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ABSTRACT

The air–sea exchange of heat and carbon in the Southern Ocean (SO) plays an important role in mediating

the climate state. The dominant role the SO plays in storing anthropogenic heat and carbon is a direct con-

sequence of the unique and complex ocean circulation that exists there. Previous generations of climate

models have struggled to accurately represent key SO properties and processes that influence the large-scale

ocean circulation. This has resulted in low confidence ascribed to twenty-first-century projections of the state

of the SO from previous generations of models. This analysis provides a detailed assessment of the ability of

models contributed to the sixth phase of the Coupled Model Intercomparison Project (CMIP6) to represent

important observationally based SO properties. Additionally, a comprehensive overview of CMIP6 perfor-

mance relative to CMIP3 and CMIP5 is presented. CMIP6models show improved performance in the surface

wind stress forcing, simulating stronger and less equatorward-biased wind fields, translating into an improved

representation of the Ekman upwelling over the Drake Passage latitudes. An increased number of models

simulate an Antarctic Circumpolar Current (ACC) transport within observational uncertainty relative to

previous generations; however, several models exhibit extremely weak transports. Generally, the upper SO

remains biased warm and fresh relative to observations, and Antarctic sea ice extent remains poorly repre-

sented. While generational improvement is found in many metrics, persistent systematic biases are high-

lighted that should be a priority during model development. These biases need to be considered when

interpreting projected trends or biogeochemical properties in this region.

1. Introduction

The sequestration and ventilation of heat and car-

bon that occurs in the Southern Ocean (SO) plays a

key role in global climate change. Observational and

modeling studies over the last several decades con-

tinue to highlight the dominant role that the SO plays

in the oceanic uptake of heat and carbon in present-

day climate (Frölicher et al. 2015; Roemmich et al.

2015; Talley et al. 2016; Meredith et al. 2019). The

disproportionate role that this region plays in the

planetary heat and carbon budget is linked to the

unique and complex physical circulation that exists in

the SO. Coupled models that contributed to previous

generations of the Coupled Model Intercomparison

Project (CMIP) have shown large disagreements in

their ability to represent the large-scale circulation

and associated properties and processes in this region

(e.g., Russell et al. 2006a; Sen Gupta et al. 2009;

Kuhlbrodt et al. 2012; Meijers et al. 2012; Bracegirdle

et al. 2013; Heuzé et al. 2013; Sallée et al. 2013a,b;

Meijers 2014; Frölicher et al. 2015; Shu et al. 2015;

Ivanova et al. 2016; Hyder et al. 2018; Russell et al.

2018; Beadling et al. 2019). This has led to low confi-

dence ascribed to CMIP model-based projections of

future trends in the SO (Meredith et al. 2019). Given

the vital role that this region plays in moderating cli-

mate globally, such a large disagreement in model

performance is alarming and has implications for
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interpreting projected trends not just in the SO, but

globally.

The coordinated multimodel experiments forced by

observed changes in the Earth system from ;1850

through the early twenty-first century, the ‘‘twentieth-

century control’’ (20C3M) in CMIP3 and ‘‘historical’’

simulations in CMIP5 and CMIP6, allow climate and

Earth system models (ESMs) to be scrutinized for how

well they simulate key aspects of the climate system

relative to observable quantities over the instrumental

record. Through this process, a large number of sys-

tematic model biases pertaining to the simulation of the

SO have been identified and discussed at length in the

IPCCAR5 report (Flato et al. 2013) and summarized by

Meijers (2014). Given the persistence of particular biases

from one generation to the next, one of the three major

scientific questions in the design of CMIP6 was to ‘‘inves-

tigate the origins and consequences of systematic model

biases’’ with important and long-standing biases in the SO

simulation highlighted as an area that needs to be ad-

dressed (Stouffer et al. 2017). A review by Meijers (2014)

painted theCMIP5SOsimulation as a ‘‘betterCMIP3’’ but

lacking dramatic advancements that may have been ex-

pected given the larger ensemble and much more sophis-

ticated models that participated relative to CMIP3.

One well-known example of a persistent bias in the

Southern Hemisphere climate is the equatorward-biased

westerly jet position (Russell et al. 2006a; Sen Gupta et al.

2009;Bracegirdle et al. 2013; Beadling et al. 2019).Beadling

et al. (2019) showedhowdifferent combinations of biases in

the strength and position of the jet across the CMIP5 en-

semble result in very different patterns of integrated wind

stress curl (WSC) over the SO. This is important because

the pattern and strength of theWSC forcing exerts a strong

control on the resulting properties in the SO through its

influence on the SO meridional overturning circulation

(MOC),watermass structure, and the strength andposition

of theSouthernHemisphere subtropical and subpolar gyres

that provide the meridional boundaries of the Antarctic

Circumpolar Current (ACC). Additionally, energy

imparted to the oceanby thewindfield feeds the formation

of mesoscale eddies through baroclinic instability (Olbers

et al. 2004; Rintoul 2018). Thus, biases in the location and

intensity of the momentum forcing from the overlying

winds may lead to inaccuracies in ocean mixing. The

bias in westerly jet position has also been identified as

an emergent constraint, where models with weak and

more equatorward biased Southern Hemisphere west-

erly jets tend to exhibit the largest increase and pole-

ward shift under increased warming (Kidston andGerber

2010; Bracegirdle et al. 2013). Mean state representation

and warming-driven changes in midlatitude westerly

winds have important ramifications for the ventilation of

heat and carbon in the Southern Hemisphere (Russell

et al. 2006b; Waugh et al. 2019).

Coupled models have also consistently simulated upper-

ocean temperatures in the SO that are too warm relative to

modern observations (Russell et al. 2006a; Sen Gupta et al.

2009; Sallée et al. 2013a,b; Beadling et al. 2019; Hyder et al.

2018). This influences geostrophic ocean circulation, surface

heat fluxes and water mass transformations, surface carbon

fluxes, and the ability to accurately represent Antarctic sea

ice extent (SIE). The properties of the upper ocean are

influenced by a complex interplay between oceanic, atmo-

spheric, and ice processes. This makes the upper ocean

properties highly sensitive to biases in individual model

components (i.e., the atmosphere, ocean, or sea ice models

used in the coupled configuration). For example, Hyder

et al. (2018) provided strong evidence that sea surface

temperature (SST) biases in the region 408–608S across the

CMIP5 ensemble are primarily the result of net flux biases

in the stand-alone atmospheric model linked to poor rep-

resentation of clouds, cloud properties, and shortwave

radiation errors.

The historical representation of the properties and large-

scale circulation in the SOmay play a role in determining a

model’s projected response to increased radiative forcing.

Thus, a reduction in uncertainty of future trends in the SO

and globally may be achieved through improvement and

detailed understanding of mean state biases. Furthermore,

as arguments grow against the idea of considering the results

of all model projections equally viable (‘‘model democ-

racy’’), whereby uncertainties of the trajectories of the cli-

mate system are assessed from a simple multimodel-mean

approach (Knutti 2010; Knutti et al. 2017; Eyring et al.

2019), it is vital to assess and interpret projected trends

among models with knowledge of biases in their historical

simulations.

The evaluation presented here provides a robust and

comprehensive assessment of key observablemetrics of SO

properties and circulation in the historical simulations

across a large ensemble of CMIP6 models. Observable

metrics assessed include surface momentum forcing, ACC

transport, density, salinity, and temperature patterns and

gradients, and representation of Antarctic seasonal SIE.

The analysis has been done in a way that allows consistent

assessment acrossmodel generations fromCMIP3 (Russell

et al. 2006a; Sen Gupta et al. 2009) to CMIP5 (Beadling

et al. 2019), highlighting areas of model improvement and

areas where systematic biases persist. For cohesiveness, for

each results section we first provide a discussion of the

performance of that particular metric across model gener-

ations and then present the CMIP6 results. We bring all of

our results together in an overall evaluation of cross-

generational performance, and suggest next steps in the

conclusions and summary section. As the results from the
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twenty-first-century projections under various shared so-

cioeconomic pathways (SSPs) for the CMIP6 scenarios

have recently come online, it is urgently important to pro-

vide comprehensive documentation of model biases in this

climatically important region.

2. Methods

a. CMIP6 model output

Thirty-four CMIP6 models are included in this assess-

ment based on the availability of output provided for each

model’s ‘‘historical simulation’’ in the Earth SystemGrid

Federation (ESGF) CMIP6 data archive at the time of

publication. In CMIP6, the historical simulation spans

1850 to 2014 and is forced by observed anthropogenic and

natural sources of atmospheric composition changes and

time-evolving land cover (Eyring et al. 2016). The first

ensemble member for each model’s historical simulation

is analyzed. In some cases, the ‘‘r1i1p1f1’’ member was

not provided and another appropriate member was ana-

lyzed. Table 1 lists the models, ensemble members, and

additional details regarding their ocean component. The

analyses for all metrics presented here are performed on

the model’s native grid unless otherwise noted and follow

the same exact computational methods as that summa-

rized in the methods section of Beadling et al. (2019). All

metrics are computed as a time average of all monthly

data spanning January 1986–December 2005.

b. Observational metrics

Several observational metrics have been updated

fromBeadling et al. (2019). TheWorldOceanAtlas 2018

(WOA18) product (Locarnini et al. 2018; Zweng et al.

2018) is used to assess biases in the density, salinity, and

potential temperature differences across the ACC rel-

ative to those estimated from observations. For com-

parison to the 1986–2005 time period simulated in the

models, the 1985–94 and 1995–2004 decadal climatol-

ogies are averaged from the WOA18 product. For assess-

ment of the surfacemomentumexchange fromatmospheric

wind stress, the European Centre for Medium-Range

Weather Forecasts (ECMWF) ERA5 atmospheric re-

analysis product is used (https://cds.climate.copernicus.eu/).

The ERA5 product, with increased spatial and temporal

resolution and other improved features, is considered to be

an improvement to ERA-Interim, which ended production

in August 2019 (https://confluence.ecmwf.int/display/CKB/

ERA5%3A1data1documentation). ERA-Interim

was used in the assessment of SO surface momentum

forcing by Beadling et al. (2019) given its proven reli-

ability in representing wind fields over the SO relative to

other contemporary reanalysis products (Swart and Fyfe

2012; Bracegirdle and Marshall 2012; Bracegirdle et al.

2013). For the model analysis, monthly atmospheric or

oceanic zonal (tx) and meridional (ty) wind stress fields

are used. If the atmospheric wind stress fields are used,

values over land are masked out prior to computations.

