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ABSTRACT 
 

The relationship between somatosensory stimulation and the autonomic nervous 

system has been established with effects on heart rate (HR) and sympathetic tone.  

However, the involvement of the cortical autonomic network (CAN) during muscle 

sensory afferent stimulation has not been identified.  The main objective of the research 

in this dissertation was to determine the representation of somatosensory afferents in the 

CAN and their physiologic impact on cardiovascular control.  Somatosensory afferent 

activation was elicited by electrical stimulation of type I and II afferents (sub-motor 

threshold) and type III and IV afferents (motor threshold), and CAN patterns were 

assessed using blood-oxygenation level-dependent functional magnetic resonance 

imaging.  Study 1 (Chapter 2) established CAN regions associated with sub-motor 

stimulation including the ventral medial prefrontal cortex (vMPFC), subgenual anterior 

cingulate cortex (sACC), and posterior insula, along with a trend towards increased 

heart rate variability (HRV).  Motor threshold stimulation was associated with 

activation in the posterior insula.  Having established the CAN regions affected by 

sensory afferent input, diffusion tensor imaging was used (Chapter 3) to establish 

structural connections between the cortical regions associated with functional 

cardiovascular control.  We identified two discrete patterns of white matter connectivity 

between the anterior insula-sACC and posterior insula-posterior cingulate cortex, 

suggesting that a structural network may underlie functional roles in autonomic 

regulation and sensory processing.  As somatosensory stimulation had modest impact 

on cardiovascular control under baseline conditions, Study 3 (Chapter 4) aimed to 

establish the effects of somatosensory stimulation during baroreceptor unloading 
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(lower-body negative pressure, LBNP) on muscle sympathetic nerve activity (MSNA) 

and cortical activity.  Sensory stimulation during LBNP led to an attenuated increase in 

MSNA burst frequency, as well as absent activity in the right insula and dorsal ACC, 

supporting the sympatho-excitatory role of these regions.  No effect of somatosensory 

stimulation during chemoreflex-mediated sympatho-excitation was observed on MSNA, 

while right insular and dorsal ACC activities were maintained.  Overall, the results of 

these studies provide evidence of somatosensory representation within the CAN regions 

that are anatomically linked, and highlight a role for type I and II sensory afferents in 

modulating autonomic outflow in a manner that depends upon baroreceptor loading. 

 

Keywords: cortical autonomic network, muscle sensory afferents, autonomic nervous 

system, functional MRI, diffusion tensor imaging, heart rate variability, muscle 

sympathetic nerve activity, baroreflex activity 
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Chapter 1 Introduction 

1.1 General Background 

Historically, control over the autonomic nervous system has focused on the sub-

cortical regions, specifically within the medulla.  Over a century ago, observations of 

autonomic changes during motor seizures in epileptic patients by the neurologist J.H. 

Jackson gave rise to the idea of the representation of involuntary movements of the 

blood vessels and viscera within the cerebral cortex (54).  Associations between stroke 

lesions in the cortex and cardiovascular dysregulation have lent further support to the 

role of the cerebral cortex in autonomic regulation (23).  Electrical stimulation and 

neuroanatomical techniques in animals have characterized a cortical autonomic network 

(CAN) comprising cortical and sub-cortical regions involved in the modulation of 

respiration, heart rate (HR), blood pressure (BP), sympathetic activity, parasympathetic 

activity, and gastrointestinal motility.  The primary regions include the insular cortex, 

prefrontal cortex (MPFC), anterior cingulate cortex (ACC), and amygdala (11; 18).  

The advent of functional magnetic resonance imaging (fMRI) has revealed a 

similar network of autonomic regions in conscious humans during various physiological 

and behavioural stressors, such as exercise (67;151); mental stress (28), and baroreflex 

function (52; 66).  However, most studies have utilized volitional procedures (i.e., 

exercise, breath holds) that often simultaneously engage neural pathways including 

central command, baroreceptor activation and afferent information from skeletal muscle 

in the control of autonomic function.  Thus, it is difficult to discern from neuroimaging 

data whether activated regions are representing a feed-forward modulation of 

cardiovascular responses from central command or whether the activity reflects 
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processing of afferent signals from the peripheral baroreceptor and activated muscle 

sites.  While previous stimulation studies in animals have enhanced our understanding 

of the viscerosensory and visceromotor regions of the CAN, less is known regarding the 

representation of somatosensory information in human CAN regions.   

In humans, post-exercise circulatory occlusion (PECO) of exercising limbs has 

been used to investigate the effects of muscle afferent metaboreceptor activation on 

cortical regions (148).  Cuff inflation is used to trap the accumulated metabolites due to 

muscle contraction but also keeps BP elevated at exercise levels.  The PECO was 

associated with activation in the insula; however, the authors were unable to confirm 

whether the activity was due to the effects of metaboreceptors or BP (148).  Gray and 

colleagues (2009) have also implicated the insula as well as the amygdala and brainstem 

nuclei in the integration of somatosensory stimuli using electrical shocks delivered at 

different phases of the cardiac cycle (48).  The study by Williamson and colleagues 

(1999) selectively activated type IV metaboreceptors with PECO but also elicited 

concomitant increases in BP and potentially pain (148).  Gray et al. (2009) utilized 

strong electrical shocks that induced arousal responses with BP (48).  Thus, the 

aforementioned studies did not differentiate between the four types of muscle afferents 

(types I-IV), nor could they distinguish whether the cortical activity was due to 

somatosensory processing or an arousal response.   

Electrical stimulation is a useful modality to selectively activate somatosensory 

afferents and can readily be implemented in fMRI experiments.  Past fMRI experiments 

have utilized this technique to study the sensori-motor and cognitive effects of 

somatosensory stimulation (5; 22; 38), as well as in the context of touch and pain (32; 
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154).  However, no studies have solely examined the representation of somatosensory 

inputs within the CAN regions, with specific emphasis on the effects of the four afferent 

types on cortical activity and efferent autonomic cardiovascular control. 

Therefore, the overall purpose of this research was to investigate the 

association between somatosensory stimulation and patterns of activity within the 

autonomic regions of the brain.  This thesis aims to address the working hypothesis 

that somatosensory inputs are represented within the CAN and that discrete CAN 

regions will be associated with changes in autonomic function.  Using varying 

intensities of electrical stimulation, we were able to associate different groups of muscle 

afferents with CAN regions of activation in the studies of this dissertation.  As well, 

isometric handgrip exercise was used to compare passive electrically stimulated 

conditions to an active task that raised HR.  Finally, in order to study the interactive 

effects of somatosensory afferents and baroreceptors, we used lower-body negative 

pressure (LBNP) as a technique to activate the baroreflex.  By combining neuroimaging 

data with laboratory physiological recording sessions, we were able to investigate both 

the cortical responses to somatosensory input as well as peripheral autonomic outcomes.   

Using these approaches, the working hypothesis was addressed by the following three 

studies: 

Study 1 entitled „Representation of somatosensory inputs within the cortical 

autonomic network‟, tested the hypothesis that CAN regions integrate muscle sensory 

afferents, with differential activation patterns observed between passive and active 

tasks.  It was also hypothesized that regions implicated with parasympathetic activity 

(i.e, ventral medial prefrontal cortex) will be differentially activated during electrical 
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stimulation and handgrip exercise, and would reflect efferent measures of 

parasympathetic activity.  

Study 2 entitled „Anatomical connections between autonomic regions of the 

brain‟, aimed to determine whether function is linked to structure.  Specifically, it was 

hypothesized that the functional responses within the CAN regions associated with 

somatosensory stimulation and isometric handgrip exercise are reflective of structural 

connections between the regions, providing the anatomical basis for the CAN to act as a 

functional network. 

Study 3 entitled „Forebrain organization representing integration of baroreceptor 

and somatosensory afferents within the cortical autonomic network‟, aimed to establish 

the effects of muscle sensory afferents on CAN activation patterns during conditions of 

baroreceptor unloading.  It was hypothesized that muscle sensory afferent stimulation 

differentially impacts CAN regions involved in sympathetic activity (i.e., insular cortex) 

during baroreceptor loading (supine rest) and unloading (LBNP), which will be 

associated with changes in muscle sympathetic nerve activity. 

1.2 Autonomic Nervous System 

Regulation of the circulation directs appropriate delivery of oxygen to organs 

and tissues depending on their metabolic demands while ensuring maintenance of 

arterial BP.  Local factors produce mechanical adjustments of blood vessels to enable 

regional changes in blood flow, whereas central neural activity is necessary to govern 

cardiovascular function to meet the body‟s needs at the global level.  For instance, 

movement from a supine to standing position initiates a complex series of adjustments 

in BP and blood volume redistribution to maintain arterial pressure in order to preserve 
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cerebral blood flow within its autoregulatory limits.  Such cardiovascular adjustments 

are achieved by concerted action of central neural outflow directed towards the heart 

and vasculature. 

 The autonomic nervous system regulates involuntary control of nearly all organ 

systems, including the heart and blood vessels, and is divided into the sympathetic and 

parasympathetic divisions (119).  The cell bodies of preganglionic fibres are located in 

the thoracic and lumbar sections of the spinal cord for the sympathetic division, and in 

the brainstem or sacral spinal cord for the parasympathetic division (133).  The axons of 

the preganglionic fibres exit the central nervous system in cranial nerves or ventral roots 

to synapse on second-order neurons in autonomic ganglia.  This gives rise to 

postganglionic fibres which directly innervate effector tissues including smooth and 

cardiac muscle (119).  Both the sympathetic and parasympathetic branches have 

preganglionic and postganglionic fibres with the differences lying in the fact that the 

parasympathetic side has short postganglionic fibres and the sympathetic side has long 

postganglionic fibres arising from a paravertebral chain (133).  

Both sympathetic and parasympathetic preganglionic fibres are cholinergic and 

release the neurotransmitter acetylcholine which binds to nicotinic acetylcholine 

receptors on postganglionic fibres.  Muscarinic receptors are used for postganglionic 

parasympathetic fibres whose principal neurotransmitter is acetylcholine, which does 

survive long in the bloodstream due to rapid actions of the enzyme acetylcholinesterase 

(109).  The classical neurotransmitter derived from sympathetic postganglionic fibres is 

norepinephrine, which acts on alpha and beta adrenergic receptors (46).  Norepinephrine 

can undergo several changes including reuptake into the nerve terminal to be 
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repackaged in vesicles and released again, metabolism, or diffusion into the 

bloodstream (133).  Sympathetic neurons also synthesize and release other 

neurotransmitters including adenosine triphosphate (ATP) and neuropeptide Y (NPY) 

which all produce vasoconstriction of vascular smooth muscle cells (15).   

1.2.1 Direct Measurement of Sympathetic Nerve Activity 

Sympathetic postganglionic neurons are small diameter unmyelinated C fibres 

from which direct neural measurements of sympathetic nerve activity can be made 

using the technique of microneurography (136; 137).  This technique permits 

measurement from sympathetic axons contained within a fascicle that innervate skin or 

skeletal muscle (136), with the common measurement being muscle sympathetic nerve 

activity (MSNA).  Multiunit recordings of multiple neurons are made with percutaneous 

insertion of a tungsten microelectrode into the nerve fascicle of a peripheral nerve, 

commonly the peroneal nerve.  Confirmation of a suitable MSNA site is observed by 

changes in burst frequency and amplitude during events in response to known 

sympathetic reflexes such as changes in BP (i.e., Valsalva maneuvre) or chemoreflex 

(i.e., apnea).  As well, a defining characteristic of a MSNA signal containing solely 

sympathetic vasconstrictor nerves is a „burst‟ pattern that is pulse synchronous as 

regulated by the arterial baroreflex (146).  For example, a decrease in BP leads to a 

reflex increase in MSNA, causing vasoconstriction and a subsequent increase in BP, 

which in turn reflexively decreases MSNA.  These constant fluctuations are observable 

at rest and constitute normal variations in most healthy individuals (21).  Another 

characteristic of a MSNA signal is a lack of bursting activity during arousal (i.e., loud 

clap), which on the other hand is associated with nerve activity to the skin (146).  It is 
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also important to note that MSNA recorded from the leg and arm is similar at rest (127), 

and also during baroreflex-mediated increases in MSNA (107).  

1.2.2 Neural Control of the Heart 

 

Autonomic control of the heart including cardiac rate and conduction velocity 

involves both parasympathetic and sympathetic fibres which innervate the sinoatrial and 

atrioventricular modes.  Sympathetic fibres also innervate atrial and ventricular 

myocytes to mediate contraction and relaxation processes of the heart (133).  The 

parasympathetic neurons in the vagus nerve release acetylcholine which acts on M2 

muscarinic acetylcholine receptors, resulting in hyperpolarization of the membrane due 

to increased potassium conductance.  This leads to decreased firing and conduction in 

the sinoatrial and atrioventricular nodes, respectively, and a subsequent reduction in HR 

(133).  Norepinephrine from sympathetic fibres act on beta adrenergic receptors which 

increases diastolic depolarization in the sinoatrial node and conduction in the 

atrioventricular node, leading to an increase in HR (133).  In addition to this, stroke 

volume is higher due to increased membrane calcium currents in myocytes which 

augment calcium release and reuptake via the sarcoplasmic reticulum to effectively 

increase contraction and relaxation of the heart (133).   

1.2.3 Neural Control of the Vasculature 

The sympathetic postganglionic nerves innervate the arterial tree of most 

arteries, arterioles, and veins, though innervations of skeletal muscle veins and venules 

are questionable (109).  Norepinephrine release from nerve varicosities produces 

vascoconstriction of vascular smooth muscle cells by activating alpha-1 and alpha-2 

receptors (109).  Calcium levels rise due to release from the sarcoplasmic reticulum or 
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plasmalemmal calcium channels, which ultimately leads to activation of myosin 

ATPase and binding of myosin and actin filaments to produce contraction (133).  Co-

transmission of norepinephrine often occurs alongside NPY which exerts powerful and 

long-lasting vasoconstrictor effects through Y1 receptors (50).  As well, ATP is released 

from synaptic vesicles with norepinephrine and NPY and acts through P2X receptors 

(133).  The type of neurotransmitter released for vasoconstriction often depends on the 

vascular bed and the rate of nerve firing (109).  The vasculature is under tonic control of 

the sympathetic nervous system and remains in a partly constricted state; this overall 

vasoconstrictor activity of arterial and venous vessels constitutes a measure of total 

peripheral resistance. 

1.2.4 Cardiovascular Responses to Isometric Exercise 

At the onset of isometric exercise, characteristic increases in HR, cardiac output 

and BP occur (109).  A study of graded isometric handgrip exercise showed very large 

increases in BP that was associated with the intensity of the contraction, expressed as a 

percentage of the maximum voluntary contraction (MVC) (41).  Similarly, the increases 

in HR and cardiac output are a function of the degree of exertion (85).  The rapid onset 

of HR change implies a neurogenic mechanism whereby the initial increase in HR 

occurs via parasympathetic withdrawal, since the response is blocked by the 

parasympathetic blocker atropine (41) but not by the sympathetic blocker propranolol 

(142).  Furthermore, during the first minute of moderate intensity handgrip there is no 

change in MSNA (77; 116).  An increase in MSNA is associated with metabolite 

accumulation and with fatigue, and it has been demonstrated that non-fatiguing 

contractions (i.e., 15% MVC) do not elicit a rise in MSNA (117).  Thus the increase in 
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BP during a short bout of moderate intensity isometric contraction is due to an increase 

in cardiac output (not an increase in vascular resistance), which in turn is elevated by 

the rise in HR via parasympathetic withdrawal.  Contractions at stronger intensities (50-

95% MVC) still induce a HR response via parasympathetic withdrawal but also involve 

a sympathetic response that arises earlier on 10 seconds after the contraction (76).  

Thus, based on a study of HR responses to 30 second isometric contractions at 30% 

MVC showing that the inhibition of parasympathetic activity predominates in the first 

30 seconds of activity (78), we utilized this model for isometric handgrip exercise to 

isolate the effects of parasympathetic withdrawal on cortical activation patterns. 

Homeostasis of the internal environment during exercise and rest is achieved by 

sympathetic-parasympathetic balance, which in turn is maintained by integration of 

autonomic reflexes including the arterial baroreflex, chemoreflex, descending signals 

from higher central nervous system centers („central command‟), and the skeletal 

muscle reflex (110).    

1.2.5 Arterial Baroreflex 

The arterial baroreflex functions as a critical feedback control system to buffer 

or oppose beat-to-beat fluctuations in BP to maintain circulation to the brain and other 

organs.  The baroreflex senses changes in BP indirectly via the extent of stretch of 

baroreceptors, which are sensory afferent nerve endings located in walls of the carotid 

sinus and aortic arch (37).  As detailed below, an increase in BP and stretching of the 

baroreceptors will increase afferent discharge into the central nervous system, which 

elicits a reflex decrease in sympathetic outflow and parasympathetic activation, which 

in turn decreases HR, cardiac contractility, vascular resistance and venous return (71).  
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Together, this restores BP to its previous level.  The opposite occurs when BP 

decreases, whereby reflex increases in sympathetic outflow in response to baroreceptor 

unloading act to increase HR, stroke volume and vascular resistance in order to increase 

BP.   

At resting levels of BP, baroreceptors send tonic, excitatory signals to neurons in 

the nucleus tractus solitarius (NTS) (123).  In response to increased BP, baroreceptor 

afferents travel in the glossopharyngeal nerve (cranial nerve IX) and synapse in the NTS 

in the medulla of the brainstem (133).  The baroreceptor signals are relayed from the 

NTS to the caudal ventrolateral medulla (CVLM) which is a rich source of GABAergic 

neurons (115).  Glutamatergic excitation of the CVLM GABAergic neurons produces 

an inhibitory influence on the presympathetic neurons in the rostral ventrolateral 

medulla (RVLM).  The RVLM is the major center which sends excitatory signals to 

sympathetic vasomotor neurons.  Inhibition of the RVLM has been shown to nearly 

abolish sympathetic outflow and decrease arterial pressure (126), highlighting the 

importance of RVLM neurons in maintaining pressure.  Neurons in the NTS have been 

shown to project directly to the RVLM; however, neuroanatomical and tracing 

experiments emphasize the CVLM as the major source of baroreflex-mediated 

inhibition of RVLM sympathetic pre-motor neurons (115).  The RVLM neurons project 

to sympathetic pre-ganglionic neurons on the intermediolateral (IML) horn of the 

thoracic and lumbar segments of the spinal cord (11).  These pre-ganglionic neurons 

then synapse with sympathetic ganglia in the paravertebral chain, which project to the 

heart and vasculature.  Thus, with the inhibitory effect of the CVLM on the RVLM 

sympathetic neurons, there is lower sympathetic nerve firing through the sympathetic 
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ganglia, thereby reducing vascular resistance and arterial pressure.  On the other hand, 

in response to a decrease in BP, there is reduced baroreceptor afferent signaling to the 

NTS, leading to decreased stimulation of the GABAergic CVLM neurons, thereby 

removing the inhibitory effect on the RVLM neurons.  Thus the firing rate of 

presympathetic RVLM neurons increases and elevates sympathetic nerve activity, 

ultimately restoring BP back to baseline levels (115). 

 The baroreflex also acts on the heart by elevated parasympathetic activity to 

combat increases in arterial pressure.  The NTS sends excitatory signals to the nucleus 

ambiguus and dorsal motor nuclei of the vagus, sites of parasympathetic motor nuclei to 

decrease the force and rate of contraction of the heart (37). 

Lower-body negative pressure (LBNP) is a commonly used technique to elicit 

baroreflex-mediated increases in MSNA (128).  Since the invention of LBNP in the 

1960‟s, it has been commonly used to study the cardiovascular effects to changes in 

blood volume displacement (49).  During LBNP, individuals are sealed in an air-tight 

box at the level of the iliac crest, which induces sub-atmospheric pressure around the 

lower portion of the body.  Various levels of negative pressure can be used to prompt a 

diversion of blood from the central intra-thoracic to the lower leg venous compartments.  

Such an episode triggers an integrated systemic-wide response to the sudden removal of 

blood from the coronary/pulmonary circulation necessitating autonomic cardiovascular 

adjustments to maintain arterial BP (131).  Thus, LBNP provides a simulated orthostatic 

stress and a means to examine neuro-circulatory reflexive responses to decreases in 

venous return to the heart (57).  Cardiopulmonary baroreceptors, which are low-

threshold receptors located in the atria, ventricles and pulmonary vessels are selectively 
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unloaded when LBNP is less than 20 mmHg, whereas the arterial baroreflex becomes 

engaged when LBNP is greater than 20 mmHg (57).  Generally, LBNP elicits increases 

in HR at levels of 30 mmHg and above (57; 64).  However, increases in MSNA are 

observed from levels of LBNP as low as 5 mmHg, and MSNA progressively rises in 

frequency and amplitude over larger levels of suction (141).    

1.2.6 Chemoreflex 

The chemoreflex has an established role in the control of respiration and also on 

cardiac and vascular function (17).  The anatomical structure of the chemoreflex 

consists of peripheral chemoreceptors located in the carotid bodies of the internal 

carotid artery, and central chemoreceptors situated in the brainstem (61).  Generally, the 

peripheral chemoreceptors are sensitive to decreases in oxygen (hypoxia), whereas 

central chemoreceptors are more responsive to elevations in carbon dioxide 

(hypercapnia) (61).  The act of breathing has a negative feedback on cardiovascular 

responses whereby stretch of lung receptors by ventilation attenuates chemoreflex-

mediated sympathetic activation (122).  However, during apnea when there is no 

activation of lung receptors, hypoxia and hypercapnia augment the effect of 

chemoreceptors resulting in increased sympathetic vasoconstrictor activity to the blood 

vessels (61).  The impact of chemoreflex activation on regulating vascular resistance is 

modulated through afferent signals to vasomotor centers in the medulla, including the 

NTS.  The NTS may be the first synapse for carotid chemoreceptor afferents (101).  The 

RVLM is suggested to be the final brainstem structure for sympathetic outflow and 

evidence suggests that the influence of chemoreflex activation on RVLM neurons may 

come via direct connections with the NTS (1).   
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1.2.7 Descending Neural Control to Brainstem Cardiovascular Centers 

Autonomic function is also dependent upon top-down signals (“central 

command”), which involves a diffuse irradiation of neural motor signals to 

cardiovascular control centers in a feed-forward manner (109).  This system is linked to 

the coupling between blood flow and oxygen demands and has been suggested that as 

muscle fatigues and motor unit recruitment increases, there is an equivalent increase in 

cardiovascular responses (47).  The origin of central command arose from observations 

of nearly instantaneous increases in HR and ventilation at the onset of voluntary 

exercise (68), prompting the notion that the speed of cardiovascular and respiratory 

responses had to be centrally generated as opposed to peripherally.  Evidence from a 

neuromuscular blockade study showed no difference in HR and ventilation between 

actual and attempted exercise in which subjects used near-maximal effort (central 

command) to attempt sustained handgrip without producing force (142).  Another study 

altered the levels of central command by applying vibration to muscle spindles of 

agonist muscles to decrease central command, or to the antagonist muscles to increase 

central command to maintain a constant level of isometric contraction (47).  At the same 

level of muscle tension, HR and BP decreased when central command decreased, and 

cardio-respiratory measures increased when central command increased.   

