
Received: 22/06/1999 © Copyright 2000
Accepted: 11/02/2000 – 1 – http://www.complexity.org.au/vol07/alfons01/

http://www.complexity.org.au/
Volume 7

Representation of some cellular automata by
means of equivalent L Systems

Manuel Alfonseca, Alfonso Ortega

Universidad Autónoma de Madrid,

Campus de Cantoblanco, 28049

Madrid, Spain

Email: {Manuel.Alfonseca;Alfonso.Ortega}@ii.uam.es

Abstract
This paper presents some facts that make cellular automata parallel to L Systems. Several

examples of cellular automata are considered and equivalent L Systems are constructed. A general
procedure should be able to manage n-dimensional cellular automata, thus one-dimensional, two-
dimensional and three-dimensional cellular automata are studied here. Some recommendations to
generalise the techniques to n-dimensional automata are given. The paper comments on the
difficulties to develop a general procedure and the reasons to give several recommendations
instead of an algorithm.

1. Introduction

 1.1 L Systems

In 1968, Aristid Lindenmayer [1] defined a new type of grammar (a parallel derivation
grammar), which differs from the normal Chomsky grammars (sequential derivation
grammars) because the rules are applied simultaneously, rather than one at a time.

Lindenmayer derivation grammars, also called L systems, can be classified in different
ways:

• Context sensitive (IL systems) versus context free (0L systems).

• Deterministic (DL systems) versus non-deterministic.

• Propagative (PL systems) versus non-propagative.

• EL systems, with extensions.

• TL systems, with tables, where the set of production rules includes two or more complete
subsets of production rules, that will be applied alternatively in each derivation.

Complexity International Volume 7

– 2 –

These types may be combined: A D0L system is a deterministic context free system; a
PD0L system is propagative, deterministic and context free; an EIL system is context sensitive
with extensions...

A D0L system is the three-fold (Σ, P, ω), where Σ is an alphabet (a finite non-empty set of
symbols); P is a set of production rules of the form A::=x (where A∈ Σ is a symbol in the
alphabet and ∗Σ∈x is a word or string of symbols in the alphabet); and ∗Σ∈ω is the starting
word or axiom. Every symbol appears exactly once at the left of a production rule (this makes
the system deterministic). This is the basic and simplest case of an L System. In the paper,
examples of other types of L Systems are also shown.

An example of a D0L system is:

({F,+,-}, P, F++F++F)

where P is the following set of production rules:

F ::= F-F++F-F

+ ::= +

- ::= -

A derivation of a word in a D0L system is the new word obtained when each symbol in the
first word is replaced by the right part of the production rule whose left part is that symbol. In
the previous example, we can get the following derivation from the axiom:

F++F++F → F-F++F-F++F-F++F-F++F-F++F-F

The word obtained becomes the starting point of a new derivation, and so on.

L systems have been successfully applied to the simulation of biologic processes, such as
plant growth, leaf development, pigmentation of snail shells, etc. They are also appropriate to
represent fractal objects obtained by means of recursive transformations [2-6]. The initiator
maps to the axiom of the L system, the generator to the production rules, and the recursive
applications of the generator to the initiator correspond to the successive derivations of the
axiom.

N dimensional L Systems are a subset of IL Systems:

• Strings derived by n dimensional L Systems are n dimensional arrays.

• The size of the axiom is the number of elements in the n dimensional array, i.e. the product
of the maximum number of elements in each dimension.

• The size of every word derived from an n dimensional L System is equal to the size of the
axiom.

• In order to define the context, a neighbourhood rule is needed, such as:

• The von Neumann neighbourhood of the node at position (i,j) is the set {(i,j-1), (i,j+1), (i-
1,j), (i+1,j)}

• The Moore Neighbourhood of the node at position (i,j) is the set {(i-1,j-1), (i-1,j), (i-1,j+1),
(i,j-1), (i,j+1), (i+1,j-1), (i+1,j), (i+1,j+1))}

Complexity International Volume 7

– 3 –

 1.2 Cellular Automata

A cellular automaton [7-10] is defined as the six-fold (G,G0,N,Q,f,T), where G is a matrix of
automata, G0 is the initial state of the grid (a mapping from G in Q, an injective function that
assigns an initial state to each automaton in the grid), N (neighbourhood) is a function that
assigns to each automaton in the grid the set of its neighbours, Q is the set of possible states of
every automaton in the grid, f is the transition mapping from QxQn in Q which defines the
next state of each automaton in the grid given its current state and the states of its n
neighbours, and T is the set of final or target states.