For the assessment of Antarctic SIE, the monthly Sea

Ice Index version 3 data product (https://nsidc.org/data/

G02135/versions/3) provided by the National Snow and

Ice Data Center (NSIDC; Fetterer et al. 2017) is used.

The data are derived from satellite passive microwave

data and span the time period 1978 to the present day. In

our assessment, we present the time-averaged monthly

data from 1986 to 2005. To be consistent with the

NSIDC data product, we only consider grid cells with a

sea ice concentration greater than 15% since satellite

passive microwave instruments cannot accurately mea-

sure concentrations below this value. To be consistent

for comparison with Beadling et al. (2019), after mask-

ing out values below 15%, the sea ice concentration data

(siconc) are regridded to a standard 18 horizontal reso-

lution grid for models that have nonstandard curvilinear

horizontal grids. This was done in Beadling et al. (2019)

due to a lack of information about grid cell area to allow

computations on models with nonregular grids.

For the ACC transports, the net volume transport

through the Drake Passage (DP; closest grid cells to

;698W) is computed in each model from their reported

zonal velocity (uo) or mass transport (umo) output.

Velocities were only used if the mass transport output was

not provided. Mass transport is preferred over velocity

for a number of reasons discussed in detail in Beadling

et al. (2019) and ultimately provides for a better repre-

sentation of the true time-averaged flow. If mass transport

was used, the total transport was divided by a constant

density of 1035kgm23. For the observational benchmark,

we use the 173.3 6 10.7Sv (1Sv [ 106m3 s21) estimate

from the cDrake array experiment, which was carried out

from 2007 to 2011 (Chereskin et al. 2012; Chidichimo et al.

2014;Donohue et al. 2016). This value is the sumof the 127

6 5.9Sv baroclinic transport (Chidichimo et al. 2014) and

45.6 6 8.9Sv barotropic component computed from the

cDrake array observations (Donohue et al. 2016). Please

see the detailed discussion in section 2a of Beadling et al.

(2019) (titled ‘‘Transport of the ACC through the Drake

Passage’’) regarding observational DP estimates over the

last several decades. The larger transport computed from

the cDrake array relative to the canonical value of 134Sv

derived from hydrographic estimates (Whitworth et al.

1982; Whitworth 1983; Whitworth and Peterson 1985;

Cunningham et al. 2003) is purely attributable to the

higher spatial and temporal resolution observations that

allowed strong barotropic currents near the bottom of the

ocean to be resolved.
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TABLE 1. Details of the ocean model components in the CMIP6 models used in this study. Details of the ocean component, resolution,

and vertical levels were obtained from the header information in the netcdf files used for the analyses. Information regarding the eddy-

induced advection coefficient was obtained from ES-DOCs (https://search.es-doc.org/), through personal communication with the

modeling centers, or from model documentation literature, as noted by the superscript next to each entry. The term V corresponds to a

coefficient that is either 2D/3D/time-varying, and F corresponds to a fixed coefficient. If the required information could not be obtained or

confirmed at the time of publication, it is left blank (—). The ocean vertical coordinates are defined as follows: z, traditional depth

coordinates; s2, isopycnal vertical coordinates; z*, rescaled geopotential vertical coordinate for better representation of free-surface

variations (Adcroft and Campin 2004); sigma, terrain-following coordinates; hybrid s2–z*, isopycnal coordinates in the interior ocean and

a z* coordinate in the mixed layer (Adcroft et al. 2019); hybrid z–s2, isopycal coordinates in the interior ocean and z coordinates in the

mixed layer; hybrid z–s2–sigma, z coordinates in the mixed layer, isopycnal coordinates in the open stratified ocean, and sigma coordi-

nates in shallow coastal regions; hybrid z–sigma, sigma coordinates between the sea surface and a fixed geopotential depth (;50m) in the

upper ocean and z coordinates below this depth. The historical experiments span 1850–2014 and are forced by observed changes in

atmospheric composition due to anthropogenic and natural sources over the entire historical period. These forcings are updated from the

CMIP5 historical forcings (Taylor et al. 2012) and extended to 2014. Please refer to Eyring et al. (2016) and references therein for details of

the exact forcing datasets used for the historical simulations in CMIP6. The indices describing the ensemble member correspond to the

model realization number (r), initialization method (i), physics index (p), and forcing index (f) used in the experiment. Please see the

CMIP6 guidance for data users for more documentation on this (https://pcmdi.llnl.gov/CMIP6/Guide/).

CMIP6 model

Ensemble

member

Ocean

component

Nominal

ocean

resolution

(lon 3 lat)

Ocean vertical

coordinate

and levels

Eddy-induced

advection

coefficient

(m2 s21) Modeling center

1 ACCESS-CM2 r1i1p1f1 MOM5 1.0 3 1.0 z* (50) V; 100–1200a CSIRO-ARCCSS-

BoM

2 ACCESS-ESM1.5 r1i1p1f1 MOM5 1.0 3 1.0 z* (50) V; 50–600b CSIRO-ARCCSS-

BoM

3 BCC-CSM2-MR r1i1p1f1 MOM4-L40 1.0 3 1.0 z (40) — BCC-CMA

4 BCC-ESM1 r1i1p1f1 MOM4-L40 1.0 3 1.0 z (40) — BCC-CMA

5 CanESM5 r1i1p1f1 NEMO3.4.1 1.0 3 1.0 z (45) V; 100–2000c CCCma

6 CESM2 r1i1p1f1 POP2 1.0 3 1.0 z (60) V; 300–3000d NCAR

7 CESM2-WACCM r1i1p1f1 POP2 1.0 3 1.0 z (60) V; 300–3000d NCAR

8 CNRM-CM6.1 r1i1p1f2 NEMO3.6 1.0 3 1.0 z* (75) Ve CNRM-CERFACS

9 CNRM-CM6.1-

HR

r1i1p1f2 NEMO3.6 0.25 3 0.25 z* (75) Nonee CNRM-CERFACS

10 CNRM-ESM2.1 r1i1p1f2 NEMO3.6 1.0 3 1.0 z* (75) Ve CNRM-CERFACS

11 E3SM-1.0 r1i1p1f1 MPAS-Ocean 1.0 3 1.0 z* (60) F; 1800f E3SM-Project

12 EC-Earth3-Veg r1i1p1f1 NEMO3.6 1.0 3 1.0 z* (75) — EC-Earth-

Consortium

13 GFDL-CM4 r1i1p1f1 MOM6 0.25 3 0.25 Hybrid s2–z* (75) Noneg NOAA-GFDL

14 GFDL-ESM4 r1i1p1f1 MOM6 0.50 3 0.50 Hybrid s2–z* (75) V; ;0–2000h NOAA-GFDL

15 GISS-E2.1-G r1i1p1f1 GISS Ocean 1.25 3 1.0 z (40) — NASA-GISS

16 GISS-E2.1-G-CC r1i1p1f1 GISS Ocean 1.25 3 1.0 z (40) — NASA-GISS

17 GISS-E2.1-H r1i1p1f1 HYCOM 1.0 3 1.0 Hybrid z–s2–

sigma (32)

— NASA-GISS

18 HadGEM3-

GC31-LL

r1i1p1f3 NEMO-HadGEM3-

GO6.0

1.0 3 1.0 z* (75) V; # 1000i MOHC

19 HadGEM3-

GC31-MM

r1i1p1f3 NEMO-HadGEM3-

GO6.0

0.25 3 0.25 z* (75) Nonej MOHC

20 INM-CM4.8 r1i1p1f1 INM-OM5 1.0 3 1.0 Sigma (40) Nonek INM

21 INM-CM5.0 r1i1p1f1 INM-OM5 0.5 3 0.25 Sigma (40) Nonel INM

22 IPSL-CM6A-LR r1i1p1f1 NEMO3.6 1.0 3 1.0 z*(75) Vl IPSL

23 MCM-UA-1.0 r1i1p1f1 MOM1 plus 1.88 3 2.25 z (18) Nonel University ofArizona

24 MIROC6 r1i1p1f1 COCO4.9 1.0 3 1.0 Hybrid z–

sigma (62)

F; 300l JAMSTEC

25 MIROC-ES2L r1i1p1f2 COCO4.9 1.0 3 1.0 Hybrid z–

sigma (62)

F; 300m JAMSTEC

26 MPI-ESM-

1.2-HAM

r1i1p1f1 MPIOM1.6.3 1.5 3 1.5 z (40) F; ;94n HAMMOZ-

Consortium

27 MPI-ESM1.2-LR r1i1p1f1 MPIOM1.6.3 1.5 3 1.5 z (40) F; ;94n MPI-M

28 MRI-ESM2.0 r1i1p1f1 MRI.COM4.4 1.0 3 0.5 z* (60) V; 300–1500i MRI
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c. B-SOSE Iteration 133

Monthly ocean fields from the Iteration 133 solution

of the Biogeochemical Southern Ocean State Estimate

(B-SOSE) at 1/68 horizontal resolution spanning January

2013–December 2018 are also analyzed in this study

(http://sose.ucsd.edu/BSOSE6_iter133_solution.html).

This is an update from the 1/38 horizontal resolution

Iteration 105 B-SOSE solution spanning January 2008–

December 2012 used in Beadling et al. (2019). B-SOSE,

produced as part of the Southern Ocean Carbon Climate

ObservationalModeling (SOCCOM) project, assimilates

observations from shipboard data, profiling floats, un-

derway measurements, and satellites into a numerical

model to produce a state estimate for the SO. InB-SOSE,

the MIT general circulation model (MITgcm) is fully

coupled to the Nitrogen-version of the Biogeochemistry

with Light, Iron, Nutrients, andGases (N-BLING)model

[evolved from Galbraith et al. (2010)]. Given the nature

of B-SOSE, where the MITgcm is brought into consis-

tency with available observational data via an adjoint data

assimilation approach, we expect B-SOSE to perform well

in regions with a high density of observational measure-

ments such as in the upper ocean and along transects with

repeat ship-based observations. B-SOSE is constrained by

satellite measurements of sea surface height (SSH) and

mean dynamic topography, thus we expect B-SOSE to

capture surface currents and geostrophic flows consistent

with other independent observations. It is important to

note that none of the hydrographic and velocity observa-

tions from the cDrake array (Chereskin et al. 2012;

Chidichimo et al. 2014; Donohue et al. 2016) are assimi-

lated in B-SOSE, and thus the B-SOSE transport provides

an independent estimate. The momentum forcing at the

ocean surface in B-SOSE is derived from hourly ERA5

atmospheric winds, which are then adjusted throughout

the assimilation to achieve consistency with the ocean

state. Please refer to Verdy and Mazloff (2017) for addi-

tional details on B-SOSE and a complete list of observa-

tional constraints used.