 Lastly, the increase in HR with exercise appears to be mediated primarily by 

central command, whereas mechanically and metabolically sensitive muscle afferents 

are suggested to stimulate the increases in BP and muscle sympathetic outflow (77; 83; 

142).  Further, central command governs the immediate increase in HR at the onset of 

exercise via parasympathetic withdrawal as opposed to sympathetic activation (109).  A 
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latency period of 0.5 seconds occurs between the onset of a muscle contraction and the 

increase in HR, and given that parasympathetic responses to the heart occur in less than 

1 second and sympathetic responses come into effect 10 to 15 seconds later (109), it 

strongly points to a parasympathetically-mediated increase in HR. 

1.2.8 Exercise Pressor Reflex (Muscle Afferents) 

Afferent fibres from skeletal muscle receptors also contribute significantly to the 

reflex regulation of the cardiovascular system (84).  The “exercise pressor reflex” states 

that exercise-induced signals which comprise the afferent arm of the reflex provide 

feedback to brainstem cardiovascular centres regarding the mechanical and metabolic 

conditions within the muscles (25; 80).  During muscle contraction, there is an increase 

in the concentration of various chemicals including lactic acid, H+, bradykinin, K+ and 

adenosine in the interstitial space, which stimulates the free nerve endings of the muscle 

afferents (120; 121).  Contraction also causes an increase in the discharge of 

mechanically sensitive muscle afferents.  Upon stimulation of these fibres, a central 

neural signal is generated that contributes to the increase in HR, BP and sympathetic 

outflow that occurs with exercise. 

Alam and Smirk (1937) were the first to show evidence that a reflex originating 

in contracting skeletal muscle was involved in the cardiovascular and ventilatory 

responses to exercise (2).  They reported that BP remained elevated above baseline 

values when the circulation to the exercising muscles was occluded at the end of the 

exercise period.  Support for the exercise pressor reflex during muscle contraction was 

given by Coote et al. (1971).  In anaesthized rats, electrical stimulation of the ventral 

roots increased arterial BP and HR.  Cutting the dorsal roots receiving afferents from 
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the muscle abolished the pressor response, providing further evidence that the response 

originated in the exercising limb (25).  In humans, during neuromuscular blockade 

(termed curare), the intent to exercise (central command) without any sustained 

contraction caused pressor and sympathetic responses that were half as large as that to 

normal handgrip exercise (142), confirming the role of the muscle reflex.  Activation of 

this reflex involves stimulation of the group III and IV muscle afferents (80).  Nerve 

block of only the large myelinated type I and II fibres, which include afferents from 

muscle spindles and Golgi tendon organs, did not alter the cardiorespiratory responses. 

Whereas blockade of the dorsal roots preferentially blocking the unmyelinated and 

smaller myelinated fibres (type III and IV) did abolish the cardiovascular and 

respiratory responses.  In addition, group III fibres are predominantly mechanically 

sensitive while the group IV muscle afferents are activated primarily by metabolites 

(63), though the fibres do exhibit polymorphism.  It has been further evidenced that 

preferential activation of group I and II afferents appears to have no reflex effect on BP, 

HR or respiration.  Succinylcholine administered to cats before and after muscular 

paralysis to activate group I and II afferents in the hindlimb did not change respiratory 

or cardiovascular function (145).  In addition, vibration is a powerful stimulus to the 

primary endings of muscle spindles; this has not been shown to produce any appreciable 

increase in BP, HR, or ventilation in the decerebrate or anesthetized cat (79). 

Activation of the skeletal muscle receptors reflexively increases HR and BP 

mainly through an increase in sympathetic activity and decrease in parasympathetic 

activity (62).  Though the exact central integration of muscle afferents is not known, 

type III and IV afferent neurons project to the dorsal horn of the spinal cord in Rexed‟s 
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laminae I, II, V and X (121).  The mapping of sensory afferents between the spinal cord 

and brainstem is not fully known, but tracing techniques in rodents reveal projections to 

the NTS, CVLM and RVLM (121).  Skeletal muscle inputs produce excitatory 

responses in NTS neurons, and muscle contraction elicits activity in neurons within the 

CVLM and RVLM implicating these regions as an important integration centers for the 

exercise pressor reflex (73).  Central processing of the type III and IV afferents in the 

brainstem is followed by transmission of inputs through the parasympathetic and 

sympathetic arcs through the respective pathways to innervate the heart and vasculature 

in order to regulate perfusion pressure during exercise (121). 

1.3 The Somatosensory System 

1.3.1 Characteristics of Muscle Sensory Afferents 

 

Within the somatosensory system, specialized receptors located in skin, hair 

follicles, joints and muscle transduce mechanical and thermal energy (4).  A receptor 

consists of a peripheral axon terminal of one primary afferent neuron, whose cell body 

resides in the dorsal root ganglion (4).  Skeletal muscle sensory afferent fibres can be 

classified according to their diameter or conduction velocity, and are labelled as types I-

IV in order of decreasing fibre diameter (84).  Each type of receptor gives rise to fibres 

within a particular diameter range, whereby the rate of impulse conduction varies 

directly with diameter (i.e., large diameter axons conduct action potentials more rapidly 

than thinner axons) (4).  Each muscle nerve contains four types of afferent fibres (Table 

1.1).  The characteristics of these fibres have been classified in stimulation studies 

performed in anaesthetized cats from the impulses arising from hindlimb skeletal 

muscle (80), which will reflect higher conduction velocities compared to human data.  
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Types I, II, and III are myelinated whereas type IV afferents have no myelin sheath 

(84).  The largest diameter type I fibres innervate muscle spindles as annulospiral 

endings (Ia) and the Golgi tendon organs (Ib).  The type II afferents are slightly thinner 

and slower than type I and originate in muscle spindles to form secondary sensory 

endings on the intrafusal fibres.  The thinly myelinated type III nerve fibres and 

unmyelinated type IV afferents terminate as “free nerve endings” in the skin and 

musculature (84). 

The cable properties of axons characterize the largest diameter, fast conducting 

fibres as having the lowest threshold for electrical stimulation (129).  This exists due to 

the fact that longitudinal current flow is proportional to the square of the fibre diameter, 

and large fibres exhibit less input resistance to current flow (129).  Thus, graded levels 

of electrical stimulation can be used to selectively activate large diameter fibres at the 

weakest effective stimulus intensity, and subsequently recruit smaller diameter fibres 

with increasing stimulus intensity.  At the median nerve, the response to Type I fibres 

can be recorded at threshold for perception of the stimulus (136).  Accordingly, sub-

motor threshold stimulation has been used in humans to stimulate the large diameter 

Type I/II afferents (55; 118).  In the current thesis, sub-motor threshold stimulation was 

used to recruit the Type I and II afferents, while higher intensity motor threshold 

stimulation to elicit wrist flexion aimed to further recruit the Type III and possibly Type 

IV mechanoreceptors and metaboreceptors.  
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Table 1.1 Classification of Afferent Nerve Fibres  

Type Myelination Conduction 

Velocity, m/s 

Target/Receptor Sensitive To 

I Thick 72-120 
Ia, primary ending of 

muscle spindle 

Ib, Golgi tendon organ 

Ia – muscle 
length and rate 
of change of 

length 

Ib – muscle 
tension 

II Thick 31-71 

Secondary spindle 
ending 

 
Muscle length 

III Moderate 2.5-30 Mainly “free nerve 
endings” 

Pain, touch, 
chemical 

stimuli, and 
temperature 

IV None Less than 2.5 “Free nerve endings” 

Pain, chemical 
stimuli, and 
temperature 

(Source:  Adapted from Kaufman, M.P. and Hayes, S.G.  The Exercise Pressor Reflex, Clinical 

Autonomic Research 12: 429-439, 2002)   
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1.3.2 Ascending Central Pathways 

 

The dorsal column medial lemniscus pathway carries information from sensory 

receptors that mediate discriminate touch, vibration and kinesthesia from group I and II 

fibres originating from muscle spindle and Golgi tendon organs.  Fibres originating 

from below the mid-thoracic region become medially located in the dorsal column to 

form the fasciculus gracilis, while those originating from upper thoracic and cervical 

segments form the fasciculus cuneatus of the ipsilateral dorsal column (150).  Axons 

from the gracile and cuneate fasciculi terminate in the ipsilateral dorsal column nuclei 

of the medulla oblongata (4).  Axons of second order neurons in the gracile and cuneate 

nuclei cross the midline of the medulla as internal arcuate fibres and continue to the 

thalamus as the medial leminscus (65).  The medial lemniscus enters the lateral division 

of the ventral posterior nucleus of the thalamus, which is the primary somatosensory 

relay and the source of most thalamo-cortical projections (4).  The pathway is 

completed by the relay from the thalamus nuclei to the primary somesthetic area (SI) in 

the parietal lobe in the cerebral cortex (65).  Representations of the body surface occur 

on the SI termed the sensory homunculus, in which the magnitude of the cortical 

representation of a body region is proportional to the use of the region and not its size 

(4). 

 The small diameter sensory fibres which convey pain, temperature and crude 

touch ascend in the spinothalamic tract (150).  These axons enter the spinal cord via the 

dorsal root and travel for one to two segments as Lissauer‟s tract before synapsing in the 

nucleus proprius at the base of the dorsal horn (65).  The fibres cross the midline in the 

ventral white commissure to the opposite side of the spinal cord and course upward as 
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the spinothalamic tract, in one of two pathways, the anterior spinothalamic tract which 

carries touch information, and the lateral spinothalamic tract, which contains pain and 

temperature axons (65).  The spinothalamic fibres ascend to the medulla and above this 

level the fibres constitute the spinal lemniscus, which then terminate in the ventral 

posterolateral division of the thalamus (4).  The axons from the thalamus cross the 

internal capsule to reach SI (65). 

1.3.3 Effect of Somatosensory Stimulation on Autonomic Tone 

Somatosensory information from skin, joints and muscle is transmitted by 

afferent fibres to the central nervous system and has been shown to evoke autonomic 

responses (114).  Both pressor and depressor responses in terms of sympathetic activity 

are observed during somatosensory input, and spinal, medullary and supra-spinal 

components have been identified in the somato-sympathetic reflex (114).  

Transcutaneous electrical nerve stimulation (TENS) is a commonly used modality to 

study the peripheral circulatory effects of somatosensory stimulation. 

 Low-frequency electrical stimulation of the sciatic nerve in rats has been shown 

to cause peripheral vasodilation and decreased systemic BP, pointing to sympatho-

inhibition (153).  Kaada et al. (1990) used low-frequency (2 Hz) TENS at the web 

between the first and second metacarpal bones at an intensity that caused non-painful, 

local, rhythmic contractions of the finger.  They observed a reduction in mean femoral 

arterial BP and systemic vascular resistance in normotensive patients undergoing 

cardiac catheterization (60).  The authors attributed the mechanism most likely to be 

sympatho-inhibition, due to central activation of a serotonergic system leading to 

peripheral „passive‟ withdrawal of sympathetic activity.  Jacobsson et al. (2000) 
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investigated the effects of low frequency (1.7 Hz) TENS below the pain threshold 

applied between the first and second metacarpal bones in patients with therapy-resistant 

hypertension (58).  After four weeks of treatment, 24-hour ambulatory BP recordings 

showed decreased systolic and diastolic BPs that continued to stay reduced one week 

after the stimulation period.  The effects of TENS were suggested to occur through 

central inhibition of sympathetic activity, involving an endorphinergic mechanism 

leading to an increase in opioid peptide content (58).  Kaada et al. (1991) similarly 

noted lowered systolic, diastolic and mean BPs in response to low frequency (2 Hz) 

TENS applied at non-painful motor threshold of the fingers in individuals with 

mild/moderate hypertension (59).  In addition, they noted a continued lowering of BPs 

after two weeks of daily TENS therapy.  High-frequency TENS (75 Hz) on the ulnar 

nerve in healthy individuals has also been shown to decrease sympathetic tone (100).  

The authors used infrared thermography and demonstrated increased infrared emission 

and increased skin temperature, providing indirect evidence of skin vasodilation and a 

decrease in sympathetic tone.  Direct measures of MSNA were obtained by Hollman 

and Morgan (1997) to study the effects of TENS during handgrip exercise in healthy 

volunteers.  Sub-motor threshold TENS (60 Hz) to active type I and II afferents was 

applied to the ipsilateral forearm alone and during 2 min of 25% MVC handgrip 

exercise (55).  The sympathetically-mediated pressor responses to handgrip exercise, 

including MSNA burst frequency and systolic BP, were attenuated with concurrent 

TENS delivered over the forearm.  The blunted sympathetic response was attributed to a 

modulation of III and IV afferents activated with handgrip exercise by type I and II 

afferents at the spinal level.  Sanderson et al. (1995) also examined the effects of high 
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frequency (150 Hz) TENS on the chest and back during sustained handgrip exercise, 

observing a reduction in the rise of DBP (113).  Lastly, sensory stimulation in the form 

of electric shock to the finger at an intensity as high as possible without causing pain 

has been shown to attenuate the amplitude of one to two subsequent MSNA bursts.  The 

shocks were delivered 200-400 ms after the R wave of the electrocardiogram (ECG), 

suggesting that the inhibitory effect was due to the level of afferent baroreceptor 

discharge (35).   

 However, sub-motor and mild motor threshold electrical stimulation do not 

always produce depressor effects.  Sherry et al. (2001) observed no changes in arterial 

BP or foot temperature, nor in calf blood flow or vascular resistance in response to sub-

motor and motor threshold TENS (85 Hz) of the tibial and peroneal nerves (118).  In 

addition, Indergand and Morgan (1994) studied the effects of high-frequency TENS 

(110 Hz) of the peroneal and tibial nerves at sub-motor and motor threshold intensities 

in healthy subjects.  Neither intensity influenced calf blood flow, mean arterial pressure 

nor calf vascular resistance.   

  Thus, stimulation of peripheral afferent nerves has been shown to produce 

depressor effects on MSNA and BP and other indices that indicate sympatho-inhibition.  

However, the studies vary in terms of stimulation parameters (high versus low 

frequency) and stimulation intensity, including sub-motor threshold, motor threshold, or 

simply non-painful.  These varying levels of intensity activate different groups of 

afferents, thus, it is important to separately study the intensity levels further.  In 

addition, the inclusion of other measures including heart rate variability and MSNA are 

lacking to elucidate whether parasympathetic versus sympathetic activity is altered with 
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somatosensory stimulation.  Lastly, central mechanisms within the spinal cord and 

medulla have been suggested to modulate somato-autonomic regulation; however, the 

involvement of higher cortical centers has not been investigated.  While the neural 

pathway from somatosensory receptors to the spinal cord, brainstem and to the 

somatosensory cortex is well known, the representation of sensory inputs within other 

cortical regions including autonomic areas requires investigation.  Thus, this thesis aims 

to further examine the effects of somatosensory stimulation, particularly sub-motor 

threshold electrical stimulation to activate the Type I and II afferents, on indices of heart 

rate variability and MSNA, as well as on cortical patterns of activity. 

1.4 Central Modulation of Cardiovascular Control 

Past stimulation and neuroanatomical studies have established a role for the 

cerebral cortex in autonomic cardiovascular control.  Regions implicated in the 

modulation of cardiovascular control mechanisms include the insular cortex, medial 

prefrontal cortex (MFPC), anterior cingulate cortex (ACC), amygdala and cerebellum 

(18; 31; 140).  This thesis will focus specifically on the roles of the insula, MPFC and 

ACC as these forebrain regions are better described in terms of their currently accepted 

roles in autonomic function as compared to the amygdala and cerebellum.  . 

1.4.1 Insular Cortex 

 

The insula lies buried within the lateral sulcus covered by the operculum, 

consisting of the inferior frontal gyrus, inferior parietal lobule, and the superior 

temporal gyrus (7) (Figure1.1).  The insula has been classified into three distinct 

subdivisions: ventral anterior insula, dorsal anterior to middle insula, and middle to 

posterior insula (81) (Figure1.2).  Insular pathways project to various subcortical 
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regions known to be involved in autonomic function, such as the nucleus tractus 

solitarius (NTS), the lateral hypothalamus, the parabrachial nucleus, and the central 

nucleus of the amygdala (18). 
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Figure 1.1 -- Histologic view of the insula buried under the operculum. 
 
(Source:  http://www.healcentral.org/healapp/showMetadata?metadataid=40566.  By John A. Beal, Ph.D.,  
Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center 
Shreveport) 

http://www.healcentral.org/healapp/showMetadata?metadataid=40566
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Figure 1.2 -- Cytoarchitectonic delineation of the anterior insula consisting of three 

short gyri and the posterior insula consisting of two long gyri, separated by the 

central sulcus. 
 

(Source:  Used with permission by Prefrontal.org, Brain Dissection Insula Anatomy) 
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Stimulation of the insular cortex has been shown to elicit changes in HR and BP 

in both rats (94) and humans (95).  In rats, the rostral posterior insula produces 

tachycardia, whereas bradycardia is produced by stimulation of the caudal posterior 

insula.  Furthermore, in humans, lateralization has been observed with direct cortical 

stimulation of the left insula producing bradycardia, and right insular stimulation 

producing tachycardia and a pressor response (95).  Lateralization of insula-induced 

cardiovascular control has also been demonstrated by a lesion study showing damage to 

the left insula shifts cardiovascular function towards higher sympathetic outflow (96).   

The insulae also feature prominently in non-invasive neuroimaging studies in 

conscious humans.  In these studies, several manoeuvres have been employed to 

understand the patterns of activation within this region that are associated with 

cardiovascular arousal.  For example, a functional neuroimaging study has also reported 

right posterior insular activation during handgrip and mental stress (28).  Although the 

posterior region of the right insula contains a high percentage of sympatho-excitatory 

neurons which are stimulated during pharmacologically-induced BP challenges (94; 

155), neuroimaging studies show the anterior-mid insula also responds to sympatho-

excitatory tasks.  Gianaros et al. (2007) observed activation in the anterior insula during 

a mental stressor (colour-word Stroop task) that elevated BP (44), and Macefield and 

colleagues (2006) showed anterior insula involvement during increased MSNA with 

inspiratory apnea (75).  In addition, the bilateral anterior-mid insula modulates the HR 

increase during moderate intensity isometric handgrip exercise (151).  In addition, the 

effect of central command or increased sense of effort on HR has been attributed to 

right posterior and left anterior insular activation during static handgrip exercise (148).  
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These authors also employed an “imagined” exercise task to test the idea that the 

observed patterns of cortical activation during handgrip were induced by “top-down” 

central command phenomena rather than “bottom-up” sensory inputs.  In the imagined 

exercise cardiovascular responses were elicited and these were associated with insular 

activation (149). 

The above evidence has largely focused on the association of insular activation 

patterns and HR regulation by the reflexive manoeuvres.  Such changes in HR can be 

induced by alterations in parasympathetic and/or sympathetic neural changes.  In this 

regard the insula plays a role in sympathovagal balance in a manner that largely reflects 

parasympathetic modulation.  In particular, the posterior insula is associated with the 

high frequency component of heart rate variability (HRV), an index of parasympathetic 

activity (89).  Similar to aforementioned stimulation studies, the left insula is correlated 

with high frequency power during emotion (70) and working memory (45) tasks, 

suggesting an association of the left insula with parasympathetic activity. 

In addition to these cardiovascular “motor” effects of the insulae, these cortical 

regions also receive sensory inputs related to somatosensory processing and 

cardiovascular function.  The posterior insula plays an important role as a 

somatosensory association area (42; 69; 82), in which the „sensory‟ posterior insula 

integrates vibrotactile stimuli (24) and touch (12).  Regarding cardiovascular function, 

neurons in the right posterior insula are responsive to baroreceptive inputs and to 

changes in BP (155).  This issue of sensory signals being represented in the CAN is 

particularly pertinent to the study of the cortical modulation of cardiovascular arousal 

during exercise.  In particular, representation of skeletal muscle afferent 
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metaboreceptors has been shown in the insula during PECO of the exercising forearm to 

trap circulating metabolites (148).  This likely involved the type III/IV afferents because 

they are stimulated by the trapped metabolites and there was no movement of the 

forearm.  However, this study could not differentiate sensory signals arising from type 

III/IV muscle afferents from baroreflex sensors that would be activated during PECO.  

Thus, a passive technique that stimulates somatosensory afferents without engaging 

central command or afferent BP or cardiac input to the central nervous system would 

aid in revealing the effects of type I and II somatosensory inputs to the CAN.  Electrical 

stimulation affords the opportunity to study this and can be used to activate different 

groups of somatosensory afferents.  Median nerve electrical stimulation at motor 

threshold activates the bilateral insula (5; 38).  Tingling level electrical stimulation has 

been associated with posterior insula activation (32).  However, these studies did not 

study cardiovascular responses to the stimuli nor relate the activity to other CAN 

regions. 

Overall, the above text indicates that the insula has established roles in 

autonomic function as well as in sensory integration.  These are not likely mutually 

exclusive roles and it remains to be determined how sensory signals represented in this 

region affect cardiovascular control in conscious humans, independent of other 

perceptual or emotive features such as pain, which will also induce cortical activation 

patterns.  For example, the anterior insula is involved with awareness and emotion (26; 

30) as well as with autonomic function, whereas the posterior insula contains sympatho-

excitatory neurons and integrates sensory information.  Thus, this thesis aims to address 

the role of the insula in the integration of Type I/II afferents versus III/IV afferents 
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during volitional and electrically-stimulated procedures that do not increase HR and BP 

in order to control for afferent cardiac and baroreceptor inputs to the brain.  

1.4.2 Ventral Medial Prefrontal Cortex 

The vMPFC is an established visceromotor region in the modulation of 

autonomic nervous activity (90) (Figure 1.3).  Stimulation of the vMPFC in rats leads to 

decreased mean arterial pressure and inhibition of sympathetic tone (98; 99), suggesting 

that the vMPFC is involved as a central sympatho-inhibitory pathway.  Broadly ranging 

anatomical connections from the vMPFC to central regions involved in cardiovascular 

regulation include the amygdala, the lateral hypothalamus, the periaqueductal gray 

(PAG), the NTS, the CVLM and RVLM (56; 90).  The lateral hypothalamus, PAG, 

NTS, CVLM and RVLM appear to be the main nuclei within the neural pathway for 

producing hypotension during electrical stimulation of the vMPFC in the anaesthetized 

rat (39; 97).  For instance, the depressor responses to electrical stimulation of the 

vMPFC are attenuated during NTS inhibition by GABA agonists (97).   

The importance of the vMPFC in autonomic cardiovascular arousal is also 

evident in neuroimaging studies of conscious humans and  monkeys.  First, this region 

is active in humans during rest (106) and during sleep in monkeys (108).  This concept 

is important when it is considered that, at rest, sympathetic levels are low and 

parasympathetic outflow is high.  From this position, the vMPFC adjustments would be 

important in exercise whereby autonomic balance is adjusted.  In support of this view, 

Wong et al. (2007) showed that vMPFC deactivation during bouts of short-term (i.e., 

30-sec) moderate intensity handgrip exercise is associated with the parasympathetically-

mediated rise in HR response (151).  It is noteworthy that this exercise task emphasizes 
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PNS withdrawal in the absence of sympathetic activation.  Thus, in this model, the 

vMPFC appears to be involved with the modulation of parasympathetic activity. 

