
Vol.:(0123456789)1 3

Granular Matter (2020) 22:83 

https://doi.org/10.1007/s10035-020-01045-7

ORIGINAL PAPER

Representation of stress and strain in granular materials using 
functions of direction

E. T. R. Dean
1
 

Received: 5 May 2019 / Published online: 24 September 2020 

© The Author(s) 2020

Abstract

This paper proposes a new way of describing effective stress in granular materials, in which stress is represented by a continuous 
function of direction in physical space. The proposal provides a rigorous approach to the task of upscaling from particle mechan-
ics to continuum mechanics, but is simplified compared to a full discrete element analysis. It leads to an alternative framework 
of stress–strain constitutive modelling of granular materials that in particular considers directional dependency. The continu-
ous function also contains more information that the corresponding tensor, and thereby provides space for storing information 
about history and memory. A work-conjugate set of geometric rates representing strain-rates is calculated, and the fundamental 
principles of local action, determinism, frame indifference, and rigid transformation indifference are shown to apply. A new 
principle of freedom from tensor constraint is proposed. Existing thermo-mechanics of granular media is extended to apply for 
the proposed functions, and a new method is described by which strain-rate equations can be used in large-deformations model-
ling. The new features are illustrated and explored using simple linear elastic models, producing new results for Poisson’s ratio 
and elastic modulus. Ways of using the new framework to model elastoplasticity including critical states are also discussed.

Keywords Anisotropy · Continuum mechanics · Critical states · Discrete element method · Elasticity · Elasto-plasticity · 
Orientational averaging · Particle mechanics · Spin · Thermo-mechanics

Abbreviations

Keyboard symbols

a  Area
a, b  Quantities illustrating linearity (Eq. 12)
A,B,C  (Subscripted) functions of the directions identi-

fied by the subscripts
A–F  Parameters in elasticity matrix (Appendices 5 

and 6 and Table 2)
d  Infinitesimal of  

DEM discrete element method
det()  Determinant
e  Void ratio
E  Function whose directional average is zero 

(Eq. 14)
E  Receipt (Eq. 58)
E  Young’s modulus (Eq. 95)
�

c
  Vector of inter-particle force at c-th contact 

(Eq. 17)

F  Deformation gradient tensor
FCM  Functions-based constitutive model
FILE  Fully isotropic linear elastic
g  Geometric factor associated with the bunching 

effect (dimensionless)
H  Helmholtz free energy per unit particle volume 

(units of stress)
I  3 × 3 identity tensor
j, k  Dimensionless constants
K  Modulus (units of stress)
�

c
  Branch vector for cth contact (units of length)

M  Number (dimensionless)
�

�
  Unit material vector in direction ζ at the refer-

ence configuration (Appendix 3)
n  Element of unit vector
n  Dimensionless constant (Appendix 5)
�
�

  Unit vector in direction ψ
N  Number of contacts
p/  Mean normal effective stress
P–U  Parameters in elasticity matrix (Table 2)
Q  A general quantity or function
Q  Frame transformation matrix
r  Radius (dimensions of length)
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�
−

  Value of a vector in the {x,y,z} coordinate 
frame (element dimensions of length)

sym(�)  The symmetric part of the tensor X
t  Time
TCM  Tensor-based constitutive model
TILE  Transversely isotropic linear elastic
tr()  Trace operator
u  Pore pressure
u

ic
  Uniaxial stress tensor associated with the ith 

principal direction of the stress tensor associ-
ated with the cth inter-particle contact

V  (Un-subscripted) specific volume 
(dimensionless)

V  (Subscripted with a direction) directional spe-
cific volume (dimensionless)

VREP  Representative small volume (units of volume)
W  Work per unit particle volume
x,y,z  Cartesian coordinates (units of length)

Greek symbols

α  Spreading coefficient (dimensionless)
β  Direction in physical space
γ  Small engineering strain (typically expressed 

as an angle)
Γ  Locator constant (dimensionless)
δψ  Second-order tensor variations over the patch 

for direction ψ (Eq. 18)
δψ  Function equal to a non-zero constant on patch 

ψ but zero for all other patches (Eq. 44)
ε  Small strain
�̇  Strain rate tensor (Eq. 26)
ζ  Direction in physical space
θ  Polar angle (Fig. 1)
θ  Small rotation (Eq. 26)
�̇  Rotation rate tensor (Eq. 26)
μ  Poisson’s ratio
σ  Stress (force per unit area in the current 

configuration)
ϕ  Azimuthal angle (Fig. 1)
ψ  Direction in physical space
ω  Direction in physical space
Ω  Solid angle (units of steradians)

Subscripts

a  Axial in the triaxial cell
alt  Expressed in the alternate coordinate frame
c  Contact identification number
d  Dissipated
e  Elastic
ep  Elasto-plastic
o  Initial, or reference

q  Deviatoric; a function deviator (Eq. 15) is not 
the same as a tensor deviator

r  Radial in the triaxial cell
REP  Representative
rs  One of xx, xy, xz, yx, yy, yz, zx, zy, or zz
vol  Volumetric
y  At yield
β  Function of direction β in physical space
ψ  Function of direction ψ in physical space

Superscripts

*  Inner
/  Effective
T  Transpose
−1  Inverse

Other

⟨…⟩  Directional average (Eq. 6)
⊗  Dyadic product; the dyadic product of two 

column vectors � and � is the matrix formed by 
post-multiplying � by the transpose of � , The 
elements of �⊗ � are the products  aibj

⋯|
C
  Evaluated with C constant (if C represents a 

variable) or according to condition C (if C is an 
equation)

→0  Tends to zero
→  And based on the information calculated so far, 

the next step is to calculate (Eqs. 35, 36, and 
46)

Conventions and notes

Notation  Matrices, and tensors expressible as matrices, 
are denoted using bold type. Vectors are bold, 
underlined. Elements of these are in nor-
mal type, subscripted, for example n

�x
 is the 

x-component of the unit vector �
�

 . Effective 
stresses are denoted using the prime symbol, 
which is also used for functions and param-
eters that relate to effective stress. However, 
un-primed symbols may be used where context 
clearly indicates an effective parameter.

  Compressive principal stress and principal 
strains and strain-rates are taken positive. Work 
is taken positive when done on a material. 
Energy and work are both expressed per unit 
particle volume, and therefore have the same 
units as stress. Rates are denoted using an over-
dot, equivalent to differentiation with respect to 
time t, so that:

q̇ =

dq

dt
, q = ∫ q̇dt
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  for a given q (which may also be a function of other 
variables, such as direction ψ). An over-bar with an 
over-dot denotes a rate of change of the expression 
beneath the bar, so that:

  A special case occurs in Eq. 50 in which a small 
solid angle ��� is differentiated with respect to 
time, with the following notation:

  A quantity y is said to be a function of another 
quantity x if a single value of y is associated with 
each possible value of x. The association may be 
determined by an algebraic equation, for instance, 
or in other ways, such as by a stress–strain his-
tory. Quantities with subscript ψ or θ, such as �′

�
 

or �′

�
 , represent functions of direction ψ or polar 

angle θ respectively, while the corresponding un-
subscripted quantity � would be independent of 
direction.

1 Introduction

This paper proposes new continuum descriptions of stress, 
strain, and related quantities that are intermediate in detail 
between tensor mechanics and particle mechanics. The 
descriptions help to bridge the gap between these disci-
plines, and provide new ways to use information from both 
in the construction of continuum constitutive models.

Cauchy’s [13] concept and equations for continuum 
mechanical stress assumes that effects of granularity become 
smoothed out if large numbers of particles are considered. 
This assumption serves well for linear elastic materials, but 
does not appear to have been formally proved for more com-
plex behaviours. Terzaghi [72, 73] proposed a first modifica-
tion, the now well-established Principle of Effective Stress, 
which implies that the symmetric stress tensor �

′

 that is 
effective in terms of the stress–strain–strength behaviours 
of fully saturated, uncemented granular soils is related to 
the total (Cauchy) stress tensor σ by:

where u is the pore fluid stress, and I is the identity tensor. 
This principle is also used for sedimentary rocks [40, 85]. 
Explanations for its success include those of Bishop [3], 
Skempton [67], Mitchell and Soga [51], and others, who 

.

ab =
d(ab)

dt

.

��� =
d

dt
(��� )

(1)�
�
= � − uI

relate effective stress to inter-granular forces. Some limita-
tions have been explored by Singh and Wallender [66] and 
others.

Effective stress “at a point” is a local concept, though 
referring to spatially distributed effects at microscopic scale 
in geomaterials. At macroscopic scale, let F represent the 
deformation gradient tensor from a reference configuration 
to a current configuration of a representative elementary 
volume of granular material [70]. Then the rate W ′ of effec-
tive work done on the soil per unit particle volume is, in the 
absence of fluid flow:

The negative sign is used when taking compressive stress 
as positive and work as positive when done on the material. 
V = 1+e is the specific volume, equal to the ratio of macro-
scopic volume to particle volume, e is the void ratio, and tr is 
the trace operator. Houlsby [39] discusses the complicating 
effects of fluid flow.

The new proposals made herein are intended to provide 
new connections between the microscopic and macroscopic 
scales. Note however that the new proposals involve some 
simplifications and therefore that the new connections will 
not be as explicit as those available in either the full discrete 
element method (DEM) or in a macroscopic model deduced 
solely from particle mechanics. This therefore represents a 
different approach to the ones taken by Jiang et al. [42], Liu 
and Chang [47],Wu et al. [82] and others who propose new 
continuum models based on results obtained with these more 
fundamental methods.

The present starting point is a proof, outlined by 
O’Sullivan [54] and attributed by her to several previous 
independent authors. The proof is widely accepted in DEM 
modelling and states that the effective stress in a dry granu-
lar matrix can be expressed in terms of the statistics of inter-
particle forces in one of the following ways (differing for 
different researchers):

where V
REP

 and V ′

REP
 are measures of macroscopic volume 

enclosing a representative group of particles, �
c
 is the inter-

particle force at the cth contact, ⊗ is the dyadic product, �
c
 

is the inter-particle branch vector for that contact, and N is 
the number of contacts in the volume. A dyadic product is 
not in general symmetric, but the sum of many such products 
can be. Each contact is counted once.