3. Results

a. ACC transport

The ACC transport is influenced by a large number of

properties and processes in the SO, including momentum

input at the ocean surface from the overlying winds, the

meridional gradient in density across the current, inter-

actions with bottom topography, mesoscale eddies, the

position of the subtropical and subpolar gyres (Meijers

et al. 2012), internal mixing processes, and so on. Owing

to this complexity, achieving an accurate ACC strength

has proven to be a difficult task in coupledmodels (Russell

TABLE 1. (Continued)

CMIP6 model

Ensemble

member

Ocean

component

Nominal

ocean

resolution

(lon 3 lat)

Ocean vertical

coordinate

and levels

Eddy-induced

advection

coefficient

(m2 s21) Modeling center

29 NESM3 r1i1p1f1 NEMO3.4 1.0 3 1.0 z (46) — NUIST

30 NorCPM1 r1i1p1f1 MICOM1.1 1.0 3 1.0 Hybrid z–s2 (53) V; 100–1500p NCC

31 NorESM2-LM r1i1p1f1 MICOM 1.0 3 1.0 Hybrid z–s2 (53) V; 100–1500p NCC

32 NorESM2-MM r1i1p1f1 MICOM 1.0 3 1.0 Hybrid z–s2 (53) V; 100–1500p NCC

33 SAM0-UNICON r1i1p1f1 POP2 1.0 3 1.0 z (60) V; 300–3000l Seoul National

University

34 UKESM1.0-LL r1i1p1f2 NEMO-HadGEM3-

GO6.0

1.0 3 1.0 z* (75) V; # 1000i NERC

a Personal communication (D. Bi, 2020).
bKiss et al. (2020).
c Personal communication (N. Swart, 2020).
dDanabasoglu et al. (2012, 2020).
e Personal communication (A. Voldoire, 2020).
fGolaz et al. (2019).
gAdcroft et al. (2019).
h Personal communication (J. Krasting, 2020).
iKuhlbrodt et al. (2018), and personal communication (P. Hyder, 2020) for maximum value allowed.
j Personal communication (P. Hyder, 2020).
k Personal communication (A. Volodin, 2020).
lObtained from ES-DOCS: https://search.es-doc.org/.
m Personal communication (H. Tatebe, 2020).
n Jungclaus et al. (2013) and personal communication (D. Neubauer and H. Haak, 2020).
oYukimoto et al. (2019).
p Personal communication (M. Bentsen, 2020).
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et al. 2006a; Sen Gupta et al. 2009; Meijers et al. 2012;

Beadling et al. 2019). The CMIP3 generation of models

exhibited a very wide range of transports (Fig. 1; Table 2),

with an intermodel spread (1s) of 71–77Sv. Only three of

the CMIP3 models studied collectively by Russell et al.

(2006a) and SenGupta et al. (2009) havemean values that

fall within the observational uncertainty of the Donohue

et al. (2016) cDrake array ACC estimate (Fig. 1). From

CMIP3 toCMIP5 there is a large improvement in the range

of the transports, with the intermodel spread (1s) decreas-

ing by;36Sv. This improvement inACC strength was also

noted in the analysis by Meijers et al. (2012).

The spread in the ACC transport has increased in

CMIP6 relative to CMIP5, ranging from 38Sv simulated

by INM-CM4.8 to 197Sv simulated by GISS-E2.1-H.

While there are no longer models that have an ACC

transport that is much too strong, several models exhibit

an extremely weak transport (.7s outside of the observa-

tional uncertainty; E3SM-1.0, MIROC-ES2L, CNRM-CM6.

1-HR, HadGEM3-GC31-MM, INM-CM4.8), reducing the

multimodel mean (MMM) by ;10Sv from CMIP5. Four

models exhibit a transport weaker than any found in CMIP5.

Interestingly, two of the models with an exceptionally weak

ACC transport have 0.258 horizontal resolutions (CNRM-

CM6.1-HR, HadGEM3-GC31-MM), with their 18 resolution

versions (CNRM-CM6.1, HadGEM3-GC31-LL) simulating

transports on the order of 50–80Sv stronger. Similar, but not

as extreme, behavior is found when comparing the 0.258

FIG. 1. Volume transport of the ACC through theDrake Passage (Sv) as observed from the cDrake

experiment (Donohue et al. 2016) and as simulated acrossmultiple generations of climatemodels. Gray

shading corresponds to the observational uncertainty (2s) of the ACC transport reported in Donohue

et al. (2016). The B-SOSE transport is computed from the Iteration 133 solution at 1/68 resolution over

the January 2013–December 2018 time period. The CMIP6 model transports are calculated as the

January 1986–December 2005 time-averaged net transport through the Drake Passage. The CMIP5

values are taken from Beadling et al. (2019). The CMIP6 transports are computed identically to that of

Beadling et al. (2019), over the same time period in the historical simulations. Error bars correspond to

the2s standarddeviationof annual values about themean.TheCMIP3values are taken fromTable 1of

Russell et al. (2006a) andTable 3 of SenGupta et al. (2009). Russell et al. (2006a) compute flow through

the Drake Passage from the last 20 years of each model’s piControl integration, while Sen Gupta et al.

(2009) compute flow from the last 20 years of each model’s twentieth-century control run.
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GFDL-CM4(132Sv) simulationwith thatof the0.508GFDL-

ESM4 simulation (175Sv).

Despite the range in ACC transport across the model

ensemble increasing due to several models with extremely

weak magnitudes, CMIP6 is an overall improvement

fromCMIP5, with a larger fraction ofmodels fallingwithin

observational uncertainty [within 2s of theDonohue et al.

(2016) estimate]. Of the 31 CMIP5 models studied by

Beadling et al. (2019), 10 models (32%) fell within obser-

vational uncertainty. Of the 34 models studied here, 17

(50%) have transports within uncertainty. It is important

to note the caveat, as also discussed regarding the CMIP5

models in Beadling et al. (2019), that most of the CMIP6

models analyzed herewere developedbefore theDonohue

et al. (2016) ACC estimate was known. Thus, during

modeling development, transports at lower values were

likely deemed reasonable. While we consider the Donohue

et al. (2016) estimate as our benchmark for diagnosing

themodel simulations, the margin of uncertainty may be

slightly larger in reality than used here given uncertainty

associated with the fact that these observations were

only collected from 2007–11. An independent estimate

from assimilation using B-SOSE suggests a slightly lower

ACC value of 164Sv (Table 2; Fig. 1).

Given this caveat, we consider the five models that

fall just outside of the uncertainty bounds in Fig. 1 (and

marked with an asterisk in Table 2) to be simulating

reasonable transports given that they only differ from

the models above them in Table 2 by a few Sverdrups.

These models may fall within the lower bound of the

observational range if more than one ensemble member

were included in the analysis. The GFDL-CM4 simula-

tion is an example of another caveat that complicates

diagnosing the accuracy of the ACC strength in coupled

models, in that it exhibits significant centennial-scale

variability throughout the entire historical period, on

the order of 30 Sv (Table S1 in the online supplemental

material, Fig. S1). If another ensemble member were

used, GFDL-CM4 can have an ACC value within the

Donohue et al. (2016) uncertainty range (other ensem-

ble members not shown here). The BCC-CSM2-MR

model is another example that contains significant his-

torical ACC variability and, when multiple ensemble

members are used, it can have an ACC transport that

overlaps with the Donohue et al. (2016) range.

Several models exhibit significant decadal to multi-

decadal variability in the ACC strength throughout the

entire historical period, on the order of 10–30Sv (Table S1,

Fig. S1). Such variabilitymay be associatedwith unrealistic

quasiperiodic ‘‘superpolynya events’’ in the SOwhich alter

the density structure of the SO through intense open ocean

convection. This problem is documented in the GFDL-

CM4model (Held et al. 2019), where superpolynyas in the

Ross Sea drive large centennial-scale variability in the

Southern Hemisphere climate. The lack of observational

evidence of large polynya events in the SO, with the ex-

ception of the 1974–76 (Gordon 1978; Carsey 1980) and

2016–17 polynyas in the Weddell Sea (Campbell et al.

2019), and no similar events in the Ross Sea, suggests that

these frequent simulated ‘‘superpolynya events’’ are unre-

alistic and need to be improved upon in future model de-

velopment. In addition to the extreme rarity of these events

in the real world, the modeled convection, ventilation, and

climate change that occur during these simulated polynyas

bear no resemblance to observed polynya events (Gordon

1978; de Lavergne et al. 2014; Dufour et al. 2017; Campbell

et al. 2019). In the model, when these events occur, the

formation of dense water in the subpolar SO translates into

an increasedACC transport. If the simulation contains these

events, the ACC assessment is sensitive to the 20-yr period

in the historical simulation chosen for analysis (Fig. S1).

There is evidence of improvement at individual mod-

eling centers with two examples being the IPSL and

NASA-GISS models. In CMIP3 and CMIP5 the IPSL

models had some of the weakest ACC transports among

all models, with transports on the order of 34Sv inCMIP3

and 94–108Sv inCMIP5. In CMIP6, the IPSL-CM6A-LR

transport has increased dramatically to 1476 6.7Sv (2s),

falling just within 2s of the Donohue et al. (2016) esti-

mate. The GISS-R models were biased much too strong

in previous generations (266Sv in CMIP3; 246Sv in

CMIP5). TheGISS-E2-G andGISS-E2-G-CC (E2-G but

with interactive carbon cycle) models, which are an up-

dated and improved version of the GISS-E2-R model

used in CMIP5, now simulate ACC transports of 148 and

146Sv, respectively. The improvement of the ACC trans-

port in the IPSL and GISS-E2-R (now -G) families of

models appears to be directly due to improvement in all of

themetrics summarized inTable 2 of the present study and

Table 2 of Beadling et al. (2019).

In the real ocean, the ACC flow through the DP is

composed of strong and narrow eastward flowing jets that

extend from the surface to the bottom of the ocean.