Every automaton in the grid has the same number of neighbours, transition mapping and
set of possible and final states [11], but they may differ from other automata in the grid only in
their initial states. The input to the automaton associated to a given point in the grid is the set
of states of the automata associated to its neighbours.

Cellular automata may differ in the following:

• The shape and size of the grid, usually square, rectangular or triangular, which may be
infinite.

• The definition of the set of neighbours to a given grid point.

• The actual finite automaton associated to each point in the grid. If this automaton is
deterministic/probabilistic, the cellular automaton is deterministic/probabilistic.

• The set of initial states of all the automata.

In cellular automata, specially those that use an infinite grid, the set of states of the finite
automaton associated to the grid points usually includes a special symbol (the empty state).
The number of automata not initially in the empty state is assumed to be finite.

2. L Systems and cellular automata

The possibility of generating L Systems equivalent to given cellular automata is suggested by
the identification of several similarities between both systems:

• Both have initial information that can be considered as their starting state.

• For an L system, the initial string (the axiom).

• For a cellular automaton, the set of all the initial states of its finite automata, which can
be considered the initial state of the cellular automaton.

• Both have components that record the way the system changes:

• For an L system, the set of production rules.

• For a cellular automaton, the transition function of its finite automata.

• Both architectures generate the next state by applying the transformation to every
component in parallel. The L System changes each symbol of the current string, the cellular
automaton changes the state of each automaton in the grid.

These similarities indicate that it should be possible to find a convergence between cellular
automata and L Systems.

This is not the first attempt in this direction. In reference [12], the same computing
procedure (genetic programming) is applied to both L systems and cellular automata, showing
that there must be a structural relationship between both, although no attempt is done to

Complexity International Volume 7

– 4 –

convert from one representation form to the other, and the examples in the two domains are
different. The equivalence problem we are describing here is not raised.

In more recent references [13-15], Stauffer and Sipper do tackle the question of L systems
and cellular automata equivalence, although in a different context to the one we are presenting
here. On the first hand, they are mainly interested in self-replicating automata. Secondly, they
convert L systems into equivalent cellular automata, a movement in the opposite direction to
ours. Finally, their cellular automata are not really equivalent to an L system, but to the
graphical interpretation of the latter using a turtle graphics formalism.

This paper shows several applications of a procedure that makes it possible to generate L
systems equivalent to given cellular automata without the need to introduce a graphical
representation. As examples, we have chosen three cellular automata with different
dimensionality, to show that our procedure is applicable in quite different situations.

3. One-dimensional cellular automata

A one-dimensional cellular automaton is a linear chain of automata. The neighbourhood
relationship in one-dimensional automata consists of predecessors and successors. One of the
better-studied neighbourhoods for one-dimensional automata consists of the automaton itself
and its two nearest neighbours.

 3.1 One-dimensional cellular automaton with three inputs that generates the
Sierpinski gasket

Let us consider finite automata whose state is a member of the {0, 1} set. The new state of
each automaton is a function of its own state and that of its two immediate neighbours, left
and right, which we will call its predecessor and successor, respectively. This family of
automata can be defined by means of three bits that represent the state of the neighbour to the
left, the state of the automaton itself, and the state of the neighbour to the right. Thus there are
23=8 different input values and 28=256 possible state change rules. The transition function of
the automata can thus be encoded in decimal notation by a number from 0 to 255, which
represents the eight new state bits corresponding to the eight input configurations. For
example, function 90, with the binary notation 01011010, has the following outputs:

Table 1.

