REPRESENTATION OF SCHRÖDINGER OPERATOR OF A FREE PARTICLE VIA SHORT-TIME FOURIER TRANSFORM AND ITS APPLICATIONS

Keiichi Kato, Masaharu Kobayashi and Shingo Ito

(Received August 31, 2010, revised May 6, 2011)

Abstract

We propose a new representation of the Schrödinger operator of a free particle by using the short-time Fourier transform and give its applications.

1. Introduction. We consider the Schrödinger equation of a free particle,

$$
\begin{cases}i \partial_{t} u+\frac{1}{2} \Delta u=0, & (t, x) \in \boldsymbol{R} \times \boldsymbol{R}^{n} \tag{1}\\ u(0, x)=u_{0}(x), & x \in \boldsymbol{R}^{n}\end{cases}
$$

where $i=\sqrt{-1}, u(t, x)$ is a complex valued function of $(t, x) \in \boldsymbol{R} \times \boldsymbol{R}^{n}, u_{0}(x)$ is a complex valued function of $x \in \boldsymbol{R}^{n}, \partial_{t} u=\partial u / \partial t$ and $\Delta u=\sum_{i=1}^{n} \partial^{2} u / \partial x_{i}^{2}$.

When u_{0} is a function in $\mathcal{S}\left(\boldsymbol{R}^{n}\right)$, the solution $u(t, x)$ of (1) can be written as

$$
u(t, x)=\left(e^{\frac{1}{2} i t \Delta} u_{0}\right)(x)=\mathcal{F}_{\xi \rightarrow x}^{-1}\left[e^{-\frac{1}{2} i t|\xi|^{2}} \mathcal{F} u_{0}(\xi)\right](x)
$$

Here we use the notation $\mathcal{F} f(\xi)=\int_{\boldsymbol{R}^{n}} f(x) e^{-i x \cdot \xi} d x$ for the Fourier transform of f and $\mathcal{F}^{-1} f(x)=\int_{\boldsymbol{R}^{n}} f(\xi) e^{i x \cdot \xi} d \xi$ with $d \xi=(2 \pi)^{-n} d \xi$ for the inverse Fourier transform of f.

The Schrödinger operator $e^{\frac{1}{2} i t \Delta}$ and closely related operators such as

$$
\left(e^{i|D|^{\alpha}} u_{0}\right)(x)=\mathcal{F}_{\xi \rightarrow x}^{-1}\left[e^{i|\xi|^{\alpha}} \mathcal{F} u_{0}(\xi)\right](x), \quad \alpha \in \boldsymbol{R}
$$

have been studied extensively by many authors. Hörmander [8] has proved $e^{i|D|^{2}}$ is bounded on $L^{p}\left(\boldsymbol{R}^{n}\right)$ if and only if $p=2$, and Miyachi [11] has proved the sharp endpoint $L^{p_{-}}$ Sobolev estimates for $e^{i|D|^{\alpha}}, \alpha>1$. We also remark that $e^{i|D|^{2}}$ is bounded on the Besov space $\dot{B}_{s}^{p, q}\left(\boldsymbol{R}^{n}\right)$ or $B_{s}^{p, q}\left(\boldsymbol{R}^{n}\right)$ if and only if $p=2$ (Mizuhara [13] and Li [10]). On the other hand, a recent work by Bényi, Gröchenig, Okoudjou and Rogers [1] has shown $e^{i|D|^{\alpha}}, 0 \leq \alpha \leq 2$, is bounded on the modulation space $M^{p, q}$ for all $1 \leq p, q \leq \infty$, which means $e^{\frac{1}{2} i t \Delta}$ preserves the $M^{p, q}$-norm (see the precise definition of $M^{p, q}$ in Section 2.2 below). For further developments in this direction we refer to Bényi-Okoudjou [2], Cordero-Nicola [3], Miyachi-Nicola-Rivetti-Tabacco-Tomita [12], Sugimoto [14], Wang-Zhao-Guo [17], Wang-Hudzik [16] and the references therein.

In this paper, we propose a new representation of the solution $u(t, x)$ by using the shorttime Fourier transform and give its applications. More precisely, let φ_{0} be a function in
$\mathcal{S}\left(\boldsymbol{R}^{n}\right) \backslash\{0\}$ and suppose $\varphi(t, x)=\left(e^{\frac{1}{2} i t \Delta} \varphi_{0}\right)(x)$, which solves the initial value problem (1) with initial data φ_{0}. Then we have

$$
\begin{equation*}
u(t, x)=\frac{1}{\left\langle\varphi_{0}(\cdot), \varphi(t, \cdot)\right\rangle} V_{\varphi(t, \cdot)}^{*}[(y, \xi) \rightarrow x]\left[e^{-\frac{1}{2} i t|\xi|^{2}} V_{\varphi_{0}} u_{0}(y-\xi t, \xi)\right](x) \tag{2}
\end{equation*}
$$

where $V_{\varphi_{0}} u_{0}$ denotes the short-time Fourier transform of u_{0} with respect to the window φ_{0} and $V_{\varphi(t, \cdot)}^{*}$ denotes the (informal) adjoint operator of the short-time Fourier transform $V_{\varphi(t, \cdot)}$ for a fixed t, which are defined in Section 2.1.