Through the passage, strong bottom eastward velocities

that average 1.3 cms21 provide an additional 45.66 8.9Sv

barotropic flow to the 127 6 5.9Sv baroclinic transport

(Chidichimo et al. 2014; Donohue et al. 2016). The CMIP6

models and B-SOSE have very different zonal velocity

structures through the DP (Fig. 2; see also Fig. S2). The

eddy-permitting 1/68 B-SOSE and the 1/48 GFDL-CM4

simulations yield very similar structures, with finely spaced

jets that extend from the surface to the ocean bottom at

most latitudes and increase in strength northward within

the passage. These jets correspond to the dynamical ACC

fronts characteristic of the observed flow within the DP

(Lenn et al. 2007; Firing et al. 2011), with the majority of
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the eastward flow concentrated in the Subantarctic Front

(SAF) along the northern boundary of the DP and the

Polar Front (PF) just to its south.

Interestingly, the GFDL-CM4, GFDL-ESM4, CNRM-

CM6.1-HR, HadGEM3-GC31-MM, and INM-CM5.0

models, which all have resolutions 1/28 or finer, exhibit

counterflowing westward velocities northward of 568S

at depth. This may be the result of recirculation in this

region that is resolved as horizontal resolution increases.

None of the coarser-resolution models have significant

westward flows at depth (Fig. 2; see also Fig. S2). There is

some observational evidence that suggests some mean

westward flow through theDP exists [evidencedwhere the

transport stops accumulating or dips in Fig. 10 of Firing

et al. (2011) and Fig. 3 ofDonohue et al. (2016)]. However,

these observed westward transports are relatively weak

and not close to the magnitude of those found in these

models. The measurements used to estimate the transport

through the DP from the cDrake array in Donohue et al.

(2016) and from shipboard acoustic Doppler current pro-

filer (ADCP) velocity data by Firing et al. (2011) are not

collected along a single meridional cross section (as the

CMIP models are analyzed at 698W) but generally span

the longitudes of ;668–608W. To assess the accuracy of

these large westward velocities found in the higher-

resolution models, the models need to be sampled in a

fashion that is more aligned with the manner in which the

measurements were collected.

In most models, the majority of the ACC flow is

concentrated in a single broad jet on the northern side of

the passage, rather than being distributed among several

finely resolved jets as observed in the real ocean. Many

of the CMIP6 models exhibit shallow flow, with strong

zonal jets that do not extend to the seafloor. The di-

versity in vertical extent of the flow may have important

implications for the varied ACC strength found across

models given the influence that interactions of the

mean flow with bottom topography have on the ACC

structure and strength through topographic steering, and

dynamics such as momentum dissipation via bottom fric-

tion, etc. The degree to which topography and surface

forcing impacts the mean flow likely differs markedly

across models. For example, models with shallow jets are

less likely to be influenced by interactions with bottom

topography; that is, less bottom drag will be exerted on the

large-scale flow than in models that have strong jets that

extend to the sea floor. It appears thatmany of the errors in

the ACC structure are related to the model’s horizontal

resolution since only the highest-resolution models begin

to capture the observed jets and vertical extent.

The ACC strength is influenced by the competition

between wind-driven surface divergence which acts to

steepen isopycnals across the DP channel and baroclinic
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FIG. 2. Zonal velocity (m s21) through the Drake Passage (;698W). Red values indicate eastward velocities, and blue values indicate

westward velocities. Velocities are contoured from 20.20 to 0.20m s21 at intervals of 0.05m s21. B-SOSE velocity is computed from the

Iteration 133 solution at 1/68 resolution over the January 2013–December 2018 time period. All CMIP6 model values are averaged from

January 1986 to December 2005. Additional models are shown in the online supplemental material.
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eddies which act to reduce the isopycnal slopes. The pa-

rameterized mixing schemes and coefficients employed in

model simulations exerts a strong control on the resulting

ACC strength and its vertical structure (Gent et al. 2001;

Ragen et al. 2020). The ;18 resolution CMIP6 models all

employ various subgrid-scalemixing schemeswith different

coefficients for parameterized eddy fluxes (Table 1), likely

explaining a large portion of the diversity found across the

CMIP6 models, as was the case in previous model gener-

ations (Kuhlbrodt et al. 2012). With the large diversity in

sophisticated mixing schemes and magnitudes of eddy-

induced advection coefficients employed across these

models (Table 1), we do not attempt to quantify the role of

subgrid-scale mixing on the model diversity in these sim-

ulations. We note that in the 0.258 resolution models

(GFDL-CM4, HadGEM3-GC31-MM, and CNRM-CM6.1-

HR), there are no parameterizations of mesoscale eddy

transports and mesoscale eddies are explicitly, yet in-

completely resolved at high latitudes (Table 1). We refer

readers to Adcroft et al. (2019) for a detailed discussion

on the effect of representing versus parameterizing me-

soscale eddies on theACC structure and other features of

the SO circulation in the GFDL-CM4 (explicitly resolves

mesoscale eddies) and GFDL-ESM4 (parameterized

mesoscale eddy transport) models.

b. Surface momentum forcing of the Southern Ocean

and near-surface properties

1) SURFACE MOMENTUM FORCING FROM WIND

STRESS

The surface momentum forcing from the overlying wind

stress provides a frictional force at the ocean surface in the

SO, ‘‘pushing’’ the ACC, while also ‘‘pulling’’ dense water

from the deep ocean to the surface through strong wind-

driven surface divergence determined by the WSC magni-

tude. Equatorward of the westerly wind stress maximum

t
(x)
max, buoyant surface waters are pushed northward in the

Ekman layer and subsequently dowelled into the interior

ocean as a result of strong positive WSC. These waters are

subducted northward into the Southern Hemisphere sub-

tropical gyres as Subantarctic Mode Water (SAMW) and

Antarctic IntermediateWater (AAIW) (Hanawa and Talley

2001). Poleward of t(x)max, the surface divergence results in

steeply sloped isopycnals that drive dense, deep water from

the interior ocean poleward and toward the sea surface

aroundAntarctica via Ekman upwelling. These dynamics set

up a strongmeridional density gradient across the latitudes of

theACC, providing the conditions to drive a strong eastward

geostrophic flow.

Previous generations of models have struggled with

achieving accurate wind stress forcing at the ocean surface,

with many models typically having relatively weak and

equatorward biased t
(x)
max values (Russell et al. 2006a; Sen

Gupta et al. 2009;Meijers et al. 2012; Bracegirdle et al. 2013;

Flato et al. 2013; Russell et al. 2018; Beadling et al. 2019)

(Table 2, Figs. 3c,e). In CMIP3, several models had t
(x)
max

values on the order of 0.10–0.11Nm22 (Russell et al.

2006a), relative to the ERA5 value of 0.1788Nm22 used

here as our observational benchmark. The CMIP5 genera-

tion showed improvement with a minimum t
(x)
max value on

the order of 0.14Nm22 and most models simulating values

within observational uncertainty (Beadling et al. 2019). This

improvement is noted in the shift fromaCMIP3MMM t
(x)
max

value from 0.1591 to 0.1829Nm22 in CMIP5 (Table 2),

fewermodels outside the lowerboundof theERA5 range in

Fig. 3c, and a better agreement in the pattern of the zonally

averaged wind stress over the SO [cf. Fig. 3a herein to Fig. 2

of Beadling et al. (2019)]. The CMIP6 ensemble tends to

exhibit stronger t
(x)
max than CMIP5, yielding a slightly in-

creased MMM value (Table 2). Considering the mean and

associated standard deviation (2s) over the 20-yr period,

only two models have t
(x)
max values that do not overlap with

the ERA5 range. The BCC-ESM1 and MIROC-ES2L

models exhibit too strong and too weak t
(x)
max values, re-

spectively. The BCC-CSM-MR and NESM3 models have

strong wind stress relative to ERA5, with the lower bound

of their standard deviations (2s) barely overlapping with

that of ERA5.

The latitudinal location of t(x)max (;528S) is anothermetric

that has been consistently analyzed across model genera-

tions and has improved. Yet, a systematic equatorward bias

has persisted. The CMIP3 ensembles studied by Russell

et al. (2006a) and Sen Gupta et al. (2009) had models with

t
(x)
max locations ranging from ;428 to 548S (Fig. 3e), with

63% (10 out of 16) to 78% (14 out of 18) of the models

having their mean t
(x)
max located north of 508S. The CMIP5

models showed a clear improvement, with only 36% (11

out of 31) of models studied exhibiting locations north of

508S and a narrowing intermodel spread (Fig. 3e). The

CMIP6 models show even more improvement, with only 5

out of 34 (15%) models having their t(x)max north of 508S.

MIROC-ES2L, with its t(x)max at 46.118S barely overlaps with

the ERA5mean and standard deviation (2s) and is a clear

outlier among the other CMIP6 models with respect to its

zonal wind structure across the SO (Figs. 3a,e). TheMMMs

across generations, summarized in Table 2, clearly indicate

an improvement in both the mean location of t(x)max and

in the intermodel spread, going from 47.578 6 2.808 to

51.298 6 1.688S from CMIP3 to CMIP6.

The poleward shift in the location of t(x)max fromCMIP5

to CMIP6 has resulted in an increase in the total wind

stress forcing (both from t
(x) and WSC) over the open

DP latitudes (Table 2). The structure of the zonally in-

tegratedWSC over the SO has improved fromCMIP5 to

CMIP6 [cf. Fig. 3b herein to Fig. 2 of Beadling et al.
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FIG. 3. (a) Zonally averaged zonal wind stress (Nm22) and (b) zonally integrated annual mean wind stress curl (Nm22) from the ERA5

global atmospheric reanalysis product time-averaged from January 1986 to December 2005, from January 2013 to December 2018 for the

Iteration 133 B-SOSE solution, and from January 1986 to December 2005 for each CMIP6 model. The Drake Passage latitudinal band is

the dark gray shading in (a) and (b). The light gray shading about the ERA5 mean corresponds to the interannual variability (2s) of the

zonally averaged zonal wind stress or zonally integrated wind stress curl at each latitude. Also shown is the performance of models from
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(2019)]. The CMIP6 models are generally getting an

accurate magnitude of Ekman suction/pumping over

approximately the right locations, with the exception of

MIROC-ES2L. The region south of 558S yields the

largest disagreement in the magnitude of the zonally

integrated WSC among models, likely linked to di-

verging representation of the polar easterlies along the

Antarctic margin. Noting this disagreement, we con-

sidered two additional metrics in this analysis to char-

acterize the WSC field, the magnitude and location of

the minimum WSC in the SO, corresponding to the

magnitude and location of the maximum Ekman suc-

tion. Nine CMIP6 models yield a minimum zonally in-

tegrated WSC that is too weak, and five models have

their latitudinal location too far equatorward relative to

ERA5 (Table 2). Given that these WSCmetrics are tied

to the magnitude and location of where dense, carbon-

rich water from the deep ocean is being pumped to the

sea surface, the divergence in performance here may be

linked to divergence in the simulated SO carbon budget

in the CMIP6 ensemble. This is a topic of future study.