State of previous
automaton

State of this
automaton

State of following
automaton

New state of this
automaton

1 1 1 0

1 1 0 1

1 0 1 0

1 0 0 1

0 1 1 1

0 1 0 0

0 0 1 1

0 0 0 0

Complexity International Volume 7

– 5 –

It is easy to devise an (1,1) DIL System whose derived words correspond to the consecutive
generations of this automaton:

The alphabet is the set V0={0,1}.

The set of production rules P can be directly obtained from the tables as above. For the
example of function 90, the following set will be used:

P90={111::=0, 110::=1, 101::=0, 100::=1, 011::=1, 010::=0, 001::=1, 000::=0}

The L system for this example is S90={V 0, P90, α 0}, where the axiom α 0 is the binary
string that represents the initial configuration of the cellular automata. Let α 0 = 0231023 be the
axiom. Its first 24 derivations are shown below for the above system:

Figure 1.

4. Two-dimensional cellular automata

Two-dimensional cellular automata use two-dimensional grids. The shape and the size are not
fixed, but they are usually rectangular and possibly infinite. One of the best known examples
is John Conway’s game of life, which is based on a very simple cellular automaton that uses a
rectangular potentially infinite grid and a set of two possible states for the automata. Its
conversion to an equivalent IL system is trivial, and we will not consider it here.

 4.1 A cellular automaton simulating an ecosystem

The cellular automaton we shall consider shows the following characteristics: the grid is
rectangular and possibly infinite; the only neighbour of each cell is the cell itself; a finite
automaton is associated to each cell of the grid. The state of these automata represents a
combination of individuals for which several conditions hold:

• There are two kinds of individuals: prey and predator.

• Each cell can contain up to four prey individuals.

• There are two possible states for every predator, a and b.

• Each cell can contain up to four a predators and up to four b predators.

• Thus, the maximum number of individuals allowed in a cell is twelve.

Complexity International Volume 7

– 6 –

The state of each cell changes in two alternative steps:

1. Predation and reproduction takes effect according to the following rules:

a) A predator in the a state dies if there is no prey in the same cell.

b) A predator in the a state goes into the b state if there are at least two prey individuals in
the same cell and there is room for a predator in the state b in the cell. If this is the case,
one of the prey individuals dies (is eaten).

c) A predator in the b state goes into the a state if there is no prey in the same cell.

d) A predator in the b state becomes two predators in the a state (reproduces) if there are at
least two prey individuals in the same cell and there is room for the two predators in the
a state in the cell. If this is the case, one of the prey individuals dies (is eaten).

e) The prey reproduces if there are at least two and at most three individuals in the same
cell.

Rules are applied successively in the order shown above. The condition for application is
tested on the initial state. The available space and the number of individuals are tested on the
current situation.

2. Movement takes effect using a Von Neumann neighbourhood. The goal is to simulate
some kind of non-deterministic movement of each individual. The following rule is stated:

a) Each individual can change its direction by choosing at random one of the four possible
ways: north, south, east and west. Only one individual per species and state can go in the
same direction.

We shall represent both steps by means of two different cellular automata that execute
alternatively, and convert each of them into an equivalent L system. The combined automaton
will be represented by an L system with tables that combines both. The behaviour of this
cellular automaton displays many of the properties of real ecological systems, such as
Volterra-type oscillations [16-17].

 4.1.1 Predation and Reproduction

We shall represent the two predator states by the letters a and b, the prey by an x. The state of
a cell will be a#a b#b x#x where

• #a is the number of predators in the a state in the cell.

• #b is the number of predators in the b state in the cell.

• #x is the number of prey in the cell.

The transition rules can be expressed by two strings of symbols: the individual states and
the result of the change:

a) Rule 1: ax0 ::= a0 (x0 and a0 mean that there are no x or a individuals in the cell).

b) Rule 2: ax2 ::= bx

c) Rule 3: bx0 ::= a

d) Rule 4: bx2 ::= a2x

e) Rule 5: x2 ::= x3

Complexity International Volume 7

– 7 –

As a first example, let us consider the state a4b4x4.