The proposals herein are expected to be particularly use-
ful in resolving two modelling problems for soils. One is 
that of induced anisotropy, defined as anisotropy induced 
by strain [12]. All natural soils appear to be anisotropic, 

(2)W
�
= −Vtr

(

�
�T
�̇.�

−1
)

(3)�
�
=

1

V
REP

N
∑

c=1

�
c
⊗ �

c
=

1

V
�

REP

N
∑

c=1

�
c
⊗ �

c
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with most being transversely anisotropic in situ, due partly 
to vertical deposition and partly to a subsequent history of 
one-dimensional vertical compression [31, 45, 51]. More 
complex forms of anisotropy can develop with different dep-
ositional and/or stress–strain histories [24]. Anisotropy and 
fabric evolution are active topics in granular matter research, 
see for example Cottechia et al. [20], Papadimitriou et al. 
[56], Chen et al. [15], Vijayan et al. [78], Wang et al. [79, 
80], Zhao and Kruyt [84] and others.

The second is “plastic spin”, described by Dafalias and 
Aifantis [23] and Dafalias [22] for soils and by Soare [68] 
for crystalline metals. Dafalias [21] argued that plastic spin 
is a “necessary constitutive ingredient” for large deformation 
anisotropic elasto-plasticity with tensorial internal variables. 
Soare [68] interpreted plastic spin as the rate of rotation of 
a material frame, relative to the material itself, where the 
material frame is defined by axes that characterize a yield 
surface.

The following text starts with a description of the notation 
used herein for the familiar process of orientational averag-
ing. This process is then applied in a new way to the above 
equation, resulting in a new relation between inter-particle 
point forces and effective stress. The familiar algebra for the 
deformation gradient is then used to deduce new expres-
sions for strain rate and work rate in granular media. Some 
general implications for modelling are then considered. 
Finally, some simple constitutive assumptions are explored 
that reveal new information about simple behaviours, includ-
ing about the origins of Poisson’s ratio for elastic granular 
materials. Application to elastoplastic models and critical 
states is also discussed.

2  Proposed functional representations

2.1  Directional notation for orientational averaging

The idea of averaging quantities over physical directions has 
a long history, and is part of the process of “homogeniza-
tion” or “upscaling” by which micro-scale features can be 
averaged to create macroscale results. Examples for soils 
include Pande and Sharma’s [55] multi-laminate model in 
which macroscopic constitutive behaviour is constructed 
from simple behaviours that are individually associated 
with physical direction. Faria [29] discusses applications in 
mixture theory, and Altenbach et al. [1] discuss orientation 
averaging for fiber suspensions. Göodert and Hutter [30] use 
orientational averaging in their model of induced anisotropy 
in ice shields. Yimsiri and Soga [83] upscale their proposals 
for contact mechanics using a spherical integration method. 
Blumenfeld [4] proposed a specialised upscaling method to 
solve a problem related to fabric in isostaticity theory.

Figure 1 illustrates some concepts associated with physi-
cal direction. A direction emanating from a material point 
M may be represented by an arrow, or by a label ψ, or by 
a unit vector �

�
 , or by a point P on a sphere centred on M. 

The unit vector may be represented in a variety of external 
coordinate systems, including a cartesian system {x,y,z} or 
a spherical system {r,θ,ϕ}:

where the polar angle � runs from 0 to π radians, and the 
azimuthal angle ϕ runs from 0 to 2π radians. The set of all 
possible directions may also be represented by the set of all 
points on the sphere.

Let Q
�

 be a function of direction ψ, such that for every ψ 
there is a value of the quantity Q denoted as Q

�
 . This value 

may be a scalar, or a vector (such as the unit vector �
�

 ). 
It may be a tensor if the tensor can be associated in some 
way with direction, and an example used later is the tensor 
�
�
⊗ �

�
 where ⊗ is the dyadic (outer) product. This tensor 

can represent a unit uniaxial stress in the ψ direction, with:

The function Q
�
 may alternatively be determined by some 

different process, such as by a stress–strain history. Its aver-
age over all directions ψ is here denoted as 

⟨

Q
�

⟩

 and could 

(4)�
�
=

⎡
⎢
⎢
⎣

n�x

n�y

n�z

⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
⎣

sin � cos�

sin � sin�

cos �

⎤
⎥
⎥
⎦

(5)�
�
⊗ �

�
= �

�
�

T

�
=

⎡
⎢
⎢
⎣

n2

�x
n�xn�y n�xn�z

n�yn�x n2

�y
n�yn�z

n�zn�x n�zn�y n2

�z

⎤
⎥
⎥
⎦

Fig. 1  Notation and concepts associated with physical direction
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be calculated by integrating over the surface of the sphere 
and dividing by the surface area a:

where da
�
 is the area of an infinitesimal patch on the sphere 

centred on the point P representing the direction ψ, and d�� 
is the solid angle in steradians that is subtended by the patch. 
The solid angle is the area of the patch divided by the square 
of the radius r

�
 to the centre of the patch, with r

�
 = 1 unit for 

a sphere of unit radius:

where dv
�
 is the volume of a cone subtended at the centre by 

the patch. The full spherical surface subtends a solid angle 
of 4π steradians.

Equation 6 is just a definition of a directional average 
in three dimensions. Some details are nevertheless worth 
exploring. The area of a rectangular patch illustrated in 
Fig. 1 is the product of its polar dimension and its circum-
ferential dimension. This product is sin �d�d� for a unit 
radius, so:

Using this, the following results are obtained:

where � is the 3 × 3 identity matrix. The trace of a matrix is 
the sum of its diagonal terms, so the trace of 

⟨

�
�
⊗ �

�

⟩

 is 

1. By transforming to a coordinate frame in which �
�

 acts 
along a coordinate axis, it can readily be verified that 
�
�
⊗ �

�
 is a tensor with two principal values equal to zero 

and one equal to 1.
If a function Q

�
 has the same value for all directions, then 

its average is that value (the average of a constant is that 
constant). If a and b are two quantities that are independent 
of direction, and Q

1�
 and Q

2�
 are two functions of direc-

tion, then the average of the linear combination is the linear 
combination of the averages:

(6)
⟨

Q�

⟩

= ∫ Q�

da�

a
= ∫ Q�

d��

4�

(7)d�� =

da�

r2

�

=

3dv�

r3

�

(8)
⟨

Q�

⟩

=

1

4�

2�

∫
�=0

�

∫
�=0

Q� sin �d�d�

(9)
⟨

n
2

�x

⟩

=

⟨

n
2

�y

⟩

=

⟨

n
2

�z

⟩

=

1

3

(10)
⟨

n
�y

n
�z

⟩

=

⟨

n
�z

n
�x

⟩

=

⟨

n
�x

n
�y

⟩

= 0

(11)so ∶

⟨

�
�
⊗ �

�

⟩

=
1

3
�

In the constitutive context, a and b may be variables that 
change with time. A directional average is not itself a func-
tion of direction, and a useful result later will be that:

where the average inside an averaging operator is done first. 
One might call this a “swap property” since the change from 
left to right involves swapping the position of the inner aver-
aging operator. Another property follows from the fact that 
there are many functions of direction whose average is zero, 
for example cos � . If two functions have the same average, 
their difference is a function whose average is zero:

where E
�

 is some function with 
⟨

E
�

⟩

= 0 . One might call 
this the “extraction property”, since it allows a directional 
equation to be extracted from an equality of averages.

In tensor mechanics an invariant is a quantity whose value 
does not depend on physical direction or coordinate frame. 
The average 

⟨

Q
�

⟩

 is a first invariant of the function Q
�
 . But 

a directional function can also be associated with an infinite 
number of invariants, for example the average of its mth 
power is invariant, for any given m. The variance Q2

q
 of Q

�
 is:

The first expression for Q2

q
 is the average of the square of 

the deviation Q
�
−

⟨

Q
�

⟩

 from the average 
⟨

Q
�

⟩

 , and the 
second is then a standard result for variance in statistics. The 
deviator Qq is a second invariant of the function, and would 
normally be taken non-negative. Its value does not depend 
on any physical direction.

A complement A†
�

 of a function A′

�
 can be defined as the 

average of A′

�
 over directions that are normal to ψ. This is 

defined more formally in Appendix 1.
The label ψ in the expression 

⟨

Q
�

⟩

 is a dummy variable, 
and may be replaced by any other if the meaning is clear. 
Thus 

⟨

Q�

⟩

 would be the same as 
⟨

Q
�

⟩

 if the first average is 
understood as being taken for all directions β. Where there 
is ambiguity, the variable over which the average is taken 
can also be placed outside as a subscript. Functions of more 
than one direction can also be useful, and the algebra of 
such functions can be very similar to that of tensors. For 
example, a function C

�
 may be defined in terms of functions 

A�� and B� as:

(12)
⟨

aQ
1�

+ bQ
2�

⟩

= a
⟨

Q
1�

⟩

+ b
⟨

Q
2�

⟩

(13)
⟨

A
�

⟨

B
�

⟩⟩

=

⟨

A
�

⟩⟨

B
�

⟩

=

⟨⟨

A
�

⟩

B
�

⟩

(14)If
⟨

Q1�

⟩

=

⟨

Q2�

⟩

, then Q1� = Q2� + E
�

(15)Q2

q
=

⟨

(

Q
�
−

⟨

Q
�

⟩)2
⟩

=

⟨

Q2

�

⟩

−

⟨

Q
�

⟩2

(16)C� =

⟨

A��B�

⟩

�
= ∫ A��B�

d��

4�
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This is analogous to the multiplication of two tensors, or 
the post-multiplication of a matrix A by a vector � , except 
that the result is an average rather than a sum.

2.2  E�ective stress

Figure 2 shows the sign convention used herein for positive 
components of the effective stress tensor. Normal stresses 
are positive in compression. The off-diagonal components 
are in the opposite directions to shear stresses denoted as 
�

rs
= −�

rs
.

In Eq. 3, since �′ is symmetric, only the symmetric parts 
of the tensors �

c
⊗ �

c
 or �

c
⊗ �

c
 are needed in calculat-

ing the macroscopic stress. Consistently with Cauchy [13], 
every symmetric stress tensor can be regarded as the sum 
of three uniaxial stress tensors, the ith of which represents 
a stress in a principal direction of the original tensor. Let �

ic
 

be the uniaxial stress tensor representing a uniaxial stress in 
the ith principal direction of the dyadic product for the cth 
contact, so that:

Substituting this into Eq. 3 gives a summation over 3N 
uniaxial stress tensors. Let these uniaxial stress tensors now 
be organized into groups, the ψth of which contains only 
stress directions that correspond to points in a particular 
patch on the unit sphere of area da

�
 . Then:

(17)sym
(

�
c
⊗ �

c

)

= sym
(

�
c
⊗ �

c

)

=

3
∑

i=1

�ic

where the first summation on the right is taken over all the 
groups. V ′′

REP
 depends on which original expression is used 

from Eq. 3, and the quantity in brackets is the summation 
taken over all the members of the ψth group. Inside the sec-
ond sum on the right, �

ic�
 is a uniaxial tensor with its one 

non-zero principal value in direction ψ, so it is a scalar mul-
tiple of �

�
⊗ �

�
 . The last term �

�
 describes the second-

order deviations from direction ψ over the area of the patch. 
A stress magnitude �′

�
 can then be defined for the ψth group 

as:

Combining this with the previous equation, and then put-
ting the result in the DEM Eq. 3 for the stress tensor �′ , 
gives:

Taking the limit as smaller and smaller patch sizes are 
considered, the deviations from direction ψ tend to zero, so 
the second order term �

�
 is expected to collapse to zero, and 

the summation will become an integral, giving:

where �′

�
 has now become a continuous scalar function 

of direction ψ. It will be convenient to call this the “outer 
stress” function. Its derivation involves no special constraint, 
other than that it be integrable in the way described. It may 
for example be continuous or discontinuous, provided the 
integration remains possible and gives a definite result.