Given the fact that the magnitude and location of the

wind stress play an important role in setting the isopycnal

slopes across the ACC as discussed at the start of this

section, onemay expect t(x)max to be significantly correlated

with the strength of the ACC. However, a statistically

significant relationship between t
(x)
max andACC strength is

not found when considering the entiremodel ensemble in

CMIP3 or CMIP5 models (Kuhlbrodt et al. 2012; Meijers

et al. 2012; Beadling et al. 2019). A statistically insignifi-

cant relationship is also found between the latitudinal

location of t(x)max and ACC strength in CMIP5 (Beadling

et al. 2019). This lack of strong correlation between these

wind metrics and the ACC strength suggest that, while

the momentum forcing by the Southern Hemisphere

westerly winds is undoubtably amajor driver of theACC,

other factors are exerting a strong influence on ACC

strength. The buoyancy forcing across the current also

influences the meridional tilt of the isopycnals in this re-

gion. Thus, the temperature and salinity properties from

the surface to the interior ocean plays a major role in

setting the ACC strength. In CMIP5, several models sim-

ulated exceptionally strong (weak) ACC flow with weak

(strong) t(x)max. In some of these cases, errors in the buoy-

ancy structure of the SO compensated for the wind stress

forcing, allowing steep isopycnal slopes to bemaintained in

the absence of strong wind forcing or vice versa. Examples

fromCMIP5 included theGISS-E2-R-CC andHadGEM3

models with ACC transports in excess of 240Sv stemming

from excessive density gradients driven by large errors in

the SO temperature and salinity structure [see detailed

discussion in Beadling et al. (2019)].

The CMIP6 ensemble exhibits a stronger relationship

(yet still not statistically significant; p5 0.15) relative to

previous model generations between the ACC and t
(x)
max

(Fig. 4a). No statistically significant relationships are

found between ACC strength and the other wind stress

metrics in Table 2 (not shown). TheMIROC6model has

one of the weakest t(x)max magnitudes with a position that

is slightly equatorward shifted relative to ERA5, yet one

of the strongest ACCs out of the ensemble. The E3SM-

1.0, HadGEM-GC31-MM, INM-CM4.8, and CNRM-

CM6.1-HR models all have reasonable representation

of both the position and strength of t(x)max, yet yield ex-

tremely weak ACC transports.

In addition to the buoyancy structure, explicitly re-

solved (in the case of HadGEM3-GC31-MM, GFDL-

CM4, and CNRM-CM6.1-HR) or parameterized mixing

associated with mesoscale eddies also plays a role in

explaining the lack of a linear correlation between wind

stress forcing and the ACC strength in the CMIP6models.

Stronger wind forcing acts to enhance the meridional iso-

pycnal tilt across the ACC. However, in a regime of eddy

saturation (Munday et al. 2013), this isopycnal tilt can be

counterbalanced by the production of eddies, which then

act to minimize the meridional density gradient. Given

that many of the CMIP3 models employed fixed eddy-

induced advection coefficients, Kuhlbrodt et al. (2012)

showed that the sensitivity of the ACC transport to the

magnitude of the eddy-induced advection coefficient was

larger than to the zonal wind stress maximum in CMIP3

models. As discussed in the previous section, the im-

plementation of parameterized subgrid-scale mixing as-

sociated with eddy fluxes differs widely across the CMIP6

models (Table 1), likely contributing to the lack of a strong

relationship between the wind stressmetrics and theACC.

2) NEAR-SURFACE BIASES

The near-surface (0–100m) thermal structure of the

SO is characterized by a large meridional gradient in

 

CMIP3 through CMIP6 in their representation of (c) the maximum zonally averaged zonal wind stress, (d) the integrated wind stress curl

over the Drake Passage latitudes, and (e) position of the peak wind stress, relative to ERA5. The CMIP3 values are those reported by

Russell et al. (2006a) and Sen Gupta et al. (2009), and the CMIP5 values are reported from Beadling et al. (2019). The CMIP6 transports

are computed identically to that of Beadling et al. (2019), over the same time period in the historical simulations. Gray shading in (c) and

(d) corresponds to the interannual variability (2s) about the ERA5 mean over the 20-yr time period.
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temperature ranging from less than 218C near the

Antarctic coast to ;208C in the subtropical gyres at 308S

(Figs. 5a and 6a ). Achieving accuracy in representing

the near-surface temperature structure in the SO, partic-

ularly south of 408S, has proven to be a significant challenge

for the climate modeling community, with significant warm

biases persisting across model generations. Generally,

above 200m, the MMM CMIP3 and CMIP5 tempera-

tures were biased slightly cold in the global ocean with

the exception of the SO, where the upper ocean has been

characterized by consistent excessive warm biases (Flato

et al. 2013). When considering the zonal-mean upper

ocean temperature distribution, CMIP3 and CMIP5

models generally represented the structure well (Russell

et al. 2006a; Sen Gupta et al. 2009; Beadling et al. 2019)

with biases generally within ;18C of that observed at a

given latitude. However as noted by Sen Gupta et al.

(2009), zonal-averaging obscures regional biases in upper

ocean temperature that in some cases exceed 58C. In

CMIP3, major biases in the upper ocean were found

south of ;458S in the region of the ACC and along the

eastern boundaries of the basins, and were attributed to

poor representation of eastern boundary currents (Sen

Gupta et al. 2009). Across the CMIP5 ensemble, exces-

sive surface temperatures translated into consistent warm

biases found in ventilated layers of the SO including

surface subtropical, mode, and intermediate waters (Sallée

et al. 2013b).

Excessive SO surface temperatures in CMIP5 origi-

nated to some extent from excessive downward short-

wave radiation related to poor representation of clouds

and cloud properties, with a strong correlation found

between shortwave cloud forcing and the modeled

spread in SO surface air temperatures (Ceppi et al. 2012;

Schneider and Reusch 2016). Work by Hyder et al.

(2018) on the CMIP5 ensemble showed that these biases

in cloud-related shortwave radiation were mostly due to

errors in the stand-alone atmospheric model compo-

nents used. Additionally, inaccuracies in the represen-

tation of the large-scale ocean circulation in the SO

including the location of the ACC, strength and location

of subtropical gyre boundary currents, and wind-driven

upwelling and associatedmixing of interior oceanwaters

with the sea surface, as well as eddy-induced transports

and their parameterizations, all play a role in explaining

regional temperature biases. Propagation of deep ocean

warming to the sea surface related to climate model drift

present in some model simulations also contributes to

the near-surface temperature biases. An example of this

from the CMIP3 and CMIP5 ensemble was the GFDL

CM3 simulation with excessively warm biases in the

abyssal ocean that impacted the SO surface climate in

the historical simulations (Griffies et al. 2011).

Noting that large local errors can be obscured by only

assessing models according to their zonal-mean prop-

erties, we present the upper 100-m temperature and

salinity biases (Fig. 6) for the entire SO. For comparison

to previous studies (Russell et al. 2006a; Sen Gupta et al.

2009; Beadling et al. 2019), we also provide the zonally

averaged structure (Fig. 5). With the exception of four

models (MIROC6, MIROC-ES2L, GISS-E2.1-H, and

EC-Earth3-Veg), the CMIP6 zonal-mean temperature

structure shows improved agreement across all latitudes

relative to the spread found acrossmodels in CMIP3 and

CMIP5 [Fig. 4c in Beadling et al. (2019) and Fig. 4a in

Russell et al. (2006a)]. Model agreement tightens up

north of 508S. The MIROC6, MIROC-ES2L, GISS-

E2.1-H, INM-CM4.8, and EC-Earth3-Veg models stand

out in Fig. 6a and Fig. S3 with excessive warm biases that

dominate the entire circumpolar SO south of 408S.Many

other models exhibit regions with biases in excess of 38C

that are mostly concentrated within or just north of the

ACC region, with the warmest biases appearing mostly

in the South Atlantic and Indian basins. All CMIP6

models tend to exhibit some degree of temperature bias

along the southern margin of the subtropical gyres or

along the boundary current regions such as the Brazil–

Malvinas confluence zone and Agulhas retroflection.

Regional temperature biases along the ACCmargin and

in the boundary current regions are likely related to

discrepancies in model representation of the pathways

of these large-scale currents as was the case in CMIP3

(Sen Gupta et al. 2009). The B-SOSE and GFDL-CM4

simulations are very similar, with the exception of more

intense cold biases in the subtropical regions in GFDL

CM4. These patterns and magnitudes of biases in near-

surface temperatures have implications for the accurate

representation of surface heat fluxes, SO ventilation of

heat and carbon, water mass characteristics, and the

ability to accurately represent the Antarctic SIE.

The near-surface SO salinity structure is characterized

by relatively fresh water in the latitude band of the ACC

where buoyancy is gained at the ocean surface via pre-

cipitation and sea ice meltwater is entrained into the

Ekman drift (Figs. 5b and 6b). The upper ocean is

slightly more saline south of theACC, particularly in the

Weddell and Ross Seas and along the Antarctic coast.

North of the ACC, high-salinity subtropical waters

dominate the upper ocean. In CMIP3 and CMIP5,

models showed very wide discrepancies in the repre-

sentation of upper ocean salinity, even in the zonal mean

(Russell et al. 2006a; Sen Gupta et al. 2009; Beadling

et al. 2019). On average, both the CMIP3 and CMIP5

ensembles yielded fresh biases throughout the entire

SO (Sen Gupta et al. 2009; Beadling et al. 2019), with

the largest fresh biases in the upper ocean north of
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508S. CMIP5 models generally agreed with one an-

other (but with a significant fresh bias) north of;508S

where precipitation minus evaporation dominates the

freshwater budget. Much larger intermodel spread

was found in the zonal-mean upper ocean salinity in

the seasonal sea ice zone (Beadling et al. 2019). In

CMIP5, the fresh biases in combination with the warm

biases discussed above resulted in water masses that

FIG. 4. ACC transport vs (a) zonally averaged maximum westerly wind stress and ACC transport vs full-depth-

averaged, zonally averaged (b) meridional potential density, (c) potential temperature, and (d) salinity difference

between 658 and 458S. (e) Full-depth-averaged meridional potential density difference between 658 and 458S vs

minimumAntarctic sea ice extent (SIE). Mean observed and modeled values correspond to the values reported in

Tables 2 and 3. The linear regression considering only the CMIP6 models and the corresponding correlation co-

efficient and p value (n 2 2 degrees of freedom) are displayed on each panel.
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were too light in the ventilated layers of the SO (Sallée

et al. 2013b).

