnitude affect outcome-related ERP56,57,61, thus raising ques-
tions on whether our classification scheme generalises across
experimental conditions. We addressed this with a cross-
classification procedure: this was similar to the main analysis,
with the difference that one level of probability/magnitude was
left out of the training set and used as test set. We found accuracy
to be comparable to the main analysis, in which classifiers trained
with data from all conditions (Supplemental Fig. 2 and Fig. 2b).
This suggests that our classifier captured features of the outcome
representations are were largely invariant across loss probabilities

and magnitudes in our task. The cross-classification analysis
additionally supports the conclusion that high-loss probability
increases outcome discriminability: excluding trials with high-loss
probability reduced the classification accuracy more than
excluding low probability (Supplemental Fig. 2, left), hence con-
firming that high-probability trials provide more information for
discrimination.

While previous work on retrieval of action outcomes during
choice deliberation has highlighted a role of the OFC6,10–12,27,
there is also ample evidence of widespread representation in
multiple brain areas during different phases of outcome antici-
pation13, including sensory cortices43–45. Therefore, we did not
spatially constrain our analysis and let the classification capitalise
on all the available sensors. Source reconstruction confirmed that
the MEG patterns responsible for outcome classification were
mainly generated in right prefrontal cortex including the OFC
and dlPFC, as well as visual areas. In these prefrontal regions
oscillatory power was higher for negative than positive outcome,
in agreement with animal literature reporting stronger oscillatory
activity in the prefrontal cortex during approach/avoidance
conflict compared to familiar environments62–66. This rodent and
related human work has additionally investigated the role of
hippocampal oscillations36,63,64. However, decoding neural
representations from source-reconstructed MEG data with hip-
pocampal origin appears currently out of reach. Recent devel-
opments towards higher signal-to-noise ratios in human MEG,
for example by restricting head motion67–69 or by using advanced
sensor technology70, could help addressing the role of subcortical
areas in such scenarios.

An open question is how representation of multiple possible
outcomes is integrated to elicit choice, specifically regarding the
population-level representation of the different outcomes3,33. Our
MEG approach cannot differentiate whether sequential retrieval
is instantiated in the same or different neural population. Possi-
bly, functional magnetic resonance imaging repetition suppres-
sion could be leveraged to answer such questions71,72.

As a limitation, our approach of decoding representation of
only two outcomes precludes a firm conclusion that decision-
makers represent outcome identity, rather than one or several
outcome features or dimensions. This concern is inherent in any
decoding approach with a limited number of exemplars and
independent of the data recording and analysis technique, such as
MEG, local field potential, or single-unit activity.

To summarise, we provide evidence consistent with sequential
neural representations of possible outcomes during probabilistic
choice, with possibly stable representation epochs of duration
between 40 and 150 ms. The prevalence of positive outcome
representations depends on potential loss early during choice
deliberation and predicts choice 1400ms into the deliberation
period. At the same time, negative representations depend on
potential loss and predict choice immediately before choice
execution. Our work furnishes a proof-of-principle that sequen-
tial representation of outcomes during probabilistic decision-
making can be decoded from MEG signals during deliberation,
and thus pave the way for more detailed investigation of the
neural populations that carry out these operations.

Methods
Dataset. Twenty-three participants (22.9 ± 3.6 years; 14 female) were recruited
from the general population. They were right-handed, fluent in English, reported
no history of psychiatric or neurological disorder normal or corrected-to-normal
vision. Two participants were excluded from the final analysis: one displayed large
head motion (>0.5 cm) and the other one did not complete the experiment. All
participants gave informed written consent before the beginning of the experiment.
The study, including the form of taking consent, was conducted in accordance with
the Declaration of Helsinki and approved by the University College London
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Research Ethics Committee. Source-space analysis of induced oscillations in this
data set was published previously36.