Equations 19 and 21 represent a new way of upscaling 
from particle mechanics to continuum mechanics, but the 
summation in Eq. 19 means that the method does not pro-
vide the inverse path, from continuum to particle mechan-
ics. The upscaling is based on orientational averaging, and 
in this sense it follows many previous models in the litera-
ture. For example, Pande and Sharma’s [55] multi-laminate 
model involves averaging of the behaviours of laminates 
each of which is affected by several stresses. A key feature 
is that Eq. 21 has been proved, essentially simply from the 
assumption that macroscopic stress represents point forces 
at inter-particle contacts—the assumption underlying Eq. 3. 
Equation 21 does not involve any additional constitutive 
assumption. And the stress function �′

�
 has a clear physical 

meaning in terms of the statistics of the principal values and 

(18)�
�
=

1

V
��

REP

∑

c,i

�
ic
=

∑

�

((

1

V
��

REP

∑

c,i,�

�
ic�

)

+ �
�

)

(19)
1

V
��

REP

∑

c,i,�

�
ic�

= 3��

�
�
�
⊗ �

�

da�

a

(20)�
�
=

∑

�

(

3��

�
�
�
⊗ �

�

da�

a
+ �

�

)

(21)�
�
=

⟨

3��

�
�
�
⊗ �

�

⟩

Fig. 2  Sign convention for components of the effective stress tensor
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directions of stresses that are set up in the soil matrix by 
different combinations of differently oriented inter-particle 
contact forces and different brace vectors.

Equation 21 implies that each element of the stress tensor 
is a directional average of the outer stress function, for exam-
ple, ��

xx
=

⟨

3�
�

�
n

2

�x

⟩

 . Since the symmetric tensor has only 

six independent elements, Eq. 21 puts only six constraints 
on the function, and the function can contain infinitely more 
information than the tensor. Indeed, the tensor contains no 
information at all about the function deviator �′

q
 , which is 

defined as in the general Eq. 15, or about any of the infinite 
number of invariants 

⟨

�
′m

�

⟩

 for m ≠ 1.

The stress function will have a basic symmetry that its 
value in a given direction is equal to its value in the diametri-
cally opposite direction. Taking the trace of both sides of 
Eq. 21, noting that the trace of �′ is three times the mean 
normal effective stress p’, and tr

(

�
�
⊗ �

�

)

= 1 , gives:

Also, if �′

�
 equals p’ for all directions ψ, then from 

Eqs. 11 and 21, the Cauchy stress tensor will be hydrostatic. 
However, the converse is not necessarily true. Many dif-
ferent functions can satisfy the same six constraints, so a 
hydrostatic tensor does not necessarily imply that the stress 
function equals p’ in all directions.

2.3  Strain rate and work

For tensor models, it is conventional to use strain rate or 
incremental strain parameters that are “work-conjugate” 
with the chosen measures of stress (e.g. [57, 70]. An exten-
sion of this idea to functions is straightforward. Using Eq. 21 
to substitute for the stress tensor in Eq. 2, and organizing the 
result appropriately, gives:

V̇� might be conveniently called an “outer” volumetric 
rate. It can be different for different directions. There may 
be some relationship with Pietruszczak and Krucinski’s [59] 
proposal of “directional porosity”, but there is no general 
implication that V̇� is a differential of any quantity that is 
independent of the choice of reference configuration. Ẇ ′

�
 is 

a work rate per unit particle volume associated with direc-
tion ψ. The first equation shows that the overall work rate 

(22)
⟨

�
�

�

⟩

= p
�

(23)Ẇ � =

⟨

Ẇ
�

�

⟩

(24)with ∶ Ẇ
�

�
= −��

�
V̇�

(25)V̇� = −3Vtr(�
�
⊗ �

�
�̇.�

−1)

Ẇ
′ is the first invariant of Ẇ ′

�
 . The product �̇.�

−1 can be 
expressed as:

This rate equation has an equivalent form in terms of 
infinitesimals, and a way of using it in the context of a theory 
of large deformations appropriate to soils is discussed later. 
The first matrix is the anti-symmetric part of �̇.�

−1 , and 
contains rotation rates. The second is the symmetric parts 
( �̇

rs
= �̇

sr
 ), and contains strain rates with compression posi-

tive. In some soil mechanics conventions, shear strain rates 
may be represented as �̇

rs
= −2�̇

rs
 [45]. Evaluating the trace 

in Eq. 2 gives:

This is consistent with the familiar result that rotation 
rates are not associated with any working [70]. Using Eqs. 5 
and 26 to expand the right side of Eq. 25 gives the rate of 
outer volume strain as:

If special axes are considered with the x-axis in direction 
ψ, then n

�x
= 1 and n

�y
= n

�z
= 0 , and the strain rate �̇

xx
 will 

equal the normal compressive strain rate �̇� in direction ψ. 
Hence the right side simplifies to:

The work rate Ẇ ′

�
 in Eq. 24 might then be interpreted as 

a measure of external work that is done on the material in 
compressing it in this direction, per unit particle volume. 
Using Eqs. 9, 10 and 28 to compute the average 

⟨

V̇�

⟩

 gives:

Thus the directional average of the outer volumetric rates 
V̇� is the rate of change V̇  of the overall specific volume V.

(26)�̇.�
−1

= �̇ − �̇ =

⎡
⎢
⎢
⎣

0 −�̇
z

�̇
y

�̇
z

0 −�̇
x

−�̇
y

�̇
x

0

⎤
⎥
⎥
⎦
−

⎡
⎢
⎢
⎣

�̇
xx

�̇
xy

�̇
xz

�̇
yx

�̇
yy

�̇
yz

�̇
zx

�̇
zy

�̇
zz

⎤
⎥
⎥
⎦

(27)W �
= −V

⎧
⎪
⎨
⎪
⎩

��

xx
�̇xx + �yz�̇yz+

��

yy
�̇yy + �zx�̇zx+

��

zz
�̇zz + �xy�̇xy

⎫
⎪
⎬
⎪
⎭

(28)
V̇� = −3V

⎧
⎪
⎨
⎪
⎩

n2

�x
�̇xx + 2n�yn�z�̇yz+

n2

�y
�̇yy + 2n�zn�x�̇zx+

n2

�z
�̇zz + 2n�xn�y�̇xy

⎫
⎪
⎬
⎪
⎭

= −3Vtr(�
�
⊗ �

�
�̇)

(29)V̇� = −3V �̇�

(30)
⟨

V̇�

⟩

= −V
{

�̇xx + �̇yy + �̇zz

}

= V̇
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3  General aspects of constitutive modelling 
with functions

3.1  Noll’s axioms

Noll’s [53] four axioms for the constitutive modelling of 
“simple materials” have largely been accepted [49, 77]. 
The Axioms of Local Action, Frame Indifference (Objec-
tivity), and Indifference to Rigid Transformation would 
seem to be directly transferable to functions through 
Eqs. 21 and 25, because the tensors in these equations 
satisfy those axioms.

3.2  Local action

The concept of local action is that the stress and other 
descriptions of the state of a material can be represented 
by descriptions that apply at infinitesimal points. Bower [7] 
states that, if the principle holds, “the stress at a point in the 
solid depends only on the change in shape of a vanishingly 
small volume element surrounding the point. It must there-
fore be a function of the deformation gradient or a strain 
measure that is derived from it.” Another implication is that 
the stress–strain behaviour at a point does not depend on 
the spatial gradient of stress at that point. So, for example, 
the equilibrium equations are formally independent of the 
constitutive behaviour.

It is easy to imagine that granular media might not obey 
this principle. Consider for example a hard particle that, as a 
result of a small change of loading conditions, slips at some 
inter-particle contact. If the particle is hard enough, there 
will not be enough local elasticity to take up the movement 
in the immediate vicinity of the slip, and the movement will 
necessarily spread to nearby particles. Their movements will 
spread further, and there seems to be no a priori reason to 
suppose that this spreading effect is limited in scale.

This paper explores the concept of spreading later. Lambe 
and Whitman [44] describe the usual assumption in practi-
cal engineering in the following way: “When we talk about 
the stresses at a point within a soil, we often must envision 
a rather large point”. On this basis, Eq. 3 is a local equation 
in the sense that it involves a summation over a representa-
tive volume that is small enough to be considered as a “large 
point”—small enough in comparison to the scale of a practi-
cal engineering problem, but large enough that the statistics 
involved in the summation are not sensitive to the actual size 
of the REV. It follows that Eq. 21 is also a local equation, 
since it applies to the same elementary volume.

The calculation of work rate in Eq. 2 involves the assump-
tion that the deformation gradient has physical meaning. The 
present paper assumes that this is the case, implying that the 
gradient is not measured over dimension scales that are less 

than the order of magnitude of a large point. It would then 
follow that the outer volume rates in Eq. 25 are also local 
variables.

3.3  Objectivity

The concept of objectivity is that behaviour that is the property 
of a macroscopic physical system does not depend on the way 
it is observed [18, 34, 50, 52]. Wooseok et al. [81] argue that 
large errors occur in some finite element models due to the 
use of non-objective stress rates. For the present proposals, the 
algebra by which Eq. 21 was proved from the objective Eq. 3 
ensures that the stress function �′

�
 is objective. Indeed, this is 

implicit in the definition of ψ as a physical direction. The fol-
lowing text verifies this formally.

Noll’s [53] Axiom of Material Frame-Indifference also 
expresses the expectation that constitutive behaviour of a 
material does not depend on the frame in which it is observed. 
Let Q be the frame transformation tensor that relates the value 
� of a vector in a given frame to its value �

alt
= �� in an 

alternative frame. The tensor transformation law for stress is 
��

alt
= ����T (e.g. [70]. Using Eq. 21 for �′ gives:

Since Q is independent of direction it can be brought inside 
the averaging operator. Now the dyadic product of two column 
vectors equals the result of post-multiplying the first vector by 
the transpose (to row vector) of the second (e.g. Eq. 5). Using 
this property then gives:

The first equation has the same form as the original Eq. 21, 
confirming frame-indifference. The second equation defines 
a one-to-one correspondence between the values of the unit 
vector in direction ψ as evaluated in the two different frames. 
The third relates the stress functions in the two frames.