By using the representation (2), we have the following propositions.
PROPOSITION 1.1. Let $1 \leq p, q \leq \infty$. Suppose $\varphi_{0} \in \mathcal{S}\left(\boldsymbol{R}^{n}\right) \backslash\{0\}$ and $\varphi(t, x)=$ $\left(e^{\frac{1}{2} i t \Delta} \varphi_{0}\right)(x)$, which solves the initial value problem (1) with initial data φ_{0}. Then

$$
\begin{equation*}
\|u(t, \cdot)\|_{M_{\varphi(t, \cdot)}^{p, q}}=\left\|u_{0}\right\|_{M_{\varphi}}^{p, q} \tag{3}
\end{equation*}
$$

holds for $u_{0} \in M^{p, q}\left(\boldsymbol{R}^{n}\right)$.
REMARK 1.2. We note that the norms on the left-hand and right-hand side of (3) are measured by different windows. Moreover, by putting $e^{-\frac{1}{2} i s \Delta} \varphi_{0}, s \in \boldsymbol{R}$, into φ_{0} in the equality (3), we have

$$
\begin{equation*}
\|u(t, \cdot)\|_{M_{\varphi(t-s,)}^{p, q}}=\left\|u_{0}\right\|_{M_{\varphi(-s, \cdot)}^{p, q}} \tag{4}
\end{equation*}
$$

where φ is the solution of (1) with initial data φ_{0}.
PROPOSITION 1.3. Let $1 \leq p, q \leq \infty$ and $\varphi_{0} \in \mathcal{S}\left(\boldsymbol{R}^{n}\right) \backslash\{0\}$. Then there exists a positive constant C such that

$$
\begin{equation*}
\|u(t, \cdot)\|_{M_{\varphi(s, \cdot)}^{p, q}} \leq C(1+|t|)^{n / 2}\left\|u_{0}\right\|_{M_{\varphi(s,)}^{p, q}} \tag{5}
\end{equation*}
$$

for $u_{0} \in \mathcal{S}\left(\boldsymbol{R}^{n}\right)$ and $t, s \in \boldsymbol{R}$.
Proposition 1.4. Let $2 \leq p \leq \infty, 1 \leq q \leq \infty$ and $\varphi_{0} \in \mathcal{S}\left(\boldsymbol{R}^{n}\right) \backslash\{0\}$. Then there exists a positive constant C such that

$$
\begin{equation*}
\|u(t, \cdot)\|_{M_{\varphi(s, \cdot)}^{p, q}} \leq C(1+|t|)^{-n(1 / 2-1 / p)}\left\|u_{0}\right\|_{M_{\varphi(s, \cdot)}^{p^{\prime}, q}} \tag{6}
\end{equation*}
$$

for $u_{0} \in \mathcal{S}\left(\boldsymbol{R}^{n}\right)$ and $t, s \in \boldsymbol{R}$ with $1 / p+1 / p^{\prime}=1$.
PROPOSITION 1.5. Let $2 \leq p \leq \infty, 1 \leq q \leq \infty$ and $\varphi_{0} \in \mathcal{S}\left(\boldsymbol{R}^{n}\right) \backslash\{0\}$. Then there exists a positive constant C such that

$$
\begin{equation*}
\|u(t, \cdot)\|_{M_{\varphi(s, \cdot)}^{p, q}} \leq C(1+|t|)^{n(1 / 2-1 / p)}\left\|u_{0}\right\|_{M_{\varphi(s,)}^{p, q}} \tag{7}
\end{equation*}
$$

for $u_{0} \in \mathcal{S}\left(\boldsymbol{R}^{n}\right)$ and $t, s \in \boldsymbol{R}$.
REMARK 1.6. By taking $s=0$ in each of the estimates (5), (6) and (7), we have the estimates due to Bényi-Gröchenig-Okoudjou-Rogers [1] and Wang-Hudzik [16].

The paper is organized as follows. In Section 2, we recall the definitions and basic properties of the short-time Fourier transform and the modulation spaces. In Section 3, we prove
the representation (2). In Section 4, we prove Propositions 1.1 through 1.5. Finally, in Section 5, we give a local well-posedness result for the nonlinear Schrödinger equations with Cauchy data in the modulation spaces $M^{p, 1}$.