In CMIP6, the near-surface zonal-mean salinity structure

(Fig. 5b) shows improvement in the intermodel spread

across all latitudes relative to previous generations [Fig. 4d

inBeadling et al. (2019) andFig. 4b inRussell et al. (2006a)].

However, the systematic bias of models generally being too

fresh in the upper ocean persists into CMIP6.Manymodels

exhibit intense fresh biases exceeding 0.50, concentrated

mostly north of 458S in the subtropical zones (Fig. 6b; see

also Fig S4), however several models have fresh biases of

these magnitudes along the Antarctic coast. Several models

exhibit large saline biases along the Antarctic margin or

within the ACC region. The circumpolar nature of many of

these saline biases suggest they may be linked to the up-

welling of saline North Atlantic Deep Water (NADW)

within the ACC. These near-surface salinity biases com-

bined with those of near-surface temperature (Fig. 6)

suggest that the water mass characteristics in the ventilated

layers of the SOmay differ widely amongmodels, similar to

CMIP5 (Sallée et al. 2013b). Given that the formation and

properties of SO water masses are intimately tied to global

ocean heat and carbon uptake, the substantial biases in the

near-surface properties in CMIP6 are potentially worrying

from a global climate modeling perspective.

c. Interior ocean properties and gradients across the

ACC region

The strength and structure of the ACC is largely de-

termined by the meridional density gradient according

to thermal wind balance. Thus, the ACC simulation is

highly sensitive to biases in the interior ocean properties

from the surface to the abyssal ocean. In coupledmodels

the ACC generally spans the latitudes ;658–458S and

the meridional difference in properties across these

latitudes has been used as a metric to assess model

FIG. 5. The zonally averaged and time-averaged near-surface (a) potential temperature (8C;

0–100m average) and (b) salinity (0–100-m average). The CMIP6 model output are time-

averaged from January 1986 toDecember 2005. The January 2013–December 2018 time period

is averaged for the B-SOSE Iteration 133 solution. TheWOA18 values are computed from the

average of the 1985–94 and 1995–2004 decadal climatologies.
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performance (Russell et al. 2006a; Farneti et al. 2015;

Beadling et al. 2019). We note that this is a crude sim-

plification given that the meridional boundaries of the

ACC are highly dependent on longitude and differ

across models (Sen Gupta et al. 2009; Meijers et al.

2012). While not a precise computation according to

thermal wind, where meridional gradients in density

are vertically integrated to solve for baroclinic ve-

locities, the zonally averaged and depth-averaged

density contrast from 658 to 458S used as a model

metric serves as a proxy for the intensity of the iso-

pycnal slopes across the current, which generally re-

flect the strength of the ACC.

Russell et al. (2006a) considered the zonally averaged

and depth-averaged (0–1500m; above the sill depth of the

DP) difference in meridional potential density (Dr) from

658 to 458S for the 18 CMIP3 models studied. Relative to

the WOA 2001 value of 0.58kgm23 (this value remains

the same when calculated from the WOA18 product)

used as the observational benchmark, a range from 0.18

to 0.97kgm23 was found across models. Considering a

window of error of 25% on either side of the WOA

2001 value, 39% of the models simulated a Dr within

the observational range, 50% had a weak Dr, and 11%

had excessively strong Dr across the ACC. The

UKMO-HadCM3 model, which yielded the most ex-

cessive Dr at 0.97 kgm23, did so as the result of a very

large meridional difference in salinity (DS). The GISS-

E2 model was an example of a model that yielded an

excessive Dr due to a large meridional difference in

temperature (DT) and a weak and opposite sign DS.

Beadling et al. (2019) considered the zonally averaged

and full-depth averaged Dr (referenced to the surface)

across 658–458S in 31 CMIP5 models, yielding a

range from 0.13 kgm23 (BNU-ESM) to 0.47 kgm23

(HadCM3) relative to the 0.25 kgm23 value from the

WOA13 product. Considering this metric in CMIP5,

55% of the models fell within the WOA13 25% error

margin, 23% were too weak, and 23% were too strong.

Similar to CMIP3, the IPSL models produced some of

the weakest Dr, while the HadCM3 and GISS models

produced some of the strongest, with these biases

FIG. 6. (a) Upper-ocean potential temperature (8C) (0–100-m average) in the Southern Ocean from theWOA18 climatological mean (large

panel at top left; computed from the average of the 1985–94 and 1995–2004 decadal climatologies). The difference between the simulated and

observed temperature (8C) for the B-SOSE Iteration 133 solution (time-averaged from January 2013 to December 2018) and for each CMIP6

model (time averaged from January 1986 to December 2005). Positive (from yellow to red) values indicate the model is warmer than observed.

Negative (blue) values indicate themodel is colder than observed. Additional models are shown in the supplemental material. (b) As in (a), but

for salinity in the upper ocean (0–100-m average). Positive (from yellow to red) values indicate themodel ismore saline than observed. Negative

(blue) values indicate the model is fresher than observed. Additional models are shown in the supplemental material.
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driving errors in ACC strength, despite accuracy in the

wind stress forcing at the ocean surface (Beadling

et al. 2019).

Following Beadling et al. (2019), the full-depth averaged,

zonally averaged Dr (referenced to the surface), DT, and DS

across 658–458S are computed for the CMIP6 models. The

ensemble exhibits a slightly smaller spread in simulated Dr

relative toCMIP5, ranging from0.13kgm23 (MIROC-ES2L)

to0.39kgm23 (GISS-E2.1-H,ACCESS-CM2).Consideringa

25% error margin relative to the WOA18 Dr, 71% of the

models simulate a Dr within error, 23% are too strong, and

6% are too weak (Table 2). Comparing the percentage of

models that simulate a Dr within the 25% WOA18 error

margin, there is a clear improvement fromCMIP5 toCMIP6,

with models converging toward theWOA18 value.

Similar to previous model generations, the strength

of the ACC generally scales with the magnitude of

Dr across 658–458S (Fig. 4b). Upon breaking down the

density difference into the contributing differences in DT

and DS, a wider spread in model performance is found

(Table 2; Figs. 4c,d). Of themodels that exhibit an excessive

Dr, five are the result of having a much too large DS

(GISS-E2.1-H, INM-CM5.0, SAM0-UNICON, CESM2,

CESM2-WACCM), two are the result of too large DT

(ACCESS-CM2, ACCESS-ESM1.5), and one exhibits

large biases in both DS and DT (CanESM5).

Three of the five models that fall into the category of

yielding an excessive Dr due to large biases in DS share

the Parallel Ocean Program version 2 (POP2) ocean

model component (Table 1) coupled with a different at-

mospheric model (CESM2:CAM6; CESM2-WACCM:

WACCM6; SAM0-UNICON:CAM5.3 with UNICON).

The models with the POP2 ocean all appear to have ex-

cessively saline water seemingly originating in the deep

Atlantic that penetrates the upper ocean south of the

ACC region, and a thick fresh bias at the surface layer,

penetrating through the upper few thousandmeters in the

subtropical regions in all basins (Fig. 7b). The INM-

CM5.0 model with excessive Dr due to large biases in DS

shows a very similar pattern to the POP2 biases described

above, but with more pronounced saline biases in the

deep ocean and in the upper ocean south of the ACC

(Fig. 7b). TheGISS-E2.1-Hmodel appears to only have a

too strong DS due to thick fresh biases throughout the

water column north of;458S (Fig. 7b). The twoACCESS

models that fall into the category of excessive Dr due to

large biases in DT, which share the MOM5 ocean com-

ponent, yield large cold biases in the upper ocean south of

theACC and thick layers of warm biases in the upper few

thousand meters of the ocean in the subtropical regions

(Fig. 7a; see also Fig. S5). Similar to the POP2models, the

ACCESS models appear to have biases that originate in

the region where NADW enters the SO.

Several models simulate aDS in the opposite direction

from WOA18, with fresh biases in the water column on

the southern edge of the ACC often accompanied by

saline biases in the water column on the northern edge,

concentrated in the upper 1500m in the subtropical gyre

regions or NADW regions (Fig. 7b). In many cases,

biases inDT andDS compensate for one another yielding

an accurate Dr. Many of the model biases in the tem-

perature and salinity structure of the SO appear to be

concentrated in the recently ventilated layers or in the

deep Atlantic, suggesting most stem from inaccuracies in

the surface climate (reflected in the biases in Fig. 6,

Fig. S3, and Fig. S4) or inaccuracies in the simulation of

NADW.An interesting relationship found in this analysis

is a strong correlation between Dr and the minimum

Antarctic SIE (Fig. 4e), suggesting that the representa-

tion of the Antarctic SIE is important for achieving an

accurate SOdensity structure likely through its influence on

upper ocean salinity and water mass transformation pro-

cesses. However, the mechanisms behind this deserve a

detailed follow-up study.

d. Antarctic sea ice extent

Antarctic sea ice exerts a strong influence on the SO

through its impacts on air–sea heat exchange, local

surface albedo, and the upper ocean freshwater budget.

Recent work using numerical models and observations

have highlighted that freshwater fluxes associated with

buoyancy loss during sea ice formation and freshwater

gain in the upper ocean from sea ice melt are dominant

components in the transformation of water masses in

the SO (Abernathey et al. 2016; Pellichero et al. 2018).

Wind-driven sea ice export and subsequent delivery

of freshwater have played a role in determining the

observed mean salinity distribution in the upper SO

(Haumann et al. 2016; Cerove�cki et al. 2019). The rep-

resentation ofAntarctic SIE inmodels is complicated by

the fact that sea ice is highly sensitive to both atmo-

spheric and ocean forcing. Errors in the representation

of Antarctic SIE can result in or be the result of errors in

biases in SO temperature and salinity structure, patterns

of surface wind stress forcing, water mass properties and

location of deep ocean upwelling, and geostrophic ocean

circulation such as the strength and pathway of the

ACC. Furthermore, the representation of Antarctic sea

ice in historical simulations of coupled models has been

shown to be linked to projected changes in the Southern

Hemisphere westerly jet, where models with larger

Antarctic sea ice area in their historical simulations ex-

hibit more sea ice retreat and less strengthening of the

jet under increased radiative forcing throughout the twenty-

first century (Flato 2004; Bracegirdle et al. 2015; Bracegirdle

et al. 2018). Biases in Antarctic sea ice representation can
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translate into errors in air–sea gas exchange and

simulated heat and carbon storage through its impact

on water mass transformation and through its complex

coupling between surface air temperature, net precip-

itation, and the strength of the Southern Hemisphere

westerly jet.