However, it remains uncertain whether the levels of vMPFC activation at rest or during 

exercise are directly related to PNS levels and whether the deactivation in this region 

with volitional handgrip is due specifically to an active “motor” role of the cortex or the 

representation of a sensory signal from the activated muscle or the heart that are 

concurrently elicited during the handgrip exercise.  
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Figure 1.3 -- Sagittal (left) and axial (right) view of the vMPFC. 
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1.4.3 Anterior Cingulate Cortex (Subgenual and Dorsal) 

The anterior cingulate cortex (ACC) lies ventral, rostral and dorsal to the corpus 

callosum and belongs to the limbic lobe (16; 33).  In addition to playing a role in motor 

function as well as processing cognitive and emotional function, the ACC has a 

significant role in modulating autonomic function (14; 33; 143).  The ACC displays 

interconnections with autonomic nuclei in the hypothalamus, amygdala, insula and 

orbitofrontal regions (3; 140).   

 The two major subdivisions of the ACC include the dorsal and rostral-ventral 

regions.  The psychology literature points to these regions as being related to cognitive 

and affective roles, respectively (16).  In addition to roles in cognition and emotion, 

electrical stimulation studies of the ACC in animals have revealed significant autonomic 

responses, yielding changes in sympathetic activity and respiration (91).  The subgenual 

ACC (Brodmann area 25, Figure 1.4) contains extensive connections with autonomic 

centres including the parasympathetic nucleus of the solitary tract (132) and the dorsal 

motor nucleus of the vagus (56), supporting the involvement of the subgenual ACC in 

parasympathetic activity.  On the other hand, the dorsal ACC (Brodmann area 32 and 

24, Figure 1.5) is tightly linked with sympathetic nervous system control.  Human 

neuroimaging studies have revealed an association between the dorsal ACC and 

sympathetic control of HR during cognitive and motor tasks (29).  Working memory 

tasks that decrease HRV (decreased cardiac parasympathetic activity) (45), as well as 

baroreflex-mediated increases in MSNA via an orthostatic stressor (66), are associated 

with activity in the dorsal ACC, supporting its role in sympathetic regulation of cardiac 

function.  Though the middle cingulate region is implicated with sensori-motor control 
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(27) and is activated with electrical stimulation (5), the involvement of the ACC 

subdivisions with somatosensory processing requires further investigation. 
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Figure 1.4 -- Sagittal (left) and axial (right) view of the subgenual ACC. 
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Figure 1.5 -- Sagittal (left) and axial (right) view of the dorsal ACC. 
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1.5 Anatomical Connectivity between CAN Regions 
 

Previous animal studies have established patterns of structural connectivity 

between brain regions, including those implicated within the CAN.  These axonal 

projections physically linking cortical regions are suggested to subserve their functional 

roles (8).  In this regard, the anterior insula is connected to the ACC, while the posterior 

insula is connected with the middle cingulate and posterior cingulate (81; 144).  

Specifically, axonal tracer studies in rhesus monkeys show the anterior insula is 

connected to Brodmann areas 24 of the perigenual ACC, while the mid and posterior 

insula has connections with the mid and posterior cingulate areas 24' and 23 (Figure 

1.6) (7; 36; 81).  Histochemical and radiographical experiments show that the insula 

forms a functional unit with orbital and frontal opercular areas, with reciprocal 

connections observed between the insula and the prefrontal cortex in non-human 

primates (7; 40).  Intra-insular connections are also evident in which the anterior insula 

receives afferents from adjacent agranular and anterior dysgranular areas, while the 

posterior insula receives afferents from both anterior and mid-insula (40).   

The analysis of white matter axonal connections between regions implicated in 

autonomic function in humans has not been performed.  Given the information outlined 

above, it appears that the anterior insula will project toward the forebrain whereas the 

posterior insula will project more posteriorly.  This question was addressed in Chapter 3 

in order to determine whether the underlying function of the CAN regions may be 

associated with their physical connectivity. 
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Figure 1.6 -- Connectivity patterns between anterior (A), mid (M), posterior (P) 

insula (bottom) with anterior, mid and posterior cingulate areas (top). 
 
(Source top figure used with permission by Vogt BA, Cingulate Neurobiology and Disease, published by 
Oxford University Press.  Source bottom figure: 20th U.S. edition of Gray‟s Anatomy of the Human Body 
insula) 

P 
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1.6 Methods and Techniques 

1.6.1 Functional MRI  

 

Functional magnetic resonance imaging (fMRI) is a sensitive, noninvasive tool 

used to map patterns of activation within the brain.  The relationship between neuronal 

activity and blood flow, termed neurovascular coupling, was first provided by Roy and 

Sherrington.  They observed that the byproducts of brain metabolism produced 

vasodilation that altered blood supply in response to changes in functional activity (74).  

The blood-oxygenation-level-dependent (BOLD) effect is the basis for most fMRI 

studies, and the level of blood oxygenation is used as an endogenous contrast (105).  

This BOLD effect was first reported by Ogawa and colleagues (1990) who recognized a 

difference in magnetic susceptibility of oxygenated haemoglobin (Hb) compared to 

deoxygenated haemoglobin (dHb) in the blood, due to Hb being less paramagnetic than 

dHb (93).  Cortical activity is thus related to an increase in Hb in the venous blood near 

the active site (105).   

The measured MRI signal arises from hydrogen atoms which are abundant in 

biological tissues (13).  Hydrogen protons act as magnetic dipoles due to the odd 

number of protons and, thus, possess nuclear spin (74).  When exposed to an external 

magnetic field (B0 field), hydrogen dipoles align and precess (spin) in the direction of 

the magnetic field, with a small number of protons aligned anti-parallel to the field, 

creating a weak equilibrium magnetization (13).  An additional magnetic field 

perpendicular to the main field and oscillating at the same resonance frequency can be 

used to tip the equilibrium magnetization.  A radiofrequency (RF) coil (B1 field) applies 

a pulse to excite the nuclear spins and tip the tissue magnetization away from the main 

magnetic field by an angle called the flip angle (13).  This splits the equilibrium 
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magnetization into a residual component along the longitudinal axis defined by B0, and 

a precessing (spinning) component at a right angle to the main magnetic field, termed 

the transverse component.  Prior to the RF pulse, the spins are randomly oriented and 

sum to zero, and B1 causes a coherent alignment of the spins in the transverse 

component.  In turning off the RF pulse, the atoms are subjected only to the static 

magnetic field, causing the atoms to return to their equilibrium state.  The longitudinal 

component of magnetization returns exponentially to its equilibrium with a relaxation 

time constant referred to as T1 (74).  The transverse component decays exponentially 

with a transverse relaxation constant termed T2.  T2 refers to the spin-spin relaxation in 

a perfectly homogenous magnetic field; however, due to local field inhomogeneities, a 

T2* refers to the effective transverse relaxation time (74).  BOLD fMRI relies on the 

paramagnetic properties of dHb, which enhances spin phase dispersion, and thereby 

exerts its effects on T2*, especially when dHb is compartmentalized in red blood cells 

within blood vessels (34).   

Increased neural activity leads to an increased BOLD signal as measured by 

T2*-weighted imaging.  The BOLD response to neural activity takes form as three 

distinct phases (Figure 1.7).  After a stimulus, there is a small negative dip in the signal 

2-3 sec post-stimulus, and though the initial dip remains difficult to detect, it appears to 

be due to an increase in the metabolic consumption of oxygen without any change in 

blood flow or blood volume (92).  This is followed by the main BOLD response which 

peaks at around 5 seconds, in which blood flow increase more than the metabolic rate of 

oxygen consumption, leading to decreased dHb and an increased MR signal.  The final 
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phase is characterized by a post-stimulus undershoot due to the delayed return of blood 

volume to baseline (92). 
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Figure 1.7 -- Time course of the BOLD response to a short stimulus. 
 
(Source:  Used with permission by Norris, D.G.  Principles of Magnetic Resonance Assessment of Brain 
Function.  Journal of Magnetic Resonance Imaging 23: 794-807, 2006) 
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1.6.2 Diffusion Tensor Imaging 

 

Diffusion tensor imaging (DTI) is one of the most innovative accomplishments 

in neuroimaging to surface over the last decade.  Conventional modalities of imaging 

cannot provide information on the structure of white matter anatomy.  However, DTI 

now allows macroscopic in vivo characterization of white matter fibre tracts which 

would otherwise be impossible in humans (104).  The white matter of the brain 

represents the axonal elements of neural tissue and reflects projections between various 

subcortical nuclei and connects gray matter regions.  Thus, DTI is an important tool 

used to perform tractography within the brain and used in conjunction with fMRI to 

discern connectivity pathways between gray matter regions involved in particular tasks 

(152).   

1.6.2.1 General Concepts of DTI  

           Diffusion tensor imaging relies on the diffusion properties of water molecules, 

where diffusion represents translational motion and is based on thermal motion 

(Brownian motion) (88).  In regions with little or no physical constraints such as 

cerebrospinal fluid, water is free to move randomly in every direction constituting 

isotropic diffusion.  However, when a water molecule lies within the constraints of an 

axon in white matter, movement is restricted within the boundaries of the axon sheath, 

and is called anisotropic diffusion (103).  The diffusion of water in white matter occurs 

in extracellular and intracellular space (125).  The extracellular or interstitial space 

between fibres is conducive to water diffusion and animal studies suggest that it is in 

the extracellular compartment that diffusion is mainly detected by DTI (125).  Diffusion 

MRI is based on the translational displacement of water molecules (6).  The direction of 
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water diffusion within white matter is primarily dependent upon axonal alignment 

whereby water diffuses preferentially along the longitudinal axis of the axon and is 

more restricted in the perpendicular axis (9).  Water diffusion along a white matter tract 

is faster in the longitudinal direction than perpendicular and it is the difference between 

these two motions (termed diffusion anisotropy) that underlies the DTI technique (6).  

The anisotropy is represented mathematically by a tensor (or ellipsoid), and is typically 

cigar shaped within white matter (152).  DTI involves computation of a tensor to 

mathematically describe the 3D ellipsoid, which illustrates the magnitude and 

orientation of diffusion in each voxel (20).  The tensor is assigned three orientation 

vectors representing the three major axes of the diffusion ellipsoid, labelled as 

eigenvectors λ1, λ2  and λ3 (152).  
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The long eigenvalue of the tensor which is aligned in the longitudinal or axonal 

direction is termed λ1 and is named the longitudinal, axial or parallel diffusivity.  The 

eigenvalues λ2 and λ3 along the small axes represent diffusivity in the perpendicular axis 

and are usually averaged together (λ2 - λ3)/2 as one average radial diffusivity measure 

(152).  The degree of anisotropy or orientational preference within a voxel, measured by 

fractional anisotropy (FA), is determined by the extent to which the axial eigenvalue λ1 

dominates λ2 and λ3.  The FA is the most commonly reported DTI measure and varies in 

accordance with the type of tissue.  The FA in ventricular cerebrospinal fluid with 

isotropic diffusion of water molecules is near 0, whereas the FA of the white matter 

structure the corpus callosum containing parallel fibres is 0.8 to 0.9 indicating that a 

higher density of fibres are oriented along the axis (20).  The apparent diffusion 

coefficient (ADC) is the average eigenvalue and represents the overall mean-squared 

displacements of water molecules, and is independent of anisotropic diffusion.  The 

ADC quantifies water motility independent of orientation in a voxel and is usually 

negatively correlated with FA in white matter (102). 

1.6.2.2 Technical Principles of DTI Acquisition 

In order to measure diffusion by MRI, it is necessary to obtain two images with 

different diffusion weighting factors (b) that are used to produce a diffusion coefficient 

(D), which corresponds to the diffusion property of a water molecule (88).  To obtain 

the images, gradient pulses are applied into the main magnetic field (i.e., 3 Tesla MRI 

scanner), which changes the strength of the magnetic field.  MRI scanners have 

magnetic field gradients in the X, Y and Z axes, and when combined with the gradient 

pulses, a magnetic field gradient can be produced along any given orientation.  For 
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example, two water molecules along the Y axis resonate at the same frequency in the 

main magnetic field.  When a gradient pulse is applied along the Y axis, one water 

molecule along the Y axis begins to resonate at a lower frequency, thus the two 

molecules are out of phase.  A second Y gradient pulse 20-50 ms after the first pulse 

with the opposite polarity rephases the spins if no net movement between the two water 

molecules occurs (88).  However, if the water molecules moved between the two 

gradient pulses (i.e, diffusion occurs), refocusing does not occur and leads to signal 

attenuation.  Thus, the magnitude of signal loss depends on the amount of translational 

motion or diffusion.  The b values, defined above, which are governed by the gradients, 

can be changed by altering the strength of the diffusion gradients, the duration of the 

gradients and the timing of the gradient pulses, amounting to different amounts of signal 

loss (88).  The two b values include a nearly zero gradient (b=0) in which a non-

weighted image is obtained, and a second gradient (i.e, 700 s/mm2) which produces a 

diffusion-weighted image.  As stated above, diffusion leads to an attenuation of the MRI 

signal, which depends on the diffusion coefficient D and the gradient pulses (b) used in 

the MRI sequence.  When a water molecule undergoes anisotropy, diffusion cannot be 

characterized by a single value, and as a result, a diffusion tensor is used to account for 

the changes (10).  Axonal tract orientations realistically occur across numerous axes and 

are not restricted to the three X,Y and Z axes of the MRI scanner.  Thus, a simplified 

mathematical model to account for the different molecular movements along each 

direction is fitted to the 3D tensor (72).  The properties of the tensor (eigenvectors λ1, λ2  

and λ3) and their orientations (eigenvalues v1, v2, and v3), can be defined by a 3x3 
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matrix, thus applying diffusion gradients in at least six non-collinear directions making 

it possible to calculate a tensor for each voxel (88). 

The tensors are then reconstructed to track the 3-dimensional fibre orientation in 

the brain (152).  The tracking is achieved by the use of algorithms which translate the 

longest axis of the tensor (v1) into neural trajectories.   

The algorithms can be categorized into deterministic and probabilistic, with 

deterministic being the original and most commonly used method (152).  Within the 

deterministic approach, the fibre assignment by continuous tracking (FACT) algorithm 

is widely used (86).  Diffusion tractography is performed by outlining at least two 

regions of interest (ROI) in 3D space, and a line is propagated from the seed point with 

a pixel connection approach (87).  The algorithms within this line propagation technique 

include termination criteria to stop tracking at pixels with low anisotropy such as grey 

matter (i.e., deviation from the „cigar‟-shaped tensor) or trajectory angles that are too 

large (87).   

Limitations of DTI include deviation from ellipsoid/cigar-shaped anisotropy, 

noise, and validation.  A major assumption is that the large principal eigenvalue is in 

one fibre orientation.  However, cases arise when two large eigenvalues exist creating a 

pancake shaped ellipsoid rather than cigar shaped (87).  A solution to this problem has 

been the creation of cigar and planar shaped ellipsoids with specific thresholds for 

termination in areas with cigar or high planar values (87).  The second limitation for 

tractography includes noise and partial voluming within other tissues or fibre types, in 

which tracking may not reflect real tract pathways.  One remedy for this includes the 

use of knowledge-based multiple region of interest (ROI) approach.  For instance, by 
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constraining the tract reconstruction to two or more ROI‟s rather than one ROI reduces 

the chances of tracking other tracts, some of which may be due to noise or partial 

volume effects (87).  On the last point concerning validation of DTI, it is a method 

which has a resolution of approximately 1-5 mm and reveals bundles of fibre tracts but 

cannot discern individual axons with much smaller diameters.  The gold standard for 

tracking is chemical tracer techniques which can resolve tracts at the cellular level; 

however, chemical tracers reveal only a small portion of the actual number of axons 

within the white matter bundle.  The advantage of DTI is the rapid reconstruction of 

large datasets of white matter structures, and validation is possible if tractography is 

performed diligently and the results are compared with known anatomical connections 

from previous tracing literature (87). 

1.6.3 Assessment of Autonomic Modulation of Cardiac Function 

Heart rate variability (HRV) is a measure of variations in HR and represents a 

marker for autonomic control of the heart (111; 124).  The measurement of HRV 

provides valuable information regarding sympathetic and parasympathetic autonomic 

balance, and is an independent predictor of mortality after acute myocardial infarction 

(130).  The concept of HRV is based on the observation that the cardiac intervals (beat) 

of a healthy heart do not exhibit regularity due to the effects of respiratory rate, BP and 

thermoregulatory adjustments in blood flow and peripheral vascular resistance on the 

sinus node (124).  Thus, HRV describes the oscillations of the intervals between 

consecutive heart beats (R-R interval) that arise from the aforementioned variables 

inherent to the autonomic nervous system (139).  Analysis of the rhythms (respiratory 
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sinus arrhythmia, baroreflex) provides a noninvasive measurement of autonomic control 

of the heart (124).  

 Analysis of HRV of a series of R-R intervals can be assessed by spectral 

analysis in the frequency domain.  Spectral analysis of R-R interval variations provides 

information on frequency-specific oscillations, and provides the amount of overall 

variability in HR resulting from periodic oscillations in HR at different frequencies 

(124).  In spectral analysis, a Fourier transform decomposes a series of R-R intervals 

into a sum of sinusoidal functions consisting of different amplitudes and frequencies 

(138).  The resultant power spectrum presents the amplitude of HR fluctuations 

occurring at different oscillation frequencies (138) (Figure 1.10).  Heart rate is usually 

measured as milliseconds, and the variance referred to as „power‟ is measured in 

milliseconds squared (124).  Frequency analysis decomposes HRV into three main 

oscillatory components: high frequency (0.15 to 0.4 Hz), corresponding to respiratory 

rate and parasympathetic influence on the heart; low frequency (0.04 to 0.15 Hz), which 

is suggested to reflect joint activity of parasympathetic and sympathetic influences on 

the heart but with sympathetic predominance; and very low frequency (<0.04 Hz) (138; 

139).   
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Figure 1.8 -- The top panel represents a tachogram tracing of the instantaneous 

heart rate calculated from the R-R interval length.  Bottom panel represents the 

power spectrum of the heart rate trace above and illustrates the three components 

corresponding to the main fluctuations in heart rate: very low frequency (VLF), 

low frequency (LF), and high frequency (HF)  
 
(Source:  Used with permission by van Ravenswaaij-Arts CMA, Kollee LAA, Hopman JCW, Stoelinga 

GBA and van Geijn HP. Heart rate variability. Annals of Internal Medicine 118: 436-447, 1993. 
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Conventionally, spectral analysis typically requires 5 minutes or more of 

continuous data (124).  However, due to the nature of fMRI designs in which rest and 

task conditions should ideally be less than one minute due to scanner drift, wavelet 

analysis of HRV offers a way to compute time-varying variations in R-R interval over 

much shorter periods.   

Wavelet analysis refers to a signal processing technique that uses wavelets to 

measure time-varying, non-stationary signals (112).  A wavelet is a short sample 

waveform with oscillating amplitude functions of time that is used as a filter to 

decompose the time series R-R interval into a time-frequency space (135).  Wavelet 

analysis of HRV in this thesis was assessed using the methods outlined by Toledo et al. 

(2003).  Using a continuous wavelet transform of the R-R intervals, a time-frequency 

decomposition of the signal produces a time-dependent component of the low frequency 

and high frequency peaks of the oscillations in R-R intervals (134).  This method 

provides information on autonomic control of cardiac activity, as reflected by HRV, 

over short periods of time, allowing determinations of how such frequency content 

varies with time.   

 In an effort to validate the use of the wavelet analysis algorithm used here, and 

determine its ability to track expected changes in HRV a pilot study was performed 

comparing supine rest to upright sitting (N=8).  As shown in Appendix A, the wavelet 

analysis was able to track changes in HRV, with anticipated decreases in HRV on going 

from supine to seated rest due to baroreflex-mediated increases in HR that occur with 

postural change.  Notably, decreases in the high frequency power (HFP) component of 

HRV occurred on moving from supine to seated rest when HR increased.  In two 
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subjects, HFP increased during seated rest and HR decreased.  Thus, the wavelet 

analysis is a reliable technique to measure autonomic control of the heart. 

 This approach provided an opportunity to quantify the impact of the study 

interventions (e.g., handgrip exercise, lower-body negative pressure, and forearm 

electrical stimulation) on parasympathetic outflow, focusing on the high frequency 

changes in wavelet spectra. 

1.7 Summary  

The neuroimaging literature has provided substantial evidence of the role of the 

cerebral cortex in autonomic cardiovascular control.  Characterization of CAN regions 

have utilized tasks that involve perceived sense of effort such as exercise (67; 147), 

mental stress (28; 43), as well as breath holds and Valsalva manoeuvre (51; 53; 75).  

While the representation of afferent baroreceptor input has been demonstrated in the 

insula (19), the representation of somatosensory information is less understood.  A 

small number of fMRI studies have observed activity within the insula and ACC during 

electrically-stimulated somatosensory activation, in which motor threshold and 

shocking stimuli were used (5; 48).  Tingling electrical stimulation has been observed in 

the posterior insula; however, autonomic activity was not assessed (32).  Sub-motor 

threshold stimulation has been associated with depressor responses including sympatho-

inhibition and hypotension (55; 59; 60; 100), but the effects on cortical autonomic 

regions has not been established using fMRI.  Therefore, the overall purpose of this 

research was to investigate the association between somatosensory stimulation and 

patterns of activity within the autonomic regions of the brain.  This thesis aims to 

address the working hypothesis that somatosensory inputs are represented within the 
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CAN and that discrete CAN regions will be associated with changes in autonomic 

function.   The following studies were performed to address these questions: 

Study 1 entitled „Representation of somatosensory inputs within the cortical 

autonomic network‟, tested the hypothesis that CAN regions integrate muscle sensory 

afferents, with differential activation patterns observed between passive and active 

tasks.  It was also hypothesized that regions implicated with parasympathetic activity 

(i.e, ventral medial prefrontal cortex) will be differentially activated during electrical 

stimulation and handgrip exercise, and would reflect efferent measures of 

parasympathetic activity.  

Study 2 entitled „Anatomical connections between autonomic regions of the 

brain‟, aimed to determine whether function is linked to structure.  Specifically, it was 

hypothesized that the functional responses within the CAN regions associated with 

somatosensory stimulation and isometric handgrip exercise are reflective of structural 

connections between the regions, providing the anatomical basis for the CAN to act as a 

functional network. 