Acknowledgments. The authors are grateful to the referee for several valuable comments and suggestions, which improve the statements of Propositions 1.3 through 1.5.
2. Preliminaries. Throughout this paper the letter C denotes a constant which may be different in each occasion.
2.1. The short-time Fourier transform. We recall the definitions of the short-time Fourier transform and its adjoint operator. Let $f \in \mathcal{S}^{\prime}\left(\boldsymbol{R}^{n}\right)$ and $\phi \in \mathcal{S}\left(\boldsymbol{R}^{n}\right)$. Then the shorttime Fourier transform $V_{\phi} f$ of f with respect to the window ϕ is defined by

$$
\begin{equation*}
V_{\phi} f(x, \xi)=\left\langle f(y), \phi(y-x) e^{i y \cdot \xi}\right\rangle=\int_{\boldsymbol{R}^{n}} f(y) \overline{\phi(y-x)} e^{-i y \cdot \xi} d y \tag{8}
\end{equation*}
$$

Let F be a function on $\boldsymbol{R}^{n} \times \boldsymbol{R}^{n}$ and $\phi \in \mathcal{S}\left(\boldsymbol{R}^{n}\right)$. Then the adjoint operator V_{ϕ}^{*} of V_{ϕ} is defined by

$$
V_{\phi}^{*} F(x)=\iint_{R^{2 n}} F(y, \xi) \phi(x-y) e^{i x \cdot \xi} d y d \xi
$$

with $đ \xi=(2 \pi)^{-n} d \xi$. It is known that for $f \in \mathcal{S}^{\prime}\left(\boldsymbol{R}^{n}\right)$ and $\phi \in \mathcal{S}\left(\boldsymbol{R}^{n}\right), V_{\phi} f$ is a continuous function on $\boldsymbol{R}^{n} \times \boldsymbol{R}^{n}$ and

$$
\left|V_{\phi} f(x, \xi)\right| \leq C(1+|x|+|\xi|)^{N} \quad \text { for all }(x, \xi) \in \boldsymbol{R}^{n} \times \boldsymbol{R}^{n}
$$

for some constant $C, N \geq 0$ ([7, Theorem 11.2.3]). Moreover, for $\phi, \psi, \gamma \in \mathcal{S}\left(\boldsymbol{R}^{n}\right)$ satisfying $\langle\psi, \phi\rangle \neq 0$ and $\langle\gamma, \psi\rangle \neq 0$, we have the inversion formula

$$
\begin{equation*}
\frac{1}{\langle\psi, \phi\rangle} V_{\psi}^{*} V_{\phi} f=f, \quad f \in \mathcal{S}^{\prime}\left(\boldsymbol{R}^{n}\right) \tag{9}
\end{equation*}
$$

([7, Corollary 11.2.7]) and the pointwise inequality

$$
\begin{equation*}
\left|V_{\phi} f(x, \xi)\right| \leq \frac{C}{|\langle\gamma, \psi\rangle|}\left(\left|V_{\psi} f\right| *\left|V_{\phi} \gamma\right|\right)(x, \xi), \quad f \in \mathcal{S}^{\prime}\left(\boldsymbol{R}^{n}\right) \tag{10}
\end{equation*}
$$

for all $(x, \xi) \in \boldsymbol{R}^{2 n}$ ([7, Lemma 11.3.3]).
2.2. Modulation spaces. We recall the definition of modulation spaces $M^{p, q}$ which were introduced by Feichtinger [5] to measure smoothness of a function or a distribution in a way different from Besov spaces. Let $1 \leq p, q \leq \infty$ and $\phi \in \mathcal{S}\left(\boldsymbol{R}^{n}\right) \backslash\{0\}$. Then the modulation space $M_{\phi}^{p, q}\left(\boldsymbol{R}^{n}\right)=M^{p, q}$ consists of all tempered distributions $f \in \mathcal{S}^{\prime}\left(\boldsymbol{R}^{n}\right)$ such that the norm

$$
\|f\|_{M_{\phi}^{p, q}}=\left(\int_{\boldsymbol{R}^{n}}\left(\int_{\boldsymbol{R}^{n}}\left|V_{\phi} f(x, \xi)\right|^{p} d x\right)^{q / p} d \xi\right)^{1 / q}=\left\|V_{\phi} f(x, \xi)\right\|_{L_{x}^{p} L_{\xi}^{q}}
$$