Accurate representation of mean-state Antarctic sea ice

extent, area, and distribution has been an existing challenge

in the climate modeling community, with Antarctic SIE

generally poorly represented (Parkinson et al. 2006; Flato

et al. 2013; Shu et al. 2015). Across generations, improve-

ment in Antarctic SIE has been marginal relative to Arctic

(Mahlstein et al. 2013). CMIP3 and CMIP5 models have

shown errors in representing the overall Antarctic SIE and

regional distributions, the seasonal cycle, and observed

trends (Parkinson et al. 2006; Connolley and Bracegirdle

2007; Sen Gupta et al. 2009; Turner et al. 2013; Flato et al.

2013; Mahlstein et al. 2013; Shu et al. 2015; Ivanova et al.

2016; Roach et al. 2018).When the ensemble average of SIE

is used as a metric, it appears that models perform well and

that significant improvements have beenmade fromCMIP3

to CMIP5 (SenGupta et al. 2009; Flato et al. 2013; Shu et al.

2015). However, this averaging is severely misleading; large

biases are seen among individual models. In many cases,

even when the magnitude of SIE is numerically well repre-

sented, the spatial patterns are often completely unrealistic

(Connolley and Bracegirdle 2007). Using an ensemble

average of SIE as a metric is also misleading due to the

differing degrees of strong model internal variability in

this region across models (Mahlstein et al. 2013; Deser

et al. 2010).

It is difficult to make a direct ‘‘cross-generational’’ per-

formance conclusion of the representation of Antarctic SIE

due to differing choices in sea ice metrics used in previous

analysis on the CMIP3 and CMIP5 ensemble (sea ice area,

thickness, volume, and differing representative time pe-

riods: annual SIE, maximum or minimum SIE, September

or February values, or summer/winter seasonal averages).

FIG. 7. (a) Potential temperature (8C) in the Southern Ocean from theWOA18 climatological mean (large panel at top left; computed from the

average of the 1985–94 and 1995–2004 decadal climatologies) in the Atlantic (308W), Indian (908E), and Pacific Ocean (1508W) and the difference

between the simulated and observed temperature for theB-SOSE Iteration 133 solution (time averaged from January 2013 toDecember 2018), and

for eachCMIP6model (time-averaged fromJanuary 1986 toDecember 2005). Positive (fromyellow to red) values indicate themodel iswarmer than

observed.Negative (blue) values indicate themodel is colder thanobserved.Additionalmodels are shown in the supplementalmaterial. (b)As in (a),

but for salinity in the Southern Ocean. Positive (from yellow to red) values indicate the model is more saline than observed. Negative (blue) values

indicate the model is fresher than observed. Additional models are shown in the supplemental material.
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The analysis by Mahlstein et al. (2013) concludes that

‘‘the representations of Antarctic sea ice in CMIP5 models

have not improved compared to CMIP3 and show an un-

realistic spread in the mean state that may influence future

sea ice behavior’’ (p. 5105).However, the IPCCAR5 report

notes that ‘‘the CMIP5 multi-model ensemble exhibits im-

provements over CMIP3 in simulation of sea ice extent in

both hemispheres’’ (Flato et al. 2013, p. 788).

In our analysis of theAntarctic SIE in CMIP6models, we

perform the same computations across the same metrics as

in the CMIP5 analysis by Beadling et al. (2019). Similar

to previous model generations, the CMIP6 models have

an accurate seasonal cycle with a minimum occurring in

February and a maximum in September (Table 3; Fig. 8a).

The CNRM-CM6.1-HR andCNRM-CM6.1models are the

onlymodels that simulate amaximumSIE inOctober rather

than September. The annual SIE simulated across models

ranges from 1.70 millionkm2 (MIROC-ES2L) to 13.29 mil-

lionkm2 (NorCPM1). Considering the observed and mod-

eled annualmeanand standard deviation (2s) over the 20-yr

period, one model (NorCPM1) simulates a too great SIE

while 25models simulate a too small annual SIE.Relative to

CMIP5, the CMIP6 ensemble has fewermodels with annual

Antarctic SIE values that are excessive relative to observed,

evidenced by fewer models falling outside of the gray

shading on the right-hand side of Fig. 8b. However, fewer

CMIP6 models fall within the observational range than

CMIP5, and the overwhelming majority of the models are

still simulating much too limited annual SIE.

There are some clear outliers among the models,

including MIROC6, MIROC-ES2L, EC-Earth3-Veg, MPI-

ESM-1.2-HAM, MPI-ESM1.2-LR, HadGEM3-GC31-

MM, and INM-CM4.8, that simulate extremely low

maximum SIE values (Table 3; Fig. 8a). The MIROC-

ES2L and MIROC6 models have lower annual SIE

values than any CMIP5 model (Fig. 8b) skewing the

CMIP6 MMM toward lower values. Models with excep-

tionally low annual SIE values tend to have very large

upper and interior ocean temperature biases (.38C;

Figs. 6a and 7a; see also Figs. S3 and S5), likely explaining

the lack of seasonal sea ice.

The magnitude of the standard deviation (2s) of the an-

nualmeans over the 20-yr period differ widely acrossmodels

and in most cases are often much larger than observed

(Fig. 8b), suggesting that the internal variability differs

markedly across models and is different from that observed.

For example, compare the large variability in GISS-E2.1H,

U.K.-ESM1.0-LL, HadGEM3-GC31-LL, IPSL-CM6A-LR,

and BCC-ESM1 to that of NorESM2-LM, MIROC-ES2L,

and MIROC6. This brings up the question of the represen-

tativeness of the time period chosen when making assess-

ments of a model’s performance across Antarctic sea ice

metrics since there seems to be a significant contribution of

the model’s internal variability to the performance, as was

the case in previous generations (Mahlstein et al. 2013;Deser

et al. 2010). Additionally, the presence of any large open-

ocean polynyas (see discussion in section 3a) in a model’s

simulation would significantly impact the overall sea ice

representation. The CMIP5 and CMIP6 intermodel spread

for all SIE metrics in Table 3 is much larger than the ob-

served interannual variability over this time period. Overall,

it appears that the representation of Antarctic SIE still

remains a systematic bias from CMIP5 to CMIP6.

4. Summary and conclusions

The SO is a dynamically complex region where the

global ocean water masses converge and the world’s

strongest current, the ACC, exchanges properties be-

tween basins. Strong wind-driven surface divergence

drives deep waters to the ocean surface on the southern

side of the ACC, resulting in strongly sloped isopycnals

that act as a vehicle for the exchange of deep ocean

properties with that of the upper ocean and overlying

atmosphere. A portion of the Circumpolar Deep Water

(CDW) that is upwelled along these steeply sloped iso-

pycnals is transformed into denser Antarctic Bottom

Water (AABW) and exported northward, filling the

abyssal ocean. Buoyancy gained at the ocean surface

through the incorporation of precipitation, glacial runoff,

and sea ice melt transforms the remaining upwelled

CDW into lighter intermediate and mode waters that are

exported northward in the upper ocean subtropical gyres.

The ACC and intense water mass transformations that

characterize the SO are intimately coupled together, and

these complicated dynamics are directly tied to the ex-

change of heat and carbon with the atmosphere and the

export of nutrients to the rest of the global ocean.

Lack of historical observations coupled with complex

and not fully understood interconnected processes tied

to the ocean eddy field, surface wind stress forcing, air–

sea heat and freshwater fluxes impacted by both the

ocean circulation and overlying atmospheric properties,

properties of upwelled water, and the destruction and

transformation of seasonal sea ice make the SO very

difficult to accurately represent in climate models. Since

these dynamics are highly coupled, a well-represented SO

requires accuracy to be achieved in the atmosphere, ocean,

and sea ice model subcomponents and their exchanges

since errors in any of these regimes can propagate into the

other. An important example discussed here is that in

previous model generations, errors in representation of

Southern Hemisphere clouds and cloud properties in the

atmosphericmodel led to significant errors in the SOupper

ocean thermal structure. Given that the surface tempera-

ture gradient is tightly coupled to the position and strength
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of the surface wind stress forcing, this can propagate

into surface forcing biases. Additionally, as was shown

here, near-surface property biases directly impact the

ability to accurately represent Antarctic SIE, where

models with an exceptionally warm SO simulated ex-

tremely low SIE. The upper ocean properties can also

be impacted internally by poorly represented water

mass properties, such as too warm NADW or abyssal

warming due to climate drift.

Despite these challenges, the analyses presented here,

in conjunction with those performed on ensembles of

CMIP3 and CMIP5 models, show some consistent im-

provements across generations. We have focused on

observable metrics that have been analyzed in previous

TABLE 3. Metrics related to the representation of Antarctic sea ice extent (SIE) (million km2) for the models considered in this study.

The observed SIEmetrics and their associated standard deviation (1s) of annual means for the January 1986–December 2005 time period

are from themonthly sea ice extent dataset (https://nsidc.org/data/g02135) from theNational Snow and IceData Center Sea Ice Index. All

CMIP6 values are time averaged from January 1986 toDecember 2005. B-SOSEvalues are computed from the time-averaged output from

January 2013 to December 2018 for the Iteration 133 B-SOSE solution. In all calculations, only grid cells that had a sea ice concentration

greater than 15% were included. Considering the standard deviations of the annual means over the time period of analysis for both the

observational data and model output, values that lie 2s outside the mean of the observational metric are in bold and values that lie

2s below are bold and italicized. The B2019 CMIP5multimodel mean (MMM) and intermodel spread (1s) is from the analysis presented

in Table S1 of Beadling et al. (2019). For the maximum and minimum SIE, the month when this occurs is also listed. Note that the MCM-

UA-1.0 model, which has missing values marked with asterisks (*), only provides ice thickness and the concentration is either 1 or 0,

preventing accurate assessment of monthly SIE.

