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Three-dimensional digital images are encountered m a variety of problems, including 
computed tomography, biological modeling, space planning, and computer vision. A wide 
spectrum of data structures are available for the computer representation of such images. 
This paper is a tutorial survey of three-dimensmnal spatial-data representation methods 
emphasizing techniques that apply to cellular (or voxel-based) images. We attempt to 
unify data structures for representing interior, surface, and structural information of 
objects in such images by companng their relative efficmncy. The derivation of high-level 
representatmns from serial sectmn images is also discussed The representations include 
topological representations (Euler characteristic and adjacency trees), geometrical 
representatmns {borders, medial axes, and features), and spatial organization 
representations {generalized cyhnders and skeletons). 

Key Words and Phrases three-dimensmnal analysis, image-data structures, pattern 
representatmn, computed tomography, computer wsmn, Linage reconstruction, computer 
graphms, space planning, three-dLmensional features 

CR Categorws: 3.6, 5.3, 8.2 

INTRODUCTION 

New challenges have been created in the 
field of image analysis and pat tern  recog- 
nition by the introduction of modern  image- 
data  collection techniques such as com- 
puted tomography,  scanning electron mi- 
croscopy, and digital stereoscopy. These  
methods  make possible the computat ion of 
the three-dimensional  (3D) s tructure of 
scenes, ranging from organs interior to the 
human  body to rock microstructures,  in the 
form of a 3D array of numbers.  Developing 
systems for processing and displaying these 
images has revealed the need for developing 
new data  structures, and more generally, 
for developing spatial-knowledge represen- 
tat ion schemata.  

While numeric-computat ional  methods  
of picture-processing and symbolic-compu- 
tational methods  of image analysis have 

evolved over the past  two decades, repre- 
sentat ion methods  have primarily con- 
cerned two-dimensional (2D) images (e.g., 
optical character  recognition and chromo- 
some analysis) and monocular  2D projec- 
tions of 3D scenes (e.g., remote  sensing). 
Methods  for handling t rue 3D digital im- 
ages are now being developed for tasks such 
as the display of cross-sectional and 
shaded-surface reconstruct ion images on a 
graphics terminal,  quanti ta t ive measure- 
ment  of 3D shape, and computer  under- 
standing of spatial organization. In this pa- 
per we review some of the more promising 
approaches for the representat ion of 3D 
discrete images. Since the topic covers a 
wide spectrum of techniques, from data 
s tructures for image intensity arrays to 
knot ty  problems of knowledge representa-  
tion, and since much  of the l i terature is 
very recent  (and somewhat  inaccessible), 
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this review is not intended to be a compre- 
hensive survey. The methods discussed are 
primarily concerned with discrete images, 
with emphasis on image analysis applica- 
tions. Although some of the relevant results 
of computational geometry and topology 
are touched upon, we do not consider con- 
ventional 3D techniques such as those used 
in flight simulators, animation, and com- 
puter-aided design. 

1. APPLICATION AREAS 

The method of computer representation of 
a 3D digital image is necessarily influenced 
by the processing for which the represen- 
tation is used. It is thus useful to begin with 
the problem domains in which the methods 
discussed here are applicable. Each of the 
following domains have the common char- 
acteristic of the image being in the form of 
a 3D array, or equivalently, a folio of 2D 
images of serial sections. 

Perhaps the most significant of the new 
3D scanning techniques is the process of 

computed tomography (CT). Essentially, 
the attenuation caused by each object point 
(referred to as a CT number) is recon- 
structed from a set of translucent projec- 
tions (such as by x-ray, emission, ultra- 
sound, or nuclear magnetic resonance 
(NMR)) of the object [GoRD74, ALTS81]. 
CT is useful for reconstructing internal 
parts of the human body such as the brain, 
the skull, and the heart. The potential of 
CT to reconstruct industrial objects for 
nondestructive testing is now being ex- 
plored [KRUG78]. Figure 1 shows an ex- 
ample of a 3D image of the human body 
produced by CT. 

Methods of 3D image representation are 
needed in quantitative microscopy 
[DEHO75]. In the analysis of biological mi- 
crostructures, such as neurons and blood 
vessels, the object is physically sliced in 
parallel planes and each slice is photo- 
graphed and the photograph digitized 
[REDD78]. Computer serial section meth- 
ods are also useful in the analysis of grain 
microstructures in rocks and metals 
[BARR70], where sections are obtained by 
repeated polishing of the surface. Pattern 
recognition techniques for identifying 3D 
geometrical structures are also required in 
pharmacology and x-ray crystallography 
[LESK79]. 

The analysis of time-varying 2D images 
is a problem where certain 3D representa- 
tions are useful. Here a stack of successive 
frames in a time sequence of 2D images 
constitutes the 3D arrays. As opposed to 
the intraframe approach of image analysis, 
for example, in detecting the boundary of 
an object in each frame, the 3D approach 
not only tends to be more efficient but also 
is necessary to preserve time continuity 
[UDuP79]. 

To a lesser extent, the methods discussed 
here are applicable to the domain of com- 
puter vision in which the 3D description of 
an object's shape is derived from infor- 
mation encoded in images of its surface. 
Methods of mapping the 3D coordinates 
of a surface using stereopsis [GENN77, 
POTE79], laser ranging [NEVA77], shadows 
[WALT75], and shading and texture gra- 
dients [HORN75] yield partial 3D descrip- 
tions. One such description, called a 2½D 
sketch, is a data structure that contains 
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(a) (b) (e) 
Figure 1. An example of a 3D digital image. (a) CT scan of abdominal section of a patient with region of 
interest (spine) marked by a rectangle, (b) top: four consecutive slices containing only the region of interest 
marked in (a), bottom: corresponding binary slices, with elements containing bone indicated bright, all other 
elements inchcated dark, (c) shaded surface 3D display of spree represented in (a) and (b). [Adapted from Raven 
Press, "The Use of three-dimensional computer display in the study of disk disease," G. T. Herman and C. G. 
Coin, J. Cornput. Assist. Tornography 4, 4 (Aug. 1980), 564-567.] 

information about the orientation {relative 
to the viewer) of small patches of surfaces 
spaced evenly over the visual field 
[MARR78, BAJC80]. Space planning for ro- 
bot movement [EAST70] and volumetric 
modeling for mechanical engineering design 
are related problems where 3D data struc- 
tures are called for. Surveys for represen- 
tations that deal more generally with com- 
puter vision, computer graphics, and rigid 
solid objects have been done by Shirai 
[SHIR78], Badler and Bajcsy [BADL78], and 
Requicha [REQu80], respectively. 

In the application areas discussed so far, 
computer representations are needed both 
for displaying images on a graphics screen 
and for automatic analysis of images. In 
addition to cross-sectional images, it is use- 
ful to display shaded 3D reconstructions of 
objects; the reconstructions are especially 
valuable because very little is known about 
the ability of human beings to imagine 3D 
objects when presented with a series of 
cross-sectional images. Shaded reconstruc- 
tion requires the application of a sequence 
of 3D image-handling algorithms to the 3D 
intensity array; a typical sequence is image 
segmentation, boundary detection, hidden 
surface removal, and shading. Algorithms 
for performing each of the steps of 3D dis- 
play in real time are facilitated by careful 
design of data structures for image data. 
Computer recognition and description of 
objects in 3D images require more sophis- 
ticated spatial-knowledge representation 
schemes. 

2. DIGITIZATION 

Images that are produced by sensing ob- 
jects through a form of radiant energy, for 
example, by reflection, transmission, or 
emission, are inherently continuous. Com- 
puter representation of 3D images requires 
a sampling of the volume to extract a dis- 
crete set of values. Although numerically 
created images, such as CT, are obtained as 
a discrete set of values, a discretization 
process has to be introduced at some stage. 

One method of volume sampling is to use 
a regularly spaced array of points (jS, kS, 
18), whose coordinates are multiples of some 
unit distance 8. A point V---- (V1, V2, V3) 
of this array is referred to as a digitalpoint. 

We associate with each digital point V 
those points (xl, x2, x3) of continuous space 
satisfying Vi - 8/2 <_ xi < Vi + 8/2 (for 
i ffi 1, 2, 3); we refer to the resulting unit 
cube volume element as voxel V (the term 
voxel is short for "volume element," anal- 
ogous to pixel for "picture element" in two 
dimensions). Note that each digital point 
uniquely specifies a voxel and that each 
voxel contains exactly one digital point. 
This method yields a cellular or polyhe- 
dral-close-packed tessellation of the vol- 
ume. Among the five Platonic solids, tetra- 
hedron, cube, octahedron, pentagonal do- 
decahedron, and icosahedron, only the cube 
yields a close-packed tessellation; this dif- 
fers from the 2D case in which three tessel- 
lations {triangular, square, and hexagonal) 
are possible. It should, however, be noted 
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(a) (b) (c) 

Figure 2. Neighbors of a digital element in a cube array" (a) 6-neighbors (face neighbors); (b) 18-neighbors 
(face and edge neighbors), (c) 26-neighbors (face, edge, and vertex neighbors). 

tha t  when the restriction of identical Pla- 
tonic solids is removed,  o ther  3D close 
packings are possible [HILB52]. 