3.4  Determinism

Together with Locality, the Axiom of Determinism implies 
that a model for isothermal stress–strain behaviour needs to 
be capable of predicting the rates of all constitutive variables 
given the deformation rate and their current values. This 
might be represented by the following calculation sequence, 
where TCM represents a tensor-based model:

(31)��

alt
= �

⟨

3��

�
�
�
⊗ �

�

⟩

�T

(32)�
�

alt
=

⟨

3��

� ,alt
�
� ,alt

⊗ �
� ,alt

⟩

(33)with ∶ �
� ,alt

= ��
�

(34)�
�

� ,alt
= �

�

�
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This “roadmap” is the opposite compared to models of 
elasto-plasticity in which strain rates are determined from 
given stress rates, though this form can be achieved by 
inverting a model’s compliance matrix [28].

Equation 21 implies that the stress function is not neces-
sarily determinable uniquely solely from the stress tensor. 
Equations 21 and 25 would imply that the above process can 
be expanded as follows, where FCM represents a functions-
based model:

This raises the following issue. It would seem natural to 
expect that the FCM would need to be able to calculate the 
rate of change of the outer stress function for any given outer 
volumetric rate function V̇� . However, Eq. 25 implies that 
the only functions that are involved in practice will be those 
that can be specified by six independent tensor components 
of strain rate. Since the set of all possible functions V̇� is 
infinitely larger than the set of functions that satisfy the six 
constraints, the question arises as to whether to impose the 
six constraints on the FCM or not.

Three arguments exist in favour of not imposing these 
six constraints on FCM. First, the calculation of V̇� from 
�̇�

−1 automatically applies the constraints, so Occam’s razor 
suggests there is no need to apply them again in the FCM. 
Second, as shown by example in the next section, applying 
them is algebraically inconvenient, and can prevent infer-
ences which seem natural to make. Third, the behaviour of 
a soil element in a laboratory test is only controlled on its 
boundary. The six constraints are not explicitly enforced 
inside a sample, which may be free to deform in ways that 
use more freedoms.

Accordingly, the present paper assumes that it is not 
appropriate to impose the tensor constraints on an FCM. 
This might be called a principle of “freedom from tensor 
constraint”.

3.5  An example of using freedom from tensor 
constraint

Composite quantities are used in many tensor-based models. 
A simple example is the triaxial deviator stress which con-
sists of a combination of principal stresses. In the context of 
the modelling schematics above, some FCMs might involve 
a process of combining outer geometrical rates from differ-
ent directions.

A simple example, developed for the purposes of illustra-
tion and not from any particular data, might be the following 
definition of a new “inner volumetric rate” V̇∗

�
 , in terms of 

the outer geometric rate V̇� and another function, �
�

:

(35)�̇�
−1

→ TCM → �̇
�

(36)�̇�
−1

→ V̇� → FCM → �̇�

�
→ �̇

�

where 
⟨

V̇�

⟩

 is the same as the rate V̇  of change of overall 
specific volume. The function �

�
 may depend on other fac-

tors in the model, and is herein called a “spreading coef-
ficient”, because the effect of the last term is a spreading of 
strain rates from different directions. Taking averages gives:

Hence, while the average inner rate equals the overall 
volumetric rate in a purely volumetric deformation, inde-
pendently of the spreading coefficient, it does not equal this 
for a general deformation unless it happens to be the case 
that 

⟨

��

⟩

V̇ =

⟨

�� V̇�

⟩

.
Let �∗

�
 be a function that is work-conjugate with V̇∗

�
 . One 

might call this an “inner” stress function. In the context of 
functions, “work-conjugate” would mean that, for all possi-
ble outer functions V̇� , the rate of working can alternatively 
be calculated using the following equations analogous to 
Eqs. 23, 24:

Using Eq. 37 to substitute for V̇∗

�
 , then taking the aver-

age, gives:

Using Eqs. 23, 24 to substitute for the work rate on the 
left, and using the swap property (Eq. 13) on the last term 
inside the outer averaging operator on the right gives:

It seems natural to expect that the outer stress is given 
by the quantity inside the curly brackets. However, Eq. 25 
imposes six constraints of V̇� , and the extraction property 
(Eq. 14) implies that:

where 
⟨

Ẇ
��

�

⟩

= 0 . If the principle of freedom from tensor 

constraint is adopted, one can now proceed as follows. First, 
referring to the patch on the sphere in Fig. 1, a function �� 
for direction ψ is defined such that it is large and finite and 
constant for the patch, and zero everywhere. Using this as 
V̇� gives, on calculating the integrals:

(37)V̇
∗

�
=

(

1 − ��

)

V̇� + ��

⟨

V̇�

⟩

(38)
⟨

V̇
∗

�

⟩

=

(

1 +

⟨

��

⟩)

V̇ −

⟨

�� V̇�

⟩

(39)Ẇ
�
=

⟨

Ẇ
∗

�

⟩

(40)Ẇ
∗

�
= −�∗

�
V̇
∗

�

(41)Ẇ
�
= −

⟨

�∗

�

(

1 − ��

)

V̇� + ���
∗

�

⟨

V̇�

⟩

⟩

(42)−

⟨

��

�
V̇�

⟩

= −

⟨{

�∗

�

(

1 − ��

)

+ ���
∗

�

}

V̇�

⟩

(43)��

�
V̇� =

{

�∗

�

(

1 − ��

)

+ ���
∗

�

}

V̇� + Ẇ
��

�
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Dividing each side by �� then gives a relation for the 
patch around direction ψ. Doing the same for each patch, 
then taking the limits as the patch sizes tend to zero (assum-
ing that any fractal effects can be managed) gives:

This is an assembly equation for the outer stresses in 
terms of the inner stresses, ensuring work conjugacy. It hap-
pens to have the property that the average outer stress equals 
the average inner stress (which means that both averages 
always equal the mean normal effective stress). Appendix 2 
derives the inverse, giving the inner stress function in terms 
of the outer stress function.

3.6  Determinism and locality revisited

If the representation of spreading using a function �
�

 is 
valid, then Eq. 37 implies that the inner variables are local 
variables just as the outer ones are. In effect the spreading 
is assumed to happen only within a “large point”, and to not 
violate the principle of local action.

In a continuum context, Eq. 37 is one example of a wide 
range of possibilities of relating outer functions to functions 
that may have some more direct role in continuum constitu-
tive behaviour. This raises the possibility that, in general, 
the constitutive roadmap of Eq. 36 can be further expanded 
as follows:

where ICM represents an “inner constitutive model” that 
is somehow simpler than the models at other levels. For 
example, the inner equations for a given direction ψ will not 
necessarily need to use all the information available from 
all other directions.

3.7  Mechanical consistency

Nothing in the above algebra restricts the direction ψ to 
be fixed in relation to an external coordinate frame. It may 
alternatively be the direction of a material vector, which can 
change in a stress–strain process.

In this second case, ψ itself has a rate of change. In Fig. 1, 
the directions and the size of the patch will all change, and 
this will affect the calculation of the change of the average 
of any general function Q

�
 . To calculate the effect, it is con-

venient to re-state the integral of Eq. 6 as a limit as the sizes 
of patches covering the sphere tend to zero, or equivalently 
as the solid angles that they subtend tend to zero:

(44)−��

�
�� = −

{

�∗

�

(

1 − ��
)

+

⟨

���
∗

�

⟩}

��

(45)�
�

�
=

(

1 − �
�

)

�
∗

�
+

⟨

�
�
�
∗

�

⟩

(46)�̇�
−1

→ V̇� → V̇
∗

�
→ ICM → �̇∗

�
→ �̇�

�
→ �̇

�

Differentiating with respect to time, and noting that the 
solid angle has a rate, gives:

The rate of change of the solid angle can be obtained by 
expressing Eq. 7 in terms of finite patch sizes, so that:

This is an exact equation involving finite quantities, so 
there is no difficulty in differentiating it with respect to time, 
giving:

The first fraction on the right is the rate of change of vol-
ume divided by volume, which can be expressed in terms of 
specific volume as V̇∕V  . The second fraction is the rate of 
extension strain of a material vector in direction ψ, which 
can be calculated from Eq. 29 (recalling that �̇� is positive 
in compression while ṙ�∕r� is positive in expansion). Using 
these results in Eq. 48, then taking the limit as the patch 
sizes tend to zero, gives:

The first equation shows that, when ψ represents material 
direction, the rate of change of an average is the sum of the 
average of the rate of change of the quantity and an extra, 
geometric effect. The second shows that this is due to the 
rate of change of solid angle. This might be called a “bunch-
ing effect”, with ġ� being negative if material directions in 
the neighbourhood of ψ are changing in a way that makes 
them bunch together, and positive if they are spreading.

The above results are new in the sense that they show 
that the bunching effect is a real feature of behaviour that is 
implied by classical tensor mechanics but is not explicitly 
recognized in classical tensor mechanics. Equation 51 might 
be called a “general bunching equation”. Its effects for the 
Cauchy stress rate are described in Appendix 3. Taking the 

(47)
⟨

Q�

⟩

= lim
���→0

∑

patches

Q�

���

4�

(48)

.�
Q�

�
= lim

���→0

�
patches

⎛
⎜⎜⎜⎝
Q̇�

���

4�
+ Q�

.

���

4�

⎞
⎟⎟⎟⎠

(49)��� = 3
�v�

r
3

�

(50)
.

��� =

.

�v�

�v�

��� − 3
ṙ�

r�

���

(51)
.

⟨

Q�

⟩

=

⟨

Q̇� + Q� ġ�

⟩

(52)ġ� =

.

d��

d��

=

V̇ − V̇�

V
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average of both sides of Eq. 52, and using Eq. 30, gives 
⟨

ġ�

⟩

= 0 . This is expected since there is no change to the 
total solid angle subtended by the full sphere of Fig. 1.