Study 3 entitled „Forebrain organization representing integration of baroreceptor 

and somatosensory afferents within the cortical autonomic network‟, aimed to establish 

the effects of muscle sensory afferents on CAN activation patterns during conditions of 

baroreceptor unloading.  It was hypothesized that muscle sensory afferent stimulation 

differentially impacts CAN regions involved in sympathetic activity (i.e., insular cortex) 

during baroreceptor loading (supine rest) and unloading (LBNP), which will be 

associated with changes in muscle sympathetic nerve activity. 
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Chapter 2 - Representation of somatosensory inputs within the cortical 

autonomic network
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1A form of this manuscript has been published: 

R. Goswami, M.F. Frances, J.K. Shoemaker.  Representation of somatosensory inputs 
within the cortical autonomic network. (2011).  NeuroImage. 54(2): 1211-1220.  Used 
with permission of Science Direct. 
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2.1 INTRODUCTION  

Muscle contractions produce autonomic arousal and cardiovascular adjustments 

to support blood flow distribution and blood pressure (BP).  This autonomic arousal is 

thought to include ascending sensory signals from muscle as well as descending “drive” 

signals from primary and supplementary cortical motor areas.  In this context, a cortical 

autonomic network (CAN) has been described in humans based on sympathetic and 

cardiac responses to physical and cognitive tasks.  The insula, ventral medial prefrontal 

cortex (vMPFC), and anterior cingulate cortex (ACC) form part of the CAN that 

modulates efferent responses (22; 33; 37; 57; 60).  However, the sensory component of 

the CAN is not known with respect to the peripheral stimuli it processes.  For instance, 

in humans (58; 60), and rodents (45), the insula and vMPFC are implicated in heart rate 

(HR) control during effortful tasks.  However, whether such cortical activation patterns 

reflect somatosensory signals from activated muscle, cardiac or baroreceptor inputs, 

cortical-cortical pathways, or efferent visceromotor signals that target changes in 

cardiovascular function, has not been determined. 

It is known that afferent signals arising from muscle affect autonomic 

cardiovascular control.  Of the four muscle sensory nerve types, namely types I, II, III 

and IV, the type III and IV afferents are functionally involved in cardiovascular arousal 

during fatiguing contractions (32; 40).  The type I and II afferent projections and 

outcomes have received less attention.  While vibration-induced activation of type Ia 

muscle spindles fail to produce cardiovascular responses (39), sensory level electrical 

stimulation of type I and II afferent nerves reduced reflex-mediated sympathetic and BP 

responses (27; 47).  This association between the somatosensory and autonomic nervous 

system prompts the hypothesis that large diameter type I and II afferents are reflected 
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within the CAN and that such integration is associated with suppression of 

cardiovascular state.   

 As stated above, the CAN sites involved in integrating peripheral signals from 

muscle are not clearly defined.  Activation in the insula has been shown in response to 

muscle afferent input during postexercise circulatory occlusion (58); however, it is 

difficult to dissociate this response from concurrent baroreceptor input.  In an 

anaesthetized animal model, altered cell activity in insular neurons has been reported 

during ventral root stimulation, independent of BP changes (28).  In humans, activation 

within the insula and ACC was observed during motor threshold electrical stimulation 

of peripheral nerves (2; 19).  However, these models will activate multiple sensory and 

motor neurons that produce nonspecific CAN activation patterns and cardiovascular 

responses.    

  Therefore, the purpose of this study was to establish the functional 

representation of muscle sensory afferents in the CAN and separate these from top-

down signals arising during volitional muscle activation.  The left insula has been 

associated with a bradycardic response, increased parasympathetic activity (46; 61) and 

integration of afferent information regarding BP changes (10).  The vMPFC is 

implicated in parasympathetic function, evidenced by deactivation  during handgrip 

exercise (60) when parasympathetic activity is withdrawn (38), and has extensive 

anatomical connections with the insula (3; 44).  Therefore, we expect the left insula and 

vMPFC to represent primary sites associated with somatosensory nerve stimulation. 
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2.2 MATERIALS AND METHODS 

2.2.1 Participants 

 

Twelve healthy participants (8 females, 4 males; aged 25 ± 3 yr; height 167 ± 7 

cm; weight 65 ± 12 kg) volunteered in this study.  All subjects were non-smokers, not 

taking any medication, and had no prior history of cardiovascular, neurological, or 

musculoskeletal disorders.  In addition, each participant was deemed to be right-handed 

according to the Edinburgh Handedness Inventory (43).  

Prior to the experimental day, each participant was familiarized with 

transcutaneous electrical nerve stimulation and the parameters for the stimulus 

intensities were determined.  All participants provided informed written consent to the 

experimental procedures that were approved by the Health Sciences Research Ethics 

Board at The University of Western Ontario.  

2.2.2 Experimental Approach 

 

Overall, our approach was to assess CAN regions of interest while muscle 

sensory afferents were stimulated electrically at sub-motor and motor levels that do not 

affect HR.  Cortical responses to these passive trials were compared to volitional trials 

of mild wrist flexion and strong handgrip exercise.  The two volitional conditions 

achieve muscle afferent activation as well as top-down signals from the motor cortical 

regions but only the VOL35% produces a HR response (60).  Sub-motor threshold 

electrical stimulation (sensory intensity) activates type I and II afferent nerve fibres (27; 

48).  Motor threshold stimulation recruits type I, II and III and possibly group IV (30; 

48). 
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2.2.2.1  Electrical Stimulation Procedures 

The electrical stimulus was delivered as symmetrical biphasic square waves 

using a portable stimulator (JACE Systems, Cherry Hill, NJ) that was modified for MRI 

compatibility.  Two self-adhesive electrodes (4cm x 4cm) (StimCare, Empi, St. Paul, 

MN) were positioned on the right forearm flexors over the muscle belly; this position 

was identified by palpation during resisted wrist flexion.  Similar stimulation settings 

were used across all trials with a pulse frequency of 100 Hz and duration of 50 μsec.  

Two levels of intensity were used with current levels set individually: sub-motor (SUB; 

mean value 24 ± 4 mA) and motor (MOT; mean value 34 ± 7 mA).  The sub-motor 

threshold was determined by increasing the stimulation intensity until a muscle 

contraction was elicited, and then decreased to a level just below motor threshold.  The 

MOT stimulation was used to elicit a sustained wrist flexion at approximately 5% of 

maximal voluntary contraction (MVC).  MOT stimulation was not considered painful 

for the participants according to subjective perceptions.  

2.2.2.2 Volitional Procedures 

A series of active wrist flexions that mimicked the 5% MVC force induced by 

MOT stimulation were also performed.  This volitional task (VOL5%) was performed 

to induce movement that was similar to MOT as well as to include motor cortex 

activation and descending neural drive.  Importantly, this contraction was sufficiently 

low in intensity that average HR did not change.  In addition, a moderate intensity 

isometric handgrip exercise at 35% MVC (VOL35%) was performed to study a stronger 

volitional task that did increase HR.  Short bouts of moderate intensity handgrip 

exercise have been shown to elicit a robust increase in HR via parasympathetic nervous 
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system (PNS) withdrawal as opposed to an increase in sympathetic nerve activity (38) 

and the HR response is negatively correlated with deactivation in the vMFPC (60).  

2.2.3 Experimental Paradigm 

 

Participants arrived at the laboratory after having been instructed to fast 3 hr 

prior to testing and to refrain from caffeine, nicotine, alcohol and physical activity for at 

least 12 hr.  Cutaneous afferent blockade of the forearm was achieved with EMLA 

cream (Astra Pharmaceuticals, Wayne, PA) through its application 2 hr prior to the start 

of the experiment.  The cream was applied to the sites of the forearm beneath the 

stimulation electrodes and covered with Tegaderm dressings (3M, St. Paul, MN).  

Sensory blockade was verified over the course of the protocol by stroking the skin upon 

the start and end of the experiments.  Prior to testing, calibration of the handgrip device 

was made by asking participants to complete two MVC‟s.  The higher of two MVC‟s 

was calibrated as 100%. 

Three trials for each of SUB, MOT, and VOL5% conditions were combined in 

each of four runs, which were completed in a randomized order.  For VOL5%, 

participants were able to replicate the force of flexion elicited by MOT stimulation 

using visual feedback.  Within the run, each trial lasted 30 s and was repeated three 

times within a single run with 15 s of rest provided between trials.  Each run lasted 7.75 

min, producing 36 trials in four runs.  The last 25 s of each trial were analyzed to 

capture steady state levels, as well as to a) avoid transient activation patterns associated 

with wrist movement during MOT and VOL5%  and b) account for a short lag time 

associated with switching the screen display from visual cues to handgrip force.  Visual 

cues were given prior to the delivery of each stimuli to avoid surprise and to compare 
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MOT with VOL5%, since volitional tasks involve a preparatory phase within motor 

areas of the cortex (14).  Specifically, the visual cues „SUBMOTOR‟, „MOTOR‟, and 

„VOLITIONAL‟ were observed on screen at the onset of sub-motor stimulation, motor 

stimulation and volitional wrist flexion, respectively.  For the VOL5% condition, upon 

seeing the visual cue, the screen was switched to the PowerLab data acquisition screen 

with a cursor pointed at the line indicating the level of force to which the participants 

were required to reach by flexing their wrists.  As the visual cues were similarly 

presented during each trial this was not expected to elicit confounding attentional or 

motor processes between trials.  Participants were asked not to actively move their 

forearm or count during the stimulations to avoid confounding influences of cortical 

attentional processes.  

The VOL35% protocol was tested as a separate block design consisting of an 

initial baseline recording period of 1 min followed by three 30 s blocks of handgrip 

exercise each separated by 1 min of rest.  Two identical runs of VOL35% were 

performed with 2 min of rest between each run to ensure stable baseline levels.  

Participants were instructed to avoid holding their breath or performing a Valsalva 

manoeuvre during handgrip, which was verified by a stable rate and depth of breathing 

on the pneumotrace recording (Siemens, Pi-Products, Amberg, Germany).  After each 

run, participants rated their level of perceived exertion on a scale from 6-20 (7).  

2.2.4  Physiological Recording 

 

Heart rate was acquired from an MRI-compatible pulse oximeter (Nonin 

Medical Inc., 8600FO MRI, Plymouth, MN) secured over the left middle finger.  
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Analog signals of the pulse oximeter and handgrip dynamometer were sampled at 1 

KHz and stored for analysis (Powerlab, ADInstruments, Colorado Springs, CO).   

2.2.4.1 Physiological Data Analysis 

 For the SUB, MOT, VOL5% protocol, beat-by-beat measures of HR were 

averaged for 15 s of each rest period and the final 25 s of stimulation and VOL5% trials.  

For each individual, an average HR was calculated for each condition in every run, 

resulting in an average rest, SUB, MOT, and VOL5% HR value for each of the 4 runs.  

These average values from each run were then taken together for an overall average HR 

for each condition.  In the VOL35% protocol, beat-by-beat measures of HR were 

averaged over 1 min of each rest period and during the 30 s handgrip periods for each 

individual in both runs.  An overall average HR for rest and handgrip were calculated 

from the combined values of all participants obtained in each run.   

The frequency-specific levels of variability in beat-by-beat R-R intervals during 

the intervention segments was assessed with a wavelet-based spectral analysis approach 

(55).  This heart rate variability (HRV) analysis focused on the respiratory frequency 

modulations in R-R interval which varied across individuals but typically were in the 

range of 0.15 – 0.3 Hz.  

2.2.4.2 Physiological Statistical Analysis  

The effect of condition on HR and HRV for the SUB, MOT, VOL5% protocol 

was assessed using a one-way ANOVA and for VOL35% was assessed using a two-

tailed Student‟s T-Test.  The HRV data from the VOL35% protocol was normalized to 

the natural logarithm (ln) prior to statistical analysis.  The probability level was set at 

p<0.05.  Data are reported as mean ± standard deviation (S.D.).  
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2.2.5 Neuroimaging Recording 

 

MRI was performed at 3-Tesla (Magnetom TRIO TIM, Siemens Medical 

Solutions, Erlangen, Germany) with a 32-channel head coil.  A high resolution T1-

weighted structural volume was acquired with a 3D MPRAGE sequence at the 

beginning of the scanning session (sagittal, field of view 256 × 240 mm, voxel size 1 × 

1 × 1 mm, 1 mm slice thickness, no gap, flip angle 9º, TR = 2300 ms, TE = 2.98 ms).  

Whole brain blood-oxygenation level-dependent (BOLD) contrast fMRI data were 

acquired by T*
2-weighted gradient echo planar imaging (EPI) pulse sequence with the 

following parameters: TE = 30 ms; flip angle = 90º; field of view (FOV) = 240 × 240 

mm; in-plane voxel resolution = 3 × 3 mm.  Forty-five interleaved axial slices (3 mm 

slice thickness, no gap) were acquired in each volume with a time-to-repetition (TR) of 

2500 ms.  For each of the runs in the paradigm involving SUB, MOT and VOL5%, 186 

volumes were acquired; 147 volumes were acquired during each of the VOL35% runs. 

The first two images of each run were automatically discarded to allow for analysis of 

an equilibrated MRI signal.  

2.2.5.1 Neuroimaging Data Analysis 

Raw fMRI data were analyzed by SPM2 (Wellcome Department of Imaging 

Neuroscience, London, UK).  The EPI images were spatially realigned and unwarped to 

correct for head motion using the mean functional image in the time series and 

normalized to stereotaxic space (Montreal Neurological Institute; MNI).  The functional 

scans were co-registered with the T1-weighted scan and were smoothed with a 6 mm 

FWHM Gaussian kernel.  To reduce low frequency noise, a high-pass filter with 128 s 

cutoff was applied to the dataset.   
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Two levels of analysis were performed.  First, individual design matrices were 

constructed with the epochs of each trial (consisting of SUB, MOT, VOL5%) modeled 

by a box-car and convolved with a canonical hemodynamic response function (HRF).  

Similarly, the handgrip period of the VOL35% trials was modeled with a box-car 

function convolved with a canonical HRF.  The cortical activities of the handgrip tasks 

were also correlated with the HR response in a third design matrix using a HR 

regressor.  For each participant, an average HR regressor was calculated using 2.5 s bins 

of HR data from an entire run, and averaged across the two runs.  Individual subject 

regressors were then averaged into one HR regressor that was entered into the analysis.  

The HR responses to handgrip were consistent between both runs.  The General Linear 

Model was used to create a statistical parametric map on a voxel-by-voxel basis (21).  

Second, the average contrast images from each individual representing the SUB, MOT, 

VOL5% trials from protocol 1 and VOL35% from protocol 2 were entered into separate 

repeated measures ANOVA and T-test  models, respectively, as a random effects group 

analysis.  Significant changes in signal intensity were determined for the SUB, MOT, 

VOL5% protocol, as well as the VOL35% paradigm.  The VOL35% analysis using the 

box-car function was not different from that using the average HR regressor (data not 

shown).  Thus, the reported results are those obtained from the analysis using the HR 

regressor, similar to our previous report (60). 

Subtraction analyses were performed to establish relative differences in regional 

activation with expected differences in the afferent signals across the protocols.  Note, 

this subtraction analysis was performed only on sites where increased activation was 

observed in each of the SUB, MOT and VOL5% conditions.  These contrasts included 
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the following: SUB > MOT and MOT > SUB (masked inclusively with SUB and 

MOT), MOT > VOL5% and VOL5% > MOT (masked inclusively with MOT and 

VOL5%), and SUB > VOL5% and VOL5% > SUB (masked inclusively with SUB and 

VOL5%).  

BOLD responses compared to rest were corrected for multiple comparisons 

[false discovery rate (FDR), p<0.05] and in some cases a more lenient threshold of 

p<0.001, uncorrected, was used. As subtraction analyses include a stricter statistical 

threshold, a probability level of p<0.005 (uncorrected for multiple comparisons) was 

used in these contrasts.  A minimum cluster size of 10 voxels was used.  

2.2.6 Region of Interest Analysis 

 

  A region-of-interest identification was performed that was based on previous 

data relating cortical and sub-cortical structures with sensory stimuli and isometric 

handgrip exercise.  Specifically, in human fMRI studies, the insula was found to process 

somatosensory information during non-painful and painful electrical stimulation (2) and 

gentle tactile brushing (6).  Somatotopic sensory organization has also been found in the 

ACC during nerve stimulations (2).  Furthermore, the amygdala, insula and pons were 

involved in the autonomic responses to surprising electrical stimuli depending upon 

cardiac cycle timing (24).  Moderate intensity isometric handgrip exercise increases 

activation in the bilateral insula (58; 60), and decreases activity of the vMFPC and 

posterior cingulate cortex (PCC) (60).  Therefore, the insula, medial prefrontal cortex 

and ACC formed the a priori foci of analysis. 
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2.3 RESULTS 

2.3.1 Physiological Responses 

Compared to rest (61 ± 8 bpm), HR did not change with SUB (60 ± 9 bpm), 

MOT (61 ± 8 bpm), or VOL5% (60 ± 8 bpm).  Compared with baseline (61 ± 7 bpm), 

VOL35% increased HR to 67 ± 9 bpm (p<0.001) with a Borg scale rating of 12 ± 3, 

corresponding to moderate intensity effort (7). 

The beat-to-beat variations in HR in one participant are illustrated in Figure 2.1 

during VOL35% (Figure 2.1A) and SUB (Figure 2.1B); these data reflect reduced HR 

variations during VOL35% and increased fluctuations during SUB.  Using a wavelet 

analysis, the total power representing the high frequency component of HRV 

(normalized units), was decreased from 4.21 ± 1.09 ms2 during rest to 3.93 ± 1.05 ms2 

during VOL35% (p<0.005) (Figure 2.1C).  High frequency power during rest was 29.42 

± 18.87 ms2 and was 39.85 ± 27.60 ms2 (non-normalized units) during SUB in a wavelet 

analysis of beat-by-beat R-R intervals (Effect size = 0.43; Power = 0.57; p=0.06) 

(Figure 2.1D).   
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Figure 2.1-- Panels A and B illustrate the time courses of beat-by-beat heart rate 

fluctuations during handgrip exercise (VOL35%) modified with 30 s of rest, and 

sub-motor stimulation (SUB) from a representative individual.  Panels C and D 

represent the group changes in high frequency power observed during VOL35% 

and SUB.   



78 

 

 

2.3.2 Functional MRI responses 

 

2.3.2.1 Global Responses 

In the overall global response, SUB was associated with activation in the 

vMPFC, bilateral posterior insula, subgenual ACC, mid-cingulate cortex (MCC), and 

PCC (Table 2.1, Figures 2.2, 2.3).  Additionally, sensori-motor areas were involved 

including the right supplementary motor area (SMA; T-value 4.35), the bilateral 

primary motor cortices (M1; T-value 2.37 on left, 2.75 on right), and the bilateral 

primary somatosensory cortices (S1; T-value 2.38 on left, 3.76 on right) (p<0.05, 

corrected).  The MNI x,y,z co-ordinates for S1 activation were -42, -24, 64 and 46, -20, 

52 on the left and right side, respectively, corresponding with the arm area of the 

somatosensory cortex homunculus.  

In response to MOT, increased neural activity was observed in the left posterior 

insula and MCC (Table 2.2, Figures 2.2, 2.3) (p<0.05, corrected).  Other regions 

displaying increased activity during MOT were the left putamen (T-value 3.82), left 

SMA (T-value 3.51), and left S1 (T-value 3.42), as well as the left M1 (T-value 3.26) 

and left thalamus (T-value 4.18) (p<0.05, corrected).   

During VOL5%, brain regions displaying increased activity included the right 

anterior and posterior insula (Table 2.3, Figure 2.2), the bilateral putamen (T-value 4.15 

on left, 4.53 on right), the left SMA (T-value 3.77), right S1 (T-value 4.15) the bilateral 

M1 (T-value 3.37 on left, 3.71 on right), the bilateral thalamus (T-value 3.74 on left, 

2.83 on right), the bilateral cerebellum (T-value 5.29 on left, 3.77 on right), and the 

bilateral precuneus (T-value 4.80 on left, 4.42 on right) (p<0.05, corrected).  
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In response to handgrip exercise (VOL35%), the bilateral insula increased 

activity (Table 2.5, Figure 2.2), as well as the bilateral thalamus (T-value 4.33 on left, 

4.36 on right), SMA (T-value 4.33 on left, 4.36 on right), S1 (T-value 5.12 on left, 6.19 

on right), M1 (T-value 4.71 on left, 3.62 on right), and cerebellum (T-value 6.18 on left, 

7.08 on right).  Regions demonstrating decreased neural activity during VOL35% were 

the vMPFC, bilateral PCC, right dorsal ACC, and bilateral subgenual ACC (Table 2.5, 

Figure 2.3).  Additional regions included the bilateral superior temporal pole (T-score 

6.01 on left, 5.96 on right) and angular gyrus (T-score 7.05 on left, 5.56 on right) 

(p<0.05, corrected).  

2.3.2.2  CAN Regional Responses  

 In the group analysis, the SUB protocol elicited increased activity in the 

posterior regions of the bilateral insula (Table 2.1, Figure 2.2).  SUB also increased 

activity in the vMPFC, the left subgenual ACC, the right MCC as well as the left PCC 

(p<0.05, corrected) (Table 2.1, Figure 2.3).  The time course of vMPFC activation is 

shown in Figure 2.4.  Decreased activity during SUB was observed in the bilateral 

anterior insula (p<0.05, corrected) (Table 2.1, Figure 2.2).  

Brain regions that increased neural activity during the electrically-induced wrist 

flexion (MOT) included the left posterior insula and left MCC (p<0.05, corrected) 

(Table 2.2, Figures 2.2, 2.3).  Decreased neural activity during MOT occurred in the 

right dorsal ACC (p<0.001, uncorrected) (Table 2.2, Figure 2.3).  

In response to VOL5%, increased signal intensity was observed in the anterior-

posterior portions of the right insula (p<0.05, corrected) (Table 2.3, Figure 2.2).  Also, 
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decreased activity was observed in the right subgenual ACC and bilateral dorsal ACC 

(p<0.001, uncorrected) (Table 2.3, Figure 2.3).  

The VOL35% protocol was associated with activity within the bilateral insula 

(Table 2.4, Figure 2.2; p<0.05, corrected).  Similar to our previous report (60), 

deactivation was observed in the vMPFC with a time course that correlated negatively 

with HR changes (p<0.05, corrected) (Table 2.4, Figure 2.4).  Decreased activity was 

also observed in the left PCC, right dorsal ACC and bilateral subgenual ACC (Table 

2.4, Figure 2.3; p<0.05, corrected).  

2.3.2.3 Contrasting BOLD responses between SUB, MOT, and VOL5%  

Comparisons of activated regions between the SUB, MOT and VOL5% 

conditions are shown in Table 2.5.  In subtraction analyses for SUB > MOT, greater 

activation was observed in the left subgenual ACC and right MCC.  The contrast MOT 

> SUB showed activation in left posterior insula and left MCC.  Compared with 

VOL5%, MOT displayed greater activation in the left posterior insula.  In contrast, 

VOL5% displayed greater activation in the right anterior insula compared with MOT. 

With VOL5% > SUB, greater activity was seen in the right posterior and anterior insula.  