• Rule 2 (ax2 ::= bx) is applicable four times because there are four individuals of type a and
four (at least two) individuals of type x. Nevertheless, there is no room for four new b
individuals. So rule 2 is not applied and the number of a and b individuals remains
unchanged.

• The same happens with rules 4 and 5.

Second example: A cell with three preys, one predator in the a state and one predator in the
b state: a1b1x3.The following rules will be applied:

• Rule 2 (there are at least two x and one a in the cell.) In the initial state, this rule is
applicable once, because there is only one a individual. Rule 2 needs room for a new b
individual. Since there is currently only one, this modification is possible. Rule 2 removes
one a and one x, resulting in a0b2x2.

• Rule 4 (there is one b predator and more than one prey in the cell.) This rule is applicable
once, because in the initial state there is only one b individual. It needs space for two new a
individuals. Currently there are no individuals of type a. The change is therefore possible.
Rule 4 removes one b and one x, resulting in a2b1x1.

• Rule 5 (prey reproduction.) This rule is applicable once because in the initial state there is a
pair of x. Space for a new x is required. In the current situation there is only one individual
of type x. The change is then possible, resulting in a2b1x2.

Third example: A cell with three preys and three predators in the a state: a3b0x3.The
following rules will be applied:

• Rule 2 (there are at least two x and one a in the cell.) This rule is applicable three times
because there are 3 a individuals. The first application of rule 2 needs room for a new b.
There is none, so this modification is possible. Rule 2 removes one a and one x, resulting
in a2b1x2. The second application of rule 2 is also possible, resulting in a1b2x1. Finally,
the last application of rule 2 is also possible, resulting in a0b3x0.

• Rule 5 (prey reproduction). This rule is applicable once in the initial state, because there is
a pair of prey individuals. In the current situation there are no x, so the space requirements
apply. The change is then possible, resulting in a0b3x1.

 4.1.2 An equivalent L System

It is possible to devise a two-dimensional L System whose derived words correspond to the
consecutive generations of this automaton. A single symbol will be associated to each cell,
rather than a string with a symbol per individual. The rules are coded with a higher degree of
abstraction: instead of representing each rule as it is applied, the cell transition is treated as a
whole. A production rule is used to explicitly record each possible change.

The state of a cell will be represented by the letter s with the exponents of the string used in
the cellular automaton to represent the state as a sub-index. Thus:

• the state whose string is a1b1x3 is represented as s113

• the state whose string is a2b1x2 is represented as s212

Conversely

• Symbol s031 stands for the state with string a0b3x1

• Symbols s215, s714, s298 represent no valid state.

Complexity International Volume 7

– 8 –

In the previous examples we saw that we go from state a1b1x3 into state a2b1x2, so the
following rule must belong to the set of rules of the 2 dimensional L system:

s113::= s212

The total number of symbols equals the number of variations with repetitions of five
elements ({0,1,2,3,4}) taken 3 at a time, that is, 53= 125.

The complete set of production rules is shown below:

P={ s314::=s232, s444::=s444, s434::=s344, s424::=s433, s414::=s332, s404::=s042, s344::=s344, s334::=s434,

s324::=s333, s314::=s232, s304::=s033, s244::=s434, s234::=s334, s224::=s422, s214::=s223, s204::=s024, s144::=s334,

s134::=s423, s124::=s413, s114::=s214, s104::=s014, s044::=s424, s034::=s414, s024::=s404, s014::=s204, s004::=s004,

s443::=s444, s433::=s343, s423::=s431, s413::=s141, s403::=s131, s343::=s344, s333::=s432, s323::=s331, s313::=s041,

s303::=s031, s243::=s433, s233::=s332, s223::=s231, s213::=s221, s203::=s022, s143::=s333, s133::=s421, s123::=s411,

s113::=s212, s103::=s013, s043::=s422, s033::=s412, s023::=s402, s013::=s203, s003::=s004, s442::=s443, s432::=s342,

s422::=s241, s412::=s231, s402::=s221, s342::=s343, s332::=s431, s322::=s141, s312::=s131, s302::=s121, s242::=s432,