is finite (with usual modifications if $p=\infty$ or $q=\infty$).
The space $M_{\phi}^{p, q}\left(\boldsymbol{R}^{n}\right)$ is a Banach space, whose definition is independent of the choice of the window ϕ, i.e., $M_{\phi}^{p, q}\left(\boldsymbol{R}^{n}\right)=M_{\psi}^{p, q}\left(\boldsymbol{R}^{n}\right)$ for all $\phi, \psi \in \mathcal{S}\left(\boldsymbol{R}^{n}\right) \backslash\{0\}$ ([5, Theorem 6.1]). This property is crucial in the sequel, since we choose a suitable window ϕ to estimate
the modulation space norm. If $1 \leq p, q<\infty$ then $\mathcal{S}\left(\boldsymbol{R}^{n}\right)$ is dense in $M^{p, q}$ ([5, Theorem 6.1]). We also note $L^{2}=M^{2,2}$, and $M^{p_{1}, q_{1}} \hookrightarrow M^{p_{2}, q_{2}}$ if $p_{1} \leq p_{2}, q_{1} \leq q_{2}$ ([5, Proposition 6.5]). Let us define by $\mathcal{M}^{p, q}\left(\boldsymbol{R}^{n}\right)$ the completion of $\mathcal{S}\left(\boldsymbol{R}^{n}\right)$ under the norm $\|\cdot\|_{M^{p, q}}$. Then $\mathcal{M}^{p, q}\left(\boldsymbol{R}^{n}\right)=M^{p, q}\left(\boldsymbol{R}^{n}\right)$ for $1 \leq p, q<\infty$. Moreover, the complex interpolation theory for these spaces reads as follows: Let $0<\theta<1$ and $1 \leq p_{i}, q_{i} \leq \infty, i=1,2$. Set $1 / p=(1-\theta) / p_{1}+\theta / p_{2}, 1 / q=(1-\theta) / q_{1}+\theta / q_{2}$, then $\left(\mathcal{M}^{p_{1}, q_{1}}, \mathcal{M}^{p_{2}, q_{2}}\right)_{[\theta]}=\mathcal{M}^{p, q}$ ([5, Theorem 6.1], [15, Theorem 2.3]). We refer to [5] and [7] for more details.
3. Representation of the solution of free Schrödinger equation. In this section, we show that the solution $u(t, x)$ of (1) is represented by (2). Let $u(t, x)$ be the solution of (1) with $u(0, x)=u_{0} \in \mathcal{S}\left(\boldsymbol{R}^{n}\right)$. Note that $u(t, x)$ is in $C^{\infty}\left(\boldsymbol{R} ; \mathcal{S}\left(\boldsymbol{R}^{n}\right)\right)$ in this case. Let $\varphi(t, x)$ be the solution of (1) with $\varphi(0, x)=\varphi_{0}(x) \in \mathcal{S}\left(\boldsymbol{R}^{n}\right) \backslash\{0\}$, which is used as a window function. Using integration by parts, we have

$$
\begin{aligned}
& V_{\varphi(t, \cdot)}\left(\frac{1}{2} \Delta u(t, \cdot)\right)(x, \xi) \\
& =\frac{1}{2} \int_{\boldsymbol{R}^{n}} \overline{\varphi(t, y-x)} \Delta_{y} u(t, y) e^{-i y \cdot \xi} d y \\
& =\int_{\boldsymbol{R}^{n}} \overline{\frac{1}{2}} \Delta_{y} \varphi(t, y-x) u(t, y) e^{-i y \cdot \xi} d y+\int_{\boldsymbol{R}^{n}}\left(-i \xi \cdot \nabla_{y}\right) \overline{\varphi(t, y-x)} u(t, y) e^{-i y \cdot \xi} d y \\
& \quad-\frac{1}{2}|\xi|^{2} \int_{\mathbf{R}^{n}} \overline{\varphi(t, y-x)} u(t, y) e^{-i y \cdot \xi} d y \\
& =V_{\frac{1}{2} \Delta \varphi(t, \cdot)}(u(t, \cdot))(x, \xi)+\left(i \xi \cdot \nabla_{x}-\frac{1}{2}|\xi|^{2}\right) V_{\varphi(t, \cdot)}(u(t, \cdot))(x, \xi)
\end{aligned}
$$

Since $u(t, x)$ and $\varphi(t, x)$ are solutions of (1) and

$$
i \partial_{t} V_{\varphi(t, \cdot)}(u(t, \cdot))(x, \xi)=V_{-i \partial_{t} \varphi(t, \cdot)}(u(t, \cdot))(x, \xi)+V_{\varphi(t, \cdot)}\left(i \partial_{t} u(t, \cdot)\right)(x, \xi)
$$

is valid, we obtain

$$
\begin{aligned}
& i \partial_{t} V_{\varphi(t, \cdot)}(u(t, \cdot))(x, \xi)+\left(i \xi \cdot \nabla_{x}-\frac{1}{2}|\xi|^{2}\right) V_{\varphi(t, \cdot)}(u(t, \cdot))(x, \xi) \\
& \quad=V_{\varphi(t, \cdot)}\left(i \partial_{t} u(t, \cdot)+\frac{1}{2} \Delta u(t, \cdot)\right)(x, \xi)-V_{\left[i \partial_{t} \varphi(t, \cdot)+\frac{1}{2} \Delta \varphi(t, \cdot)\right]}(u(t, \cdot))(x, \xi) \\
& \quad=0
\end{aligned}
$$

Hence the initial value problem (1) is transformed via the short-time Fourier transform with window function $\varphi(t, x)$ to

$$
\left\{\begin{array}{l}
\left(i \partial_{t}+i \xi \cdot \nabla_{x}-\frac{1}{2}|\xi|^{2}\right) V_{\varphi(t, \cdot)}(u(t, \cdot))(x, \xi)=0 \tag{11}\\
V_{\varphi(0, \cdot)}(u(0, \cdot))(x, \xi)=V_{\varphi_{0}} u_{0}(x, \xi)
\end{array}\right.
$$