Experimental paradigm. The experimental paradigm was an approach/avoidance
conflict test embedded in a computer game, in which participants pressed keys on a
button box to control a virtual agent with the goal of collecting monetary tokens
under the loss of virtual predation. A total of 576 trials were presented, divided into
an initial training block of 36 trials, which was not analysed, and five subsequent
blocks of 108 trials each: therefore, 540 trials were included in the final analysis.
After the experiment, participants received financial compensation according to
their performance in six randomly chosen trials (6 GBP for each collected token).
Each trial started with the human player at the bottom block of a 2 × 2 grid arena
and a virtual predator in the opposite grid block (Fig. 1a). As long as the player
remained in this initial safe position, they were unreachable by the predator. After a
random time interval (with duration equal to the minimum value from {6 s, t}, t
being a random sample from a gamma distribution with shape parameter k= 2
and scale parameter ϴ= 1, resulting in a mean of 2 s), a token appeared in the left
or right grid block. The token disappeared after another random time interval from
the same distribution. While the token was in play, the player could collect it by
moving from the safe position to the token position. This could lead to three
possible outcomes: (1) a positive outcome P, if the agent returned to the safe
position after collecting the token, (2) a negative outcome N, if the predator woke
up and caught the agent, causing the loss of a variable number of tokens (between
zero and five), or (3) a neutral outcome F if the player left the safe place but failed
to collect the token because it disappeared before it was collected. These neutral
outcomes were overall rare and not analysed (Table 2). Alternatively, the player
could decide not to collect the token. The number of tokens that could potentially
be lost was explicitly signalled in every trial and is referred to as loss magnitude.
Three predators, signalled by the frame colour, differed in their wake-up prob-
ability (loss probability). This probability was not explicitly instructed but could be
learned by the player during the initial 36 training rounds and throughout the task.
Whether the predator would wake up was determined independently in every 20
ms time bin that the player spent outside the safe place as a Bernoulli event with
probability of 0.02, 0.04, or 0.06, for the three different predators, respectively. For
every 100 ms that the player spent outside the safe place, this resulted in a catch
probability of ~0.1, 0.2, or 0.3, respectively. Colour/loss probability association was
counterbalanced across participants. The trial ended 1000 ms after token dis-
appearance, and was followed by a random inter-trial interval (ITI) drawn from the
same gamma distribution regulating token appearance/disappearance, with a
maximum of 4 s. In our analysis, we determined the neural representation of the
outcomes P and N, and searched for these neural representations in two delib-
eration phases before action: directly at trial start, and shortly after token
appearance.

MEG data acquisition. MEG data were collected with a 275-channel Canadian
Thin Film system with superconducting quantum interface device (SQUID)-based
axial gradiometers. Data were hardware anti-aliased with cutoff frequency of 150
Hz and digitised at 600 Hz. Head positioning coils were attached to the nasion and
left and right auricular sites, to provide anatomical coregistration and allow head
localisation throughout the experiment. Trial onset, token appearance, and trial
end times were written into the MEG data via a TTL parallel port. The computer
game was projected on a screen positioned ~0.8 m from participants’ head. Par-
ticipants controlled the virtual agent with a button box.

MEG data preprocessing. MEG preprocessing was done in SPM12 (Statistical
Parametric Mapping, Wellcome Trust Centre for Neuroimaging, London, UK,
www.fil.ion.ucl.ac.uk/spm). Continuous raw MEG data were high-pass filtered with
a cutoff frequency of 0.5 Hz to remove slow signal drifts, notch-filtered at 50 Hz to
remove mains noise, and down-sampled to 100 Hz. In order to reduce the potential
effect of eyeblink artefacts, we followed a conservative approach used in previous
MEG work41 and retained the participant-specific set of 135 channels containing
the fewest eyeblink artefacts across the entire time series (Fig. 5(i)), as determined
by the SPM12 eyeblink artefact detection algorithm. For most participants, this
resulted in the exclusion of occipital and frontal channels (Fig. 2a). To validate this
method on our data, we compared it with a topography-based artefact correction
algorithm implemented using SPM. After computing the average shape of the
artefact, the method reconstructs the topography of the artefact, and later corrects
the data features that match such topography. Since the two returned very similar
results, we here report the simpler approach of retaining the 135 cleanest channels.