s232::=s331, s222::=s041, s212::=s031, s202::=s021, s142::=s332, s132::=s231, s122::=s221, s112::=s211, s102::=s012,

s042::=s421, s032::=s411, s022::=s401, s012::=s202, s002::=s003, s441::=s441, s431::=s431, s421::=s421, s411::=s411,

s401::=s401, s341::=s341, s331::=s331, s321::=s321, s311::=s311, s301::=s301, s241::=s241, s231::=s231, s221::=s221,

s211::=s211, s201::=s201, s141::=s141, s131::=s131, s121::=s121, s111::=s111, s101::=s101, s041::=s041, s031::=s031,

s021::=s021, s011::=s011, s001::=s001, s440::=s400, s430::=s300, s420::=s200, s410::=s100, s400::=s000, s340::=s400,

s330::=s300, s320::=s200, s310::=s100, s300::=s000, s240::=s400, s230::=s300, s220::=s200, s210::=s100, s200::=s000,

s140::=s400, s130::=s300, s120::=s200, s110::=s100, s100::=s000, s040::=s400, s030::=s300, s020::=s200, s010::=s100,

s000::=s000 }

The equivalent L system is ({Si}
125

i=1 , P, α1). The axiom (α1) is the matrix of the initial
states of all the automata in the grid, translated by means of the following function, which
converts a state of the finite automata into a symbol of the L system:

f(a#a b#b x#x)=s#a #b #x

This equivalent L system has been used to improve significantly the performance of our
simulation of the cellular automaton described here.

 4.1.3 Movement

In this step, each individual will choose a destination at random. To distinguish each
individual by the destination it has decided to follow, we shall use the symbols in the set { ↑ ,
→ , ↓ , ← }. The population of individuals in a cell is described by means of their symbol
followed by a string of symbols taken from the set { ↑ , → , ↓ , ← }, showing the direction
that the individuals will follow. The symbols are always written in the order shown in the set.
For example, if there are two a individuals, one of them going to the south and the other to the
west; three b individuals, none of them going north, and four x individuals, the situation will
be represented thus:

a ↓ ← b → ↓ ← x ↑ → ↓ ←

Two phases are needed to simulate the movement rule: first each individual chooses at
random the direction it will follow, then each individual reaches its destination. In the
preceding example, we look at the two a individuals first. They can choose at random one
between the following options:

{ a ↑ a ← , a → a ← , a ↓ a ← , a ↑ a → , a ↑ a ↓ , a → a ↓ }

Complexity International Volume 7

– 9 –

The six options listed above are the only possible options, i.e. any other combination of
arrows is forbidden. The same could be done with b and x. After choosing their destination,
the following string could be obtained:

a ↑ ← b ↑ → ↓ x ↑ → ↓ ←

Once the direction of movement is chosen, each individual follows it. Let us look at an
example. The following initial situation is considered:

Table 2.

a → ↓ b → ↓ x ↓

a → ↓ b → a ↑ ← b ↑ → ↓ x ↑ → ↓ ← a ↓ ← x→ ↓

a ↑ → b → x →

We compute the next state of the central cell, which does not depend on the previous state
of the same cell, but only on the direction of the individuals in the neighbouring cells that
point to the central cell. In the example, there are four a, two b and one x in this situation. The
maximum number of individuals in the same state allowed in a cell is four, and four is also the
maximum number of different destinations. This avoids collisions of too many individuals in
the same destination. The following string represents the next state for the central cell:

a ↑ → ↓ ← b → ↓ x ↓

 4.1.4 An equivalent L System

It is possible to devise a two-dimensional L System whose derived words correspond to the
consecutive generations of this automaton. It is advisable to use a more readable way of
naming each possibility. Assume that the set of directions are ordered as follows:

{ ↑ , → , ↓ , ← }

The set of directions for a given symbol in a cell can be represented by a four digit binary
number as in the following examples:

• 1111 means that there is one individual per direction.

• 0101 means that there is one individual going east and one going west.

• 1000 means that there is only one individual that has chosen north.

The different types of individuals will be described in the following order: {a, b, x}. Thus,
s1010,1111,0001 stands for a ↑ ↓ b ↑ → ↓ ← x ← .