Lastly, the SUB > VOL5% contrast was associated with bilateral posterior insula and 

subgenual ACC (p<0.005, uncorrected). 
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Table 2.1 -- Brain region responses during sub-motor stimulation versus rest 

Region Side Co-ordinates  T-score 

  x y z   

 
A. Increased activation during SUB stimulation 

vMPFC  0 48 -8  3.27 
Insula (posterior) L -38 -18 14  3.53 
 R 40 -16 10  3.38 
Subgenual ACC L -6 34 -8  4.93 
MCC R 10 -8 40  3.87 
PCC L -2 -52 28  3.92 

 
B. Decreased activation during SUB stimulation 

Insula (anterior) L -34 18 6  3.66 
 R 34 24 4  4.06 

p<0.05, FDR corrected 
SUB, sub-motor stimulation; vMPFC, ventral medial prefrontal cortex; ACC, anterior 
cingulate cortex; MCC, middle cingulate cortex; PCC, posterior cingulate cortex; L, 
left; R, right; MNI co-ordinates (x, y, z).
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Figure 2.2 -- BOLD responses in the insula during sub-motor threshold stimulation (SUB), motor threshold stimulation 

(MOT), 5% MVC volitional wrist flexion (VOL5%), and 35% MVC volitional handgrip exercise (VOL35%) versus rest.   

IC, insular cortex. 
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Figure 2.3 -- BOLD responses in the cingulate cortex and ventral medial prefrontal cortex (vMPFC) during sub-motor 

threshold stimulation (SUB), motor threshold stimulation (MOT), 5% MVC volitional wrist flexion (VOL5%), and 35% MVC 

volitional handgrip exercise (VOL35%) versus rest.   

vMPFC, ventral medial prefrontal cortex; ACC, anterior cingulate cortex; PCC, posterior cingulate cortex; MCC, middle 

cingulate cortex.
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Figure 2.4 -- Panel A (top) shows the averaged time course of the HR response 

during SUB.  Below is the BOLD response of activity in the vMPFC during SUB.  

Shaded area indicates 30 s of sub-motor stimulation.  Panel B (top) shows the 

averaged time course of the HR response during VOL35%.  Below is the BOLD 

response of deactivation in the vMPFC during VOL35%.  Shaded area indicates 

30 s of handgrip exercise period.  The standard error bars are shown in the middle 

of the VOL35% and SUB.
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Table 2.2 -- Brain region responses during motor stimulation versus rest 
 

Region Side Co-ordinates  T-score 

  x y z   

 
A. Increased activation during MOT stimulation 

Insula (posterior) L -38 -18 14  6.59 
MCC L -10 -8 50  3.84 
 

B. Decreased activation during MOT stimulation 
Dorsal ACC R 2 18 24  5.41 

Increased activation: p<0.05, FDR corrected. Decreased activation: p<0.001, 
uncorrected. 
MOT, motor stimulation; MCC, middle cingulate cortex; ACC, anterior cingulate 
cortex; L, left; R, right; MNI co-ordinates (x, y, z). 
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Table 2.3 -- Brain region responses during 5% MVC volitional wrist flexion versus 

rest 
 

  Region Side Co-ordinates  T-score 

  x y z   

A. Increased activation during VOL5%  
Insula (posterior) R 38 -2 10  3.34 

                  (anterior) R 32 -10 4  3.58 
B. Decreased activation during VOL5%  

Subgenual ACC R 2 28 -2  4.27 
Dorsal ACC L -2 34 10  3.63 
 R 4 38 12  3.83 

Increased activation: p<0.05, FDR corrected. Decreased activation: p<0.001, 
uncorrected. 
VOL5%, volitional wrist flexion; ACC, anterior cingulate cortex; L, left; R, right; MNI 
co-ordinates (x, y, z). 
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Table 2.4 -- Brain region responses during 35% MVC volitional handgrip exercise  
 

         Region Side Co-ordinates T-score 

  x y z  

 
A. Increased activation during VOL35% 

Insula L -40 0 12 4.46 

 R 40 2 12 
6.31 

 
B. Decreased activation during VOL35% 

vMPFC  0 50 -2 5.25 
PCC L -6 -42 32 6.29 

 R 6 -46 32 7.14 
Dorsal ACC R 2 32 8 9.49 
Subgenual ACC L -4 34 -10 9.26 

 R 2 22 -6 7.77 

p<0.05, FDR corrected.  
VOL35%, volitional handgrip exercise; vMPFC, ventral medial prefrontal cortex; PCC, 
posterior cingulate cortex; ACC, anterior cingulate cortex, L, left; R, right; MNI co-
ordinates (x, y, z).
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Table 2.5 -- Brain regions active during subtraction contrasts of sub-motor 

stimulation, motor stimulation, and 5% MVC volitional wrist flexion  

Region Side Co-ordinates T-score 

  x y z  

 
A. Increased activity during SUB > MOT 

Subgenual ACC L -6 34 -6 3.81 
MCC  R 10 -8 40 4.28 
 

B. Increased activity during MOT > SUB 
Insula (posterior) L -36 0 16 3.54 
MCC L -8 -8 50 3.57 
 

C. Increased activity during MOT > VOL5% 
Insula (posterior) L -38 -18 14 5.91 
 

D. Increased activity during VOL5% > MOT 
Insula (anterior) R 32 18 4 3.80 
 

E. Increased activity during SUB > VOL5% 
Insula (posterior) L -38 -20 14 3.90 

 R 42 -10 6 3.69 
Subgenual ACC L -6 34 0 3.44 
 

F. Increased activity during VOL5% > SUB 
Insula (posterior) R -38 0 6 3.04 
Insula (anterior) R 32 18 4 4.16 

p<0.005, uncorrected 
SUB, sub-motor stimulation; MOT, motor stimulation; VOL5%, volitional wrist 
flexion; ACC, anterior cingulate cortex; MCC, middle cingulate cortex; L, left; R, right; 
MNI co-ordinates (x, y, z). 
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2.3.2.4 Signal Change in Left Posterior Insula and vMPFC 
 

The group average effect size (%Δ) of the BOLD signal in the left posterior 

insula was 0.41 ± 0.12% (effect size ± S.E.) during SUB, 1.43 ± 0.19% during MOT 

was and 0.90 ± 0.20% during VOL35% (Figure 2.5).  For the vMPFC group analysis, 

activation was observed during SUB (effect size: 1.03 ± 0.31%), and deactivation was 

observed during VOL35% (effect size: -0.86 ± -0.25%) (Figure 2.5). 

  



 

 

9
0
 

 

Figure 2.5 -- Panel A shows the effect sizes (percent signal change ± S.E.) in the left insula during SUB, MOT, VOL5% and 

VOL35%. Panel B shows effect sizes in the vMPFC during SUB, MOT, VOL5% and VOL35% .
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2.4  DISCUSSION 

The major new finding of the current study was the representation of muscle 

sensory pathways within the CAN, particularly the insula, vMPFC and cingulate cortex.  

In line with the hypothesis, left posterior insula activity was increased in graded fashion 

from SUB to MOT suggesting a somatosensory role of this region for Type I and II 

afferent stimulation.  Activity in the vMPFC and subgenual ACC was increased during 

SUB and this occurred with a tendency towards elevated HRV.  In contrast, vMPFC 

activity and HRV were reduced, and HR increased during VOL35%.  Further, 

differences between electrically-stimulated and centrally-driven tasks were noted in 

insular and cingulate sub-regions and these were distributed along anterior-posterior and 

ventral-dorsal axes.  The results suggest that Type I and II afferents from muscle are 

functionally represented in the CAN but that their functional impact is modulated by 

other signals during effortful contractions.  

In the current study, the cortical patterns observed were not related to superficial 

cutaneous afferents as these were anesthetized.  However, a major assumption of the 

current study is that CAN patterns during SUB and MOT were isolated to muscle 

afferents and avoided concurrent sensory patterns from cardiac or baroreflex afferents.  

Changes in sensory information from cardiac afferents are minimized in this study 

because average HR was unchanged in the protocols.  Further, data obtained in a 

previous pilot study indicated that BP (Finometer) is unchanged during SUB, MOT and 

VOL5% protocols.  These stable hemodynamics replicate observations during 

stimulation of the peroneal and tibial nerves (29; 51) and suggest that the current model 

emphasized representation of muscle sensory afferent projections within the CAN.  
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2.4.1  Insular Cortex 

 

The insula is involved in a wide range of stimuli but determination of its motor 

versus sensory roles has been difficult in conscious humans within the context of 

muscle afferents and CAN studies.  Previously, fatiguing handgrip exercise was used to 

characterize the cortical regions associated with Type III and IV muscle afferents where 

insular activation was observed (58).  However, this pattern was confounded by the 

concomitant increase in arterial pressure and possible involvement of baroreceptor input 

to CAN regions (58).  In the current study, SUB was associated with activity in the 

bilateral posterior insulae, whereas MOT was associated with activation in the left 

posterior insula only.  As outlined above, activation of the insula during SUB and MOT 

does not appear to represent afferent signals reflecting changes in HR or BP as these 

were not changed during SUB or MOT.  Thus, these findings are in line with previous 

reports demonstrating that the insula plays a significant role in somatosensory 

processing (2; 19) with involvement of this region in somatosensory mapping of the 

body (1; 42).  The specificity of posterior insula activation for somatosensory function 

is consistent with recent efforts to understand the cytoarchitectonic subdivisions of this 

region which has been labelled as anterior, mid and posterior insula (11; 16; 35).  In 

addition, the posterior insula may play a multimodal sensory role (11).  The current 

findings support this architectural description, and the higher effect size of the left 

posterior insula in MOT compared to SUB, supports increased somatosensory input 

during MOT.  Furthermore, the current findings indicate that Type I and II pathways 

project to the posterior insula and, from here, may extend to integrate motor and 

cardiovascular control.  The absence of left posterior insula activation during both 
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volitional tasks suggests conjecture that reciprocal projections from the primary and 

supplementary motor regions inhibit excitatory muscle sensory signals in the insula.  

This speculation is supported by anatomical evidence that the posterior insula receives 

afferent projections from the SMA and sends efferent pathways to the basal ganglia (20; 

35) and that the anterior insula is an interface between the posterior insular cortex and 

motor cortex (52).    

In contrast to activation within the posterior insula, SUB resulted in concurrent 

deactivation in the bilateral anterior insula.  The purpose of this pattern is not known, 

but may be related to the potential role of this region in a sense of urgency and 

awareness (11; 18) or subjective emotional experience (13).  This interpretation is 

consistent with the concurrent observation of increased vMPFC activation during SUB 

(see below) and the role of this frontal region in a vegetative and unfocused state of 

awareness; that is, inhibition of an area of awareness (insula) with concurrent activation 

of a region involved enhanced vegetative state (vMPFC).  This interpretation is also 

consistent with increased activation of the anterior insula during VOL5% which 

required focused attention and effort.  

2.4.2 Cingulate Cortex and vMPFC 

 

The ACC carries out executive functions that extend to visceromotor, 

skeletomotor and endocrine systems (8) and has been shown to be involved with 

somatosensory processing of electrical stimulation (2; 19).  The ACC can be further 

differentiated into functionally specific sub-regions.  In the present study, SUB was 

associated with activity in the left subgenual ACC and right MCC, whereas MOT 

showed activity in the left MCC compared to rest and to SUB.  Mid-cingulate cortex 
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activity was previously observed during painful and non-painful stimulations of the 

median and tibial nerves at motor threshold (2).  The current findings support the 

involvement of the MCC in sensori-motor control (12; 36).  

Importantly for the current study, the subgenual region of the rostral ACC has 

been implicated with PNS activity (12) with projections to the parasympathetic nucleus 

of the solitary tract (54).  Close by, the vMPFC exhibits reciprocal projections to limbic 

structures including the amygdala, hypothalamus, and autonomic nuclei in the 

brainstem (4; 44).  Functionally, activity in the vMFPC and subgenual ACC is reduced 

during attention-demanding, goal-oriented tasks (25; 49) and particularly tasks 

associated with cardioacceleration (10; 22; 60).  Thus, the vMPFC has been linked with 

PNS rather than sympathetic outflow (12; 60), at least for mild to moderate intensity 

stress. 

However, the new finding of this study was increased activation of the vMPFC 

and subgenual ACC during sensory (non-volitional) levels of electrical stimulation.  

Such elevations in vMPFC activation are important because, as outlined above, this 

structure is associated with PNS elevation and implicated as the „default brain network‟ 

(25) that is active in resting humans (49). 

Given that reductions in vMPFC activation are associated with reduced PNS and 

elevated HR, it is conceivable that increased vMPFC activation would be associated 

with elevated PNS outflow to the heart.  Direct measures of PNS activity are difficult in 

humans, but indirect measures of HRV provide some insight.  Analysis of the 

respiratory frequency-specific oscillations described a statistical trend towards enhanced 

HRV with SUB.  This observation is consistent with an enhanced parasympathetic or 
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cardiovagal state.  Previously, acupuncture enhanced the high frequency component of 

HR variations (26).  Also, sub-motor threshold electrical stimulation attenuated the 

sympathetic and systolic BP response to fatiguing handgrip exercise, an effect that was 

attributed to the gating of signals from Type III and IV afferent fibres by Type I and II 

afferents (27).  Electrical nerve stimulation has also been shown to decrease BP and 

sympathetic tone in healthy and hypertensive individuals (31; 47).  Of note, SUB 

displayed greater activation of the subgenual ACC compared to MOT and VOL.  Thus, 

the interesting hypothesis from these observations is that stimulation of Type I and II 

sensory afferents may exert a depressor effect on autonomic outflow that is modulated 

cortically in the vMPFC and/or subgenual ACC. 

The current study employed sub-motor electrical stimulation of a small region of 

forearm muscle and observed important activation patterns with the insula and vMPFC.  

Whether this pattern is scaled to the number of muscle sensory afferents engaged is not 

known.  Neither is it known if this pattern is applicable or consistent across other 

sensory inputs to the CAN.  It is known that the trigeminocardiac reflex and stimulation 

of the nasal passage produces bradycardia (5; 41).  These earlier observations, and the 

current results, support a hypothesis that the sensory inputs to the brain that produce 

reflex bradycardia, involve the modulatory effects of the vMPFC. 

2.4.3 Methodological Considerations of the Study 

 

Concurrent cortical activation patterns during handgrip or sensory afferent 

stimulation raise the possibility that they are part of an interconnected network involved 

in autonomic processing; however, such connections have yet to be established in 

humans.  Nonetheless, a growing body of experimental evidence supports this 
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hypothesis.  In particular, reciprocal connections between the prefrontal cortex and 

insula have been demonstrated in primates (3; 9).  New developments in diffusion 

tensor imaging and high-field imaging may aid in identifying the pathways involved 

with somatosensory afferents and how, or why, they affect the vMPFC.   

 Second, inter-individual variability, including sex differences, exists in terms of 

efferent autonomic responses and neural patterns of activity during various tasks (34, 

53, 59).  In the current study, individuals had varying magnitudes of change in HR and 

HRV during electrical stimulation and handgrip exercise, and not all participants 

displayed similar neural activity across conditions.  This was observed in previous 

literature in which not all the participants displayed activity in the insula and ACC 

during various thresholds of electrical stimulation, perhaps due to differences in stimuli 

processing (2; 15).  

While the results agree with previous research relating MPFC associations with 

vagal function and HRV (23), the role of the vMPFC is likely to be more complex.  For 

example, the vMPFC has many reciprocal connections with sub-cortical and brainstem 

regions involved in sympathetic activation (57).  This region has also been 

experimentally linked to functional reductions and increases in sympathetic activation 

in a manner that depends upon anesthetization status and disease (50).   

Lastly, as a region that integrates viscerosensory information with autonomic 

cardiovascular control suggests important implications for the MPFC.  For instance, 

autonomic consequences of chemical stimulation of the MPFC are altered with 

hypertension (50).  Also, the study of age and disease-related changes in the vMPFC is 
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warranted given evidence that aging and stroke are associated with decreased HRV (17; 

56).     

2.4.4 Conclusions 

 

Cortical patterns that mediate autonomic responses to muscle activation may be 

associated with ascending input from muscle receptors and/or descending signals from 

supplementary and primary motor regions.  While spino-medullary pathways of muscle 

afferents have been demonstrated, our results show muscle somatosensory organization 

within CAN regions such as the insula, vMPFC and ACC.  Insular activation appeared 

to be associated with somatosensory processing.  Specifically, posterior insular 

activation was explained by a sensory input while the anterior insula was involved in 

the volitional tasks, consistent with its known role in somatosensory and emotive 

processing during muscular contractions.  Sensory level stimulation without movement 

was associated with robust activation in the vMPFC and subgenual ACC, as well as 

enhanced HRV, suggesting a role of these regions in heightened PNS activity. 
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Chapter 3 Anatomical connections between regions of the human 

cortical autonomic network  
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3.1 INTRODUCTION 

A cortical autonomic network (CAN) comprising the insular cortex, ventral 

medial prefrontal cortex (vMPFC), and anterior cingulate cortex (ACC) has been 

established in previous rodent studies (11; 40; 53).  Functional magnetic resonance 

imaging (fMRI) studies in humans have also found these CAN regions to be commonly 

activated during physiological and behavioural tasks that affect autonomic function (15; 

16; 23; 29; 57).  The common recruitment of these regions during autonomic challenges 

raises the possibility that these regions form a network, or perhaps an integrated group 

of subnetworks.  In turn, the definition of „network‟ implies physical connections for 

information exchange.  In non-human primates, the insula, ACC, and MFPC are 

reciprocally linked to one another with distinct connectional features (35; 43).  Further 

the anterior insula contains reciprocal projections with the ventral ACC, including 

Brodmann areas 24a and 24b (4; 19; 35).  In contrast, the mid and posterior insula has 

connections with area 24c of the dorsal cingulate and area 23 of the posterior cingulate 

cortex (PCC) (35).  Reciprocal connections also exist between the prefrontal cortex and 

insula (3; 20).  However, the structural connectivity in the context of the autonomic 

network in humans has not been elucidated.  Cortical stimulation during human surgery 

is a powerful model for directly determining regions involved in specific functions.  For 

instance, intra-operative insular stimulation has demonstrated a role for the insula in 

heart rate (HR) control (44).  However, this procedure provides information on single 

site responses and does not give insight into the anatomy of the region.  In addition, 

cortical damage models involving the ACC (16; 18) and insula (45) show evidence of 

diminished autonomic cardiovascular responses, demonstrating the importance of 
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distinct regions without providing information of how the regions function as a 

network.  Functional connectivity studies correlating low-frequency fluctuations of 

BOLD signals have suggested connectivity between the insula and ACC as a resting-

state network (50), as well as in a salience network, in which the anterior insula and 

ACC segregate internal and extrapersonal stimuli to guide behaviour (48).  However, 

functional connectivity describes spatiotemporal correlations between discrete brain 

regions (22), but does not demonstrate axonal linkages between the regions.   

Diffusion tensor imaging (DTI) is a recent technique used to exploit the white 

matter fibre tract connections between brain sites.  This approach is based on the 

diffusion direction of water molecules, providing connectivity maps of the neural 

networks (5; 13; 38).  In a recent DTI study, functional patterns of activity during 

sensory stimulation were associated with tract connections between the insula and ACC 

(37).  However, DTI has not been used to study the anatomical connections between the 

regions associated with autonomic function. 

Our previous fMRI studies involving isometric handgrip exercise, a simple 

manoeuvre that elicits rapid reduction in parasympathetic activity, and muscle sensory 

afferent stimulation, to acutely increase parasympathetic activity, were associated with 

differential activity in subdivisions of the insula, as well as in the vMPFC, subgenual 

ACC and PCC (25; 57).  In addition, studies examining the forebrain architecture 

associated with baroreflex modulations suggest a reproducible pattern of cortical 

activation with the CAN regions (29).  The involvement of similar CAN regions during 

a volitional task, during passive electrically-stimulated activation of muscle afferents, 

and during alterations in baroreceptor sensory information, each with correlated 
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cardiovascular responses, prompts the need to assess the anatomical relationships 

between functionally complementary pathways within the CAN.   

Based on our studies involving handgrip exercise and stimulation of muscle 

sensory afferents and their associations with the anterior and posterior insula, as well as 

the vMPFC, subgenual ACC and PCC, we aimed to establish whether these regions 

form a network facilitating inter-regional communication to support autonomic 

function.  To this end, DTI was used to test the hypothesis that the anterior and posterior 

insular projections with the subgenual ACC, vMPFC and PCC constitute a structural 

network for autonomic regulation and sensory processing.   

3.2 METHODS 

3.2.1 Participants 

 

Twelve healthy participants (8 females, 4 males; mean age ± SD: 25 ± 3 yr) with 

no history of cardiovascular, neurological, or musculoskeletal disorders volunteered for 

this study.  All participants were right-handed determined using the Edinburgh 

handedness inventory (42).  All participants provided informed written consent to 

experimental procedures that were approved by the Health Sciences Research Ethics 

Board at The University of Western Ontario. 

3.2.2 Data Acquisition 

 

A Siemens 3T TIM Trio MRI scanner with a 32-channel head coil was used to 

acquire both T1-weighted anatomical and diffusion weighed images.  A high resolution 

T1-weighted structural volume was acquired with a 3-dimensional magnetization-

prepared rapidly acquired gradient echo (MPRAGE) pulse sequence (sagittal 

orientation, field of view 256 × 240 mm, voxel size 1 × 1 × 1 mm, no gap, flip angle 9º, 
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TR = 2300 ms, TE= 2.98 ms).  The diffusion data were obtained using a twice 

refocused diffusion weighted echo planar imaging (EPI) acquisition (TR = 6000 ms, TE 

= 75 ms, field of view = 200 x 200 mm).  The b-values used were 0 s/mm2 and 700 

s/mm2, and diffusion gradients were applied across 64 spatial directions (27).  Fifty-six 

axial slices were acquired with a slice thickness of 2 mm and no gap.   

3.2.3 DTI Image Processing and Analysis 

 

Analyses of the MRI-DTI data were performed using Brain Voyager QX v 2.1 

(Brain Innovation, Maastricht, Netherlands).  After the diffusion tensor reconstruction, 

fractional anisotropy (FA) and mean diffusivity (MD) values in each voxel were 

calculated.  The data were aligned into AC-PC orientation and the whole brain FA, MD 

maps and MPRAGE were normalised to standard Talairach space using sinc 

interpolation (R=3).  Regions of interest (anterior insula, posterior insula, vMPFC, 

subgenual ACC, PCC, thalamus; Figure 3.1) were placed manually based on anatomical 

atlas labelling on a single subjects‟ MPRAGE image which was in Talairach space.  

Three-dimensional tract reconstruction was done based on the Fiber Assignment 

by Continuous Tracking (FACT) algorithm and a brute-force reconstruction approach.  