3.8  Thermodynamic consistency

Collins and Houlsby [19] developed a thermodynamic analy-
sis for granular materials subject to continuum stress–strain 
events. They showed that, under conditions of equilibrium 
and constant temperature (isothermal), work is used up as 
follows:

where Ḣ′ is the change of the Helmholtz free energy H′ per 
unit particle volume. Ẇ ′

d
 is the rate of work or energy loss in 

irreversible, dissipative processes such as those associated 
with frictional sliding, contact damage, or particle crushing. 
Ẇ

′

d
 is truly irreversible. It is non-negative in the sign conven-

tion used herein.
Collins and Houlsby [19] derived their equation on the 

basis of the familiar assumptions of small deformation 
theory, including the assumptions represented (in different 
notation) in Eq. 26 of the present paper. In effect then, their 
result is applicable as a local theory. An important implica-
tion relates to the concept that has become known as the 
“exploitation of the entropy principle” [17, 75]. The issue 
was addressed by Coleman and Noll [18] in the context of 
heat conduction, which requires that there be a spatial gradi-
ent of temperature, and by Liu [46] and others, and the two 
papers were discussed by Triani et al. [76]. In the present 
paper, the deformation gradient is the only spatial gradient 
involved: the assumption is therefore formally required that 
this gradient does not affect the basic constitutive behaviour 
of a large material point.

Collins and Houlsby’s [19] derivation is such that Ḣ′ 
includes the reversible component of the change of entropy 
in addition to change of strain energy. Consequently, the 
terms on the right of their equation are not in general the 
same as the elastic and plastic components of work that are 
often assumed in plasticity models [37]. In those models, 
plastic work is the net work done in a closed stress cycle. 
By contrast, dissipative work is here taken to be associated 
with the irreversible component of change of entropy that 
occurs in a stress–strain process that is not necessarily a 
closed stress cycle, and is not necessarily a loading process.

If the inner work equals the outer work, no loss of gener-
ality occurs if the work rate in Collins and Houlsby’s [19] 
original equation is taken to be the average 

⟨

Ẇ
∗

�

⟩

 of the 

inner work rate. It seems natural to consider whether there 
might be materials for which the Helmholtz energy and dis-
sipated work are also averages, so that:

(53)Ẇ
�
= Ḣ

�
+ Ẇ

�

d

Differentiating the first equation with respect to time, and 
using the general bunching Eq. 51, gives:

with ġ� given by Eq. 52 if ψ represents a material direction, 
or with ġ� = 0 if ψ represents direction fixed with respect to 
an external coordinate frame. Ḣ′

�
 would be the rate of change 

of a Helmholtz free energy that is associated with direction 
ψ, and Ẇ ′

�d
 would be a rate of dissipation of work or energy 

in particulate processes associated with direction ψ. Putting 
these results into Eq. 53 then gives:

The averaging operator is linear (Eq. 12), so the two 
averages on the right can be combined into one. Using the 
extraction property (Eq. 14) then gives:

where 
⟨

Ė
�

�

⟩

= 0 . This is now an equation that involves only 

quantities for direction ψ. It might be regarded as the funda-
mental work-balance equation for a postulated class of mate-
rials for which Eqs. 54, 55 have physical meaning.

The balance is between two inputs on the left and three 
outputs on the right. On the left, the inner work Ẇ∗

�
 can be 

known in a calculation once the strain rates are known. It 
is calculated using Eq. 25 and whatever is found to be the 
relation between outer and inner geometric rates, an example 
being Eq. 37. The second input is Ė′

�
 . This is interpreted as 

energy that is transferred into particle mechanical processes 
associated with direction ψ from particle mechanical pro-
cesses associated with other directions. These would be local 
transfers, occurring inside the “large point”. Experimental 
evidence that supports their existence is discussed later.

The right side of Eq. 58 contains three ways the inputs are 
used. One is the change the Helmholtz energy, one is to 
account for the bunching effect. The third is in dissipated 
work. Appendix 4 derives the relation between Ẇ ′

�d
 and a 

cumulative dissipated work function.
Equation 58 provides the following guide as to what a 

continuum constitutive model is required to do, and what 
kinds of assumptions it needs to provide. Since the inner 
work rate and the bunching effect can be calculated if the 
strain rates are known, all that remains for a model to do is:

(54)H
�
=

⟨

H
�

�

⟩

(55)Ẇ
�

d
=

⟨

Ẇ
�

�d

⟩

(56)Ḣ�
=

⟨

Ḣ�

�
+ H�

�
ġ�

⟩

(57)
⟨

Ẇ∗

�

⟩

=

⟨

Ḣ�

�
+ H�

�
ġ�

⟩

+

⟨

Ẇ �

�d

⟩

(58)Ẇ∗

�
+ Ė�

�
= Ḣ�

�
+ H�

�
ġ� + Ẇ �

�d
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1. provide rules for calculating two of the functions Ė′

�
 , 

Ḣ
′

�
 , and Ẇ ′

�d
 for a given input function Ẇ∗

�
 , (the balance 

equation will then provide the means of calculating the 
third of the three functions), and

2. provide rules for inferring the inner stress rates from the 
results.

For example, if a relation between energy and stress is 
used to solve the second requirement, the rules needed in the 
first would need to result in equations for the receipts and the 
dissipated work rate, given the inner work rate.

3.9  Large deformations

The derivations above are in terms of work rates, and the 
equations can be readily converted to infinitesimal (incre-
mental) form by multiplying by an infinitesimal increment 
of time. There remains the question of whether the results 
are applicable to realistic stress–strain processes for granular 
media, which typically involve finite deformations, and often 
involve very large deformations [5, 10, 62].

A simple procedure by which the present equations can 
be used is proposed as follows. First, a large deformations 
process is discretized into a number of small increments. In 
an increment, small deformations are obtained by multiply-
ing rates by the relevant small time increment. The proposed 
procedure will use the directions ψ as material directions 
for the increment, and these will in general also have a rate 
of change. The bunching effect will therefore need to be 
included.

At the end of the constitutive calculation for the incre-
ment, the material directions are now different, and all the 
functions of direction (such as Helmholtz energy) now refer 
to the new directions. Let us re-name the new directions ζ, 
so that the new Helmholtz energy is now H′

�
 . The relation 

between ζ and the original directions ψ at the start of the 
increment is known because the incremental strain is known. 
So it is now possible to re-cast H′

�
 as a new function H′

�
 of 

the directions ψ as they were at the start of the increment. 
This is now the energy function that will apply at the start 
of the next increment.

If this proposed procedure is done for every increment on 
the deformations path, the final result is a function H′

�
 that 

describes the material state at the end of the path in terms of 
directions that have not changed since the start of the path.

The procedure is similar in concept to a re-meshing 
method used in a large-strain finite element analysis. Further 
aspects of the use of meshes to represent the continuous con-
stitutive functions are discussed later.

4  Examples of simple constitutive models

4.1  Preliminary considerations

The aim of the following presentation is to explore the use 
of the functional representation of stress in the context of 
some relatively simple constitutive behaviours. This is found 
to lead to potentially new understandings of the particle 
mechanical origins of some elastic parameters and of criti-
cal and steady states. However, these results would need to 
be verified by future DEM simulations. The exploration also 
sheds potential light on anisotropy and plastic spin. Again, 
these results would need to be confirmed in further work.

For simplicity in the following, strains and rotations are 
assumed to be small so that their products can be neglected. 
Direction ψ is taken to be relative to a fixed external frame, 
so that the bunching effect does not appear in the equations.

4.2  Linear elastic behaviours

Linear elastic models, sometimes called Hooke’s law, are 
described for soils by Davis and Selvadurai [26], Lings [45], 
and others. The most general model has 21 independent 
material constants, but the most complex type usually con-
sidered for soils is typically either the transversely isotropic 
linear elastic (TILE) model, with rotational symmetry about 
one axis, or the fully isotropic linear elastic (FILE) model. 
Orthotropic behaviour is also sometimes relevant [24].

Linear combinations of well-connected linear elastic sys-
tems are typically linear elastic, so linear combinations of 
linear elastic relations for different directions ψ might be 
expected to be linear elastic. Since linear elastic behaviour 
is reversible, the dissipated work rate in the work balance 
would be zero, and a simple approach would be to take the 
receipts as zero. A natural assumption would be that the 
inner stress rate would be linearly related to the inner geo-
metric rate:

where the modulus K∗

�
 could be a function of direction. For 

simplicity, the following analysis assumes that the volume 
strains are sufficiently small that that changes of K∗

�
 and 

K
∗
�
∕V  are of secondary significance during a stress–strain 

process, and can be ignored in a linear analysis. Integrating 
over time then gives:

where V∗

�0
 could be interpreted as a value of V∗

�
 at zero stress. 

Using Eqs. 25 and 37 the right side can be expressed in 

(59)�̇∗

�
= −K

∗

�

V̇
∗

�

V

(60)�
∗

�
=

K
∗

�

V

(

V
∗

�0
− V

∗

�

)
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terms of tensor strain rates. If the spreading coefficient is a 
constant, there are no non-linearities involved, and the result 
can be integrated to give a path-independent relation 
between inner stress and tensor strains.

Using Eqs. 40 and 59 to calculate the inner work rate, then 
integrating the balance equation over time taking the receipts, 
bunching effect, and dissipated work as zero, and assuming 
that energy is zero at zero inner stress, gives:

This result could be interpreted as energy associated with 
direction ψ. Taking the average, Eq. 54, then gives the Helm-
holtz energy H′.

Because the inner stress is related to inner geometry 
through Eq. 60, and provided that the inner geometry can be 
related to cumulative strain by integration over time, it fol-
lows that H′ is a function of strain, implying that this model 
would satisfy the familiar continuum mechanical concept of 
a Cauchy elastic material (e.g. [70].

Lings [45] discusses the thermodynamic constraint of 
non-negative strain energy, and shows how this provides 
limits of Poisson’s ratios for transversely isotropic and fully 
isotropic linear elastic materials. These limits include those 
by Love [48], Pickering [58], and Raymond [61]. If H′ can 
be interpreted as strain energy, the above equation shows 
that the thermodynamic constraint is automatically satisfied 
if the inner modulus K∗

�
 is non-negative for all directions.

The detailed stress–strain equations are obtained by first 
substituting for the inner functions in Eq. 59. Using the par-
ticular example of Eq. 37 for the geometrical relation, and 
using the differential of Eq. 45 for the stress relation, gives:

This shows that, while outer stress is associated with 
direction ψ, it can be determined by changes of geometry 
that occur in other directions too. This equation can now be 
used with Eq. 21, in rate form, and Eq. 28 to determine the 
rate of change of the Cauchy stress tensor in terms of the 
tensor strain rates.

(61)H
�
�
= ∫

time

−�∗
�

V̇
∗
�

dt =

(

�∗
�

)2

2K∗
�
∕V

(62)H
� =

1

2

⟨

(

�
∗
�

)2

K∗
�
∕V

⟩

(63)�̇�

�
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�
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4.3  Special linear elastic behaviours

Constitutive properties of a transversely isotropic material are 
symmetric under rotation about an axis of symmetry [45, 70]. 
Taking this as the z-axis, the spreading coefficient and the 
modulus function would be a function of, at most, the polar 
angle θ (Fig. 1), and might be written as �

�
 and K∗

�
 . The inte-

grals implied by Eq. 63 then simplify considerably. Appen-
dix 5 confirms that the symmetries in the matrix of moduli 
calculated in this way are consistent with the symmetries in 
the compliance matrix given by Lings [45] and others for a 
transversely isotropic linear elastic (TILE) material.