As in the cellular automaton, there are two phases:

• First, each individual chooses at random its next destination.

• Second, each individual moves to its destination.

These two phases can be expressed by means of two different tables of production rules.
The first has an enormous number of possible combinations, which we will simplify by giving
an algorithm to generate the right-hand side of each rule as a function of its left-hand side.
This phase is independent of the von Neumann neighbourhood, which is used in the second
phase.

Complexity International Volume 7

– 10 –

Example: Let s1010,1111,0001 be the symbol studied. The associated set of production rules is:

{ s1010,1111,0001::=sn1,1111,n3 | where n1 is any permutation
of 1010 and n3 is any permutation of 0001 }

This set contains 24 rules.

In general:

P2={ sna,nb,nx::= sna’,nb’,nx’ ∀ sna,nb,nx ∈ V, where na’ is a random permutation of na,
nb’ is a random permutation of nb, and nx’ is a random permutation of nx }

Obviously, P2 is non-deterministic because there are a lot of possible right hand sides for
each symbol.

Once each individual knows where it will go, the second table of production rules can be
applied.

This table formalises the movement of the individuals. Each individual follows its arrow.
Provided that there are four allowed directions ({ ↑ , → , ↓ , ← }), four neighbours are needed
to calculate the next content of any cell. That means that the two-dimensional L System built
has interactions and the von Neumann neighbourhood is the context. Let N(x) be the von
Neumann neighbourhood of x.

Once again there are many rules but the system is deterministic. The new symbol at a
position content can be calculated by means of the following algorithm:

Example: Assume that we have the following situation:
s0110,0110, 0010

s0110,0100,0000 s0011,0000,0110

s1100,0100,0100

We take the first digit from the bottom neighbour, the second from the left neighbour, the
third from the top neighbour and the fourth from the right neighbour, and move these digits to
the new central symbol. In the example we get

s 1111, 0110, 0010

In general, the set of production rules is defined as follows:

P3={ N(sna,nb,nx)::= sna’,nb’,nx’ ∀ sna,nb,nx ∈ V, where N(x) is the von Neumann
neighbourhood of the cell and na’,nb’,nx’ are calculated as indicated in the example }

The axiom is obtained by expressing the state in every node of the grid with the convention
presented in the previous paragraphs. The two dimensional L System associated to this
automaton is (V, {P2, P3}, α2). Where P2, P3 and α2 were defined above. Each table of
production rules is used once. The table used first is P2.

 4.1.5 The combined cellular automaton represented by an L system

In order to be able to combine the L systems defined in the previous sections, we will
introduce some redundant terms in the symbols used with the second L system, containing the
number of ones in each section of the sub-index. This number is the same used as the index in
the first L system.

Complexity International Volume 7

– 11 –

For instance:

s0111, 1111, 0010 becomes s0111, 1111, 0010,3,4,1

The alphabet of the L System is

V2={ sna,nb,nx,ea,eb,ex | ei is the number of ones in ni ∀ i∈ {a,b,x}}

This L System needs three different tables of production rules that are applied once in order
before alternating. The tables are the sets of production rules P1, P2, P3. The only difference is
that the indexes used in the symbols of P1 are now the last three sub-indexes. Since P3 uses the
von Neumann neighbourhood, the whole system is considered to use it. The axiom α3 is
calculated as described above. So the complete L System is as follows: {V2,{P1,P2,P3},α3}

5. Three-dimensional cellular automata

Three-dimensional cellular automata distribute their cells and the associated finite automata
over a section of 53. The shape and size of the grid is not fixed, but the automata are usually
located at the vertexes of cubes that share their faces. An example of such automata is
presented in the following paragraphs.

 5.1 A three-dimensional cellular automata that generates and propagates
pulses.

This cellular automata uses the grid drawn below:

Figure 2.

This is a square prism potentially infinite to the right and made up of small cubes of d units
per side.

The neighbourhood used is drawn in the next figure.