The continuous tracking method used the following termination criteria: FA value of 0.2 

and angle threshold of 50 degrees.  All analysis was performed by the same individual 

(RG) and biased analysis of the tractography was avoided by the use of standardized 

seed regions that were placed on normalized brain spaces (Talairach), by presenting 

individual results, and by stringent determination of connectivity based on visualization 

of a bundle rather than few, individual fibres. 
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3.3 RESULTS 

Due to low signal-to-noise ratio in one of the participants‟ diffusion data, 

analysis is based on 11 individuals.  Figure 3.2 illustrates representative data for the 

inter-connections observed between the regions of interest.  Common connections were 

observed between the anterior insula and subgenual ACC (7/11 subjects on left side; 

9/11 on right side), as well as between the posterior insula and PCC (10/11 on left side; 

8/11 on right side).  As well, other insular tract projections considered were with the 

thalamus, which were present in 9 individuals (8/11 on the left side; 9/11 on right side), 

as well as to the S1/S2 region with mostly left-sided dominance (10/11 on left; 3/11 on 

right).  In 5 participants, fibre tracts in the cingulate gyrus were seen between the 

subgenual ACC and PCC, whereas 4 subjects displayed such connections between the 

vMPFC and PCC.  Less commonly, connections were observed between the vMPFC 

and anterior insula (2/11 on left side; 1/11 on right side).  FA was highest in the right 

posterior insula and lowest in the vMPFC (Table 3.1).  
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Figure 3.1 -- Regions of interest upon which tracking of white matter fibres was 

performed.  A: anterior insula; B: posterior insula; C: ventral medial prefrontal 

cortex and subgenual anterior cingulate cortex; D: posterior cingulate cortex; E: 

thalamus. 
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Figure 3.2 -- Representative data of connections observed between A: anterior 

insula and the anterior cingulate cortex (ACC); B: posterior insula and the 

posterior cingulate cortex (PCC); C: anterior cingulate cortex (ACC) and the 

posterior cingulate cortex (PCC); D: insula and the somatosensory cortex (S1/S2); 

E: insula and the thalamus. Red fibres indicate left-right, blue fibres indicate 

inferior-superior, green fibres indicate anterior-posterior. 
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Table 3.1 -- Fractional anisotropy values for each region. 

 

 

 

 

Fractional anisotropy’s for above regions represent average 

 values for gray matter areas (0.2-0.3). 

Region 
Fractional 

Anisotropy 

Left anterior insula 0.2930 

Right anterior insula 0.2701 
Left posterior insula 0.2956 

Right posterior insula 0.3318 

Posterior cingulate cortex 0.2445 

Subgenual anterior cingulate cortex 0.3021 

Ventral medial prefrontal cortex 0.1841 

Thalamus 0.2492 
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3.4 DISCUSSION 
 

These data provide structural evidence supporting previously observed 

functional relationships between the CAN regions associated with the modulation of 

autonomic function and somatosensory afferent processing.  This study focused on the 

insular connections given the multifaceted functions and location of this region within 

the cortex to receive and direct input to various cortical and subcortical sites.  In this 

analysis, cortical projections fell into clusters defined by those that were associated with 

a) the anterior insula, b) the posterior insula, and c) the midline anterior-posterior axis 

along the cingulate cortex.  Specifically, connections were observed between a) the 

anterior insula and subgenual ACC, b) the posterior insula and PCC, and c) the 

subgenual ACC and PCC were observed.  In addition to these three patterns, we also 

found structural linkages between the insula and S1/S2 as well as the insula with 

thalamus.  These findings support the hypothesis that these regions are linked in a 

manner that lends credence to their function as a network during various stimuli that 

elicit an autonomic response.  Further, these anatomical linkages provide the anatomical 

basis for specificity of roles associated with the subdivisions of the insula. 

3.4.1 Anterior Insula Projections 

We observed connections between the anterior insula and the subgenual ACC.  

These observations support known insular connections with the medial network in the 

rodent forebrain (43).  It is postulated that the von Economo neurons, which are 

contained within both the anterior insula and ACC, form the basis for the connections 

between these two regions (14).  The current observations also provide the structural 

substrate for resting-state connectivity based on correlated low-frequency oscillations in 
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the blood-oxygenation level dependent (BOLD) signal (50).  Furthermore, using DTI 

methods, structural connections in humans have been observed between functionally 

linked regions of the resting-state network including the insula and ACC (52).  The 

current observations also provide the structural basis for earlier observations implicating 

a sensory pathway between the anterior insula and the subgenual ACC (25).  These 

results are consistent with observations in visceral sensory processing (37). 

The structural connectivity between the insula and ACC is supplemented by 

retrograde and anterograde tracing experiments in the rat (49), rabbit (7) and cat (47), 

showing projections from area 25 of the infralimbic cortex to the anterior insula.  Our 

analysis focused on the subgenual ACC (area 25) and vMPFC (area 10), and inter-

connections of the subgenual ACC with the medial prefrontal and orbital areas has been 

shown (9).  The current observations of insular and MPFC connections lend support to 

their functional roles.  

The connections between the anterior insula and the subgenual ACC observed in 

the current study are consistent with involvement of the ACC and anterior insula in 

control of the autonomic nervous system (11; 53).  Behavioural cognitive tasks, such as 

working memory, decrease heart rate variability in a manner that is correlated with 

activity in the MPFC, ACC and insula (24).  The anterior insula has been related to 

viscero-autonomic roles (28; 31; 44), and afferent and efferent linkages of the insula 

exist with prominent subcortical autonomic centres including the amygdala, 

hypothalamus, parabrachial nuclei and nucleus of the solitary tract (NTS) (10; 20).  

Anatomically, the subgenual ACC contains direct projections to the parasympathetic 

nucleus of the solitary tract (51) and dorsal motor nucleus of the vagus (26).  Efferent 
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projections also have been observed from the vMPFC and subgenual ACC to the 

hypothalamus (1), NTS (46) and periaqueductal gray (PAG) (53).  Such connections, 

observed in rodents, are consistent with measured behavioural outcomes observed in 

humans.  For example, the tachycardic response to isometric handgrip exercise is due to 

parasympathetic withdrawal (33) and is also associated with activation of the anterior-

mid insula as well as decreased activity in the vMPFC/subgenual ACC (25; 57).  In 

turn, sub-motor simulation of muscle sensory afferents leads to enhanced 

parasympathetic modulation of HR and concurrent decreased activity in the anterior 

insula and increased activity within the vMPFC (25).  The role of the vMPFC and 

subgenual ACC with parasympathetic activity is highly supported by other researchers 

correlating cardiac behaviour with activity patterns in these regions (17; 40; 57).  

Together, there is homology between discrete pathways observed in rodent work and 

with DTI in humans of the current study.  Together, these observations provide further 

anatomical support for the conclusion that these forebrain linkages among the anterior 

insula and ACC impact parasympathetic vasomotor function. 

Thus, the combined evidence leads to the conjecture that the anterior insula 

provides projections to the subgenual ACC/vMPFC region to subserve sensory input to 

neurogenic cardiovascular control.  This hypothesis is consistent with conclusions that 

the insula is also involved in the affective and conscious perception of sensory 

processing (58).  More specifically, it is suggested that proprioceptive information from 

somatosensory stimulation is integrated within the interoceptive domain of the anterior 

insula and translated by the prefrontal and ACC regions to impact heart rate variability 

(25), supporting the notion of a joint system of awareness of self involving the anterior 
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insula and ACC (34).  It is important to note that the vMPFC and subgenual ACC are 

also associated with affective and emotional components of sensory processing; thus, 

the structural linkages between the anterior insula and ACC may subserve both 

cognitive and autonomic responses. 

3.4.2 Posterior Insula Projections 

 

In the current study we observed connections between the posterior insula and 

PCC.  These data support previous experimental tracing studies observations in 

monkeys (35) and correlative functional connectivity analysis in humans (8), based on 

resting state fluctuations of the BOLD signal.  Together, these different methods 

highlight differences in anatomical connectivity along the anterio-posterior axis of the 

insula.  We previously observed concurrent activation in the posterior insula and PCC 

during sub-motor somatosensory stimulation of the forearm muscle (25), and 

deactivation in the PCC during volitional handgrip exercise (25; 57).  These 

observations suggest that the regions may act conjointly to affect some action.  The 

posterior insula acts as an anatomical substrate for processing sensory information (12; 

30; 58).  In contrast, while the PCC has been attributed with an evaluative function, it 

has not been credited with any role in emotion or autonomic control (54).  Rather, the 

functional underpinnings of the posterior insula and PCC connections may relate to a 

role in visuospatial orientation (54).  

In addition to the posterior insula and ACC linkages, our current findings 

provide an anatomical basis for previously-observed functional activity in the posterior 

insula and S1/S2 during somatosensory stimulation (25).  Unlike the anterior insula, the 

posterior insula contains direct connections with the somatosensory areas, including 
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secondary and primary cortices (21; 35; 36).  This is in line with the established role of 

the „sensory‟ posterior insula, which includes integration of vibrotactile stimuli (12), 

baroreceptors (59), and touch (6).   

  Lastly, connections between the insula and thalamus were observed in the 

current analysis, consistent with previous observations in monkeys (4; 39) and humans 

(37).  Muscle nerve afferent stimulation in the cat has shown group I afferent 

projections to the nuclei of the thalamus (2; 32).  Also, marked differences in the 

connections of the anterior and posterior insula with various thalamic nuclei are also 

related to the functions of the anterior insula in autonomic regulation and the posterior 

insula with somesthetic-skeletomotor function (35).   

3.4.3 Midline Cingulate Cortex Projections 

Additionally, projections between the vMPFC/subgenual ACC and PCC were 

observed in approximately 45% of the participants in the current study.  These low 

numbers likely reflect the conservative analysis performed on a small portion of the 

rostral ACC.  While we did not differentiate between the dorsal and ventral portions of 

the PCC, histological staining in post-mortem human brains confirms connectivity 

between the ventral PCC and subgenual ACC (56).  Monosynaptic connections are also 

present between these regions in the monkey (55).  It is proposed that the ventral PCC 

provides ongoing self-monitoring and evaluates emotion and non-emotion events 

through its interactions with the ACC (56).   The information exchange between the 

ACC and PCC regions may enable the storage of memory and autonomic responses to 

emotion as driven by the ACC (41). 
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3.4.4 Methodological Considerations  

Within our seed-based approach and placement of regions of interest, it is 

possible that connections were missed from areas not seeded.  It is also not possible to 

infer direct connections between the regions using tractography; however, the results 

are consistent with tracts reported in previous tracer, histological, functional 

connectivity and DTI studies, as reported above.  More detailed DTI analysis of subject-

specific seed regions based on individual BOLD coordinates may improve the 

determination of the true variability and/or homogeneity in anatomical linkages between 

regions of the CAN.  Nonetheless, the current approach was intended to capture the 

global context of CAN connectivity.  Indeed, this more generalized approach revealed 

homogeneity in several linkage combinations, particularly the anterior insula-subgenual 

ACC, the posterior insula-PCC, and ACC-PCC axes.   

3.5 Conclusions 

In conclusion, we have demonstrated structural connectivity between 

subdivisions of the insula and cingulate cortex that are associated with tasks that affect 

autonomic cardiovascular function.  Specifically, the anterior insula was linked to the 

subgenual ACC whereas the posterior insula was connected with the PCC and with the 

somatosensory cortex.  The anterior insula and subgenual ACC appear to conjointly 

modulate autonomic function, while the posterior insula and PCC are suggested to 

support somatosensory integration and monitoring of the internal milieu, which may in 

turn affect autonomic arousal by the ACC.  Thus, the current study supports the 

involvement of the anterior and posterior insula within two distinct functional networks 
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(8; 50) and further establishes the anatomical substrates for the expected functional 

relationships between the CAN regions of interest.   
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Chapter 4 Forebrain organization representing integration of 

baroreceptor and somatosensory afferents within the cortical 

autonomic network  
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4.1 INTRODUCTION 

 

Central processing of afferent feedback from baroreceptors modulates 

autonomic cardiovascular function, with increased baroreceptor firing inhibiting muscle 

sympathetic nerve activity (MSNA) (9).  Baroreflex activity affects the regulation of 

various components of autonomic function, including a role for carotid sinus 

baroreceptors in pulmonary modulation of the autonomic nervous system (11).  

Baroreceptor activity also has an influence on the processing of somatosensory stimuli 

and subsequent effects on autonomic function.  Specifically, afferent input from arterial 

baroreceptors is a powerful modulator of the excitatory cardiovascular response evoked 

by skeletal muscle afferents during muscle contractions (41).  Furthermore, unpredicted 

somatosensory stimuli delivered 200-400 ms after the R wave of the cardiac cycle 

inhibits MSNA, whereas no change in MSNA is observed with delivery synchronous 

with the ECG-R wave (10).  Thus, ongoing feedback from baroreflex activity plays an 

important role in the integration of somatosensory stimuli and the resultant effects on 

autonomic control of cardiovascular function. 

 The large diameter type I and II afferents may be particularly important as 

somatosensory afferents that produce depressor cardiovascular responses mediated by 

changes in autonomic outflow (22; 23; 38).  For instance, the increase in MSNA during 

static handgrip exercise is depressed by concurrent ipsilateral sub-motor threshold 

electrical stimulation of the type I and II afferents (21).  These authors postulated that 

the depressor effect on MSNA depends on an interaction of the III and IV afferents that 

are active during handgrip exercise with the type I and II afferents at the spinal level 

(21).  However, sites of somatosensory integration within the forebrain have also been 
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recently observed.  Specifically, in non-human primates, somatosensory and 

baroreceptive inputs converge on the same neurons within the insula (57).  Also, we 

have demonstrated changes in activity within major centers of the CAN in conscious 

humans during sub-motor forearm stimulation, a manoeuvre that activates type I and II 

afferents (14).  

There is evidence that somatosensory afferent neural integration occurs at the 

brainstem and even supramedullary sites.  In particular, afferent projections from both 

muscle and baroreceptor sensory afferents synapse in discrete regions of the brainstem, 

such as the nucleus tractus solitarii (NTS) (24; 40).  Further, Gray and colleagues 

(2009) have demonstrated an involvement of cortical and sub-cortical structures 

including the insula, amygdala and brainstem nuclei in the integration of somatosensory 

stimuli during different phases of baroreflex activity (15).  

The first human evidence of cortical involvement of baroreflex-mediated 

changes in autonomic function during an orthostatic stressor (lower-body negative 

pressure; LBNP) was demonstrated using functional magnetic resonance imaging 

(fMRI) (25).  These regions included the insular cortex, anterior cingulate cortex 

(ACC), medial prefrontal cortex (MFPC), cerebellum and amygdala (25; 26), 

supporting an established cortical and sub-cortical network responsible for regulating 

visceromotor activity (2; 6; 8; 51).  In addition, we recently identified forebrain centers 

involved with sensory level type I/II afferent stimulation, including the insula and 

ventral MFPC (vMPFC), during supine conditions at basal levels of baroreceptor 

loading (14).  Whether the central organization of somatosensory inputs is altered 

during episodes of reduced baroreceptor afferent input is unknown.   
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  Therefore, the purpose of the present study was to examine the hypothesis of a 

sympathoinhibitory effect of type I and II sensory stimulation that is attenuated by 

baroreceptor loading and that this depressor effect of somatosensory stimulation 

(exhibited during reductions in baroreceptor afferent activity with lower body suction) 

would be associated with alterations in activation patterns within the cortical autonomic 

network (CAN), particularly the insula, dorsal ACC and/or MPFC.  In particular, 

evidence from primates suggests that significant convergence of somatosensory and 

baroreceptive input exists on the same neurons within the insula (57).  Thus, it was 

expected that insula activation during somatosensory stimulation would be altered 

during LBNP in a manner that is associated with a depressed sympathetic response to 

baroreceptor unloading. 

4.2 MATERIALS AND METHODS 

4.2.1 Ethical Approval 

Experimental procedures were conducted with approval by the Health Sciences 

Research Ethics Board at The University of Western Ontario.  All participants provided 

informed written consent to the study which was in accordance with the standards set by 

the Declaration of Helsinki. 

4.2.2 Participants 

Fifteen healthy participants [6 females, 9 males; age range 18-31 yr, mean(SD) 

= 25(3) yrs; height 175(8) cm; weight 74(12) kg] volunteered for this study.  All 

subjects were non-smokers, not taking any medication, and had no prior history of 

cardiovascular, neurological, or musculoskeletal disorders.  In addition, each participant 

was classified as right-handed according to the Edinburgh Handedness Inventory (35).  
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Prior to the experimental day, each participant was familiarized with transcutaneous 

electrical nerve stimulation at sub-motor threshold levels and the parameters for the 

stimulus intensities were determined (see below).  As well, each participant was 

assessed for their tolerance to perform 20 s end-expiratory apneas.   

4.2.3 Experimental Approach 

Our approach was to assess cortical activation patterns and autonomic responses 

to somatosensory stimulation while baroreceptor loading was varied.  Secondly, we 

studied the autonomic and brain responses to end-expiratory apneas, a significant 

stimulus known to activate the sympathetic nervous system (12) in the absence of 

orthostasis.  Baroreceptor unloading was achieved using 30 mmHg LBNP (49).  

Transcutaneous electrical nerve stimulation at sub-motor threshold stimulation was used 

to activate the type I and II afferent nerve fibers (21; 43).   

The participants were tested on two separate experimental days to obtain: 1) the 

cardiovascular and neural recordings (PHYS session), and 2) the neuroimaging data 

(fMRI session).  The PHYS session was always performed first in order to assess 

tolerance of LBNP and establish forearm electrical stimulation levels.   

4.2.4 Experimental Stimuli and Procedures 

The somatosensory stimuli were generated electrically by a neurostimulator 

(Digitimer DS7A, Hertfordshire, England) with a symmetrical and biphasic stimulation 

waveform delivered at a frequency of 100 Hz and pulse width duration of 50 μs.  Two 

self-adhesive electrodes with modified wiring for MRI compatibility (4cm x 4cm; 

StimCare, Empi, St. Paul, MN) were placed over the right forearm flexors, identified by 

palpation during resisted flexion.  The location for the electrodes and stimulation 



129 

 

 

intensity were each individually adjusted to attain sub-motor threshold at an intensity 

just below motor threshold.  On fMRI testing days, levels of stimulations for each 

participant were determined outside the scanner and verified once inside the scanner 

just prior to the imaging session.  The average intensity at sub-motor threshold was 

achieved at 15 ± 3 mA.   

Minimizing head movement during LBNP was achieved in the fMRI session 

through the use of MAST antishock trousers (David Clark Company Inc., Worcester, 

MA, USA), as well as an adjustable bicycle seat and footplate within the LBNP 

chamber.  The suction within the lower body chamber was applied continuously while 

the MAST trousers controlled the venous pooling.  Specifically, during LBNP, inflation 

of the antishock trousers countered venous pooling and reflected baseline, supine 

conditions, whereas deflation of the trousers induced venous pooling and orthostatic 

stress.  The viability and reproducibility of the use of antishock trousers with LBNP has 

previously been demonstrated by Kimmerly et al (2006), who showed that measures of 

central venous pressure were not different between LBNP sessions with and without 

antishock trousers (26).  During the fMRI sessions, the participants‟ head was 

immobilized within a head cradle with foam padding and were instructed to refrain from 

performing any active tasks and to avoid head movements. 

4.2.5 Experimental Protocol 

 

Participants were asked to fast for a minimum of 3 hr and to refrain from 

caffeine, nicotine, alcohol and physical activity for at least 12 hr prior to testing.  

Participants were also asked to arrive to the laboratory two hours prior to the 

experimental testing to determine the stimulation parameters and perform cutaneous 
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anesethization.  In order to achieve cutaneous afferent blockade, the forearm was treated 

with EMLA cream (Astra Pharmaceuticals, Wayne, PA) at the location of optimal 

electrode placement.  The experimental session began by having subjects lay in the 

supine position, sealed in the LBNP chamber at the level of the iliac crest.   

The somatosensory stimulation (SS) session was a block design consisting of 

four repetitions of stimulation lasting 30 s with 15 s rest provided between.  Two runs 

were performed, with a total of 8 SS trials. 

The LBNP session was a block design which exposed participants to three 60-s 

bouts of LBNP with 30 s rest in between.  Two runs were performed, producing a total 

of 6 LBNP trials.  The LBNP + somatosensory stimulation (LBNP+SS) session was a 

similar block design consisting of three 60 s trials of LBNP.  Somatosensory stimulation 

was applied during the last 30 s of LBNP to allow for steady state conditions.  Like the 

LBNP session, the LBNP+SS session was repeated twice for a total of 6 LBNP+SS 

trials.   

Apnea sessions consisted of two conditions, including Apnea and Apnea + 

somatosensory stimulation (Apnea+SS).  The apneas were performed as maximal end-

expiratory breath holds, each lasting 20 s with 45 s rest provided between trials to 

ensure that MSNA, HR and blood pressure (BP) returned to baseline values after the 

transient sympathetic withdrawal that occurs after breath holds (48; 53).  Apnea and 

Apnea+SS were each repeated three times within a single run in randomized order.  

Two runs were performed, producing a total of 6 Apnea and 6 Apnea+SS trials over two 

runs.   
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The PHYS and fMRI sessions were identical except for a 2 min baseline allotted 

at the beginning of each run during the PHYS sessions to allow for calculation of 

baseline MSNA.   

4.2.6 Physiological Recording Session (PHYS) 

4.2.6.1 Data Acquisition 

HR was acquired from a standard lead II electrocardiogram (ECG; Pilot 9200, 

Colin Medical Instruments, San Antonio, TX, USA).  Arterial BP was measured 

continuously on a beat-by-beat basis from the left middle finger with a 

photoplethysmograph finger cuff (Finometer; Finapres Medical Systems BV, 

Amsterdam, Netherlands), from which mean (MAP) was obtained.  Cardiac output (Q) 

was acquired using the Finometer Modelflow algorithm (54).  Pneumotrace recordings 

were used to measure rate and depth of breathing (Siemens, Pi-Products, Amberg, 

Germany).  Multi-fibre MSNA was recorded from the right fibular (peroneal) nerve 

using microneurography (16).  A tungsten microelectrode (length=35mm, diameter=200 

μm) tapered to a 1-5 μm uninsulated tip was inserted percutaneously into the fibular 

nerve posterior to the fibular head.  A reference electrode was placed subcutaneously 1-

3 cm from the recording site.  Confirmation of a suitable MSNA site was determined by 

bursts exhibiting pulse synchrony, as well as a burst pattern that did not produce skin 

paresthesias and increased in response to voluntary apnea but not during arousal to a 

loud noise (16). 

4.2.6.2 Data Analysis 

ECG, BP, Q and rectified and integrated neurogram signals were collected at a 

sampling rate of 1 KHz , the amplified and filtered neurogram signals were sampled at 
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10 KHz, and stored offline for further analysis (Powerlab software, ADInstruments Inc., 

Colorado Springs, CO, USA).   

MSNA bursts exhibiting pulse synchrony with characteristic rising and falling 

slopes and having a signal-to-noise-ratio of at least 2:1 (i.e., the ratio of the amplitude of 

the burst and baseline), were included in the analysis.  MSNA was quantified as the 

number of bursts per min (burst frequency), burst incidence (bursts per 100 heartbeats), 

and total MSNA activity (sum of all burst amplitudes in sampling period).  Burst size 

was normalized to the mean amplitude to account for any electrode repositioning. 

4.2.6.3 Statistical Analysis 

The effect of each condition on each hemodynamic and MSNA variable versus 

baseline was assessed using a two-tailed Student‟s T-test.  Statistical analyses were 

performed using SAS (SAS, Cary, NC, USA).  Statistical significance was set at 

P<0.05.  Data are reported as mean[standard deviation (SD)].  