We then extracted epochs (with no baseline correction) from 0 to 1500 ms after
trial start (first deliberation epoch), from 0 to 300 ms after token appearance
(second deliberation epoch), and from 0 to 500 ms after the onset of the decision
outcome. The onset of the positive outcome P coincided with the time at which the
agent secured a collected token by moving back to the safe place, whereas the onset
of the negative outcome N was identified as the time at which the predator caught
the agent. We discarded all trial start epochs during which the token appeared
within 1500 ms from trial start (as well as a small number of trials during which the
agent moved before token appearance within this time window), and all token
appearance epochs during which an action occurred before 300 ms from token

appearance. Hence, all analyses of the three epoch types were performed on non-
overlapping data sets.

Multivariate data analysis. We sought to determine how action outcomes were
represented during the deliberation phase of each trial. Our analysis pipeline is
illustrated in Fig. 5, and was inspired by a previous publication on visual outcome
representations in a non-spatial reasoning task41. We focused on the two possible
outcomes of an approach action. The outcome of the other action, avoidance, was a
continuation of the current state and not locked to a specific moment in time.

Determining neural representation of action outcomes. We first determined the
neural representations of the two action outcomes: successful collection of the
token (P) or catch by the predator (N). To this end, we created binomial pattern
classifiers of the MEG activity during the 0–750 ms after outcome presentation. For
each participant and trial, these data consisted of a time series of 75 time bins for
each of the 135 retained MEG channels. The participant-specific number of trials
used to train the classifier depended on the number of approach responses, and this
was (mean ± standard deviation) 374 ± 81. The mean ratio between the two action
outcomes P and N probabilistically depended on the participant’s return times and
was 5.6 ± 1.8. Data from each time bin were extracted and labelled according to
whether an approach response was followed by P or N, while trials with neutral
outcome and avoidance responses were discarded (Fig. 5(ii)). Classifiers were built
by applying the lasso-regularised logistic regression function lassoglm implemented
in MATLAB on these labelled data. To compute the relative accuracy, the λ
coefficient of the lasso regularisation, which determines the penalty for each non-
zero coefficient, was initially set arbitrarily to 0.025. We then used a cross-
validation procedure to determine the time bin after the onset of the outcomes that
maximised classifiers’ aggregate performance (Fig. 5(iii)) estimated in terms of the
balanced accuracy, defined as

1

2

True positives

All positives
þ
True negatives

All negatives

� �

ð1Þ

Next, labelled data from the optimal time bin were used to re-compute the classifier
(Fig. 5(iv)); this time, the λ coefficient was left free and optimised.

To perform the cross-classification (Supplemental Fig. 2), we first separated the
trials according to loss probability or magnitude. For each participant, we then
created classifiers in which one level of either manipulation was left out and used as
the test set, while all the other trials were used for training. Therefore, we had a
total of nine classifiers per participant (one for each of the three loss probabilities
and six loss magnitudes). We then computed the group-level accuracy of these nine
classifiers and tested their statistical significance with a one-sided Wilcoxon signed
rank test—a non-parametric statistical that relaxes the normality assumption that is
violated by bounded variables like classification accuracies.

Since there were only two possible outcomes, we initially used a binomial
classifier to compute the probability of P and N. Hence, during analysis of the
deliberation phase, this artificially imposed a constraint that only one of these two
outcomes is represented. If an experimental manipulation led to a stronger
representation of one outcome over the other, it remained unclear whether this
arose from a stronger representation of one outcome or weaker representation of
the other. To disambiguate this, we created two additional binomial classifiers to
distinguish either outcome from a baseline. One hundred baseline examples were
taken at random time bins during the 1000 ms preceding trial start. To avoid
interferences from the previous trial, baseline examples were extracted only from
ITI longer than 2000 ms. To summarise, we trained a total of three classifiers per
participant: (a) P vs. N (b) P vs. baseline and (c) N vs. baseline. For each of these
classifiers, we created a set of 100 additional classifiers after random permutation of
the outcome labels to create null distributions for statistical testing. These are
referred to as permuted classifiers.