It is easy to see that

$$
\begin{equation*}
V_{\varphi(t, \cdot)}(u(t, \cdot))(x, \xi)=e^{-\frac{1}{2} i t|\xi|^{2}} V_{\varphi_{0}} u_{0}(x-\xi t, \xi) \tag{12}
\end{equation*}
$$

is the solution of (11). Applying the adjoint operator $V_{\varphi(t, \cdot)}^{*}$ of $V_{\varphi(t, \cdot)}$ to the both sides of (12), we have the representation (2) by the inversion formula (9). It is easy to check that the above argument is valid for $u_{0}(x) \in \mathcal{S}^{\prime}\left(\boldsymbol{R}^{n}\right)$.
4. Proof of Propositions. In this section, we prove Propositions 1.1 through 1.5.

Proof of Proposition 1.1. Taking $L_{x}^{p} L_{\xi}^{q}$ norm of the both sides of (12), we have

$$
\begin{aligned}
\|u(t, \cdot)\|_{M_{\varphi(t,)}^{p, q}}^{p, q} & =\left\|V_{\varphi(t, \cdot)}(u(t, \cdot))(x, \xi)\right\|_{L_{x}^{p} L_{\xi}^{q}} \\
& =\left\|e^{-\frac{1}{2} i t|\xi|^{2}} V_{\varphi_{0}} u_{0}(x-\xi t, \xi)\right\|_{L_{x}^{p} L_{\xi}^{q}} \\
& =\left\|V_{\varphi_{0}} u_{0}(x, \xi)\right\|_{L_{x}^{p} L_{\xi}^{q}} \\
& =\left\|u_{0}\right\|_{M_{\varphi_{0}}^{p, q}} .
\end{aligned}
$$

Proof of Proposition 1.3. By Remark 1.2, it suffices to prove

$$
\|u(t, \cdot)\|_{M_{\varphi(t-s,)}^{p, q}}=\left\|u_{0}\right\|_{M_{\varphi(-s,)}^{p, q}} \leq C(1+|t|)^{n / 2}\left\|u_{0}\right\|_{M_{\varphi(t-s, \cdot)}^{p, q}},
$$

where C is independent of t and s. We note that

$$
V_{\varphi(-s, \cdot)} u_{0}=V_{\varphi(-s,)}\left[\frac{1}{\left\langle\varphi_{0}(\cdot), \varphi(t, \cdot)\right\rangle} V_{\varphi(-s, \cdot)}^{*} V_{\varphi(t-s, \cdot)} u_{0}\right]
$$

by the inversion formula (9) and $\langle\varphi(-s, \cdot), \varphi(t-s, \cdot)\rangle=\left\langle\varphi_{0}(\cdot), \varphi(t, \cdot)\right\rangle$. Then, we have

$$
\left.\left.\begin{array}{rl}
& V_{\varphi(-s, \cdot)} u_{0}(x, \xi) \\
= & V_{\varphi(-s, \cdot)}[y \rightarrow(x, \xi)]
\end{array} \frac{1}{\left\langle\varphi_{0}(\cdot), \varphi(t, \cdot)\right\rangle} \iint_{R^{2 n}} V_{\varphi(t-s, \cdot)} u_{0}(z, \eta) \varphi(-s, y-z) e^{i y \cdot \eta} d z d \eta\right](x, \xi)\right)
$$

By Young's inequality, we have

$$
\left\|u_{0}\right\|_{M_{\varphi(-s,)}^{p, q}} \leq \frac{C}{\left|\left\langle\varphi_{0}(\cdot), \varphi(t, \cdot)\right\rangle\right|}\|\varphi(-s, \cdot)\|_{M_{\varphi(-s,)}^{1,1}}\left\|u_{0}\right\|_{M_{\varphi(t-s,)}^{p, q}}
$$

Since

$$
\left.\left|\left\langle\varphi_{0}(\cdot), \varphi(t, \cdot)\right\rangle\right|=\left|\widehat{\varphi_{0}}, e^{-\frac{1}{2} i t|\xi|^{2}} \widehat{\varphi_{0}}\right\rangle\left|=\left|\int_{\boldsymbol{R}^{n}} e^{\frac{1}{2} i t|\xi|^{2}}\right| \widehat{\varphi_{0}}(\xi)\right|^{2} d \xi \right\rvert\,,
$$

the stationary phase method yields that

$$
\begin{equation*}
\left|\left\langle\varphi_{0}(\cdot), \varphi(t, \cdot)\right\rangle\right| \sim C\left|\widehat{\varphi_{0}}(0)\right|^{2}|t|^{-n / 2} \quad(\text { as }|t| \rightarrow \infty) \tag{13}
\end{equation*}
$$