The  relative positions of voxels is of im- 
por tance in deriving certain representa-  
tions. For  this purpose we define the con- 
cepts neighborhood of a voxel and distance 

between voxels. 

2.1 Neighbors 

Each voxel has three kinds of neighbors, 6 
abutt ing a face of the unit  cube at  distance 
8, 12 abutt ing an edge at  distance 8 ~ ,  and 
8 abutt ing a vertex at  distance 8J'3. Similar 
to square array sampling of planes 
[RosE76], we can group these together  as 
6-, 8-, and 26-neighbors (Figure 2). We say 
tha t  if not  more than  n of their  components  
differ by 1 and the rest  are identical, then  
the two voxels V and U are n-adjacent,  
denoted  by the relation Rn for 1 _ n _< 3. 
Thus  if Di ~- I Vi - Ui ], then  

Rn -~ ((Y, V) l V ~  U, D i E  {0, 1}, 

Di <- n}. 
t 

Thus  the 6-, 18-, and 26-neighbors of V are 
precisely its 1-, 2-, and 3-adjacent voxels. 
An equivalent  definition of Rn in terms of 
Boolean functions is 

R , - -  ((V, U)IDi  ~ (0, 1} and Fn =- 1} 

m 

where F1 = D 1 . D 2 . D 3  ÷ D 1 . D 2 . D 3  

+ D__I.D2.D3, F2 = D 1 . D 2  + D 2 . D 3  

+ D1.D3,  and F 3  -- D1 -t- D2 + D3. We 
use the symbol ~n(V),  tha t  is, the  n-neigh- 
bors of V, to denote  the set (U] (V, U) E 

Rn}, whose cardinality is ~-1 2J ( j  3 ). 
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2.2 Distance 

The  Eucl idean distance between voxels V 
and U is defined as dE(V, U) = (~, (Di) 2) 1/2. 

Thus  the Eucl idean distance between the 
opposite corners of an N x N x N cube is 
N~/3 and the distance between opposite 
corners of a face of the cube is N~/2. A 
disadvantage of the Eucl idean distance is 
tha t  distance is not  always integer valued; 
modifications such as round(dE), ldEJ, 
[dE], and d~ violate the requi rement  of a 
metric. Thus  we define the following non- 
Euclidean metrics. 

Absolute  Metric. d6(V, U) =- ~ Di; tha t  
is, the  voxels at absolute distance of 1 from 
V are just  its 6-neighbors. Th e  distance 
between opposite corners of an N × N × N 
cube is 3N and tha t  between opposite cor- 
ners of a face of the cube is 2N. Voxels at 
distance _<t f rom V (analogous to a sphere 
with dE} form a cube with faces of side 
length tV2 inclined at  +_45 ° to each axis. 

Maximum Metric. d26(V, U)--max,(Di}; 
tha t  is, the voxels at  absolute distance of 1 
from V are just  its 26-neighbors. Th e  dis- 
tance between opposite corners of an 
N × N x N cube is N, which is equal to the 
distance between opposite corners of a face. 
Voxels at distance _ t  from V form a cube 
centered at  V and with side length 2t. 

The re  does not  appear  to be any simple 
metric function corresponding to dis( V, U); 
for this reason a choice of ei ther  1- or 3- 
adjacency is preferable in neighborhood 
definitions. 

2.3 Digital Image 

A 3D digi tal  zmage is a mapping that  as- 
sociates each voxel with a value; the value 
is usually of one of the types: real, integer, 



Representation of Three-Dimensional Digital Images 

or binary. When the 3D digital image is a 
sampled 3D continuous function, sampling 
is followed by quantization, a process 
which enables image representation with 
finite precision. Some problems require a 
third step, solving the correspondence 
problem of identifying the same object in 
adjacent slices. This may require a subtle 
solution, particularly when there is no 
precise control of image registration 
[REDD78]. When the 3D image consists of 
a folio of 2D slice images, the between-slice 
resolution tends to be less than the within- 
slice resolution, in which case the interme- 
diate slice images are usually obtained by 
interpolation (in a typical example, 40 CT 
slices 1.5 mm apart were interpolated to 
create 74 estimated slices 0.8 mm apart 
[ARTZ81]). 

2.4 Digital Binary Image 

A 3D digital binary image is defined by a 
function f(V), also called the characteristic 
function, whose domain is the set of all 
voxels Vand range is the set (0, 1). The set 
of voxels S = {VIf(V) = 1} is referred to 
as the object and the set S = ( V I/(V) = 0} 
is referred to as the background. 

The high-level topological and geometri- 
cal representations that are discussed later 
in this paper utilize digital binary images. 
In some application areas, the input data 
are in the form of a 3D binary array, and in 
others they are in the form of a multivalued 
(gray level) 3D image (which is quite often 
processed to yield a binary array}. We 
briefly discuss each of these cases. 

In applications such as space planning, 
the characteristic function f is specified 
by a 3D binary array with value 1 repre- 
senting full and value 0 representing void. 
Such a 3D array is obtained from continu- 
ous space using a mapping such as the 
following: if Q is a point set in 3D Euclidean 
space, then f(V) = 1 if the points of V have 
a nonempty intersection with the points of 
Q, and f(V) = 0 otherwise. An alternative 
mapping is to have ~(V) = 1 only if more 
than half the points of V are in Q. With an 
appropriately defined mapping/,  the set S 
of all voxels that have value 1 is said to be 
the digitization of Q and denoted as S = 
I(Q). 

ACT image, on the other hand, is usually 
in the form of a multivalued 3D array. The 

• 4 0 3  

process of isolating object voxels from back- 
ground voxels in such an array is known as 
segmentation. As in the case of 2D image 
processing [ROSE76], segmentation proce- 
dures for 3D images can be grouped into 
region-based and boundary-based meth- 
ods. 

A region-based method of segmentation 
is one that proceeds by assigning a voxel 
into object or background on the basis of 
partitioning an appropriate feature space 
by means of a decision function. When the 
feature used is only the value associated 
with the voxel, then the procedure is known 
as thresholding. If f(V) represents the 
value of the image at V and ~ is the range 
of f(V), then the thresholding operation is 
defined by the characteristic function 

1, if f(V) e ~ ' _ C ~ ,  
f ( V ) =  0, otherwise. 

Thresholding is effective when there is high 
contrast between object and background 
values and little clutter. An example of 
segmentation of serial section images using 
two different sets @' is shown in Figure 3. 

Boundary-based segmentation proceeds 
in two steps by detecting local edges using 
some form of 3D spatial differentiation, and 
by grouping local edges into boundary con- 
tours that separate object voxels from back- 
ground voxels. A number of 3D edge oper- 
ators have been defined for this purpose. 
They are based on the principle that the 
magnitude of the gradient can be estimated 
from the directional derivative of f (V)  
along three orthogonal directions. If Vi, 
i = 1, 2, 3, are the three derivative magni- 
tudes, then the gradient magnitude is given 
by the Euclidean norm (F., Vi2) 1/2, which is 
approximated by V1 + V2 + V3. One ap- 
proach to defining the directional deriva- 
tives [LIu77] is to use the cross operator of 
ROBE65 along mutually perpendicular 
planes. In this case, using the notation 
V, jk = (V1 + i, V2 + j, V3 + k), we get 

Vl  = I f ( V ~ )  - f ( V o . )  I 

+ If(Vo,o) - f ( V ~ l ) I ,  

V2 = [f(Vooo) - f(V, ol) l 

+ If(V, oo) - f(Voo,)I, 

V3 = If(V~) - f (vl ,o)  I 

+ If(V, oo) - f(Volo)I. 

Computing Surveys, Voi 13, No. 4, December 1981 



404 • S. N. Srihari 

: o:  

: ~ i  " . . . .  