Searching for neural representation of action outcomes during deliberation.
We applied these classifiers to MEG activity at each time bin during the two
deliberation epochs (Fig. 5(v)). From the pattern of 135 channel signals at each
time bin (cyan and yellow segments, Fig. 5), a probability was obtained by mul-
tiplying element-wise these signals with the corresponding weight of the classifier
and then mapping the result onto the interval [0,1] with the standard logistic
sigmoid function f xð Þ ¼ 1

1þe�x (Fig. 5(vi)).

Autocorrelation. To study the temporal structure of the outcome representations,
we computed the autocorrelation of the decoded probabilities. To assess whether
they differed from chance, we compared the autocorrelation against a null dis-
tribution created at each time lag from the 100 permuted classifiers. Specifically, the
likelihood of the autocorrelation under the null distribution at a given time point
was approximated to the relative number of permutations that resulted in a more
extreme (two-sided) value for the autocorrelation. Clusters were defined as the sets
of consecutive time points for which the log-likelihood (LL) was larger than 3, and
cluster size was quantified as the sum of the LL of all the points in the cluster. We
performed group-level statistics at the cluster-level with a non-parametric per-
mutation test, and report only the clusters that were bigger than the biggest cluster
found in 95% of analyses with the permuted classifiers50. Note that this test
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controls the false positive rate across the entire time interval; the location of
clusters is reported for illustration only. Next, we collapsed the decoded prob-
abilities into the most likely represented outcome (i.e., P if p(P) > pchance; N if p(P)
< pchance, where pchance was determined at the participant level by the relative
number of occurrences of positive and negative outcomes in the training set). We
then took the resulting set of epochs of steady representation (i.e., the time interval
during which the most likely represented outcome did not change) and computed
the distribution of their duration. This distribution was tested against the same
distribution computed from the permuted classifiers. Statistical difference was
tested with a two-sample Kolmogorov–Smirnov test. We also tested the average
number of transitions from one outcome representation to the other (i.e., number
of epochs) against the number of transitions predicted under the null distribution
obtained from the permuted classifiers. The p-value was computed as the pro-
portion of more extreme results from the permuted classifiers.

Source reconstruction. To explore the neural underpinnings of outcome eva-
luation, we used a beamformer spatial filtering algorithm, which estimates the
distribution of underlying sources. To generate the MEG forward model, we used
the Montreal Neurological Institute (MNI) template brain, and a single-shell head
model. The MNI template was coregistered using the nasion, left and right

preauricular points as fiducial points. We then applied the beamforming algorithm
at a temporal window of 260–360 ms after outcome presentation and a frequency
range of 1–50 Hz. We chose these parameters in order to match as closely as
possible the features that our classifier was trained on (i.e., a 100-ms window
centred around the latency of peak accuracy at 310 ms, and using the full frequency
spectrum that is preserved in the 100 Hz sampled MEG signal). For each partici-
pant, the beamforming algorithm generated three-dimensional source power
images for P and N on a 5 mm grid and smoothed with a Gaussian Kernel with full
width at half maximum (FWHM) of 10 mm. Single-participant contrasts were then
computed as difference maps P – N and N – P, and were finally tested for statistical
significance at the group level with one-sample t-tests and whole-brain corrected
for family-wise error at p < 0.05.