4.2.7 MRI Session 

4.2.7.1 Data Acquisition 

Heart rate was calculated from pulse intervals obtained from an MRI-compatible 

pulse oximeter (Nonin Medical Inc., 8600FO MRI, Plymouth, MN, USA) secured over 

the left middle finger.  Absolute levels of LBNP were acquired using a pressure 

transducer (Edwards Lifesciences, PX272, Irvine, CA, USA) that was connected to a 

bridge amplifier outside the MRI suite.  Analog signals of the pulse oximeter and LBNP 

levels were sampled at 1 KHz and stored for analysis (Powerlab, ADInstruments, 

Colorado Springs, CO, USA).   



133 

 

 

 Imaging data were collected on a 3-Tesla scanner (Magnetom TRIO TIM, 

Siemens Medical Solutions, Erlangen, Germany) with a 32-channel head coil.  A high 

resolution T1-weighted structural volume was acquired with a 3D MPRAGE sequence 

at the beginning of the scanning session (sagittal, field of view 256 × 240 mm, voxel 

size 1 × 1 × 1 mm, 1 mm slice thickness, no gap, flip angle 9º, TR = 2300 ms, TE = 

2.98 ms).  Whole brain blood-oxygenation level-dependent (BOLD) contrast fMRI data 

were acquired by T*
2-weighted gradient echo planar imaging (EPI) pulse sequence (TE, 

30 ms; flip angle, 90º; field of view, 240 × 240 mm; in-plane voxel resolution, 3 × 3 

mm).  Functional volumes consisted of 45 interleaved axial slices (TR 2500ms, 3 mm 

slice thickness, no gap).  For each of the runs in the SS session, 78 volumes were 

acquired, 174 volumes were acquired in the Apnea paradigm, and 120 volumes were 

acquired during each of the LBNP and LBNP+SS runs.  The first two images of each 

run were automatically discarded to allow for analysis of an equilibrated MRI signal.  

4.2.7.2 Data Analysis 

Raw fMRI data were analyzed by SPM8 (Wellcome Department of Imaging 

Neuroscience, London, UK).  The EPI images were motion corrected using a fourth 

degree B-spline interpolation to create a mean EPI image, which was co-registered to 

the same space as each individual‟s structural image.  Images were then segmented into 

grey matter, white matter, and cerebrospinal fluid (1), and normalized to the Montreal 

Neurological Institute (MNI) coordinate system.  The scans were spatially smoothed 

using a full-width half-maximum (FWHM) Gaussian kernel of 6 mm, and normalized 

for global activations.  To reduce low frequency noise due to scanner drift, a high-pass 

filter with 128 s cutoff was applied to the dataset (autoregressive model).   
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4.2.7.3 Statistical Analysis 

Two levels of analysis were performed.  First, within-subject analyses were 

constructed to form a General Linear Model (GLM) modeled with a conventional block 

design using a canonical hemodynamic response function.  Second, each individual‟s 

contrast images reflecting differences in signal intensity between the conditions of 

interest and baseline, were entered into a random effects group analysis.  Subtraction 

analyses were also performed to compare between conditions.  BOLD responses 

containing information of increased and decreased activation patterns were thresholded 

at P<0.005 (uncorrected), and a minimum cluster size of 10 voxels was used.  The effect 

size (mean ± SE percent change) of the BOLD signal was obtained from each 

significant cluster.   

 A region of interest (ROI) analysis was performed based on previous literature 

pertaining to baroreflex-mediated changes in autonomic activity (19; 25), as well as 

somatosensory processing (14; 15).  These ROI‟s include the insula, MFPC and ACC.  

Identification of anatomical locations was obtained using the Talairach Daemon 

software (27).  All figures are represented in neurological convention (i.e., left is on the 

left).   

4.3 RESULTS 

4.3.1 Physiological Responses 

Due to a loss of somatosensory stimuli from one participant during the fMRI 

recording session, neuroimaging data are based on 14 participants.  Similarly, good 

quality MSNA recordings for all the conditions were successfully obtained in 11 

participants upon which the analysis was performed.   
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Baseline measures were similar amongst all runs.  Baseline HR‟s were not 

different between SS, LBNP, LBNP+SS and Apnea runs in both the PHYS and MRI 

sessions (Tables 4.1, 4.2 and 4.3).  Baseline MAP and Q were not different between SS, 

LBNP, LBNP+SS and Apnea runs in PHYS sessions (Tables 4.1, 4.2 and 4.3).  Baseline 

MSNA burst frequency, MSNA incidence, MSNA amplitude and total MSNA were 

similar between SS, LBNP, LBNP+SS and Apnea sessions (Tables 4.1, 4.2, and 4.3).   

4.3.1.1 SS 

SS alone did not affect HR, MAP or Q (Table 4.1).  Nor did SS have a 

significant impact on MSNA burst frequency, burst incidence, burst amplitude or total 

MSNA (Table 4.1).  Representative physiological responses to SS are shown in Figure 

4.1A.   
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Table 4.1-- Hemodynamic and sympathetic nerve activity measures during 

baseline and somatosensory stimulation. 

Measure Baseline   SS 

HR (fMRI) (beats/min) 59 (9) 59 (9) 

HR (LAB) (beats/min) 57 (9) 56 (9) 

MAP (LAB) (mmHg) 93 (6) 93 (7) 

Q (LAB) (L/min) 5.3 (1.4) 5.3 (1.4) 

MSNA (LAB) (bursts/min) 22 (10) 22 (10) 

MSNA (LAB) (amplitude, mV) 49 (6) 49 (5) 

MSNA (LAB) (total activity, a.u.) 1086 (536) 1036 (531) 

MSNA (LAB) (bursts/100 heart beats) 40 (16) 39 (17) 

All values are expressed as means (SD).  fMRI indicates measures collected during the  
neuroimaging session.  LAB indicates measures collected during the laboratory session.   
SS, somatosensory stimulation; HR, heart rate; MAP, mean arterial pressure; Q, cardiac  
output; MSNA, muscle sympathetic nerve activity.  
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Figure 4.1 -- Panel A illustrates representative data during somatosensory 

stimulation (SS) with no changes observed in muscle sympathetic nerve activity 

(MSNA), heart rate (HR), and blood pressure (BP).  Panel B is representative data 

showing differences in the rise in MSNA burst frequency during lower-body 

negative pressure (LBNP) and lower-body negative pressure  + somatosensory 

stimulation (LBNP+SS), with similar changes in HR.  Panel C illustrates 

representative data during Apnea demonstrating similar increases in MSNA and  

no change in HR and BP. 
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4.3.1.2 LBNP and LBNP+SS  

Representative physiological responses to LBNP and LBNP+SS are shown in 

Figure 4.1B.  In response to LBNP, HR increased in the fMRI (∆6 bpm, P<0.05) and 

PHYS (∆3 bpm, P<0.05) sessions, Q tended to decrease (∆-0.3 L/min, P=0.06), and 

MAP was unchanged compared to baseline (Table 4.2).  Similarly in the LBNP+SS 

session, increases in HR in the fMRI (∆5 bpm, P<0.05) and PHYS (∆2 bpm P<0.05) 

sessions, and decreased Q (∆-0.3 L/min, P<0.05) were observed, with no difference in 

MAP (Table 4.2).  No differences were observed when comparing the changes in HR 

from baseline between LBNP and LBNP+SS sessions (fMRI, ∆6 vs. ∆5 bpm, 

respectively; PHYS, ∆3 vs. ∆2 bpm, respectively).   

In response to LBNP, all indices of MSNA were increased above baseline 

levels, including burst frequency (∆12 bursts/min, P<0.05), burst amplitude (∆6 mV, 

P<0.05), total MSNA (∆686 a.u., P<0.05) and burst incidence (∆20 bursts/100 heart 

beats, P<0.05) (Table 4.2).  Whereas, compared with baseline, LBNP+SS elicited 

elevations in burst frequency (∆8 bursts/min, P<0.05), burst amplitude (∆7 mV, 

P<0.05), total MSNA (∆531 a.u., P<0.05), and burst incidence (∆15 bursts/100 heart 

beats, P<0.05) (Table 4.2), the absolute increase in MSNA burst frequency 

(Δfrequency) was smaller during LBNP+SS compared to that of LBNP (8 vs. 12 

bursts/min, respectively, P<0.05) (Figure 4.2A).  No differences between LBNP and 

LBNP+SS were observed with respect to changes in burst amplitude, total MSNA and 

burst incidence compared to baseline (Figure 4.2B-D).  
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Table 4.2 -- Hemodynamic and sympathetic nerve activity measures during lower-body negative pressure and lower-body 

negative pressure +somatosensory stimulation versus respective baselines. 

Measure Baseline 1 LBNP Baseline 2 LBNP+SS 

HR (fMRI) (beats/min) 58 (8) 65 (10)* 59 (8) 64 (10)† 

HR (LAB) (beats/min) 58 (10) 61 (10)* 58 (9) 60 (10)† 

MAP (LAB) (mmHg) 98 (11) 98 (11) 97 (10) 96 (11) 

Q (LAB) (mmHg) 5.3 (1.3) 5.0 (1.2) 5.3 (1.3) 5.0 (1.0) † 

MSNA (LAB) (bursts/min) 19 (7) 31 (8)* 20 (8) 28 (7)† 

MSNA (LAB) (amplitude, mV) 43 (7) 50 (7)* 43 (9) 50 (7)† 

MSNA (LAB) (total activity, a.u.) 822 (314) 1507 (404)* 856 (405) 1387 (449)† 

MSNA (LAB) (bursts/100 heart beats) 33 (13) 54 (14)* 35 (14) 49 (14)† 

All values are expressed as means (SD).  fMRI indicates measures collected during the neuroimaging session.  LAB indicates 
measures collected during the laboratory session.  LBNP, lower-body negative pressure; SS, somatosensory stimulation; HR, heart 
rate; MAP, mean arterial pressure; Q, cardiac output; MSNA, muscle sympathetic nerve activity. *Significant difference from 
Baseline 1 (P<0.05); †Significant difference from Baseline 2 (P<0.05).
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Figure 4.2 -- Changes in MSNA Burst Frequency (Panel A), Burst Amplitude 

(Panel B), Total MSNA (Panel C) and Burst Incidence (Panel D) during lower-

body negative pressure (LBNP) and lower-body negative pressure + 

somatosensory stimulation (LBNP+SS).  *Significant difference from LBNP 

(P<0.05). 

P=0.052 
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4.3.1.3 Apnea and Apnea+SS 

Representative physiological responses to Apnea and Apnea+SS are shown in 

Figure 4.1C.  HR was not different from baseline during Apnea and Apnea+SS, in 

either the PHYS or fMRI sessions (P>0.05; Table 4.3).  As well, MAP and Q during 

Apnea and Apnea+SS were not altered compared to baseline in the PHYS session 

(P>0.05; Table 4.3).   

Apnea elicited increases in MSNA burst frequency (∆13 bursts/min, P<0.05), 

burst amplitude (∆9 mV, P<0.05), total MSNA (∆783 a.u., P<0.05) as well as burst 

incidence (∆23 bursts/100 heart beats, P<0.05) above baseline (Table 4.3).  Increases in 

MSNA burst frequency (∆12 bursts/min, P<0.05), burst amplitude (∆7 mV, P<0.05), 

total MSNA (∆671 a.u., P<0.05) and burst incidence (∆22 bursts/100 heart beats, 

P<0.05) were also observed during Apnea+SS (Table 4.3).  There were no differences 

in the absolute increase of any of the MSNA measures during Apnea compared to 

Apnea+SS (Figure 4.3A-D).    
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Table 4.3 -- Hemodynamic and sympathetic nerve activity measures during 

baseline, apnea and apnea+somatosensory stimulation. 

Measure Baseline Apnea Apnea+SS 

HR (fMRI) (beats/min) 61 (10) 60 (11) 61 (12) 

HR (LAB) (beats/min) 58 (9) 59 (10) 58 (10) 

MAP (LAB) (mmHg) 95 (9) 97 (8) 97 (9) 

Q (LAB) (L/min) 5.5 (1.3) 5.6 (1.4) 5.6 (1.4) 

MSNA (LAB) (bursts/min) 20 (9) 33 (6)* 32 (9)* 

MSNA (LAB) (amplitude, mV) 38 (8) 48 (6)* 45 (7)* 

MSNA (LAB) (total activity, a.u.) 760 (416) 1543 (354)* 1431 (499)* 

MSNA (LAB) (bursts/100 heart 
beats) 

35 (17) 58 (13)* 57 (16)* 

All values are expressed as means (SD).  fMRI indicates measures collected during the 
neuroimaging session.  LAB indicates measures collected during the laboratory session.  
SS, somatosensory stimulation; HR, heart rate; MAP, mean arterial pressure; Q, cardiac 
output; MSNA, muscle sympathetic nerve activity. *Significant difference from 
Baseline (P<0.05).   
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Figure 4.3 -- Changes in MSNA Burst Frequency (Panel A), Burst Amplitude 

(Panel B), Total MSNA (Panel C) and Burst Incidence (Panel D) during expiratory 

apnea (Apnea) and apnea+somatosensory stimulation (Apnea+SS).   
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4.3.2 Neuroimaging Responses 

 

4.3.2.1 SS 

Regions of interest associated with increased activity during SS included the left 

mid-superior insula and left prefrontal cortex (Table 4.4, Figure 4.4).   

4.3.2.2 LBNP and LBNP+SS  

LBNP was associated with increased activity in the right mid-superior insula 

and right dorsal ACC, and subtraction analysis showed absence of activity in these 

regions during LBNP+SS (Table 4.4, Figures 4.5, 4.6).  In response to LBNP and 

LBNP+SS, increased signal intensity was observed in the amygdala and cerebellum 

(Table 4.4, Figure 4.5).  Decreased activity during LBNP as well as LBNP+SS occurred 

in the subgenual ACC, prefrontal cortex, and mediodorsal thalamus (Table 4.4, Figure 

4.5).  Decreased BOLD activity observed during LBNP+SS and not during LBNP 

occurred in the right posterior insula (Table 4.4, Figures 4.5, 4.6). 

4.3.2.3 Apnea and Apnea+SS  

Brain regions showing increased BOLD activation during both Apnea and 

Apnea+SS included the anterior insula, dorsal ACC, mediodorsal thalamus and 

cerebellar nuclei (Table 4.5, Figure 4.7).  The effect size (BOLD percent signal change) 

in the right anterior insula was greater during Apnea+SS compared to Apnea alone, 

whereas activity in the right dorsal ACC was greater during Apnea compared to 

Apnea+SS (Figure 4.6).  Decreased activity in both conditions was observed in the 

cerebellum (Table 4.5, Figure 4.7).  Apnea but not Apnea+SS was associated with 

decreased activity in the right posterior insula (Table 4.5, Figures 4.6, 4.7). 
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Table 4.4 -- Brain regions associated with somatosensory stimulation (SS), lower-

body negative pressure (LBNP), and lower-body negative pressure+ 

somatosensory stimulation (LBNP+SS)  

Location  Side MNI (x, y, z) T-score Z-score 

A. SS  - Increased Activity  
    

Insula (middle superior) L -40, 4, 18 3.04 3.69 

Prefrontal cortex  L -4, 48, -12 3.26 2.77 

B. LBNP - Increased Activity     

Insula (middle superior) R 32, 12, 14 3.74 3.45 

Dorsal anterior cingulate  R 16, 40, 20 4.25 3.83 

Amygdala R 28, -2, -26 3.06 2.88 

Cerebellum L -32, -50, -36 4.71 4.16 

Cerebellum R 44, -58, -36 3.60 3.32 

C. LBNP - Decreased Activity 
    

Subgenual anterior cingulate  R 8, 34, -8 4.07 3.69 

Prefrontal cortex  L -4, 32, -18 3.70 3.40 

Prefrontal cortex  R 4, 42, -22 3.53 3.27 

Thalamus (medial dorsal nucleus) L -10, -18, 0 3.01 2.84 

D. LBNP+SS - Increased Activity 
    

Amygdala R 30, -4, -22 3.03 2.86 

Cerebellum L -36, -54, -40 4.70 4.16 

Cerebellum R 42, -56, -38 3.45 3.21 

E. LBNP+SS - Decreased Activity 
    

Insula (posterior) R 34, -26, 16 4.42 3.96 

Subgenual anterior cingulate  R 8, 34, -8 4.68 4.14 

Prefrontal cortex  L -2, 34, -16 3.67 3.38 

Prefrontal cortex  R 4, 42, -22 3.85 3.52 

Thalamus (medial dorsal nucleus) L -10, -20, 6 3.27 3.05 

Thalamus (medial dorsal nucleus) R 12, -20, 6 3.23 3.02 

MNI, Montreal Neurologic Institute co-ordinates; L, left; R, right. 
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Figure 4.4 – Blood-oxygenation level-dependent signal intensity (SI) changes in 

brain regions associated with somatosensory stimulation (SS).
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Figure 4.5 – Blood-oxygenation level-dependent signal intensity (SI) changes in brain regions associated with lower-body 

negative pressure (LBNP), and lower-body negative pressure + somatosensory stimulation (LBNP+SS). 
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Table 4.5 -- Brain regions associated with apnea, and apnea+somatosensory 

stimulation (Apnea+SS) 

Location  Side MNI (x, y, z) T-score Z-score 

A. Apnea - Increased Activity 
    

Insula (anterior) L -38, 16, -4 3.40 3.16 

Insula  (anterior) R 40, 20, -6 5.26 4.55 

Dorsal anterior cingulate  L -4, 30, 34 4.11 3.73 

Dorsal anterior cingulate  R 4, 32, 32 4.78 4.21 

Cerebellum L -20, -52, -28 3.10 2.91 

Cerebellum L -22, -78, -50 3.49 3.23 

Thalamus (medial dorsal nucleus) L -10, -16, 6 5.72 4.84 

Thalamus (medial dorsal nucleus) R 12, -16, 6 4.89 4.30 

B. Apnea - Decreased Activity     

Insula (posterior) R 42, -8, 14 3.47 3.22 

Cerebellum R 34, -38, -28 4.80 4.23 

Cerebellum R 44, -60, -26 4.32 3.88 

C. Apnea+SS - Increased Activity 
    

Insula (anterior) R 48, 16, -2 3.85 3.53 

Dorsal anterior cingulate  R 6, 30, 30 3.24 3.03 

Cerebellum L -16, -52, -32 3.13 2.94 

Thalamus (medial dorsal nucleus) L -10, -16, 6 5.99 5.02 

Thalamus (medial dorsal nucleus) R 10, -16, 8 5.12 4.45 

D. Apnea+SS - Decreased Activity 
    

Cerebellum R 40, -68, -24 3.54 3.28 

MNI, Montreal Neurologic Institute co-ordinates; L, left; R, right. 
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Figure 4.6 -- Effect sizes (percent signal change ± SE) and time courses of the BOLD responses.  Left side shows areas with 

increased and decreased activity during lower-body negative pressure (LBNP) and lower-body negative pressure + 

somatosensory stimulation (LBNP+SS).  Right side shows areas with increased and decreased activity during apnea and apnea 

+ somatosensory stimulation (Apnea+SS).  ACC, anterior cingulate cortex.
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Figure 4.7 – Blood-oxygenation level-dependent signal intensity (SI) changes in brain regions associated with expiratory apnea 

(Apnea), and expiratory apnea + somatosensory stimulation (Apnea+SS).  
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4.4 DISCUSSION 

This study presents the first observations of the forebrain organization 

associated with sensory gating interactions between baroreceptor and skeletal muscle 

sensory afferents with concurrent outcome measures of sympathetic nerve activity.  By 

itself, SS did not affect baseline MSNA and was associated with activity in the left 

insula and prefrontal cortex.  Baroreceptor unloading during LBNP was associated with 

increased activity in the right insula and dorsal ACC, as well as decreased activity in the 

subgenual ACC and prefrontal cortex, consistent with increased MSNA and HR during 

LBNP.  However, SS during baroreceptor unloading attenuated the LBNP-induced 

increase in MSNA burst frequency and reversed the concurrent activation of the right 

insula and dorsal ACC.  In addition, SS did not affect the LBNP-induced deactivation in 

the subgenual ACC and prefrontal cortex.  In contrast, SS during expiratory apnea did 

not affect the rise in MSNA nor abolish the activity in the right insula and dorsal ACC.  

These findings suggest that the effect of muscle afferent input on neural patterns of 

activity and on sympathetic outflow is dependent upon, and are specific to, the levels of 

baroreceptor afferent input and not just a state of elevated sympathetic outflow.  The 

sympatho-inhibitory effect of somatosensory stimulation, observed only during LBNP, 

was associated with a lack of activation within the right insula and dorsal ACC but 

without change to the deactivation patterns observed during baroreceptor unloading 

alone.  Thus, baroreceptor activity may operate as a gating mechanism for the 

distribution of somatosensory afferents.  
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4.4.1 Physiological Responses 

We utilized sensory level stimulation to recruit the large diameter type I and II 

afferents during low baroreceptor input and observed an inhibitory effect on MSNA. 

Previously, a reduction in systolic BP as well as a smaller increase in MSNA burst 

frequency and total activity was reported during concurrent handgrip exercise and 

TENS (21).  This inhibition was attributed to an interaction between type III and IV 

afferent fibers activated during exercise with type I and II fibers at the spinal cord.  

While that interpretation may apply for fatiguing muscular contractions, the current 

observations suggest that the type I and II afferents interact with baroreceptor afferents 

in higher cortical centers.  In addition, it has been found that the increase in diastolic BP 

is lower during a 2 min moderate intensity handgrip test during TENS at a non-painful 

intensity (45).  However, no changes in HR or BP were observed when TENS was 

applied during Valsalva‟s manoeuvre (45).  In-as-much as LBNP and Valsalva‟s 

manoeuvre engage baroreflex mechanisms, the current data support the idea that 

somatosensory inputs do not affect HR or BP per se, but rather focus on a modest 

attenuation of sympathetic outflow.  We found no change in arterial pressure or MSNA 

during apnea combined with SS compared to apnea alone.  These observations suggest 

that the impact on sympathetic tone depends on baroreceptor activity and not just a state 

of heightened sympathetic outflow.   

Although Hollman and Morgan (1997) suggested the depressor effect of SS was 

due to integration of sensory afferents within the spinal cord, the current evidence 

suggests that the reduction in MSNA with sensory stimulation during baroreceptor 

unloading may be attributed to processing within cortical autonomic structures, as 
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introduced above.  Baroreceptor afferents synapse in the NTS (28; 47), and tracer 

techniques and electrophysiological recordings reveal monosynaptic projections of type 

I and II skeletal muscle afferents to the NTS (34; 39).  In addition, horseradish 

peroxidase tracer studies in rodents have shown retrograde and anterograde projections 

between the insula and NTS (44), including anterograde tracings to the parasympathetic 

motor nuclei in the NTS (46).  Thus, relays between medullary circuits and higher 

cortical centers including the insula may be functionally involved in modulating the 

convergent inputs.   