(a) (b) 

Figure 3. Multwalued 3D tmages can be represented as binary 3D images by applying 
an image segmentation procedure. In both (a) and (b) rows 1 and 3 show (top view) 
slices 14-21 of a 64-slice NMR reconstruction of a human brain. Rows 2 and 4 are shces 
of the binary image obtained by thresholding. The range @' for (a) was chosen to include 
all voxels withm the cortex, and a much narrower range was chosen for (b). [Adapted 
with permmsion from G. T. Herman, D. M. Kramer, P. C. Lauterbur, A. M Rudin, J. S. 
Schneider, and J. K. Udupa, "The three-dimensional display of nuclear magnetic 
resonance images," Proc. 9th SPIE Conf. Applied Optwal Instrumentatton in Med~czne, 
March 22-25, 1981 ] 

Other  3D edge opera tors  have  been defined 
as generalizations of  the 2D Hueckel  oper- 
a tor  [ZUCK81] and the  2D Prewi t t  opera tor  
[MORGS0a]. A more  detailed discussion of 
the p rob lem of 3D image segmenta t ion  is 
given by  Altschuler  et  al. [ALTS81]. 

3. DATA STRUCTURES 

In 3D image analysis it is necessary to 
represent  object  information,  such as CT 
number ,  which corresponds to different ob- 
ject  points. Bu t  me thods  which store every 
object  space point  are f requent ly  excessive 
in their  space requirements .  For  example,  

if an object  can be modeled by  dividing it 
into 1000 par ts  along each axis, t hen  the 
internal  representa t ion  requires 1 billion 
points. As in the case of 2D image represen-  
tation, more  efficient me thods  of represen-  
ta t ion can be made  possible by  exploiting 
special proper t ies  of the data.  

In designing me thods  for storing high- 
resolution data,  a n u m b e r  of  trade-offs,  in- 
volving, among  others,  computa t ion  neces- 
sary to access the data, overhead storage 
needed, and visual qual i ty of display gen- 
erated,  mus t  be considered. We present  four 
different me thods  here. T h e  first is the well- 
known dope vector method  used by com- 
pilers in the linearization of mul t id imen-  
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sional arrays.  T h e  o ther  me thods  are essen- 
tially t ree da ta  s t ructures  which are suited 
for 3D region representat ion.  T h e  la t ter  
me thods  are called marginal, symmetric 

recursive, and asymmetric recursive index- 

ing, each of which requires  successively 
more  overhead storage, less computat ion,  
and more  storage efficiency with da ta  ho- 
mogenei ty .  In  the following elaborat ions we 
assume tha t  X, Y, and Z are the  three  
coordinates  which are divided into N equal  
par ts ,  giving a m a x i m u m  of N 3 da ta  ele- 
men t s  to be stored. 

3.1 Dope Vectors 

This  is an exhaust ive me thod  of represen-  
ta t ion which assumes  tha t  each da ta  ele- 
m e n t  requires  the  same amoun t  of storage. 
T h e  da ta  e lements  occupy consecutive lo- 
cations (addresses) with the first subscr ipt  
X varying mos t  rapidly, Y next, and Z least  
rapidly.  In order  to find the descr iptor  for 
index (X, Y, Z),  six compar isons  are made  
to de te rmine  whe ther  X, Y, and Z are within 
their  respect ive upper  and lower bounds; if 
so, the address  of the descr iptor  is calcu- 
la ted using the coefficients (or strides) 
Di f rom the formula  DO + (X,D1) 
+ (Y, D2) + (Z.D3). I f A  is the first address  
and indices are in ranges L1 -< X <- U1, 
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L2 _< Y _< U2, L3 _< Z _  U3, then the strides 
Di are defined as DO ffi A - [L3*(U2 - L2 
+ I)*(UI - L1 + i)] - [L2*(UI-  L1 + i)] 
-L1, DI= I, D2= U I - L I +  l, andD3 
-- [(U2 - L2 + I)*(UI - LI + I)]. The 
indexing program only needs to store the 
four so-called dope vectors: (DO), (U1, L1, 

DI), (U2, L2, D2), and (U3, L3, D3). For 
example, in the case of a 2 × 3 × 4 array 
with (LI, L2, L3) = (1, I, 1), (U1, U2, U3) 
= (2, 3, 4), and A -- 0, the dope vectors are 
(-9), (2, i, I), (3, i, 2), and (4, i, 6). Thus 
the location of element (X, Y, Z) of this 
array is given by -9  + X + 2Y + 6Z. 

This method is useful when all elements 
must be stored, as is the case with highly 
fluctuating data. Accessing an element re- 
quires two multiplications and three addi- 
tions; a parallel implementation can reduce 
the cost to one multiplication and two ad- 
ditions. Local operations are simple to im- 
plement, since if a voxel is accessed at ad- 
dress a, then its n-adjacent voxels are ob- 
tained by adding (or subtracting) the 
strides to (from) a. It follows that data in 
cross sections can also be easily obtained. 

3.2 Marginal Indexing 

This method is based on the idea of using 
a linked set of tables to store the data. In 
order to find element (X, Y, Z), Xis  used as 
an index into the first table to get a pointer 
to a second table. Then Y is used as an 
index into the second table to get a pointer 
to a third table. Each block in the third 
table contains the data for the given values 
of X and Y and varying values of Z. By 
using Z as the index, the proper element 
can be found. 

The method may be thought of as speci- 
fying a slice of the volume by X at the first 
level (root) of a three-level tree, then a strip 
of this slice by Y (at the second level), and 
finally an element of this strip by Z (at the 
third level). When all data elements of a 
slice are identical, data are stored at that 
level (either in the table or via a pointer) 
and no pointer proceeds from the first level 
to the second. Similarly, when a strip is 
homogeneous, no pointer proceeds from the 
second level to the third level. If two or 
more slices are identical but nonhomoge- 
neous, then a single copy of the slice is 
stored, in effect, with multiple pointers 
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pointing to the same slice. Similarly, when 
two or more strips are identical, a single 
copy of the strip is maintained. An example 
of this method of indexing is shown in Fig- 
ure 4 for the case of binary-valued data 
elements. The storage required by marginal 
indexing is sensitive to the ordering of in- 
dices. However, the maximum storage re- 
quired for pointers is N + N2; thus the 
storage complexity of the method is domi- 
nated by the N 3 required for data. 

Accessing data in cross-sectional slices 
and strips of slices is quite simple with 
marginal indexing. Finding the values of 
voxels n-adjacent to (X, Y, Z) is best done 
by making independent accesses through 
the data structure for appropriate combi- 
nations of X _ 1, Y _+ 1, and Z _ 1. 

3.3 Symmetric Recursive Indexing 

This method differs from marginal indexing 
in the method of partitioning the volume. 
The cubic space is subdivided into eight 
subcubes (octants) of equal volume. Each 
of these octants will either be homogeneous 
(e.g., uniform attenuation) or have some 
nonuniformity. The heterogeneous octants 
are further divided into suboctants. This 
procedure is repeated as long as necessary 
until we obtain blocks (possibly single vox- 
els) of uniform properties. The method is 
thus a 3D version of the 2D quad-tree data 
structure, which latter has been expounded 
by Tanimoto [TANI80]. 

Recursive indexing can be modeled by a 
tree of degree 8, variously referred to as an 
oct-tree [JACK80], octal-tree [SRIH80], and 
octree [MEAGS0]. Each nonterminal node 
of an oct-tree has eight successors and the 
leaves of an oct-tree correspond to data 
elements. In order to access a single point 
(X, Y, Z), the binary representations of X, 
Y, and Z are obtained as xoxl  . . . . .  XM-1, 

yoyl,  • • • ,  yM-I ,  and ZoZl, . . . ,  ZM-1, respec- 
tively, where M = log~q. At the top level of 
the tree is a table of eight elements, one for 
each octant. The index of this table, called 
s o n - t y p e ,  is obtained by concatenating the 
high bits of the X, Y, and Z coordinates. 
Thus Xoyozo selects an octant from the table. 
If that  octant is to be further subdivided, 
then x~y , z ,  selects a suboctant, and so on. 
The oct-tree representation of an object 
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X= 0 4 2 3 

Y: 0 I 2 3 

Z :  0 2 3 

(a) 

I Z= 0 4 2 

Y= o t 2 5 ~ l _  T [  l 
iol lol,, 1 _ , - I  

 ljj 
X= 0 t 2 3 X= 0 4 2 3 X= 0 1 2 3 

Io],1o1 1 Io1 1olol I,Itlo1 1 
(b) 

Storage 

Index ordering Pointers Data 

XYZ 3 13 

XZY 10 10 

YXZ 5 15 

YZX 16 12 

ZXY 12 16 

ZYX 12 12 

(c) 

Figure 4. Marginal indexing of a 4 × 4 × 4 binary array: (a) linked hst using index order XYZ; (b) equivalent 
[ist using index order ZYX; (c) storage reqmrements for 6 permutatzons of mdmes. 

is shown in Figure 5 where, again, the 
elements are binary valued. The equivalent 
list representation of this tree is 
(010(10000000)(110011(00001010)0)100). 