Figure 3. The neighbourhood

Complexity International Volume 7

– 12 –

The neighbourhood of a cell is the cell itself and its six nearest neighbours, the six cells
that surround it at d units of distance. Each automaton takes as state an element of the set
{0,1}. The initial state is shown on the following page. Dark points mean a state of 1, blue
points a state of 0.

Figure 4. The initial state

To calculate the next state, each automaton follows the following rules:

• It does not take into account its horizontal neighbour to the right (the dark one in the
neighbourhood figure).

• If the four neighbours in the vertical plane have a state of 0, the next state of the considered
automaton changes no matter the value of the neighbour to the left.

This rule is shown in the following table and figure:

Figure 5.

Complexity International Volume 7

– 13 –

Table 5.

Neighbour Automaton’s Automaton’

up down front back right left state i s state i+1.

0 0 0 0 x y 0 1

0 0 0 0 x y 1 0

Where x and y are any value from the set {0, 1}.

• If the four neighbours in the vertical plane have a state of 1, the next state of the current
automaton depends on the state of its neighbour to the left and the state of the current
automaton. The state changes when both values are not the same, otherwise the state
remains unchanged. This rule is shown in the following table and figure:

Figure 6.

Table 6.

Neighbour Automaton’s Automaton’

Up down front back right left state i s state i+1.

1 1 1 1 x 0 0 0

1 1 1 1 x 0 1 0

1 1 1 1 x 1 0 1

1 1 1 1 x 1 1 1

Where x is any value from the set {0, 1}.

• The state of the automaton remains unchanged otherwise.

The first steps after the initial state of the whole automaton are shown on the following
page.

Complexity International Volume 7

– 14 –

Figure 7.

The left face of the prism is generating pulses at the odd steps, and these pulses are
propagated across the grid.

The initial states of the automata at the vertexes of the leftmost face are particularly
relevant. If they are 0, several automata in this face will change their value generating spurious
and noise pulses. The aim of this cellular automaton is to generate and propagate pulses across
its central axis. The state of every automata on the boundaries remains unchanged because
their up, down, front and back neighbours never have the same states.

It is possible to devise a three dimensional ILSystem whose derived words correspond to
consecutive generations of this automaton. The neighbourhood used was presented above. The
alphabet of this system is V4 = {0,1}.

In order to express the context in a readable way the following order will be imposed to the
symbols at the left-hand side of the production rules.

Table 7.

Order Automaton

1 The upper neighbour

2 The lower neighbour

3 The neighbour in front

4 The neighbour at the back

5 The neighbour to the right

6 The neighbour to the left

7 The current automaton

Complexity International Volume 7

– 15 –

A binary vector whose digits are the states of these seven automata is used as the left-hand
side in every production rule. The rules could be directly copied from the previous tables, so
the set of production rules P4 can be expressed as follows:

P4={ 0000xy0::=1 ∀ x, y ∈ V4; 0000xy1::=0 ∀ x, y ∈ V4; 1111x00::=0 ∀ x ∈ V4;
1111x01::=0 ∀ x ∈ V4; 1111x10::=1 ∀ x ∈ V4; 1111x11::=1 ∀ x ∈ V4;

otherwise, the following rule is used: xyzuvws::=s ∀ x, y, z, u, v, w, s ∈ V4 }

The axiom α4 is the three dimensional binary array obtained from the initial state figure,
where the value is obtained from the colour of the points by applying the rule below:

The equivalent L system is { V4, P4, α4 }.

6. Conclusions

We have shown that it is possible to obtain equivalent L systems of quite different,
multidimensional and complicated cellular automata. We are not offering at this point a
general conversion procedure, but provide the following set of suggestions:

• The dimension of the cellular automata is not a limitation to the possibility of obtaining an
equivalent L System. There is a lot of literature about one-dimensional and two-
dimensional cellular automata. Examples of three-dimensional cellular automata are
unusual. There is practically nothing about n-dimensional cellular automata for n>3. A
possible reason is the impossibility of obtaining graphic representations of their behaviour.