If the spreading coefficient and modulus function are inde-
pendent of direction, they may be denoted simply as α and 
K. Appendix 6 confirms that model then reduces to one of 
a standard fully isotropic linear elastic (FILE) material. The 
inner modulus K is then found to equal the elastic bulk modu-
lus. The shear modulus is found to be given by:

The isotropic Poisson’s ratio μ is found to be given by:

The spreading coefficient has a range from minus infin-
ity to plus infinity. This equation shows that this range cor-
responds to the familiar limits of − 1 to + 1/2 on the fully 
isotropic Poisson’s ratio.

The above results represent new proposed understandings 
of what determines the isotropic shear modulus and Pois-
son’s ratio. The above equation shows that the isotropic Pois-
son’s ratio is 0.25 if the spreading coefficient is zero. This is 
in the range that is typical for loose to medium dense sand 
or sandy clay [8, 25]. In terms of the functions approach, it 
suggests that there may be little or no reversible interaction 
between directions in such soils.

4.4  Elastic behaviours: discussion

Many previous authors have attempted to relate macroscopic 
elastic parameters to particle mechanical ones. Bathurst and 
Rothenburg [2] extended Horne’s [38] work and showed how 
a simple linear contact elasticity law could be used to gener-
ate the macroscopic elastic properties of an assemblage of 
discs. Their proposals involve a two-dimensional version 
of the three-dimensional Eq. 3 used herein. Chang and Gao 
[14] and Liu and Chang [47] propose expressions for con-
tinuum elastic constants based on micromechanics includ-
ing a version of Eq. 3 of the present paper. Stránský et al. 
[71] and Kruyt [43] developed equations for an assemblage 
of spheres. Gu and Yang [32] investigated experimentally 

(64)G =
3

5
(1 − �)

2
K

(65)� =
5 − 2(1 − �)

2

10 + 2(1 − �)
2
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and through DEM modelling a problem with the classical 
Hertz–Mindlin contact law [27]. It therefore seems relevant 
to ask how the spreading function and inner elastic moduli 
might relate to these previous works.

An answer will need to take account of the loss of par-
ticle mechanical information that is inherent in the process 
of defining the stress function �′

�
 in terms of the average on 

the left of Eq. 19. This loss means that one cannot deduce 
detailed particle mechanical information from macroscopic 
parameters of this type of model, though a deduction in the 
opposite direction remains possible, from particle to con-
tinuum parameters. It follows that the spreading coefficients 
and inner stiffnesses are not necessarily fundamental micro-

scopic particle mechanical properties. Instead, they may pos-
sibly relate to mesoscopic scales, i.e. to aggregate structure 
or fabric.

4.5  Elasto-plastic behaviours (1) some preliminary 
ideas

The constitutive map of Eq. 46 indicates that there are two 
places where more complex behaviours can be introduced. 
One is the spreading relation V̇� → V̇

∗

�
 and the consequent 

conjugate stress assembly relation �∗

�
→ �

�

�
 . The second is 

the inner relation V̇∗

�
→ �̇∗

�
 . Whatever properties or behav-

iours are introduced in these places will appear in the tensor 
model �̇ → �̇

′ , typically in more complicated form due to the 
spreading and assembly processes.

A simple way to start to introduce elasto-plasticity with 
functions would be to adapt a linear-elastic model by add-
ing a yield stress �∗

�y
 as a function of direction ψ (as well 

as of stress–strain history in that direction). Figure 3 illus-
trates this for a given direction ψ, based on direct adaptation 
of basic features of the hydrostatic parts of the Cam–Clay 
models of Schofield and Wroth [64] and Roscoe and Burland 
[63]:

(a) Along the elastic lines such as EB and FC, reversible 
elastic behaviour would occur, governed by some rela-
tion that would be a development of Eq. 60 and in 
which a constant analogous to V∗

�0
 would occur, differ-

ent for different elastic lines. The soil state at a given 
time may be on different elastic lines for different direc-
tions ψ,

(b) If the stress reaches the yield limit, for example at point 
B for line EB or point C for line FC, further compres-
sion in direction ψ would cause the state in that direc-
tion to move down the elastoplastic limit line ABCD. 
On subsequent unloading, the state in that direction 
would move up a new elastic line,

(c) A no-tension limit might be imposed in each direction 
ψ. The derivation of Eq. 21 showed that �′

�
 represent 

a combination of principal values of tensors that are 
determined by contact forces and branch vectors. If 
contact forces cannot be tensile, this would suggest a 
limit of �′

�
≥ 0 in uncemented granular soils. A limit 

�
∗

�
≥ 0 might alternatively be postulated.

Item (b) introduces plastic behaviour relative to a direc-
tion ψ, so a model with this feature would certainly exhibit 
elasto-plasticity in its overall macroscopic behaviour, though 
not necessarily in accordance with conventional elasto-plas-
tic model assumptions. The modelling framework would 
allow for different behaviours in different physical direc-
tions, perhaps giving a result akin to Callladine’s [11] micro-
structural model. Whether or not a model that includes (b) 
would be realistic may depend on other assumptions, as 
discussed in general terms earlier in relation to the work 
balance Eq. 58.

One difference between this framework and some previ-
ous elasto-plastic models might be in its incremental calcu-
lation procedure. A simple procedure for this model would 
be as follows. Given the tensor strain rates �̇ over a time 
increment dt, the outer and inner changes of geometry are 
calculated. Then, independently for each direction ψ, three 
steps would be carried out:

1. a  trial calculation: the stress response to the given 
change of geometry is calculated assuming the soil state 
in that direction remains on its elastic line

2. a yield check: if the result is greater than the yield stress 
for the line, the response is recalculated using the elas-
toplastic line ABCD

3. a tension check: if the result is tensile, the stress is re-
set to zero. This would mean that this state in direction 
ψ would move up the geometric axis, such as from F 
towards E.

Fig. 3  Adapting familiar ideas to create a simple elastoplastic inner 
constitituve relation
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This simple procedure omits consideration of the receipts 
in the work balance equation, and some important aspects 
of this omission will be considered later. The simple model 
includes hardening along ABCD, softening by movement up 
the geometric axis, and induced anisotropy due to the fact 
that different directions can evolve differently.

4.6  Elasto-plastic behaviours (2) preliminary 
discussion

The preliminary considerations suggest that the develop-
ment of ideas about plasticity in the context of functions 
may require very different ways of thinking compared to 
previous conventional plasticity approaches. If yielding is 
something that occurs in terms of inner, direction-related 
variables, then

1. the question of whether loading or unloading occurs will 
need to be answered in terms of inner variables rather 
than tensor stresses, and the answer may be different for 
different directions ψ.

2. a macroscopic yield envelope and flow rule may 
be likely to be emergent properties rather than funda-
mental ones.

These features illustrate both the potential richness and 
the potential complexity of the functional approach. But also 
there can be relative simplicity: for example, the concept of 
“plastic spin” would likely not be needed, because the model 
structure in Eq. 46 is already complete, and so is expected 
to automatically create any changes of symmetry that may 
result from the different responses in different material 
directions ψ.

4.7  Elasto-plastic behaviours (3) further 
preliminary explorations

It can be interesting to briefly explore standard triaxial 
behaviours. If the spreading coefficient is a constant α, as in 
the FILE model, then the rate of change of inner geometry 
due to axial and radial strain rates �̇

a
 and �̇

r
 is calculated in 

Appendix 7 as follows:

where �̇
vol

= �̇
a
+ 2�̇

r
 is the volumetric strain rate. If 

0 < � < 1 , directions close to axial will experience faster 
compression in one-dimensional axial compression ( �̇

a
> 0 

with �̇
r
= 0 ), indicating that yielding will begin in directions 

close to vertical. By contrast, directions close to radial will 
experience faster compression in two-dimensional, radial 

(66)−
V̇∗
�

V
= 3(1 − �)

(

�̇
a

cos
2� + �̇

r
sin

2�
)

+ ��̇
vol

compression ( �̇
r
> 0 with �̇

a
= 0 ). In pure volumetric com-

pression, �̇
a
= �̇

r
= �̇

vol
∕3 , and so

for this special case. This suggests that, if the inner relations 
are also the same in all directions, the inner volumes can be 
identified with the overall specific volume in this special 
type of hydrostatic process for isotropic soils.

The next section will confirm that this is a special case, 
and that V∗

�
 cannot be identified with V in more complex 

stress–strain processes, but it is useful to first explore the 
simple case of hydrostatic processes for isotropic samples. 
The asymptotic isotropic compression curve assumed in the 
Cam–Clay models by Schofield and Wroth [64] and Roscoe 
and Burland [63] can be expressed as:

where λ is a slope constant and Γ is a positional constant. 
If the material is isotropic then all the inner stresses will 
evolve as the mean normal effective stress in these hydro-
static events. The corresponding inner asymptotic compres-
sion curve would therefore be:

Alternative formulae may be developed in the same way, 
such as the double-log proposals by Butterfield [9], Hashi-
guchi [33], Butterfield and Marchi [10]. Other inner proper-
ties might be inferable similarly, depending on modelling 
assumptions, such as the relation between Helmholtz free 
energy function H′

�
 and the inner stress and inner volume.

Finally, it is worth noting that the energy receipts term Ė′

�
 

in Eq. 58 was not used in the linear elastic models discussed 
earlier. This term provides a second connection between 
physical directions, the first being the spreading coefficient. 
It therefore seems possible that the spreading coefficient 
might represent reversible aspects of spreading, while the 
receipts represent irreversible aspects. A simple particle 
mechanical explanation might be as follows:

• the spreading coefficients model, in some average way, 
the mechanics by which a given particle equilibrates one 
inter-particle force by a combination of inter-particle 
forces at other contacts and in different directions,

• the receipts represent energy changes caused by the 
changes of these forces that would be induced if particles 
slide frictionally at inter-particle contacts.

Further work outside the scope of the present paper would 
be needed to explore this further. It would imply that Ė′

�
 

would be determined by dissipated work rates in different 

(67)−

V̇∗

�

V
= �̇

vol
=

−V̇

V

(68)V + � ln p�
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(69)V
∗

�
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directions, subject to the thermodynamic requirement that 
the average receipt is zero, 

⟨

Ė
�

�

⟩

= 0.