The maximum overhead storage required 
by the method of recursive indexing is given 
by 

M-1 N 8 - 8 
Y, 8 ' - - -  
Z~I 7 

As a comparison with marginal indexing, 
consider the case where N = 128, or each 
axis is divided into 128 equal parts. In this 
case there are a maximum of N 3, or approx- 
imately 2.1 million data items. Marginal 
indexing requires a maximum of 16,512 
pointers, or less than 2 percent of the data, 
whereas recursive indexing requires 299,592 
pointers, which is less than 15 percent of 
the data. When the arrays are sparse, these 
overheads can be expected to be signifi- 
cantly lower. As in the case of marginal 
indexing, the storage required by recursive 
indexing can be further minimized by de- 

tecting and maintaining a single copy of all 
isomorphic subtrees. 

The method of recursive indexing is par- 
ticularly suitable for hardware implemen- 
tation owing to the simple bit manipula- 
tions necessary to determine pointers at 
each level. An algorithm for generating the 
oct-tree representation of a binary image 
from the quad-trees of its slices is given by 
Yau and Srihari [YAu81a]; the method al- 
lows voxels to have "don't-care" values, 
which allows the development of a compact 
data structure even in the case of a volume 
whose sides are not a power of 2. This 
algorithm was applied to a 64 × 64 × 64 
binary array representing the human brain 
(8 of whose slices are shown in Figure 3a). 
The oct-tree, with 2539 nonterminal nodes 
over 6 levels, was constructed in 72 seconds 
on a CDC Cyber 174 computer. (Since this 
oct-tree can be completely represented us- 
ing 8 12-bit fields per nonterminal node, the 
243,744 bits needed for the oct-tree reflects 
savings over the 262,144 bits needed for the 
array.) 
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v=(YoylY2), • /  

111 [ 
110 1- 

101 ~_ 

100 I" 

011 ~_ 

010 I" 

- ~/~__(zOZlZ2 ) 

101 

' i a 000~ X=(XOXlX2)  
000001 010011 lO0 lOl 110 111 

(a) 

I Ii I 
(b) 

XoYoZo 

XlYlZ 1 0~ f1~2~3 /4 /5  16 \ 7 \  0 

x2Y2Z2 
(c) 

Figure 5. Recurswe indexing of a binary-valued 3D object: (a) object having 83 = 512 data items, (b) octant 
mdzces as specified by concatenating corresponding index bits, (c) oct-tree reqmring 37 data ztems including 
pointers. 
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Operations with Oct-Trees. Certain op- 
erations on images are simple to implement 
with recursive indexing. For instance, clock- 
wise rotation by 90 ° along an axis perpen- 
dicular to, and centered at, the midpoint of 
the YZ cross section is done by permuting 
the son-types at every node according to 
the permutation ((0, 2), (1, 0), (2, 3), (3, 1), 
(4, 6), (5, 4), (6, 7), (7, 5)}. Scaling up by 2 
is done by deleting the root node and mak- 
ing one of its 8 sons the new root. Similarly, 
scaling down by 2 is done by making the 
root node to be one of the sons of a new 
root node. 

Translation of an oct-tree-represented 
object by integer distances along the three 
axes is somewhat more involved. The goal 
of a translation algorithm is to convert both 
a source oct-tree, representing a 3D object, 
and a movement vector into a target oct- 
tree representing the translated object. The 
basic strategy is to generate node values of 
the target tree in a postorder traversal (in 
which the sons of a node are visited first) 
by simultaneously traversing the source 
tree. Each target node is compared with a 
list of the source tree's nodes whose octants 
overlap the target node's octant; thus a 
target node may derive its value from 
source nodes that  terminate at a higher 
level. Further details of this translation al- 
gorithm are given by Jackins and Tanimoto 
[JACK80].  

Since an oct-tree maintains object voxels 
in a spatially presorted format, a hidden- 
surface view can be generated without 
searching or sorting. If octants are visited 
and displayed in the proper sequence, as 
determined by the location of the viewer, 
no octant can obscure the view of an octant 
later in the sequence. Thus if voxels are 
displayed such that  later voxels overwrite 
earlier voxels on the screen, a hidden-sur- 
face view will be generated [MEAG80].  

Other operations involving spatial sorting, 
such as convex hull computation (see Sec- 
tion 5.3.3), can be performed efficiently 
with recursive indexing [YAu81b]. 

3.4 Asymmetric Recursive Indexing 

One way to extend recursive indexing is to 
employ some knowledge about the partic- 
ular volume being represented so that  its 
data structure can be more concise. In this 

method, the space to be subdivided is bro- 
ken into rectangular parallelepipeds rather 
than into cubes. Division of the space is 
done with planes perpendicular to the X, Y, 
and Z axes, but the planes are not equally 
spaced and there can be a different number 
of planes along each axis. Because the sub- 
division is variable along the axes, storage 
can be saved by intelligent subdivision. For 
example, if a very small object is to be 
represented in the middle of a large empty 
volume, the equal subdivision model will 
have to traverse many levels of the tree 
before it gets to the detail of the object. 
Using unequal subdivision, two closely 
spaced planes along each axis will exactly 
single out the object so that  the next level 
of subdivision can begin at the proper de- 
tail. 

Point accessing is more difficult with this 
model because each level of subdivision 
needs three vectors that indicate the loca- 
tion of the X, Y, and Z planes which make 
up the subspaces. The X, Y, and Z compo- 
nents of the desired point must be located 
in these vectors so that the indices can be 
used to select the proper subspace. 

The concept of asymmetric recursive in- 
dexing is illustrated in Figure 6, which is an 
oct-tree of the object in Figure 5a. In this 
model, at each nonterminal node, three in- 
dices representing the positions of the par- 
titioning planes are placed. Let (Xjk, Y~h, 
Zjk) represent the indices of the partitioning 
planes at the kth nonterminal node of level 
j, where 0 _< k _< 7, 0 _<j _< log2 N - 1. Then 
point (X, Y, Z) is accessed by selecting a 
branch at each nonterminal node by the 
concatenated bits xjyjzj, where 

1 if X>_Xjk, 

xj = 0 otherwise; 

01 if Y~-Yjk,  
YJ -- otherwise; 

1 if Z>_Zjk, 
zj = otherwise. 

3.4.1 Dtstnbuted Indexing 

A variation of asymmetric recursive index- 
i ng -one  more suitable for continuous 
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Figure 6. Oct-tree of object in Figure 5a obtained by asymmetric recur- 
sire indexing. Each nontermmal node has three indmes that  specify the 
location of partitioning planes. 

• 4 0 9  

spaces--is to break down the volume into 
rectangular parallelepipeds that are not 
necessarily aligned with an axis. The par- 
allelepipeds can be any size and orientation, 
but any point that  is not in one of these 
parailelepipeds is empty. In this scheme, 
therefore, one finds a point's attributes by 
determining which parallelepiped it occu- 
pies. If the point is found in a parallele- 
piped, then the next level of detail is ex- 
amined. This level has another set of par- 
allelepipeds that isolate the nonempty parts 
within it. Sublevels in this model operate in 
the coordinate space of the parallelepiped 
that encloses them, so accessing of points is 
done recursively. The implementation of 
this method, as proposed by Reddy and 
Rubin [REDD78], is as follows. The system 
is presented with a point {X, Y, Z) that lies 
in the object space. At the top level of the 
structure there are N transformation ma- 
trices, TI through TN, and each is a 4 × 4 
transformation that converts the object 
space point into the coordinate system of 
its parallelepiped. In this new system, the 
point (0, 0, 0) is at one corner of the sub- 
space, and the point (UX, UY, UZ) is at 
the diagonally opposite corner. The object 
space point is within parallelepiped ~ if, 
after transforming {X, Y, Z) through T, to 
become (X', Y', Z'), 

O~_X" ~ UX, AO~_ Y' 
~_ UY, A O ~ Z '  ~_ UZ,. 

If none of the parallelepipeds at a given 

level is found to contain the requested 
point, then that  point is reported to be 
empty. If the point falls within one of the 
parallelepipeds, then there is a possibility 
that it is nonempty. To find out, all of the 
subparallelepipeds within this new object 
space must be searched. The algorithm is 
recursive and the point (X', Y', Z') is ex- 
tracted from the subspace. This recursion 
continues until the level at which there is 
no more detail of the object is reached. At 
this level a point that falls within a paral- 
lelepiped is nonempty and the properties of 
the points are extracted. 

3.4 2 Dynamic Indexing 

A data structure that has been proposed for 
representing multidimensional accumula- 
tor arrays, such as those encountered in 
implementing the Hough transform (see 
DUDA73, p. 335), is known as dynamic in- 
dexing [O'Rou81]. It could also be applied 
to the representation of 3D images. 