• As observed in the previous examples, the bottleneck is the formalisation of the function
that generates the next state of each automaton in the grid. A general technique should
follow this recommendation:

• The first step is identifying the possibly independent and radically different behaviours
of the automata. The next step is building a set of production rules to express each
behaviour, and putting them together in an L System with tables, after identifying the
conditions where each table should be used. A good starting point to identify the set of
production rules is the use of different neighbourhoods in the cellular automaton.

• In all the examples, the behaviour could be coded into one or more sets of production rules
joined together in an L System with tables. We have not found examples that made this
approach fail. It is possible to build each set of production rules because the following
conditions hold:

• Every cellular automaton considers a finite number of nearest points in the grid as their
neighbourhood.

• Every cellular automaton has a finite set of possible states for their individual automata.

These two facts are the key that makes the process possible. Given these two conditions, it
is easy to express all the possible change rules, provided that the above sets are finite. The
grid, however, can be infinite.

In the examples, the production rules have been completely listed whenever it was
reasonable. Some examples show an enormous (though finite) number of combinations. In
that case, a generation algorithm has been given.

Complexity International Volume 7

– 16 –

Would it be possible to design a general algorithm to build the L System associated to any
cellular automaton? The answer must be found in the nature of the description of the cellular
automata, rather than in the expressive power of the observations made above. The behaviour
of a cellular automaton can be expressed in almost any way. A more formal description is
needed in order to build general equivalent L Systems.

7. References

[1] Lindenmayer, “Mathematical Models for Cellular Interactions in Development” (two
parts), J. Theor. Biol. 18, 280-315 (1968).

[2] Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, San Francisco, 1982.

[3] M. F. Barnsley, Fractals Everywhere, Academic Press, Inc., Boston, 1988.

[4] S. Papert, Mindstorms: Children, Computers, and Powerful Ideas, Basic Books, New
York, 1980.

[5] G. Weisbuch: Complex systems dynamics. A lecture notes volume in the Santa Fe
Institute studies in the sciences of complexity. Addison-Wesley Publishing Company.
1991

[6] S. D. Casey and N. F. Reingold, “Self-Similar Fractal Sets: Theory and Procedure,”
IEEE Computer Graph. & Appl. 14, 73-82 (May 1994).

[7] J. Von Neumann, J.: “Theory of Self-Reproducing Automata”, Univ. of Illinois Press,
Urbana, 1966.

[8] A.W. Burks, “Essays on Cellular Automata”, Univ. of Illinois Press,Urbana, 1970.

[9] S. Wolfram, “Theory and Application of Cellular Automata”, World Sci. Publ.,
Singapore, 1986.

[10] Kari, J.: “Cellular Automata. An Introduction”, in “Artificial Life: Grammatical
Models”, ed. by G. Paun, Black Sea Univ. Press, Bucharest, 1995.

[11] P. Linz, “An introduction to Formal Languages and Automata”, D.C. Heath and Co.,
Lexington, 1990.

[12] J.R. Koza: “Discovery of Rewrite Rules in Lindenmayer Systems and State Transition
Rules in Cellular Automata via Genetic Programming”, Symposium on Pattern
Formation (SPF-93), 1993.

[13] M.Sipper, D.Mange, A.Stauffer: “Ontogenetic hardware”, BioSystems 44, p.193-207,
1997.

[14] A.Stauffer, M.Sipper: “On the relationship between cellular automata and L-systems:
The self-replication case”, Physica D 116, p.71-80, 1998.

[15] A.Stauffer, M.Sipper: “L-hardware: Modeling and implementing cellular development
using L-systems”. In D. Mange and M. Tomassini, editors, “Bio-inspired Computing
Machines: Toward Novel Computational Architectures”, Presses Polytechniques et
Universitaires Romandes, Lausanne, Switzerland, p. 269-287, 1998.

[16] M.Alfonseca, J.de Lara, E. Pulido: “Educational simulation of complex ecosystems in
the World-Wide Web”, Proc. ESS’98, SCS Int., p.248-252, 1998.

[17] Volterra, V.: “Leçons sur la Théorie Mathématique de la Lutte pour la Vie”, Gauthier-
Villars, Paris, 1931.