4.8  Critical and steady states as experimental 
evidence

Schofield and Wroth [64] define a “critical state” as one at 
which a soil element can be sheared continuously at constant 
volume and constant effective stress. An analogous concept 
is that of “steady states” [41, 60]. A critical state can also be 
interpreted as a special case of proportional straining, other 
examples of which include isotropic and one-dimensional 
compression [16, 74].

If the state of the soil does not change as shearing con-
tinues, then V∗

�
 cannot be a description of state, since any 

definite equation like Eq. 37 would mean that it does change. 
It follows that the elastoplastic curve ABCD would need 
to be defined in a different way, one for which V̇∗

�
= V̇  for 

asymptotic hydrostatic compression if the soil is isotropic, 
but for which V∗

�
 and V become uncoupled for asymptotic 

critical state deformations.
During critical state straining, the constancy of the spe-

cific volume and effective stress would suggest that inner 
parameters such as the Helmholtz energy function are also 
constant as the straining occurs. But some directions will 
receive a negative inner work rate Ẇ∗

�
 . From Eq. 66 with 

�̇
vol

= �̇
a
+ 2�̇

r
= 0 , this will occur in triaxial compression 

for directions with tan
2
� > 2 . If the rate of change of the 

Helmholtz energy function is zero, the work balance Eq. 58 
in the absence of the bunching effect then reduces to:

The right side cannot be negative, so this implies that 
sufficient energy transfers must occur between directions 
such that the receipts for the directions experiencing nega-
tive inner work rates offset the negative rates and make the 
left sides positive. In effect, therefore, critical and steady 
states are prima facie experimental evidence for the occur-
rence of receipts.

4.9  Critical and steady states as challenges

The elastic models discussed earlier did not need to involve 
receipts, suggesting that receipts may depend only on dissi-
pated work. This might be consistent with a particle mechan-
ics explanation in which receipts represent the re-distribution 
of forces in a particle aggregate after frictional slip at particle 
contacts or due to other irreversible processes. For purposes 
of discussion, a simple example of a formula might be:

(70)Ẇ
∗

�
+ Ė

�

�
= Ẇ

�

�d

where j could be a positive dimensionless material constant. 
This describes a system in which energy is transferred from 
high energy directions to low energy directions. This might 
be sufficient to prevent the energy continually increasing in 
directions for which Ẇ∗

�
> 0 , and also prevent energy reach-

ing zero in directions for which Ẇ∗

�
< 0.

However, this cannot be a complete answer, for the fol-
lowing reason. It means that the work balance equation for 
general processes would become:

The problem now is that the three-step calculation proce-
dure for the simple plasticity model can no longer be applied 
in the same way, because the average dissipated work would 
need to be known in order to do the trial calculation in step 
1, but the dissipated work will not be known until step 2 has 
been done.

One possible way to address this new challenge would 
be through modelling the rate of change of energy. If Ḣ′

�
 

involves a term that offsets the average on the left, then the 
simplicity of the calculation procedure might be recovered. 
This would be consistent with the proposed physical expla-
nation of receipts discussed earlier. It might relate to the 
familiar phenomenon of plastic hardening, and if so would 
indicate a difference compared to other plasticity models in 
the literature. Further work on this is outside the scope of 
the present paper.

5  Discussion

5.1  Nature of the new approach proposed herein

Equation 21 for the functional representation of effective 
stress was derived from the well-established DEM Eq. 3, 
which might be regarded as a mathematical representation 
of the familiar explanation of Terzaghi’s [72, 73] Principle 
of Effective Stress in terms of inter-particle forces. Equa-
tion 30 for the outer volumetric rates followed directly from 
work-conjugacy in the absence of Cosserat stress effects.

So these continuum variables provide a modelling basis 
that is consistent with a widely accepted approximation to 
the micro-mechanics of aggregates of hard, inert particles.

Bolton [6] argues that “continuum soil mechanics is 
insufficient”. Soga and O’Sullivan [69] divide models 
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into macro and micro ones. Liu and Chang [47] note that 
continuum plasticity approaches involve parameters that 
“describe directly the behavior of a particle assembly ele-
ment (macro-scale)”, which are typically measured in a 
laboratory element test. By contrast, the micro-mechanical 
approach includes parameters that describe behaviour of an 
inter-particle contact (micro-scale), and which may be “dif-
ficult or impossible to be obtained in laboratory directly”. 
The aim is to use an upscaling or other procedure to deduce 
macroscopic continuum behaviour.

Another recent example is given in the detailed microme-
chanics-based model by He et al. [35, 36], who identify a 
problem of an “overwhelming number of parameters in the 
model”. They attribute this to the complexity of granular 
materials, but it does present a challenge in terms of practi-
cal engineering application. Micro-mechanical approaches 
to continuum modelling differ from DEM approaches in that 
the latter do not necessarily involve an intermediate stage 
of a continuum model. Huge efforts by many authors over 
many decades have been made using all of these approaches.

In the fully isotropic linear elastic model explored ear-
lier, the inner modulus was equal to the macroscopic bulk 
modulus, and the Poisson’s ratio was related to the spreading 
coefficient. This suggests that the functional representation 
can involve a hybrid approach, which

• uses the basic micro–macro relationships of Eqs. 21 and 
30, and

• can include mesoscopic concepts such as the postulated 
spreading coefficients, and

• can have its parameters measurable in macroscopic, ele-
ment-scale testing

There is no implication of conflict between the various 
approaches, and one would expect that there might eventu-
ally be ways by which all three approaches can agree in their 
predictions for engineering behaviours of interest. Indeed, 
one might expect that advances in one approach may assist 
in the development of one or more of the others.

An example of potential mutual assistance and consist-
ency might be as follows. If the spreading coefficient �

�
 is a 

function of direction, then it may relate to the way particles 
interact and therefore to fabric. One might use it to define a 
variety of tensors, for example:

This would transform like stress (Eqs. 32–34). It may 
be that, if �

�
 is also a function of stress–strain history as 

experienced in terms of inner quantities, that function’s evo-
lution would constitute a fabric evolution law. Whether this 
particular � is useful or not, it illustrates the potential power 

(73)� =

⟨

3���� ⊗ �
�

⟩

of this new approach to constitutive modelling of granular 
media.

5.2  Achievements and some further considerations

The simple models developed herein confirm that modelling 
is possible and can produce useful results when functions 
are used to represent stress and strain rate. The elastic model 
reproduces the typical transversely isotropic behaviour of 
soil and the elasto-plastic one includes yield behaviours and 
other realistic features. The challenges of using functions 
to model critical and steady states have also been explored.

Features that have not been explored herein include 
the possibility of a more complex approach to the spread-
ing equations such as making the spreading coefficient �′

�
 

depend on energy ratios. It seems clear that any behav-
ioural features that are included in the inner relation will 
also appear in the overall behaviour, in more complex 
form. For instance, an entire model would be time-depend-
ent if the inner relation between V̇∗

�
 and �̇∗

�
 was.

In numerical implementation, a function of direction 
might be represented by its values for a finite number of 
directions. Several models in the literature already involve 
multiple directions, including the multi-laminate models 
[55, 65]. It therefore seems likely that functions of direc-
tion can be modelled using simple adaptations of existing 
finite element or other numerical methods.

Figure 4 illustrates this for four symmetry cases. If only 
triaxial stress–strain processes are to be explored on a fully 
isotropic or transversely isotropic material aligned with the 
axis, then only the polar angle need be discretized, and this 
would correspond to a system in which the sphere of Fig. 1 
was discretized into hoops as in Fig. 4a. If more complex 
processes are applied, both the polar and azimuthal angles 
need to be varied, and the deformation symmetries then 
indicate discretizations of one-eighth of the sphere for true 
triaxial process, or one quarter for plane strain processes 
that include simple shear. For general processes and mate-
rial symmetries, only one half of the sphere need to be 
discretized, because of the basic symmetry that the value 
of a function in a given direction will be the same as its 
value in the diametrically opposite direction.

6  Concluding remarks

This paper has proposed a continuum mechanics that is 
intermediate in detail between particle mechanics and ten-
sor continuum mechanics. The proposal provides a more 
rigorous but also simplified approach to the task of upscaling 
from particle mechanics to continuum mechanics. This leads 
to an alternative framework for the stress–strain constitutive 
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modelling of granular materials that in particular considers 
directionality.

The proposals are based on Terzaghi’s Principle of Effec-
tive Stress and on a well established result in the discrete 
element method, Eq. 3, which relates inter-particle point 
forces to macroscopic tensors. The proposed descriptions 
of stress and deformations result from organizing the infor-
mation according to the directions of the principal stresses 
associated with the effects of each particle contact in a rep-
resentative elementary volume.

The organization involves a summation (Eq. 19) that 
loses some particle mechanical information, so the proposed 
descriptions lose part of the explicit link between particu-
late-level and macroscopic behaviours that a full discrete 
element method or a fundamental micro-mechanical deri-
vation of macroscopic behaviour might provide. However, 
analysis of elastic behaviour suggested that the new frame-
work may provide a link to mesoscopic, aggregate or fabric 
properties.

The framework was shown to satisfy Noll’s Axioms of 
constitutive modelling. A principle of freedom from tensor 
constraint was proposed. A general structure for constitutive 
models employing functions was inferred from the Axiom 
of Determinism, Eq. 46. A new work balance equation 

was derived, based on Collins and Houlsby’s [19] thermo-
mechanics. A “bunching” effect was identified and included 
in this equation.

Familiar linear elastic models of soils—fully isotropic 
and transversely isotropic—were shown to be readily 
expressed in terms of functions of direction. The assump-
tion of non-negative strain energy, which produces all the 
known limits on Poisson’s ratio [45], is expressed by the 
simple criterion that the inner modulus function K∗

�
 is non-

negative. For the fully isotropic linear elastic (FILE) model, 
the spreading coefficient is independent of direction, and 
determines Poisson’s ratio though Eq. 65.

By adding a yield stress function to the isotropic model, 
it was argued that a simple elasto-plastic model can cer-
tainly be obtained. A model so constructed will be able to 
allow for different hardening in different physical directions, 
thereby providing opportunities for modelling induced ani-
sotropy. The structure of Eq. 46 also means that the model 
is complete, so that one can expect that the phenomenon 
that is interpreted as “plastic spin” in a tensor context would 
emerge automatically from a functional plasticity model, 
without the need for a separate concept of spin. The new 
proposals also create the potential for new approaches in 
numerical analysis methods, which were briefly discussed.