Here the space is divided into rectangular 
parallelepipeds by means of planes perpen- 
dicular to the axes. Unlike the oct-tree data 
structure, a given rectangular parallele- 
piped is divided into only two halves {upper 
and lower) by means of a plane which is 
perpendicular to, say, the X axis, and posi- 
tioned midway along the extent of the par- 
allelepiped along that axis. The two result- 
ing parallelepipeds are divided recursively 
until each parallelepiped is uniform. The 
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Figure 7. Bmary tree of object in Figure 5a obtained 
by dynamic indexing. Each nonterminal node has an 
index that  specifies the direction of the partitioning 
plane. The left and right subtrees, respectively, de- 
scribe the upper and lower halves of the space with 
respect to the plane. 

resulting data structure is in the form of a 
binary tree, where each nonterminal node 
has an index that  specifies the direction of 
the plane as X, Y, or Z. The left subtree can 
be regarded as describing the upper half of 
the parallelepiped and the right subtree as 
describing the lower half of the parallele- 
piped. Using this convention, the binary 
tree shown in Figure 7 is an exact represen- 
tation of the object in Figure 5a. 

As in the case of other asymmetric index- 
ing methods, and unlike the symmetric oct- 
tree, the binary tree representation of a 
given image is nonunique, unless other cri- 
teria for determining the directions of the 
partitioning planes are imposed. Since the 
space is divided into only two halves at 
each level, the binary tree can be expected 
to have more levels than the oct-tree. 

4. TOPOLOGICAL REPRESENTATIONS 

Fundamental to the definition of high-level 
representations of digital images are the 
topological concepts of connectedness and 
mathematical relationships between vol- 
ume subsets (containment, adjacency, etc.). 
In this section we discuss definitions of 
connectivity, components, and holes in bi- 
nary-valued 3D discrete images and con- 

sider algorithms for deriving certain topo- 
logical representations. Some of these ideas 
are straightforward generalizations from 
the 2D case, for example, MISS72 and 
ROSE76; related ideas in discrete 3D com- 
putational topology are also given in 
GRAY70, MYLO71, PARK71, and YONE80. 

4.1 Components 

The concept of adjacency of voxels can be 
used to define connectedness of objects in 
3D discrete space. Corresponding to differ- 
ent types of adjacency, we have different 
types of connectivity. If S is a finite set of 
voxels, then two voxels V and U are n- 
connected in S if there exists a sequence of 
n-adjacent voxels (or n-path) between V 
and U, V =  v °, v 1 . . . . .  v m = U, all i n S ,  

such that v ~-1 is n-adjacent to v p, for 
1 _ p  __ m. Thus a sequence of object voxels 
that are 6-neighbors of each other is a 1- 
connected set, which is sometimes referred 
to as being 6-connected. Similarly, a se- 
quence of 26-neighboring object voxels is a 
3-connected set or 26-connected, and so on. 

An n-component of S is an equivalence 
class of the partition induced by n-connec- 
tivity on S. Further, we say that an object 
is n-connected when it has a single n-com- 
ponent. An n-connected object is also re- 
ferred to as a digital solid. In order to avoid 
the violation of certain topological invar- 
iants, the order of connectivity chosen for 

should be r~ ~ n; we limit the choice of 
(n, ~) to either (1, 3) or (3, 1). 

4.2 Holes 

In the case of 2D digital objects, holes of S 
are defined as finite components of S. This 
definition in the 3D case is equivalent to 
the notion of a cavity, as in the case of the 
enclosed space of a hollow shell. Thus we 
define a cavity of S as a finite ~-component 
of $. The background of S is simply the 
infinite ri-component of S. 

Another type of hole encountered in the 
3D case is that of a tunnel, as in the case of 
the puncture in a doughnut. A tunnel (or 
handle) is said to be formed when we take 
a solid, say a sphere, make two circular 
holes in its surface, and join them by con- 
necting the two ends of a tube to the two 
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: : ,oo" : . , o ,  

O~ect K C T V E F ~ X 

a 1 0 0 32 60 30 2 1 

b 1 0 1 32 64 32 0 0 

c 1 1 0 56 108 54 4 2 

(d) 

Figure 8. Three digital solids. (a) closed object, (b) object with a tunnel; (c) object with a cavity; (d) their 
topological invanants. 

holes. This process yields a sphere with one 
handle. Additional handles can be added by 
the same process. A sphere with one handle 
can be continuously deformed into a surface 
that can be thought of as the surface of a 
doughnut. This surface, called a toms, can 
be mathematically described by rotating a 
circle which lies in a plane about a line in 
that plane that does not intersect the circle. 
A sphere with T handles can be put into 
direct correspondence with a torus with T 
tunnels. The number of tunnels present in 
an object is sometimes referred to as handle 
number or genus of the object [BARR70]. 

The genus of a digital solid can be deter- 
mined by a property that holds for netted 
surfaces. A closed surface ~ that can be 
divided into ~faces by drawing ~:vertices 
and 8 connecting edges that are geodesics 
(shortest paths on the surface) so that faces 
are simply connected (i.e., each non-self- 
intersecting closed curve in the face can be 
deformed to become a point while lying in 
the face) is a closed netted surface. A 

topological property of such a netted sur- 
face [HILB52] is that  

Y~- 8 + ~--- 2 - 2T. (4.1) 

(From differential geometry [CoxE69], it 
can also be shown that  2 - 2T is propor- 
tional to the surface characteristic of ~, 
which is defined by the integral of Gaussian 
curvature over ~.) 

The surface of a digital solid S consists of 
square faces between the abutting voxels of 
S and S. Such a surface is a closed netted 
surface whose faces are simply connected. 
It follows that the genus of S can be deter- 
mined by counting the number of faces, 
edges (where two faces meet), and vertices 
(where four faces meet) on the surface of S. 
Equation {4.1) can be verified for the three 
1-connected digital solids shown in Figure 
8 by counting the number of faces, edges, 
vertices, and tunnels. It  should be noted 
that sometimes an edge may locally belong 
to k surfaces, in which case the edge is 
counted k times; if S consists of two voxels 
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that  touch at an edge, for example, the 
common edge belongs to two local surfaces 
and is therefore counted twice. 

4.3 Euler Characteristic 

The Euler characteristic of a 2D figure with 
K components and H holes is defined as 
X = K - H (see DUDA73). Its 3D generali- 
zation is defined (see GRAY70) for a 3D 
scene with K components, C enclosed cav- 
ities, and T tunnels as 

X = K - T + C. {4.2) 

It can be shown that  X is computable by a 
local operator, as follows. 

In general, when an object consists of 
more than one component and closed cav- 
ities are present in components, then for 
each netted surface ~ which encloses an 
object or cavity, we have from (4.1) 

- ~ + ~ i  = 2 - 2T i .  (4.3) 

For the entire object one may define a 
c o n n e c t i v i t y  n u m b e r ,  

K+C 

71 = ~. ( 2 -  2TD. (4.4) 

Combining (4.1), (4.3), and (4.4) and the 
fact that ~, T i  = T,  

K+C 

= 2  X= ~ ( ~ f ~ i - ~ i + ~ i ) .  (4.5) 

Thus the consequence of (4.5) is that the 
Euler characteristic (and connectivity num- 
ber) of a 3D object in cellular space is 
computable by a local operator that  counts 
the number of faces, edges, and vertices. 
These concepts are also illustrated in Fig- 
ure 8d. 

Consider next an algorithm to compute 
connectivity number ~ of a 3D digital ob- 
ject. Counting the contribution of each ob- 
ject voxel to ~? is rather slow since it requires 
a procedure operating on 27 voxels for each 
object voxel; and the potentially fast 
method of enumerating all possible local 
configurations and storing their individual 
additive contributions to y is impractical 
due to the 227 possible configurations. An 
alternative formulation is to visit each ver- 
tex of each object voxel exactly once and 
determine the contribution of the 2 × 2 x 

2 voxel neighborhood of the vertex to ~. 
The 2 s possible configurations can then be 
described by an 8-bit byte. The contribu- 
tion to ~ by each vertex has to take into 
account the fact that faces and edges touch- 
ing at that vertex also touch other vertices. 
Lobregt et al. [LOBR80] derive the table 
entries for the particular case where T/needs 
to be evaluated in the 3 × 3 × 3 neighbor- 
hood of an object voxel and then show them 
to belong to one of 22 basic different pos- 
sibilities. 

4.4 Adjacency Trees 

The topology of a 2D black-and-white fig- 
ure is given by its a d j a c e n c y  tree ,  a graph 
showing the containment relationship be- 
tween the background, components, and 
holes. An algorithm for constructing the 
adjacency tree of a 2D figure, which is 
based on a single raster scan, is given by 
Buneman [BtTNE69]. The adjacency trees 
of parallel 2D slices of a 3D object, together 
with adjacency information about compo- 
nents in successive slices, provides a simple 
topological representation. The adjacency 
of components in neighboring slices can be 
determined by maintaining a set of 2D co- 
ordinates corresponding to each component 
and checking for overlaps. 