The fact that $\|\varphi(-s, \cdot)\|_{M_{\varphi(-s,)}^{1,1}}=\left\|\varphi_{0}\right\|_{M_{\varphi_{0}}^{1,1}}$ and (13) yield (5).
Proof of Proposition 1.4. Firstly, we prove (6) for $p=2$. By Remark 1.2, it suffices to show that $\left\|V_{\varphi(-s,)} u_{0}(x, \xi)\right\|_{L_{x}^{2} L_{\xi}^{q}}=\left\|V_{\varphi(t-s,)} u_{0}(x, \xi)\right\|_{L_{x}^{2} L_{\xi}^{q}}$. By Plancherel theorem, we have

$$
\begin{aligned}
\left\|V_{\varphi(t-s, \cdot)} u_{0}(x, \xi)\right\|_{L_{x}^{2} L_{\xi}^{q}} & =\| \| \int_{R^{n}} \overline{\varphi(t-s, y-x)} u_{0}(y) e^{-i y \cdot \xi} d y\left\|_{L_{x}^{2}}\right\|_{L_{\xi}^{q}} \\
& =\| \| \int_{R^{n}} \overline{\widehat{\varphi}(t-s, \eta)} e^{-i y \cdot \eta} u_{0}(y) e^{-i y \cdot \xi} d y\left\|_{L_{\eta}^{2}}\right\|_{L_{\xi}^{q}} \\
& =\| \| \int_{R^{n}} e^{\frac{1}{2} i(t-s)|\eta|^{2}} \overline{\hat{\varphi}_{0}(\eta)} e^{-i y \cdot \eta} u_{0}(y) e^{-i y \cdot \xi} d y\left\|_{L_{\eta}^{2}}\right\|_{L_{\xi}^{q}} \\
& =\| \| \int_{R^{n}} \overline{e^{\frac{1}{2} i s|\eta|^{2}} \widehat{\varphi}_{0}(\eta)} e^{-i y \cdot \eta} u_{0}(y) e^{-i y \cdot \xi} d y\left\|_{L_{\eta}^{2}}\right\|_{L_{\xi}^{q}} \\
& =\| \| \int_{R^{n}} \overline{\varphi(-s, y-x)} u_{0}(y) e^{-i y \cdot \xi} d y\left\|_{L_{x}^{2}}\right\|_{L_{\xi}^{q}} \\
& =\left\|V_{\varphi(-s, \cdot)} u_{0}(x, \xi)\right\|_{L_{x}^{2} L_{\xi}^{q}} .
\end{aligned}
$$

Secondly, we prove (6) for $p=\infty$. By the same argument as in the proof of Proposition 1.3, we have

$$
\begin{aligned}
&\left\|u_{0}\right\|_{M_{\varphi(-s, \cdot)}^{\infty, q}} \\
&=\left\|V_{\varphi(-s, \cdot)}\left[\frac{1}{\|\varphi(t-s, \cdot)\|_{L^{2}}^{2}} V_{\varphi(t-s, \cdot)}^{*} V_{\varphi(t-s, \cdot)} u_{0}(x, \xi)\right]\right\|_{L_{x}^{\infty} L_{\xi}^{q}} \\
&= \frac{1}{\left\|\varphi_{0}\right\|_{L^{2}}^{2}}\left\|\iint_{R^{2 n}} V_{\varphi(-s, \cdot)}(\varphi(t-s, \cdot))(x-z, \xi-\eta) e^{-i z \cdot(\xi-\eta)} V_{\varphi(t-s, \cdot)} u_{0}(z, \eta) d z \overline{d \eta}\right\|_{L_{x}^{\infty} L_{\xi}^{q}} \\
& \leq \frac{C}{\left\|\varphi_{0}\right\|_{L^{2}}^{2}}\left\|V_{\varphi(-s,)}(\varphi(t-s, \cdot))(x, \xi)\right\|_{L_{x}^{\infty} L_{\xi}^{1}}\left\|V_{\varphi(t-s, \cdot)} u_{0}(x, \xi)\right\|_{L_{x}^{1} L_{\xi}^{q}} \\
&= \frac{C}{\left\|\varphi_{0}\right\|_{L^{2}}^{2}}\|\varphi(t-s, \cdot)\|_{M_{\varphi(-s, \cdot)}^{\infty, 1}}\left\|u_{0}\right\|_{M_{\varphi(t s, \cdot)}^{1, q}} .
\end{aligned}
$$