Model

Annual SIE

million km2
Maximum SIE

million km2
Minimum SIE

million km2
Max 2 Min

million km2

Observational estimate 11.58 6 0.26 18.42 6 0.34, Sep 3.09 6 0.35, Feb 15.32 6 0.52

B-SOSE 10.68 18.79, Sep 1.24, Feb 17.55

GISS-E2.1-H 11.21 18.91, Sep 2.86, Feb 16.06

CanESM5 12.10 18.23, Sep 4.12, Feb 14.11

ACCESS-CM2 7.97 14.30, Sep 0.60, Feb 13.70

MIROC6 1.91 4.09, Sep 0.04, Feb 4.05

GFDL-ESM4 9.00 16.66, Sep 0.82, Feb 15.84

INM-CM5.0 6.22 11.90, Sep 0.88, Feb 11.02

UKESM1.0-LL 9.99 15.47, Sep 2.68, Feb 12.79

MCM-UA-1.0 —* —* —* —*

MPI-ESM-1.2-HAM 3.78 8.04, Sep 0.23, Feb 7.81

ACCESS-ESM1.5 8.83 14.73, Sep 2.48, Feb 12.25

BCC-ESM1 8.14 13.34, Sep 0.92, Feb 12.42

MPI-ESM1.2-LR 4.89 10.73, Sep 0.39, Feb 10.34

SAM0-UNICON 12.68 18.42, Sep 4.04, Feb 14.38

NorESM2-MM 6.85 12.12, Sep 1.80, Feb 10.32

NorESM2-LM 6.76 11.93, Sep 1.83, Feb 10.10

GISS-E2.1-G 8.19 15.02, Sep 0.64, Feb 14.38

IPSL-CM6A-LR 11.13 19.48, Sep 1.79, Feb 17.69

BCC-CSM2-MR 7.11 12.89, Sep 0.30, Feb 12.59

CESM2 9.79 15.35, Sep 1.81, Feb 13.54

GISS-E2.1-G-CC 7.88 14.68, Sep 0.64, Feb 14.04

CESM2-WACCM 10.38 15.91, Sep 2.27, Feb 13.64

MRI-ESM2.0 13.26 21.33, Sep 3.15, Feb 18.18

GFDL CM4 10.33 19.00, Sep 0.68, Feb 18.32

HadGEM3-GC31-LL 8.82 14.33, Sep 1.80, Feb 12.53

NESM3 8.65 15.39, Sep 0.46, Feb 14.93

NorCPM1 13.29 19.70, Sep 4.38, Feb 15.32

EC-Earth3-Veg 4.97 10.63, Sep 0.29, Feb 10.34

CNRM-CM6.1 9.71 18.22, Oct 0.98, Feb 17.24

CNRM-ESM2.1 7.70 15.25, Sep 0.40, Feb 14.85

E3SM-1.0 8.92 15.97, Sep 1.04, Feb 14.93

MIROC-ES2L 1.70 4.11, Sep 0.04, Feb 4.07

CNRM-CM6.1-HR 8.76 16.87, Oct 0.48, Feb 16.39

HadGEM3-GC31-MM 6.40 10.36, Sep 1.62, Feb 8.74

INM-CM4.8 4.47 9.07, Sep 0.27, Feb 8.80

B2019 CMIP5 MMM 9.44 6 3.35 16.28 6 4.19 2.17 6 1.97 14.11 6 3.14

CMIP6 MMM 8.24 6 2.88 14.32 6 4.10 1.42 6 1.22 12.90 6 3.50
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model ensembles as well as included additional metrics

pertaining to characterizing the wind stress forcing.

The results suggest the following regarding model

performance:

1) The simulation of the strength of the ACC has

improved from CMIP3 to CMIP6, with modeled

ACC strength converging toward the magnitude

of observed net flow through the Drake Passage as

FIG. 8. (a) Seasonal climatology of Antarctic sea ice extent (SIE; million km2) observed by satellite and reported by

the National Snow and Ice Data Center Sea Ice (NSIDC) and as simulated in each CMIP6 model. The light gray

shading about the NSIDC mean is the standard deviation (2s) of the SIE for that month over the 20-yr period. Data

fromobservations andmodel output are time-averaged from January 1986 toDecember 2005.Only grid cells that have

a sea ice concentration greater than 15% are included in the computation of SIE. (b) Annual Antarctic SIE simulated

across model generations: CMIP5 through CMIP6. The CMIP5 values are taken from Beadling et al. (2019). The

CMIP6 values are computed identically to that of Beadling et al. (2019), over the same time period in the historical

simulations.
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estimated by the cDrake array. While there are no

CMIP6 models that exhibit unrealistically strong

transports like previous generations, there are still

several models producing exceptionally weak trans-

ports (.7s outside of the observational uncertainty).

An area identified as a need for improvement is

in the unrealistic multidecadal variability observed

in the ACC transport for a number of the CMIP6

models. This behavior may be linked to the pres-

ence of unrealistic ‘‘superpolynya events’’ in the

preindustrial control simulations associated with

quasiperiodic episodes of intense open-ocean con-

vection, which impact the interior ocean density

structure and thus the ACC. The underlying mecha-

nisms causing these events need to be further studied to

improve the simulations. The coarse-resolution models

(;18 or coarser) all employ various parameterization

schemes and coefficient magnitudes for subgrid-scale

ocean mixing and this likely plays a role in explaining

such diversity in the vertical and horizontal structure of

the ACC found across models. This resolution and

parameterization choice dependence needs to be ex-

plored in detail across models of varying resolution.

2) All metrics pertaining to the surface wind stress forcing

have improved.Notable improvements are found in the

strength and position of the zonally averaged westerly

wind stress maximum t
(x)
max relative to the ERA5 re-

analysis product. The persistent systematic bias of

equatorward winds in previous model generations has

improved. These improvements have yielded a much

more realistic pattern of wind stress curl over the SO

and a narrowing of spread across the model ensemble.

Noting that the magnitude and location of where wind-

driven surface divergence pulls deep carbon-rich water

to the surface is potentially important for the SO carbon

budget, we have further characterized the wind stress

forcing in the CMIP6 models by computing the mag-

nitude and location of minimum wind stress curl over

the SO (magnitude of maximum Ekman upwelling).

These two metrics show the largest intermodel spread

relative to the other wind stress metrics considered; a

follow up study will identify if this plays a role in ex-

plaining model spread in biogeochemical performance

here. Relative to CMIP3 and CMIP5, a stronger cor-

relation, although still not statistically significant, is

found for the relationship between ACC strength and

t
(x)
max. Previous generations had many models that ex-

hibited extreme biases in their temperature and salinity

gradients across the ACC that allowed for compensa-

tion for errors in the surface wind stress forcing. These

errors are not as prevalent in the CMIP6 ensemble.

3) The upper ocean remains biased too fresh and too

warm relative to observed. There has not been a clear

improvement in ensemble performance relative to

CMIP3 and CMIP5. There are still several models

with exceptionally warm upper SOs with errors that

translate into very poor representations of Antarctic

SIE. All CMIP6models are generally too fresh in the

upper ocean. These errors likely translate into biases

in the ventilated layers of the SO; a detailed water

mass analysis similar to that of Sallée et al. (2013b)

should be performed to identify these biases and

compare them to that of previous generations and to

understand how they impact heat and carbon fluxes

and storage.

4) The representation of the difference in density across

the latitudes of the ACC has improved in CMIP6.

Considering the simulated zonally averaged, full-

depth averaged difference in potential density refer-

enced to the surface (Dr) across the ACC, CMIP6

models have improved in performance relative to that

observed. The majority of models (71%) simulate a

Dr within a 25% error margin of the WOA18 value.

Two models yield a Dr that is too weak and eight

models yield a Dr much greater than the WOA18

value. It still remains fairly common for models to

achieve an accurate Dr as a result of compensating

errors in the temperature and salinity structure.

5) Antarctic sea ice extent (SIE) representation remains a

systematic bias from CMIP5 to CMIP6.A few models

appear to be performing worse than their CMIP5

predecessors, while others have improved. While SIE

is well observed relative to othermetrics related to the

sea ice simulation such as sea ice volume, it might not

be the best metric for overall model performance.

Thus, a detailed analysis of the regional distribution

and other sea ice characteristics should be performed

to truly assess model performance. The correlation

found between the density gradient across the ACC

and the minimum Antarctic SIE, highlights the need

for investigating how the sea ice simulation impacts

the density structure and climatically relevant prop-

erties in the SO such as carbon and heat storage.

Additionally, there may be important links in CMIP6

between Antarctic sea ice representation in historical

simulations and twenty-first-century projected change

in surface temperature, precipitation, and westerly

jet position as was the case in previous generations

(Flato 2004; Bracegirdle et al. 2015, 2018). If these

emergent constraint relationships still exist, a general

lack of improvement from CMIP5 to CMIP6 and

wide intermodel spread in simulated SIE suggests

this source of projection uncertainty may be a large

contributor to the model spread in the trajectory of

Southern Hemisphere climate under twenty-first-

century forcing.
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The analysis presented here provides critical information

on improved and existing biases in observable properties in

the SO for the climate models that will provide projections

of the climate system for the Intergovernmental Panel on

Climate Change’s Sixth Assessment Report (IPCC AR6).

Given the dominant role that the SO plays relative to other

ocean basins in the oceanic storage of heat and carbon, it is

important for climate models to represent this region well

in order to provide meaningful simulations of transient

climate change. While models have generally improved

across many metrics, the remaining biases associated with

the temperature and salinity structure of the SO and sea ice

representation may have serious implications for climate

projections. The impacts of these biases on simulated ocean

heat and carbon storage requires a detailed assessment.

In the conclusions outlined above, we have high-

lighted several paths forward for additional analysis of

the simulations here including extending such analysis to

the higher-resolution simulations, determining the de-

pendence of the representation of surface momentum

forcing on the heat and carbon budget, carrying out a

detailed water mass analysis, and performing a detailed

evaluation of the role that sea ice representation plays in

determining the SO density structure and in water mass

transformations. Additionally, while we examine a 20-yr

average period to be consistent with the time period

evaluated in the CMIP3 and CMIP5 studies, studies

should be performed to assess whether these models

capture observed historical trends such as observed

changes in the midlatitude westerlies over the SO. We

are currently working to extend this assessment to the

results of the twenty-first-century SSP experiments to

investigate how these properties change under contin-

ued warming and if robust model agreement is found. In

future analyses, the performance across the metrics

presented here can potentially be used to developmodel

weighting schemes to provide a constraint on the un-

certainty of global climate projections.
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