Let {~,} be the forest of adjacency trees 
of parallel slices. The choice of order of 
connectivity in determining ~, is as follows: 
if n = 1 use 4-connectivity; otherwise use 8- 
connectivity. Let i j k  represent the kth node 
(component of S or ~) at the j th  level of ~,, 
and let [ i jk]  represent the set of 2D coor- 
dinates (figure) corresponding to i jk .  Then 
we define a c o m p a t i b i l i t y  relation between 
nodes as 

~bffi { ( i jk ,  i ' j ' k ' ) [ ] i  - i ' l  = 1, 

and [ i j k  overlaps [ i ' j ' k ' ] }  

where o v e r l a p  between two figures implies 
the existence of a common point (for n -- 
1), a common 4-connected point (for n = 2), 
or a common 8-connected point (for n -- 3). 

Next we show that {~,} and ~ are suffi- 
cient to determine various topological prop- 
erties. Define i j k  to be compatible to i : ] ' k '  

if and only if there exists at least one se- 
quence of the form ao, am . . . . .  am such that 
ao = i jk ,  am = i ' j ' k ' ,  and (ap, ap+l) ~ ~ for 
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Slice number 

Row number 0 and 7 1 2 and 6 3 and 5 4 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

0000000 0000000 0000000 0000000 0111110 

0000000 0000000 0000000 0000000 1000001 

0000000 0011100 0011100 0011100 1011101 

0000000 0010100 0010100 0010100 1010101 

0000000 0010100 0011100 0011100 1011101 

0000000 0010100 0011100 0010100 1010101 

0000000 0010100 0011100 0010100 1011101 

0000000 0010100 0011100 0010100 1010101 

0000000 0010100 0011100 0011100 1011101 

0000000 0010100 0010100 0010100 1010101 

0000000 0011100 0011100 0011100 1011101 

0000000 0000000 000O000 0000000 1000001 

0000000 0000000 0000000 0000000 0111110 

(a) 

000 100 200 300 400 500 600 700 

. . . . . . . . . . . .  - : _  . . . . .  

i HO 2t0 3t0 \x 4t0 / /  5t0 . 6t0 
I I 
I \ / 

, } .... ..... ,, T / ,N- ...... : 
I \ \ / / I 

/ IX ./IX,, ,, I ,, //I\ / X  , 
t20 220 221 320 321 322\\ \\420," ,/520 52"1 522 620 62t i 

~-_J.__ . e  Jt .• e. ~ \ \  ~" / /  ) t .  $ 9. ~( #Lf / 

, ,  " - , , ' ,  " ,  I ," , ,f ~'---'* 

\ ~,~. - \ / 1 1  / /  / 
x , -  x ',430, / / ,  ., 

440 44t 442 443 

(b) 

Figure  9. AdJacency tree representation' (a) data for slices 0-7; (b) the 8 adjacency 
trees of slices 0-7, where dotted lines indicate connectivity. The  object consists of two 

components, one of which has a single tunnel, the other of which has two tunnels and 
a cavity, which in turn has a tunnel 

1 _< p _ m. The  resulting equivalence classes 
of ( i jk}  represent  the components  and cav- 
ities of S; a compat ible  set  of nodes of  S is 
a component ,  and a compat ible  set  of  nodes 
of $ is ei ther a cavity or a background.  For 
a given level j ,  two compat ible  nodes i jk  

and i ' j ' k '  (i < i') are said to enclose t - 1 
tunnels if there exist t sequences of com- 

patible nodes with no two sequences aoa,, 

. . . ,  am-lam and aob, . . . . .  bm-lam having 
at = bt, ar = br for some l, r (1 _ 1 < r 
< m ) .  

The  forest  of adjacency trees of  eight 
slices of a 3D object  with n = 3 is shown in 
Figure 9. The  t rees  can also be represented  

in terms of list structures as ~o ffi ~7 ffi (0), 

~1 = (( (0))) ,  ~'2 ffi ~6 -- ( ( (0 ) (1 ) ) ) ,  ~'3 -- ~5 ffi 

(((0)(1)(2))), and ~4 = (((((0)(1)(2)(3))))). 
The  ou te rmos t  parentheses  indicate the 
background,  and the corresponding pairs of 
inner parentheses  a l ternately denote  com- 
ponents  and holes. For  example,  in ~2 = 
~6 = (((0)(1))), the  ou te rmos t  parentheses  
denote the background,  the next  set  of  pa- 
rentheses  denotes  a single component ,  and 
the two sets of innermost  parentheses  in- 
dicate two holes. T h e  label in the  innermost  
p a r e n t h e s e s  r e p r e s e n t s  a l e a f  n o d e ,  w h i c h  

is  e i t h e r  a c o m p o n e n t  or a h o l e  d e p e n d i n g  

o n  w h e t h e r  i t  is  n e s t e d  a n  e v e n  or o d d  
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/ 
25 

13 12 tl 

Figure 10. Chain  code for digital space curves  T h e  
nodes  are n u m b e r e d  0-7  and  10-18, 20-28 a round  t he  
middle and  the  two ends,  respect ively (The  central  

node of the  middle shce touches  nothing,  and  so it  is 
no t  numbered.} 

number of times. The set of nodes of the 
object has four equivalence classes. Equiv- 
alence classes {410} and {110, 210, 310, 430, 
510, 610} correspond to components, equiv- 
alence class {321, 441,442, 521} corresponds 
to a cavity, and the remaining equivalence 
class {000, 100, 120, 200, 220, 221, 300, 320, 
322, 400, 420, 440, 443, 500, 520, 522, 600, 
620, 621, 700} corresponds to the back- 
ground. The object has four tunnels: a tun- 
nel in the first component due to two se- 
quences between 000 and 700, and one tun- 
nel in the cavity due to two sequences be- 
tween 321 and 521. 

5. GEOMETRICAL REPRESENTATIONS 

Representation methods that are con- 
cerned with details of shape information 
are referred to as geometrical representa- 
tions. In this section we consider the exact 
representation of space curves, derivation 
and representation of surfaces, and the rep- 
resentation of shape by properties. 

5.1 Space Curves 

A digital space curve may be defined as a 
connected set of voxels all but two of which 
have exactly two neighbors in the set, while 
the exceptional twomthe end voxelsmeach 
have exactly one neighbor in the set. The 
method of chain coding in 2D can be easily 
extended to digital space curves [FREE74]. 

From each data node there are 6, 18, or 26 
possible directions to the next node depend- 
ing on whether the order of adjacency n is 
1, 2, or 3. Thus each possible direction can 
be uniquely designated by 3 bits for 1-con- 
nected space curves and by 5 bits for 2- or 
3-connected space curves. One particular 
coding arrangement for the 26 possible di- 
rections of a 3-connected space curve is 
shown in Figure 10. Since each 26-neighbor 
of a given voxel can be designated by spec- 
ifying for each coordinate whether it is in- 
cremented by 1, unchanged, or decre- 
mented by 1, each possible direction of a 3- 
connected space curve can also be specified 
by a 3-digit ternary number [RosE80]. 

5.2 Surfaces 

An important representation of a 3D object 
is by means of its 3D surface. Such a rep- 
resentation is necessary for shaded display 
on a graphics screen. We consider next the 
problem of exact representation of surfaces 
of objects in cellular space, where we as- 
sume that  object voxels have value 1 and 
background voxels have value 0. Our dis- 
cussion thus excludes methods of repre- 
senting 3D manifolds by triangular fac- 
ets [FucH77] and interpolative patches 
[YORK80]; the former, however, does yield 
a fast algorithm that  is used in many CT 
display programs [CooK80]. 

We have seen previously (Section 4.2) 
that the surface of an object S consists of 
voxel faces that  are at the interface of S 
and S. Since the voxel is a convenient prim- 
itive element for 3D data structures, it is 
useful to redefine the concept of surface in 
terms of voxels. This can easily be done 
since a face is uniquely defined by two 
abutting voxels. Thus the surface of an 
object S in 3D cellular space can be defined 
as the set of voxel pairs 

Y~[S] = {(V, U)IVES, UES, VR, U}. 

If S is a finite n-connected object with K 
enclosed cavities, then ~[S] can be 
uniquely partitioned into one external sur- 
face and K internal surfaces. An example 
of the external surface of an object is shown 
with shading in Figure ic; a procedure for 
shaded display of voxel faces is described 
by Herman and Liu [HERM79]. 
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The surface of a 3D object can be repre- 
sented by specifying a set of constituent 
faces or indirectly by means of border vox- 
els, graphs (whose nodes are faces and 
whose edges specify touching faces), and 
medial axes. In the following, we define 
these concepts and briefly describe algo- 
rithms for deriving such representations. 