Since

$$
\begin{aligned}
V_{\varphi(-s, \cdot)}(\varphi(t-s, \cdot))(x, \xi) & =\int_{\boldsymbol{R}^{n}} \overline{\varphi(-s, y-x)} \varphi(t-s, y) e^{-i y \cdot \xi} d y \\
& =e^{-i x \cdot \xi} \int_{\boldsymbol{R}^{n}} \widehat{\varphi}(t-s, \eta) \overline{\widehat{\varphi}(-s, \eta-\xi)} e^{i x \cdot \eta} d \eta
\end{aligned}
$$

$$
=e^{-i x \cdot \xi} \int_{\boldsymbol{R}^{n}} e^{-\frac{1}{2} i t|\eta|^{2}} \widehat{\varphi_{0}}(\eta) \overline{\widehat{\varphi_{0}}(\eta-\xi)} e^{i x \cdot \eta} d \eta,
$$

the stationary phase method (see [6], [9]) yields that

$$
\begin{aligned}
& \left|V_{\varphi(-s, \cdot)}(\varphi(t-s, \cdot))(x, \xi)\right| \\
& \quad \leq C|t|^{-n / 2}\left|\widehat{\varphi_{0}}\left(-\frac{x}{t}\right) \widehat{\varphi_{0}}\left(-\frac{x}{t}-\xi\right)\right| \\
& \quad+C|t|^{-n / 2-1} \sum_{|\alpha| \leq 2(1+n)} \int_{R^{n}}\left|\left(\frac{\partial}{\partial \eta}\right)^{\alpha}\left[\widehat{\varphi_{0}}(\eta) \widehat{\hat{\varphi}_{0}}(\eta-\xi)\right]\right| d \eta \quad(\text { as }|t| \rightarrow \infty) .
\end{aligned}
$$

Hence we have (6) for $p=\infty$. By the complex interpolation method, we have (6) for all $1 \leq p \leq \infty$.

Proof of Proposition 1.5. By using the complex interpolation method between $p=\infty$ for (5) and $p=2$ for (6), we have the conclusion.
5. nonlinear Schrödinger equation. Next we consider the following initial value problem of the nonlinear Schrödinger equation,

$$
\left\{\begin{array}{l}
i \partial_{t} u+\frac{1}{2} \Delta u=f(u), \tag{14}\\
u(0, x)=u_{0}(x)
\end{array}\right.
$$

where $f(u)$ is a polynomial of u and \bar{u} with $f(0)=0$.
The following result is already known, but we obtain it as a corollary of our representation (2).

Proposition 5.1 (Bényi-Okoudjou [2]). For $u_{0} \in M^{p, 1}\left(\boldsymbol{R}^{n}\right)$ with $1 \leq p \leq \infty$, there exists a positive constant T and a unique solution of (14) such that $u \in C\left([0, T] ; M^{p, 1}\left(\boldsymbol{R}^{n}\right)\right)$.

Proof. Using the representation (2) of the Schrödinger operator $e^{\frac{1}{2} i t \Delta}$, we have the integral equation associated to (14),

$$
\begin{aligned}
& V_{\varphi(t, \cdot)}(u(t, \cdot))(x, \xi) \\
& \quad=e^{-\frac{1}{2} i t|\xi|^{2}} V_{\varphi_{0}} u_{0}(x-t \xi, \xi)+\int_{0}^{t} e^{-\frac{1}{2} i(t-s)|\xi|^{2}} V_{\varphi(s, \cdot)}[f(u)](x-(t-s) \xi, \xi) d s .
\end{aligned}
$$

We recall that $M^{p, 1}$ is a Banach algebra, i.e., for $\phi \in \mathcal{S}\left(\boldsymbol{R}^{n}\right) \backslash\{0\}$, there exists a positive constant C such that

$$
\begin{equation*}
\left\|u_{1} u_{2}\right\|_{M_{\phi}^{p, 1}} \leq C\left\|u_{1}\right\|_{M_{\phi}^{p, 1}}\left\|u_{2}\right\|_{M_{\phi}^{p, 1}} \tag{15}
\end{equation*}
$$

for all $u_{1}, u_{2} \in M^{p, 1}\left(\boldsymbol{R}^{n}\right)([2$, Corollary 2.7], [17, Corollary 4.2]).
We define the mapping $F(u)$ from $C\left([0, T] ; M^{p, 1}\left(\boldsymbol{R}^{n}\right)\right)$ to itself by

$$
\begin{aligned}
F(u)= & V_{\varphi(t, \cdot)}^{*} \\
& \times\left[e^{-\frac{1}{2} i t|\xi|^{2}} V_{\varphi_{0}} u_{0}(x-t \xi, \xi)+\int_{0}^{t} e^{-\frac{1}{2} i(t-s)|\xi|^{2}} V_{\varphi(s, \cdot)}[f(u)](x-(t-s) \xi, \xi) d s\right] .
\end{aligned}
$$

Putting $A=\left\|u_{0}\right\|_{M_{\varphi_{0}}^{p, 1}}$ and $X_{T}=C\left([0, T] ; M^{p, 1}\left(\boldsymbol{R}^{n}\right)\right)$, we define a closed subset $X_{T, A}$ of $C\left([0, T] ; M^{p, 1}\left(\boldsymbol{R}^{n}\right)\right)$ by

$$
X_{T, A}=\left\{u \in C\left([0, T] ; M^{p, 1}\left(\boldsymbol{R}^{n}\right)\right) \mid\|u\|_{X_{T}}=\sup _{t \in[0, T]}\|u(t, \cdot)\|_{M_{\varphi(t,)}^{p, 1}} \leq 2 A\right\} .
$$