Fig. 4  Discretizations of direc-
tion for various symmetries a 
standard triaxial b true triaxial 
c plane strain in the yz plane d 
general

(a) (b)

(d)(c)
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A future challenge will be to find the required additional 
constitutive assumptions that can lead to a good match 
between model and data. Proposing such assumptions in 
detail is outside the scope of this paper, but some general 
aspects have been briefly discussed in relation to the model-
ling of critical or steady states.
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Appendix 1: The complement function

The complement A†
�
 of a function A′

�
 is conveniently defined 

as the average of the function over directions normal to ψ. 
One way to calculate its value for a given ψ would be to 
define a new coordinate frame whose z-axis is in direction 
ψ. One might denote polar and azimuthal angles measured 
in this frame as �� and �� . Then:

where A′

�
 inside the integral is evaluated on �� = �∕2 . The 

derivation of the stress Eq. 21 shows that the value of the 
stress function �′

�
 in direction ψ represents principal val-

ues of tensors one of whose principal directions is ψ. The 
complementary stress function �†

�
 might be interpreted as 

representing an average of all the principal values normal 
to direction ψ.

(74)A
†
�
=

1

2�

2�

∫
��=0

A
�
�

|
|
|��=�∕2

d��

Appendix 2: Inverse of Eq. 45

Multiplying both sides of Eq. 45 by �
�
∕
(

1 − �
�

)

 , (assuming 
that �

�
 is not 1 for any direction), then taking the average, gives:

Using this to substitute for 
⟨

�
�
�
∗

�

⟩

 in the original Eq. 45 

and re-arranging then gives an expression by which the inner 
function can be calculated if the outer function is known.

Appendix 3: Material directions 
and the calculation of stress rate

The general bunching Eq. 51 applies whenever the directions 
ψ are considered to be material directions, which can change 
during a stress–strain process. Applying this when differen-
tiating Eq. 21 for the Cauchy stress tensor gives:

The first term on the right involves the rate of change of 
the stress function. It is proposed that this be interpreted 
as the constitutive effect in the context of the functions 
approach. This is the only term that is needed if directions 
ψ are fixed relative to an external frame.

The second and third terms apply if ψ represents material 
direction. The second term is explored below. The third term 
is the bunching effect.

Let �
�
 be the value of a unit material vector at the current 

configuration. That material vector may have been in a dif-
ferent direction ζ and been associated with a different unit 
vector �

�
 at the reference configuration, such that:

where the denominator is needed because �
�

 is defined as 
a unit vector. Using the facts that the dyadic product of the 
vectors is the first vector post-multiplied by the transpose 
of the second, and that the squared-length of a vector is its 
scalar product with itself, gives

(75)
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Differentiating this expression and using Eq. 26 and 
the fact that the rotation rate �̇ is anti-symmetric while the 
strain rate �̇ is symmetric, gives:

where �̇� is the direct strain rate in the direction ψ (Eqs. 28, 
29). The first term on the right is a simple effect of rota-
tion. It is expected because a body rotation will cause the 
principal directions of the tensors �

ic
 in Eq. 17 to rotate too. 

The second term is an effect of shear straining relative to 
the direction ψ.

Appendix 4: Material directions 
and cumulative dissipated work

The work balance Eq. 58 contains a dissipated work rate. 
If an analysis uses ψ as a fixed direction in relation to an 
external coordinate frame, then a straightforward integral 
over time will give the cumulative dissipated work associ-
ated with any direction, and the average will give the net 
cumulative dissipated work.

However, the calculation is more complex if an analysis 
uses ψ as a material direction. To clarify this, it can be 
helpful to start by defining a function C′

�d
 such that, for the 

directions contained within a solid angle d�� , the cumula-
tive dissipated work is:

The net cumulative dissipated work W ′

d
 is just the inte-

gral over all directions:

Consider an increment of behaviour that takes place 
over a time increment dt. If the dissipated work rate is Ẇ ′

�d
 

for this increment, then the cumulative dissipated work per 
unit particle volume for these material directions at the 
end of the time increment is:

If Ẇ ′

�d
 is non-negative, this cumulative value will not be 

less that the cumulative value at the start of the increment, and 
it follows that the integral sum over all directions also will not 
be smaller at the end of an increment than it was at the start. 

(79)
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(80)C
′

�d

d��

4�

(81)W
�

d
= ∫ C

�

�d

d��

4�

(82)
(

C
�

�d
+ Ẇ

�

�d
dt

)d��

4�

This confirms that the second law of thermodynamics is 
obeyed. The net rate of dissipated work is:

However, material directions have changed relative to a 
fixed external frame, the solid angle subtended by these mate-
rial directions has changed, and from Eq. 52 the new solid 
angle is d��

(

1 + ġ�dt
)

 . Let C�

�d
+ Ċ

�

�d
dt be the new value of 

the cumulative dissipated work function, so that the cumula-
tive dissipated work for these material directions is:

at the end of the time increment. Equating this to the value 
given by Eq. 82 gives, after re-arrangement:

Using Taylor’s theorem to expand the denominator as a 
multiplier, cancelling the term C′

�d
 which then appears on both 

sides, dividing the result by dt, and then taking the limit as dt 
tends to zero, gives:

Re-arranging, then taking averages of both gives:

This is consistent with the general bunching Eq. 51. It 
shows that cumulative dissipated work is the function C′

�d
 

whose rate satisfies Eq. 86 for a given dissipated work rate 
Ẇ

′

�d
 . C′

�d
 may in some cases reduce with time for some direc-

tions, even though the rates Ẇ ′

d
 and Ẇ ′

�d
 remain non-negative. 

This appears to be a subtle effect of bunching that remains 
consistent with the laws of thermodynamics.

Appendix 5: Transversely isotropic linear 
elastic (TILE) model

A method for constructing linear elastic models with func-
tions was discussed in the main text, with the simple spread-
ing relation in Eq. 37 being used in combination with Eq. 59 
to give the stress function in Eq. 63.

For a transversely isotropic material with the z-direction 
as the axis of symmetry, the relevant material functions will 
also have this symmetry, and so be functions of polar angle 
only. To denote this, it can be helpful to denote them as 

(83)Ẇ
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�
�
 and K∗

�
 respectively. In combination with the symmetry 

that a relevant function has the same value in diametrically 
opposite directions, this means that the functions will be 
such that:

A simple example would be �
�
= 1 + k cos 2n� , where k 

is a dimensionless constant and n is an integer. Replacing θ 
with π−θ leaves the value of the function unchanged.

Equation 63 has four terms on the right. Each is used in 
the integration processes needed to calculate the six compo-
nents of the Cauchy stress tensor. Table 1 gives a convenient 
way of assembling the integrals involved in the first term on 
the right. Expanding this term using Eq. 28 gives:

 
This is written in stylized form along the second line of 

the table, and the first line contains the expressions for the 
unit matrix components. Down the first column, the multi-
pliers needed for the six components of the Cauchy tensor 
are written. In the central cells of the table, the relevant 
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Table 1  Calculation grid for term 1 in the TILE model (color table online)

· ·· · · ·

Table 2  Parameters in equations for simple linear elastic models

(a) Transversely 
isotropic model

A = 3P + 2S + U

B = P + 2S + U

C = R + S + T + U

D = Q + 2T + U
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products of the unit vector components are written. These 
would be integrated in order to obtain the relevant compo-
nent of the answer. For example, the top left cell contains 
the terms involved in the following integral for the effect of 
�̇

xx
 on �̇′

xx
:

where sin
4 � cos

4 � is written in the top left cell. Because the 
spreading coefficient and inner modulus depend only on θ, 
the integral can be readily separated into one over θ and one 
over ϕ. Doing the one over ϕ then gives:

The remaining integral will depend on the particular forms 
of the spreading coefficient and modulus function. The 36 ele-
ments Table 1 as a whole form a symmetric matrix which can 
be considered to consist of four 3x3 blocks. The integrals for 
the cells in the blocks at top right and bottom left evaluate to 
zero for the present symmetries, as do the integrals for the off-
diagonal cells in the block at bpttom right.

The integrals for the second, third, and fourth terms in 
Eq. 63 are simpler, and the final results for the effective 
stress tensor rate have the following form:

where parameters A–F are given in Table 2a. These six param-
eters are related because A = B + F , so there are five inde-
pendent parameters. This is consistent with Lings [45] who 
also found five (though expressed differently from herein).

Appendix 6: Fully isotropic linear elastic 
(FILE) model

For a fully isotropic material, no constitutive properties 
can depend on direction, so the spreading coefficient �

�
 

reduces to a constant α and the inner modulus K∗

�
 reduces 
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to a constant K. The integrals simplify dramatically, as indi-
cated in Table 2b, so that the result takes the following form:

This stiffness equations for the standard FILE model 
can be obtained by inverting the compliance equations 
given for example by Davis and Selvadurai [26], and the 
results can be written in the following form:

where E is Young’s Modulus, μ is Poisson’s ratio, and G 
is the shear modulus. Comparing the two equations for the 
normal stress rates shows that the ratio B/A in the first equals 
the ratio �∕(1 − �) in the second. Using Table 2 for A and B 
then leads to Eq. 65 for the Poisson’s ratio.

The relation for the bulk modulus K can be deduced 
similarly, or by taking averages of both sides of Eq. 59, 
with K∗

�
= K , giving:

If �
�
= � , Eq. 45 implies that 

⟨

�̇∗

�

⟩

 is the rate of change 

of mean normal effective stress, and Eq. 37 implies that 
⟨

V̇
∗
�

⟩

∕V  is the negative of the volumetric strain rate. 

Hence the above equation implies that K is the bulk 
modulus.

Appendix 7: Standard triaxial conditions

Equation 66 applied for the special case of a speading 
coefficent that is independent of direction, and was derived 
as follows. Firstly, the deformation rate tensor �̇�

−1 and 
the strain rate tensor �̇ for a standard triaxial process with 
direction z being the axial direction satisfy the following 
relations:
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Using this in Eq. 25, and with Eqs. 4, 5, gives the cor-
responding expression for V̇� . Using the result to substitute 
for V̇� in Eq. 37 then gives Eq. 66.

If the material is isotropic or transversely isotropic, the 
inner stress state will have rotational symmetry about the 
vertical axis, and the inner stress function will be express-
ible as a function �∗

�
 of the polar angle θ (Fig. 1). With the 

spreading coefficient independent of direction, equation 45 
then gives:

Taking averages confirms that the average of the inner 
stress equals the average of the outer, which was shown 
in the main text to equal the mean normal effective stress. 
Using this result in Eq. 21 then gives the following results 
for the axial and radial components of the effective stress 
tensor:

for this special case. Because a relevant function has the 
same value in diametrically opposite directions, the extra 
rotational symmetry about the z-axis due to the standard 
triaxial condition also implies that the stress function will 
have the same values for a given θ as for π−θ.
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