5 2.1 Borders 

Determination of the surface of an object 
S, and the surface's partition, is facilitated 
by defining the border of S (which is a one- 
voxel-thick layer) as 

B(S) = { VI V ~ Sand  
~ ( V )  A S is nonempty} 

where (n, ti) = (1, 3) or (3, 1) as before. 

Since 

{(V, U)IV E B(S), U ~ (S, VRIU} 
= ~ [ s ] ,  

it follows that the surface of S is uniquely 
specified by B (S). More important, each n- 
component of B(S) specifies either the ex- 
ternal or one of the internal surfaces of S; 
or if resolution is low enough to separate 
two surfaces by fewer than two voxels, each 
specifies the union of the surfaces (the proof 
rests on showing that the border of an n- 
connected object without cavities is also n- 
connected). A detailed discussion of the 
mathematical properties of borders is given 
by Udupa et al. [UDuP79] and Morgen- 
thaler and Rosenfeld [MoRcS0b]. 

A method of determining whether a voxel 
V is an element of B (S) is to determine 
whether any element of N~(V) belongs to 
~. This leads to the following parallel algo- 
rithm for determining B (S): if { V' } are the 
elements of N~(V), then V ~ B(S)  if and 
only if 

f ( V ) .  t i l l (V ' ) )  = 1 

where H denotes logical product. This is 
a fast method of determining the set union 
of all external and internal borders of the 
object. 

In order to isolate a single external or 
internal border of an object, it is necessary 
to track connected voxels sequentially. An 
algorithm to detect a connected 3D border 
differs fundamentally from its 2D counter- 

~5 

tt / 

~o / 

Figure 1 1. Example of border-following The initial 
voxel is labeled 0 Shaded faces correspond to the 
surface already traversed by the time the current voxel 
is 9, at this point voxels 10-18 are in the queue. The 
voxels were traversed in the order" 0, 1, 2, 3, 4, 5, 6, 7, 

8,9. 

part. A connected 2D border can be repre- 
sented by a one-dimensional circular list of 
elements, where neighboring elements of 
the list represent adjacent border pixels; 2D 
border following is unique once the starting 
point and direction are specified [RosE76]. 
Sequential traversal of the border of a 3D 
object requires a queue (or stack) to store 
"leads" to be followed; this is because there 
does not always exist a connected, non- 
overlapping traversal of the surface (or bor- 
der) of a nonconvex object. 

A 3D border-following algorithm is illus- 
trated with the aid of Figure 11 where ob- 
ject S is a 4 × 4 x 4 cube, the initial voxel 
is V ° which is the corner voxel labeled 0, 
and we chose (n, fi) ffi (1, 3). Tracking 
proceeds by placing those voxels V of 
Nn(V °) that have value 1 and belong to 
B(S)  (because an element of N~(V) has 
value 0), called Y 1°°° Y 3, into a queue Q 
and by marking V ° as having already been 
traversed, say by changing its value from 1 
to 2. Next the front element of Q, V 1, is 
removed as the current element of traver- 
sal. The elements of N, (V 1) having value 
1 and belonging to B(S)  but not to Q, 
namely, V 4. . .  V 6, are entered at the end of 
Q. Similarly, current element V 2 contrib- 
utes V v and V s to Q, and so on. A detailed 
discussion of the complexity of this algo- 
rithm, its improvements, and its perform- 
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(a) (b) 

FJguce 12. Directed graph representation of the surface of a 3D object: (a) each of the 
6 types of voxel faces has 2 incoming and 2 outgoing edges as shown here for a single voxel; 
(b) the directed graph of the voxel in (a), where nodes correspond to voxel faces. 

ance with CT data is given by Udupa et al. 
[UDUP79J. 

Instead of determining the border voxels 
and collecting the faces that contribute to 
5z(S), an alternative approach to determin- 
ing a single internal or external surface is 
to track "connected" faces. That  such an 
algorithm is possible is based on the fact 
that the surface of any closed digital object 
can be represented by a directed graph 
whose nodes correspond to faces, each node 
having exactly two incoming and two out- 
going edges. The incoming and outgoing 
connected faces are defined as shown in 
Figure 12 for each of the six types of faces 
of a voxel. It can be shown that each inter- 
nal or external surface of a digital object 
corresponds to a maximally connected 
subgraph of such a directed graph 
[ARTZ81]. Therefore sequential traversal of 
a closed surface of the object is equivalent 
to determining a binary spanning tree of 
the appropriate maximally connected 
subgraph. 

5 2.2 MedlalAxes 

Compact boundary representations of a 2D 
figure are given by the chain code and by 
the medial axis transformation (MAT) 
[DYER80]. Of these two, only the latter can 
be generalized to the 3D case. 
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Surface points are specified in the MAT 
representation by a collection of overlap- 
ping spheres. Given the centers and radii of 
the maximal spheres, it is possible to recon- 
struct the boundary representation by 
choosing those points that are not in the 
interior [BLUM79]. An algorithm for per- 
forming such a conversion in continuous 
3D space is given by O'Rourke and Badler 
[O'Rou79]. 

The MAT is defined in the discrete case 
by a collection of overlapping digital 
spheres (or blocks). A voxel V E S is said to 
belong to the medial axis M ( S) if 

c a r d { U [ ( U , V ) =  min d ( V , W ) } > I  
W e B ( S )  

where d is a 3D metric and card A is the 
cardinality of set A. This definition implies 
that M ( S )  consists of those voxels of S 
whose distances from ~ are local maxima; 
that is, V is an element of S if and only if 
for all U E N, (  V) A S, minweB(S) d( V, W) 
>-- minwes(s) d( U, W). Thus S is the union 
of maximal digital spheres centered at the 
voxels of M(S).  If d is the maximum value 
metric, then the digital sphere is a cube and 
the MAT representation is similar to the 
oct-tree representation; in fact, they are 
equivalent if we constrain the locations of 
centers of digital spheres to powers of 2. 
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It should be noted that although the lo- 
cus of centers of a 2D medial axis consists 
of linear structures, its 3D counterpart is 
not necessarily a space curve; M(S),  for 
instance, may consist of one-voxel-thick 
layers. Thus the 3D medial axis may 
be referred to as a medial or symmetric 
layer. 

5.3 Features 

The application of pattern-classification al- 
gorithms to 3D digital images requires rep- 
resentations in the form of descriptive fea- 
tures. The types of features that can be 
extracted depend on whether we are dealing 
with a sampled function of three variables 
or with a discrete 3D object (although the 
former can be segmented into regions and 
each region can be considered an object). 
In this section we consider features for rep- 
resenting the shape of a 3D object. The 
challenge of shape description is that of 
finding properties that not only discrimi- 
nate between different shapes but are also 
invariant to certain transformations {such 
as translation, rotation, and magnification, 
among others) of the low-level data struc- 
ture. We discuss here the 3D counterparts 
of properties that are frequently used in 2D 
image recognition. 

5.3.1 Metric properties 

The surface area of an object S in the 
cellular space is the number of elements in 
its surface ~.~(S), measured in units of the 
area of a single voxel face. Similarly, the 
volume of S is the number of elements in S, 
measured in units of the volume of a voxel. 
If S is the digital representation of an object 
in continuous space, then surface area and 
volume are sensitive to the resolution of 
digitization S. A method of estimating vol- 
ume as a diagnostic feature in CT is dis- 
cussed by Cook [CooK80]. 

5.3.2 Analytic Descriptions 

Analytic shape description by means of ex- 
pansion of the intrinsic function and mo- 
ments are well known in two dimensions 
[DUDA73]. The intrinsic function of a closed 
2D figure specifies boundary curvature as 
a function of arc length, and the coefficients 
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of the Fourier series expansion of the pe- 
riodic intrinsic function constitute the 
Fourier descriptors of the shape of the 
figure. The concept of Fourier descriptors 
generalizes to space curves [BADR80] but 
not to arbitrary closed 3D surfaces. One 
representation that  is related to Fourier 
descriptors is applicable to any closed sur- 
faces satisfying the property that every 
point of the surface is viewable from at 
least one point in the interior. Such surfaces 
are termed "museum-viewable" or "stel- 
lar." The distance (or radius) from the 
viewing point to such a surface is a function 
of the direction from the point to the sur- 
face. We can describe the direction in space 
in terms of position on a sphere centered 
about the viewing point, with the radius to 
the surface given by a continuous function 
on that sphere. Given a polar coordinate 
system on the sphere, the radius of a 
smooth stellar surface can be represented 
as a weighted sum of spherical harmonics 
(which are the basis functions in a Laplace 
series expansion). The method of spherical 
harmonics have been used in describ- 
ing cardiac shape in ultrasound data 
[SCHu79]. 