The mapping F is well defined on $X_{T, A}$ for small $T>0$. In fact, the above fact (15) for multiplication on $M^{p, 1}\left(\boldsymbol{R}^{n}\right)$ yields that

$$
\|F(u)\|_{X_{T}} \leq\left\|u_{0}\right\|_{M^{p, 1}}+\int_{0}^{T} C(s) \tilde{f}\left(\|u\|_{M_{\varphi(s,)}^{p, 1}}\right) d s
$$

where $C(s)$ is a positive continuous function of s and $\tilde{f}(u)$ is a polynomial of u and \bar{u} which is made from $f(u)$ replacing all the coefficients to their absolute values. Hence we have

$$
\|F(u)\|_{X_{T}} \leq A+\tilde{f}(A) C_{1} T
$$

with $C_{1}=\sup _{s \in[0, T]} C(s)$, which implies $F(u) \in X_{T, A}$ for small $T>0$.
The same argument as above yields that F is a contraction mapping from $X_{T, A}$ to itself for small $T>0$. Picard's fixed point theorem for a contraction mapping on $X_{T, A}$ implies the conclusion.

References

[1] Á BÉnyi, K. Gröchenig, K. Okoudjou and L. G. Rogers, Unimodular Fourier multipliers for modulation spaces, J. Funct. Anal. 246 (2007), 366-384.
[2] Á. BÉNYI AND K. OKOUDJOU, Local well-posedness of nonlinear dispersive equations on modulation spaces, Bull. London Math. Soc. 41 (2009), 549-558.
[3] E. CORDERO AND F. NicOLA, Sharpness of some properties of Wiener amalgam and modulation spaces, Bull. Aust. Math. Soc. 80 (2009), 105-116.
[4] A. Córdoba and C. Fefferman, Wave packets and Fourier integral operators, Comm. Partial Differential Equations 3 (1978), 979-1005.
[5] H. G. Feichtinger, Modulation spaces on locally compact abelian groups, in: M. Krishna, R. Radha and S. Thangavelu (Eds.), Wavelets and their Applications, Chennai, India, Allied Publishers, New Delhi, 2003, pp. 99-140, Updated version of a technical report, University of Vienna, 1983.
[6] D. Fujiwara, Asymptotic methods in linear partial differential equations, (in Japanese), Iwanami, Tokyo, 1977.
[7] K. Gröchenig, Foundations of time-frequency analysis, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Inc., Boston, MA, 2001.
[8] L. HÖRMANDER, Estimates for translation invariant operators in L^{p}-spaces, Acta Math. 104 (1960), 93-140.
[9] L. HÖRMANDER, The analysis of linear partial differential operators. I, Distribution theory and Fourier analysis, Springer-Verlag, Berlin, 1983.
[10] L. Li, Some remarks on a multiplier theorem of Hörmander, Math. Appl. (Wuhan) 15 (2002), 152-154.
[11] A. MiYachi, On some Fourier multipliers for $H^{p}\left(R^{n}\right)$, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 157-179.
[12] A. Miyachi, F. Nicola, S. Rivetti, A. Tabacco and N. Tomita, Estimates for unimodular Fourier multipliers on modulation spaces, Proc. Amer. Math. Soc. 137 (2009), 3869-3883.
[13] T. Mizuhara, On Fourier multipliers of homogeneous Besov spaces, Math. Nachr. 133 (1987), 155-161.
[14] M. Sugimoto, On some Lp-estimates for hyperbolic equations, Ark. Mat. 30 (1992), 149-163.
[15] B. WANG AND C. HUANG, Frequency-uniform decomposition method for the generalized BO, KdV and NLS equations, J. Differential Equations 239 (2007), 213-250.
[16] B. Wang and H. Hudzik, The global Cauchy problem for the NLS and NLKG with small rough data, J. Differential Equations 232 (2007), 36-73.
[17] B. WANG, L. ZHAO AND B. GUO, Isometric decomposition operators, function spaces $E_{p, q}^{\lambda}$ and applications to nonlinear evolution equations, J. Funct. Anal. 233 (2006), 1-39.

DEPARTMENT OF MATHEMATICS	DEPARTMENT OF MATHEMATICAL SCIENCES
TOKYO UNIVERSITY OF SCIENCE	FACULTY OF SCIENCE
KAGURAZAKA $1-3$, SHINJUKU-KU	YAMAGATA UNIVERSITY
TOKYO $162-8601$	KOJIRAKAWA 1-4-12, YAMAGATA-CITY
JAPAN	YAMAGATA 990-8560
E-mail addresses: kato@ma.kagu.tus.ac.jp	JAPAN
ito@ma.kagu.tus.ac.jp	E-mail address: kobayashi@ sci.kj.yamagata-u.ac.jp