4.4.2 Neural Responses 

4.4.2.1 Lower-body Negative Pressure  

The cortical neural responses to LBNP observed in the current study support the 

baroreceptor-mediated autonomic network established during mild and moderate levels 

of LBNP including the right superior insula, dorsal ACC, cerebellum, amygdala and 

prefrontal cortex (25; 26).  Experimental studies indicate further that electrical 

stimulation of the posterior insula increases HR and BP in anesthetized rats (44), and a 

large predominance of sympatho-excitatory neurons exists in the right posterior insula 

(36; 56).  Lateralization of cardiovascular representation within the insula appears to 

exist in humans, wherein HR and BP increase upon stimulation of the right insula, and 

left insular stimulation usually produces depressed cardiac and pressor responses (37).  

In animal stimulation studies, the superior insula is associated with tachycardia whereas 

inferior portions produce bradycardia (36).  Furthermore, the current finding of 

enhanced right superior insular activation during LBNP supports these earlier 

observations of the involvement of this region with sympathetic outflow.  The lack of 
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activation in the insula during LBNP+SS combined with a reduction in the rise in 

MSNA burst frequency, suggests a sympatho-inhibitory effect of SS and supports the 

interpretation that this insular region is involved in sympathetic modulation.  In 

addition, decreased activity was observed in the right posterior insula during LBNP+SS, 

a region that contains sympatho-excitatory neurons as well as neurons responsive to 

convergent baroreceptor and muscle receptor input (56; 57).  The right posterior insula 

is tonically active (5) and our results suggest that the right posterior insula is involved in 

basal sympathetic regulation and is inhibited with type I and II muscle afferent input 

during baroreceptor unloading.    

The MPFC is involved in a range of visceromotor autonomic functions (33) 

including hypotensive (17), sympatho-inhibitory (50) and parasympathetic responses 

(55).  The dorsal ACC is engaged during heightened levels of sympathetic drive during 

baroreceptor unloading (26), whereas the ventral ACC is implicated in parasympathetic 

activity/sympatho-inhibition (7; 25; 50) and bradycardia (4).  Consistent with increases 

in MSNA during LBNP, we observed activation in the dorsal ACC, and decreased 

activity in the subgenual ACC and prefrontal cortex.  With concomitant LBNP and SS, 

dorsal ACC activation was absent while deactivation was maintained in the right 

subgenual ACC and prefrontal cortex.  The lack of dorsal ACC involvement with 

LBNP+SS may reflect a sympatho-inhibitory effect, whereas the persistent deactivation 

patterns in the subgenual ACC and prefrontal cortex may be related to a state of overall 

increased sympathetic activity and/or, as shown in other models (13; 14; 55) decreased 

parasympathetic activity with LBNP.  This latter interpretation is supported by similar 

changes in HR during LBNP with or without SS.  Thus the prefrontal cortex/subgenual 
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ACC may continue to modulate the HR response to LBNP with and without concurrent 

somatosensory stimulation. 

4.4.2.2 Expiratory Apnea  

End-expiratory apnea evoked an increase in MSNA that was associated with 

activity patterns in the anterior insula, dorsal ACC and cerebellar nuclei, similar to 

patterns evoked by inspiratory apnea reported earlier (29).  Increases in BOLD activity 

in the anterior insula have been reported during respiratory challenges including 

Valsalva‟s manoeuvre and loaded breathing (20; 30).  In addition, inspiratory loading 

has been associated with increased signal intensity in the deep cerebellar nuclei (18).  

The ACC has also been associated with autonomic function in HR and BP control in 

obstructive sleep apnea as well with an intention role of upper airway muscle control 

(20). 

SS did not change apnea-induced activation in the right anterior insula, right 

dorsal ACC and left cerebellum.  These comparable central responses during Apnea and 

Apnea+SS combined with similar increases in MSNA suggest that somatosensory 

stimulation did not impact sympathetic outflow during apnea.  Thus, we suggest that 

integrating somatosensory stimuli during expiratory breath hold does not depress 

sympathetic autonomic function.  The interpretation that somatosensory afferents 

interact with baroreflex but not chemoreflex pathways is supported by evidence from 

studies in rats whereby skeletal muscle afferent stimulation attenuated the reflex 

bradycardia induced by ramp increases in arterial pressure but not during chemoreflex 

activation (42).  In light of this, we observed stronger activation in the right anterior 

insula during Apnea+SS compared to Apnea, whereas stronger activation in the dorsal 



156 

 

 

ACC occurred during Apnea compared to Apnea+SS.  The time courses of activity were 

similar between the insula and dorsal ACC; thus, both regions may be involved in the 

initiation of MSNA with apnea.  In addition, the activation patterns present in the 

anterior insula and dorsal ACC support the conjoint action of these two regions as a 

system involved in the generation of autonomic responses (31).  The functional 

connectivity of these two regions is supported by structural connections observed 

between Brodmann area 24 corresponding to the dorsal ACC and the insula (32; 52), as 

well as the presence of von Economo neurons in the anterior insula and ACC, which 

appear to form the basis for the connections between these two regions (7).   

4.4.3 Limitations  

In the apnea sessions, prior re-breathing was not performed so that similar basal 

levels of end tidal CO2 would be achieved between all participants.  However, MSNA 

was increased comparably during Apnea compared to LBNP, with similar increases in 

burst frequency.  Importantly, arterial pressure was not significantly higher than 

baseline during apnea; thus the effect of afferent BP information to the cortical 

autonomic regions via the baroreceptors was minimized.  The ability to perform 20 s 

expiratory breath holds was tolerable for the participants.  However, as the urge to 

breathe begins after approximately 10 s (3), we cannot rule out activation patterns 

related to the emotional and mechanical components in the drive to breathe.   

4.4.4 Conclusions 

In conclusion, we have identified central and autonomic responses to the 

interactive effects of baroreceptor unloading and type I and II muscle sensory afferent 

input.  The sympatho-inhibition occurring with somatosensory input during 
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baroreceptor unloading is suggested to be modulated cortically, and appears to be a 

reflex-specific mechanism as sensory processing during expiratory apnea did not alter 

the cortical responses to chemoreflex activation.  These findings indicate a discrete 

network of sites involved in convergent baroreceptive and somatosensory processing 

that modulate autonomic control. 



158 

 

 

4.5 Reference List 

 1.  Ashburner J and Friston K. Multimodal image coregistration and partitioning - a unified 

framework. NeuroImage 6: 209-217, 1997. 

 2.  Bennarroch EE. Functional anatomy of the central autonomic network. In: Central Autonomic 

Network: Functional Organization and Clinical Correlations,  Armonk, NY: Futura Publishing 

Company Inc., 1997, p. 29-60. 

 3.  Bloch-Salisbury E, Binks AP, Banzett RB and Schwartzstein RM. Mechanical chest-wall 

compression does not relieve air hunger. Respiratory Physiology & Neurobiology 134: 177-190, 

2003. 

 4.  Buchanan S, Thompson RH, Maxwell BL and Powell DA. Efferent connections of the medial 

prefrontal cortex in the rabbit. Experimental Brain Research 100: 469-483, 1994. 

 5.  Butcher KS and Cechetto DF. Autonomic responses of the insular cortex in hypertensive and 

normotensive rats. American Journal of Physiology 268: R214-R222, 1995. 

 6.  Cechetto DF and Saper CB. Role of the cerebral cortex in autonomic function. In: Central 

Regulation of Autonomic Functions, edited by Loewy AD and Spyer KM.  New York: Oxford 

University Press, 1990, p. 208-223. 

 7.   Craig AD. How do you feel - now? The anterior insula and human awareness. Nature  

ReviewsNeuroscience 10: 59-70, 2009. 

 8.  Critchley HD, Mathias CJ, Josephs O, O'Doherty J, Zanini S, Dewar B, Cipolotti L, 

Shallice T and Dolan RJ. Human cingulate cortex and autonomic control: converging 

neuroimaging and clinical evidence. Brain 126: 2139-2152, 2003. 

 8.  Dampney RAL, Coleman MJ, Fontes MAP, Hirooka Y, Horiuchi J, Li YW and Polson JW. 

Central mechanisms underlying short- and long-term regulation of the cardiovascular system. 

Clinical and Experimental Pharmacology and Physiology 29: 261-268, 2002. 

 9.  Delius W, Hagbarth KE, Hongell A and Wallin BG. General characteristics of sympathetic 

activity in human muscle nerves. Acta physiologica Scandinavica 84: 65-81, 1972. 

 10.  Donadio V, Kallio M, Karlsson T, Nordin M and Wallin BG. Inhibition of human muscle 

sympathetic activity by sensory stimulation. Journal of Physiology 544: 285-292, 2002. 

 11.  Eckberg DL and Orshan CR. Respiratory and baroreceptor reflex interactions in man. The 

Journal of Clinical Investigation 59: 780-785, 1977. 

 12.  Fagius J and Sundlof G. The diving response in man: effects on sympathetic activity in muscle 

and skin nerve fascicles. Journal of Physiology 377: 429-443, 1986. 

 13.  Gianaros PJ, Van Der Veen FM and Jennings JR. Regional cerebral blood flow correlates 

with heart period and high-frequency heart period variability during working-memory tasks: 

Implications for the cortical and subcortical regulation of cardiac autonomic activity. 

Psychophysiology 41: 521-530, 2004. 



159 

 

 

 14.  Goswami R, Frances MF and Shoemaker JK. Representation of somatosensory inputs within 

the cortical autonomic network. NeuroImage 54: 1211-1220, 2011. 

 15.  Gray M, Rylander K, Harrison NA, Wallin BG and Critchley HD. Following one's heart: 

cardiac rhythms gate central initiation of sympathetic reflexes. The Journal of Neuroscience 29: 

1817-1825, 2009. 

 16.  Hagbarth KE and Vallbo AB. Pulse and respiratory grouping of sympathetic impulses in 

human muscle nerves. Acta physiologica Scandinavica 74: 96-108, 1968. 

 17.  Hardy SGP and Holmes DE. Prefrontal stimulus-produced hypotension in rat. Experimental 

Brain Research 73: 249-255, 1988. 

 18.  Harper RM, Gozal D, Bandler R, Spriggs D, Lee J and Alger J. Regional brain activation in 

humans during respiratory and blood pressure challenges. Clinical and Experimental 

Pharmacology and Physiology 25: 483-486, 1998. 

 19.  Henderson LA, Richard CA, Macey PM, Runquist ML, Yu PL, Galons J and arper RM. 

Functional magnetic resonance signal changes in neural structures to baroreceptor reflex 

activation. Journal of Applied Physiology 96: 693-703, 2004. 

 20.  Henderson LA, Woo MA, Macey PM, Macey KE, Frysinger RC, Alger JR, Yan-Go F and 

Harper RM. Neural responses during Valsalva maneuvers in obstructive sleep apnea syndrome. 

Journal of Applied Physiology 94: 1063-1074, 2003. 

 21.  Hollman JE and Morgan BJ. Effect of transcutaneous electrical nerve stimulation on the 

pressor response to static handgrip exercise. Physical Therapy 77: 28-36, 1997. 

 22.  Kaada B, Flatheim E and Woie L. Low-frequency transcutaneous nerve stimulation in 

mild/moderate hypertension. Clinical Physiology 11: 161-168, 1991. 

 23.  Kaada B, Vik-Mo H, Rosland G, Woie L and Opstad PK. Transcutaneous nerve stimulation 

in patients with coronary arterial disease: Haemodynamic and biochemical effects. European 

Heart Journal 11: 447-453, 1990. 

 24.  Kalia M, Mei SS and Kao FF. Central projections from ergoreceptors (C fibers) in muscle 

involved in cardiopulmonary responses to static exercise. Circulation Research 48: I48-I62, 

1981. 

 25.  Kimmerly DS, O'Leary DD, Menon RS, Gati JS and Shoemaker JK. Cortical regions 

associated with autonomic cardiovascular regulation during lower body negative pressure in 

humans. Journal of Physiology 569: 331-345, 2005. 

 26.  Kimmerly DS, Wong SW, Menon RS and Shoemaker JK. Forebrain neural patterns 

associated with sex differences in autonomic and cardiovascular function during baroreceptor 

unloading. American Journal of Physiology - Regulatory, Integrative and Comparative 

Physiology 292: R715-R722, 2006. 



160 

 

 

 27.  Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, Kochunov PV, 

Nickerson D, Mikiten SA and Fox PT. Automated Talairach atlas labels for functional brain 

mapping. Human Brain Mapping 10: 120-131, 2000. 

 28.  Loewy AD and Spyer KM. Central Regulation of Autonomic Functions. New York: Oxford 

Univ. Press, 1990. 

 29.  Macefield VG, Gandevia SC and Henderson LA. Neural sites involved in the sustained 

increase in muscle sympathetic nerve activity induced by inspiratory capacity apnea: a fMRI 

study. Journal of Applied Physiology 100: 266-273, 2006. 

 30.  Macey PM, Macey KE, Henderson LA, Alger JR, Frysinger RC, Woo MA, Yan-Go F and 

Harper RM. Functional magnetic resonance imaging responses to expiratory loading in 

obstructive sleep apnea. Respiratory Physiology & Neurobiology 138: 275-290, 2003. 

 31.  Medford N and Critchley HD. Conjoint activity of anterior insular and anterior cingulate 

cortex: awareness and response. Brain Structure and Function 214: 535-549, 2010. 

 32.  Mesulam MM and Mufson EJ. Insula of the old world monkey. III: Efferent cortical output 

and comments on function. The Journal of Comparative Neurology 212: 38-52, 1982. 

 33.  Neafsey EJ. Prefrontal cortical control of the autonomic nervous system: Anatomical and 

physiological observations. Progress in Brain Research 85: 147-165, 1990. 

 34.  Nyberg G and Blomqvist A. The central projection of muscle afferent fibres to the lower 

medulla and upper spinal cord: an anatomical study in the cat with the transganglionic transport 

method. The Journal of Comparative Neurology 230: 99-109, 1984. 

 35.  Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. 

Neuropsychologia 9: 97-113, 1971. 

 36.  Oppenheimer SM and Cechetto DF. Cardiac chronotropic organization of the rat insular 

cortex. Brain Research 533: 66-72, 1990. 

 37.  Oppenheimer SM, Gelb A, Girvin JP and Hachinski VC. Cardiovascular effects of human 

insular cortex stimulation. Neurology 42: 1727-1732, 1992. 

 38.  Owens S, Atkinson ER and Lees DE. Thermographic evidence of reduced sympathetic tone 

with transcutaneous nerve stimulation. Anesthesiology 50: 62-65, 1979. 

 39.  Person RJ. Somatic and vagal afferent convergence on solitary tract neurons in cat: 

electrophysiological characteristics. Neuroscience 30: 283-295, 1989. 

 40.  Potts JT, Lee SM and Anguelov PI. Tracing of projection neurons from the cervical dorsal 

horn to the medulla with the anterograde tracer biotinylated dextran amine1. Autonomic 

Neuroscience: Basic and Clinical 98: 64-69, 2002. 



161 

 

 

 41.  Potts JT and Li J. Interaction between carotid baroreflex and exercise pressor reflex depends 

on baroreceptor afferent input. American Journal of Physiology - Heart and Circulatory 

Physiology 43: H1841-H1847, 1998. 

 42.  Potts JT, Paton JFR, Mitchell JH, Garry MG, Kline G, Anguelov PT and Lee SM. 

Contraction-sensitive skeletal muscle muscle afferents inhibit arterial baroreceptor signalling in 

the nucleus of the solitary tract: role of intrinsic GABA interneurons. Neuroscience 119: 201-

214, 2003. 

 43.  Radhakrishnan R and Sluka KA. Deep tissue afferents, but not cutaneous afferents, mediate 

transcutaneous electrical nerve stimulation-induced antihyperalgesia. The Journal of Pain 6: 

673-680, 2005. 

 44.  Ruggiero DA, Mraovitch S, Granata AR, Anwar M and Reis DJ. A role of insular cortex in 

cardiovascular function. The Journal of Comparative Neurology 257: 189-207, 1987. 

 45.  Sanderson JE, Tomlinson B, Lau MSW, So KWH, Cheung AHK, Critchley JAJH and 

Woo KS. The effect of transcutaneous electrical nerve stimulation (TENS) on autonomic 

cardiovascular reflexes. Clinical Autonomic Research 5: 81-84, 1995. 

 46.  Shipley MT. Insular cortex projection to the nucleus of the solitary tract and brainstem 

visceromotor regions in the mouse. Brain Research Bulletin 8: 139-148, 1982. 

 47.  Spyer KM. Central nervous mechanisms contributing to cardiovascular control. Journal of 

Physiology 474: 1-19, 1994. 

 48.  Steinback CD, Breskovic T, Frances M, Dujic Z and Shoemaker JK. Ventilatory restraint of 

sympathetic activity during chemoreflex stress. American Journal of Physiology - Regulatory, 

Integrative and Comparative Physiology 299: 1407-1414, 2010. 

 49.  Sundlof G and Wallin BG. Effect of lower body negative pressure on human muscle 

sympathetic nerve activity. Journal of Physiology 278: 525-532, 1978. 

 50.  Verberne AJ. Medullary sympathoexcitatory neurons are inhibited by activation of the medial 

prefrontal cortex in the rat. The American Journal of Physiology 270: R713-R719, 1996. 

 51.  Verberne AJM and Owens NC. Cortical modulation of the cardiovascular system. Progress in 

Neurobiology 54: 149-168, 1998. 

 52.  Vogt BA and Pandya DN. Cingulate cortex of the rhesus monkey: II. Cortical afferents. The 

Journal of Comparative Neurology 262: 271-289, 1987. 

 53.  Watenpaugh DE, Muenter NK, Wasmund WL, Wasmund SL and Smith ML. Post-apneic 

inhalation reverses apnea-induced sympathoexcitation before restoration of blood oxygen levels. 

Sleep 22: 435-440, 1999. 

 54.  Wesseling KH, Jansen JR, Settels JJ and Schreuder JJ. Computation of aortic flow from 

pressure in humans using a nonlinear, three-element model. Journal of Applied Physiology 74: 

2566-2573, 1993. 



162 

 

 

 55.  Wong SW, Masse N, Kimmerly DS, Menon RS and Shoemaker JK. Ventral medial 

prefrontal cortex and cardiovagal control in conscious humans. NeuroImage 35: 698-708, 2007. 

 56.  Zhang ZH, Dougherty PM and Oppenheimer SM. Characterization of baroreceptor-related 

neurons in the monkey insular cortex. Brain Research 796: 303-306, 1998. 

 57.  Zhang ZH, Dougherty PM and Oppenheimer SM. Monkey insular cortex neurons respond to 

baroreceptive and somatosensory convergent inputs. Neuroscience 94: 351-360, 1999. 



163 

 

 

Chapter 5 General Discussion and Perspectives 
 

The importance of the cerebral cortex in modulating autonomic regulatory 

functions including heart rate (HR), blood pressure, sympathetic and parasympathetic 

activity, gastrointestinal and sudomotor control has been well established.  Various 

tasks have been utilized to elicit autonomic responses in human neuroimaging studies to 

characterize the regions involved with cardiovascular function.  However, tasks such as 

exercise, mental stress and chemoreflex stressors activate multiple neural pathways 

including central command, baroreflex activity and somatosensory afferents.  Of these 

neural pathways, the cortical autonomic regions associated with the integration of 

somatosensory afferents have not been identified.  Previous studies have found linkages 

between somatosensory stimulation and decreased sympathetic tone and hypotension.  

Thus, the association between the somatosensory system and the autonomic nervous 

system required further study on a) the representation of somatosensory afferents within 

the cortical autonomic regions, and how the regions may operate as a network to 

regulate autonomic function and somatosensory integration; b) the association between 

brain regions activated during  somatosensory stimulation and measures of autonomic 

cardiovascular activity; and c) organization of somatosensory afferents within the 

cortical autonomic network (CAN) during altered levels of baroreceptor activity. 

One novel finding of this research is that somatosensory signals from skeletal 

muscle are represented in specific regions of the CAN and that they have an impact on 

increasing vagal outflow to the heart.  This was exemplified by the observation that type 

I and II afferent stimulation (sub-motor threshold stimulation) is associated with 

activation in the ventral medial prefrontal cortex (vMPFC) and subgenual anterior 
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cingulate cortex (ACC), regions implicated with parasympathetic activity.  In addition, 

there was a tendency towards increased heart rate variability during type I and II 

afferent stimulation, indicative of increased parasympathetic outflow.  Motor threshold 

stimulation to additionally recruit the type III and IV afferents led to increased activity 

in the left posterior insula but did not impact the vMPFC or subgenual ACC.  This is 

important on two levels.  First, this is the first neuroanatomical description of how these 

afferents are represented in supramedullary sites.  Earlier research has indicated their 

anatomical distribution within the brainstem, and within sensori-motor cortical regions.  

The anatomical pathways studied in the current study shows how axonal connectivity 

exists from the thalamus to the insula and from there distributions exist both anteriorly 

to the subgenual ACC and MPFC, superiorly to the sensory cortex and posteriorly to the 

posterior cingulate cortex (PCC).  These structural connections may underlie the 

conjoint activity of the anterior insula-ACC in autonomic regulation, and the posterior 

insula-PCC involvement in sensory processing and environmental monitoring.  Second, 

the new observation that somatosensory stimulation of such a small forearm surface 

area can have effects on parasympathetic activity points to an interesting feature of the 

integrative nature of muscle sensory afferents.  In particular, whereas the types III and 

IV afferents raise sympathetic outflow during exercise, the type I and II may impact 

parasympathetic outflow at rest.  How these are integrated into volitional handgrip 

exercise will have important implications on the concept of descending pathways 

associated with volitional exercise and the concurrent cardiovascular arousal that occurs 

with exercise.  Also, the finding of somatosensory afferents affecting parasympathetic 

outflow during sub-motor stimulation levels raises the intriguing possibility that such an 
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approach could be used as a countermeasure against age-, and disease-related 

decrements in parasympathetic activity that are so detrimental to cardiac health.  The 

potential for therapeutic use is supported by recent evidence showing the use of vagus 

nerve stimulation as a treatment for improving mood and cognition in epilepsy, 

depression and anxiety (1).  In addition to the effects of sub-motor threshold stimulation 

during supine rest with basal levels of baroreceptor loading on parasympathetic control 

of cardiac function, type I and II afferent stimulation is associated with an inhibitory 

effect on sympathetic outflow to the vasculature when baroreceptor input to the central 

nervous system is minimized.  Thus, the level of baroreceptor input switches control 

from a parasympathetic to a sympathetic mechanism during concurrent somatosensory 

activation.  This follows in line with evidence showing baroreceptor activity plays a role 

in pulmonary modulation of autonomic function and with somatosensory integration of 

electrical shocks.  This will have implications for the integration of sensory inputs 

during changes in baroreflex activity and central command, which occur during normal 

physiological fluctuations in HR and during arousal-inducing tasks such as mental 

stress and exercise.  
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Appendix A – Supplementary Data Heart Rate Variability 
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Figure A.1 -- Change in heart rate for a given change in high frequency power 

between supine and seated rest.  Note two participants with decreased heart rate 

and increased high frequency power on going from supine to seated rest shown in 

top left quadrant of origin. 
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Figure A.2 -- Individual data indicating changes in heart rate (top) and high 

frequency power (bottom) on going from supine rest to seated rest.  Bolded lines 

indicate two participants in whom heart rate decreased and high frequency 

increased during seated rest. 
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