Statistical analysis. Next, we sought to estimate the effect of loss probability and
loss magnitude on outcome representations p(RO), with O= P, N, and whether
they were predictive of behaviour. To this end, we sought to test how the prob-
ability of outcome representations during deliberation varies with loss probability,
loss magnitude, or ensuing choice. To do this, we fitted the inverse sigmoid of the
probability p(RO) at each time point with a linear mixed models (R function lmer,
lme4 package) on the aggregate data, as in our previous works34,36. The advantage
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Fig. 5 Multivariate data analysis. Classifiers were trained on the MEG field patterns acquired while participants were experiencing the outcomes (grey

segment). For each participant, this was a data structure containing the magnetic field at each of the 275 sensors acquired in each of the 540 trials. (i)

Channel selection. The number of channels was reduced to 135 by selecting the participant-specific subset containing the least eyeblink artefacts41. (ii) We

then computed the cross-validated accuracy of the classification at each time bin. As training set, we retained approach trials in which either the positive

(P, green) or the negative (N, red) outcome was presented, and discarded neutral and avoidance trials (hyphen, white). At this stage the regularisation λ

coefficient was set to 0.025. (iii) The time bin of peak accuracy was then selected to build the training set of the classifiers, which (iv) were defined as the

135 weights associated with each channel resulting from a lasso-regularised logistic regression. The λ coefficient used at this stage was optimised with a

second cross-validation procedure. (v) Analysis of the deliberation phase: the classifiers were then used to estimate the relative probability that either

outcome was being represented during deliberation aligned either to trial start (cyan segment) or token appearance (yellow segment). (vi) The

classification resulted in outcome representation probability (p(o)) time series of which we considered one time bin at the time to (vii) compute a LME and

extract fixed-effects statistics (loss probability: low (L), medium (M), high (H); loss magnitude: 0–5; choice: approach, avoidance). (viii) For statistical

inference, we applied a non-parametric cluster-level correction over the F-values of the main effects resulting from the LME.
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of these models is that they provide meaningful parameter estimation even with
unbalanced data sets73, such as the one used in this study, where assumptions of
repeated-measures analysis of variance (ANOVA) are violated. We first applied an
inverse sigmoid to our data, so that

Y ¼ ln
pðROÞ

1� pðROÞ

� �

; O ¼ P;N: ð2Þ

The model had the following form

Y ¼ β0 þ
X

3

i¼1

βiXi þ
X

2

i¼1

X

j>i

βijXiXj þ β123X1X2X3 þ bk þ ϵ

bk � N 0; σ2b
� �

; k ¼ 1¼ n

ϵ � N 0; σ2
� �

:

ð3Þ

In the above formula, β0 is the group intercept, bk the random subject intercept, βi
is the fixed main effect of factor i (loss probability, loss magnitude, or behaviour),
and βij and β123 are the two- and three-way interactions, respectively. This is
equivalent to the R formula

Y � loss probability � lossmagnitude � behaviourþ 1jsubjectð Þ: ð4Þ

Fixed effect F-statistics on the fitted parameters were computed with the R function
anova (Fig. 5(vii)). The number of degrees of freedom used to compute the p-values
was conservatively set to the lower bound of the effective degrees of freedom of the
denominator

df ¼ N � K; ð5Þ

Where N is the number of observation and K is the number of all the fixed and
random effects in the model. Multiple comparison correction was performed with a
non-parametric permutation test on the cluster level (inclusion threshold p < 0.05;
Fig. 5(viii))50.

For the behavioural analysis (which was already reported in our previous
study36), we used a similar linear mixed effects model as above, using the model
formula

Y � loss probability � lossmagnitudeþ 1jsubjectð Þ; ð6Þ

together with an identity link function for approach latency and a logistic link
function for approach action.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data are available from the authors upon reasonable request due to ethics restrictions.

Code availability
For data collection, we developed a computer task with MATLAB and the MATLAB

toolbox Cogent 2000. To analyse the data, we used MATLAB with the toolbox SPM12

and its extension DAiSS, and custom code. For linear mixed-effect models for inferring

the effect of experimental manipulations on representation probabilities, we used R and

its toolbox LME4 (version 1.1–13). The codes used for data collection and analysis are

freely available for download from the GitHub page of our research group (https://

github.com/bachlab/megaa).
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