Moments of a 3D object S can be defined 
a s  

A(P, Q, R) = ~ (V1)P(v2)Q(v3) R . f ( V )  
v 

where/(V) = 1 if V = ( V1, V2, V3) is in S, 
and 0 otherwise. Thus A (0, 0, 0) is simply 
the volume of the object. Dividing 
A(1, 0, 0), A(0, 1, 0), and A(0, 0, 1) by 
A (0, 0, 0) yields the coordinates of the cen- 
troid of the object. If we shift the coordinate 
system so that the origin is at the centroid 
of S, then the resulting moments are its 
central moments M(P, Q, R). The first 
central moments M(1, 0, 0), M(0, 1, 0), and 
M(0, 0, 1) are zero, and the second central 
moments M(2, 0, 0), M(0, 2, 0), M(0, 0, 2), 
M(1, 1, 0), M(1, 0, 1), and M(0, 1, 1) are the 
moments of inertia of S. The eigenvectors 
of the matrix of second central moments 
are the directions about which S has maxi- 
mum and minimum moments of inertia. 
Ratios of the eigenvalues describe fatness 
or thinness of S in different directions. Sad- 
jadi and Hall discuss the use of 3D moments 
in discriminating between a parallelepiped, 
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pyramid, and cylinder in continuous space 

[SADg79]. 

5.3.3 Convexity 

A method of describing the shape of an 
object is to state whether it is convex or not 
and to describe its convex deficiency (the 
space between the smallest convex object 
enclosing Q and Q itself). An object Q in 
Euclidean {continuous) space is said to be 
convex if the line segment joining any pair 
of points of Q lies within Q, or, equivalently, 
if every straight line meets Q at most once. 
The convex hull of Q, denoted H(Q),  is the 
smallest convex object that encloses Q. The 
convex deficiency of Q is the set difference 
H ( Q )  - Q. If Q = {V'} is a finite set of 
points in Euclidean space, then H ( Q )  = 

{ x I x = Y., a, V' where ~, a, = 1 and a, _ 0} 
is a polyhedron; intuitively, H(Q),  the con- 
vex hull, is the polyhedron obtained by 
stretching a rubber sheet over points of Q. 
The design of efficient algorithms for deter- 
mining the convex hull of a finite set of 
points in Euclidean space has received con- 
siderable attention. One such algorithm 
based on the recursive "divide-and-con- 
quer" principle, is as follows: 

(1) Sort Q into a list (according to the first 
coordinate) and partition the list into two 
{nearly) equal subsets Q1 and Qe. 

(2) Compute H(Q1) and H(Q2) recursively. 
(3) Apply a merge algorithm to H(Q1) and 

H(Q2) to obtain H(Q) and halt. 

Since the merge step is of complexity O (~) 
in 3D space [PREP77], the overall complex- 
ity of the algorithm is O (~ log ~). 

Definition of convexity for objects in dis- 
crete space requires some care. It is reason- 
able to define a set of voxels S to be convex 
if there exists a convex point set Q in Eu- 
clidean space such that its digitization I(Q) 
ffi S for some definition of I (see Section 
2.4). Since this definition of convexity does 
not lend itself to the formulation of a finite 
procedure, an alternative definition is 
needed. One such definition invokes the 
concepts of simple solidness and of a semi- 
digital point. 

A simple solid S is a finite 1-connected 
set of voxels, having no pair of voxels V 1, 
V 2 E S, such that the line segment joining 
the digital points of V ~ and V 2 is parallel to 
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an axis and lies outside the voxels of S. A 
point (a, b, c) is said to be a semidigital 
point if at least one of its coordinates is an 
integer. 

Let H ( S )  be the Euclidean convex hull 
of the digital points of S. We define a simple 
solid to be convex if and only if every sem- 
idigital point on the faces of H ( S )  is near 
a digital point of S; two points (a, b, c) and 
(a', b', c') are said to be near each other if 

m a x ( [ a -  a' I, I b -  b'l, I c -  c' I} < 1. This 
definition of digital convexity does not nec- 
essarily imply the existence of a convex set 
Q in Euclidean space such that I ( Q )  = S; 
however, this one implies that  there exists 
a convex object Q in Euclidean space such 
that  I ' (Q)  = E ( S )  where E ( S )  is the half- 
cell expansion of S obtained by assuming 
the corner points of voxels of S to be the 
digital points in a new lattice and I ' (Q)  is 
the digital binary image of Q in this lattice 
[KIM80]. 

On the basis of this second definition of 
digital convexity, the digital convex hull 
9~(S) of a set of voxels S is given by ~ ( S )  
=- S 0 AS, where AS is the smallest set of 
voxels such that 9~(S) is simple and that 
each semidigital point on the boundary of 
~q~(S) is near a digital point of ~¢t~(S). An 
example of a digital object S, the Euclidean 
convex hull of the digital points of S, H ( S ) ,  
and the digital convex hull ~ ( S )  is shown 
in Figure 13. 

Yau and Srihari consider the computa- 
tion of digital convex hulls from oct-tree 
representations by taking advantage of the 
implied sorting in the data structure 
[YAu81b]. The complexity of such a convex 
hull algorithm is related to the compactness 
of the oct-tree rather than to the number 
of points in the object. 

6. STRUCTURAL REPRESENTATIONS 

Topological and geometrical properties 
are abstract image representations which 
can be mapped into class descriptions 
[DuDA73]. With complex objects it is more 
useful for cognitive purposes to represent 
objects by structural descriptions of spatial 
organization. Thus we define serial-section 
image understanding as the process of pro- 
ducing, from a slice-by-slice image of the 
external world, a representation of spatial 
organization that is useful to a higher level 
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(a) (b) (c) 

Figure 13. Digital convex hull representation: (a) object S; (b) Euchdean convex hull 
H(S) of the digital points of S; (c) digital convex hull ~ (S) .  

• 4 1 9  

human or machine cognitive processor (re- 
cognizer), uncluttered by irrelevant infor- 
mation. The goals of serial-section image 
understanding and of computer vision 
[MARR78] are identical; they differ, though, 
in the modality of input image data and 
therefore in the methods of deriving the 
representation. 

Criteria for judging the effectiveness of a 
method of structural image representation 
are derivability, scope and uniqueness, and 
stability and sensitivity. Derivability is con- 
cerned with the ability to generate the rep- 
resentation, given the limits on image res- 
olution, on storage and on computation 
time. Scope pertains to the class of shapes 
that the representation is suitable for; if the 
representation is to be used for recognition, 
it is also important that the description be 
unique for each member of that class. 
Within the above scope and uniqueness 
conditions, stability is a measure of how 
well we can capture more general (or less 
varying) properties of a shape, and sensitiv- 
ity is a measure of our ability to distinguish 
finer shape characteristics. 

Shirai has surveyed various methods of 
structural representation in the context of 
computer vision [SHIR78]. In what follows, 
we describe structural representations that 
seem promising for serial-section image 
analysis. 

6.1 Generalized Cylinders 

A large class of 3D objects, including bricks, 
pyramids, and vases, can be described by 
the so-called generalized cylinder (GC) 
representation [WINS76]. A GC is defined 
by a 3D space curve called the axis and by 
planar cross sections of arbitrary shape nor- 

mal to the axis. Since there are an infinite 
number of GCs representing a single object, 
the following constraints help to assure 
uniqueness: (1) parametric form of cross- 
sectional shape (ellipse, for example), and 
(2) a sweeping function which describes 
how the cross section changes in shape as 
it moves along the axis. Given the GC rep- 
resentation, the surface of the object can be 
synthesized for the purpose of recognition. 

In the case of complex shapes, the object 
has to be decomposed into simpler compo- 
nents before describing each component by 
a GC. Critical issues in GC representation 
are the following: segmentation into parts 
that can be simply described, selection of 
natural or useful axes, and definition of 
structural relationships among parts. Each 
of these tasks can only be approached using 
heuristic or interactive techniques. 

Successful heuristics for 2D shape seg- 
mentation, or decomposition, have been 
based on identifying points of high curva- 
ture on the boundaries. The objective is to 
decompose a figure into near-convex parts. 
Generalization of this idea has to contend 
with the fact that a single 3D surface point 
can have different (normal) curvatures in 
different directions. A study of the relation- 
ship between the boundary curvature of an 
object and the curvature of the medial sur- 
face of the object, in continuous 3D space, 
has been done by Nackman [NACK80]. 

Selection of natural axes for GC repre- 
sentation has been attempted for computer 
vision by guessing from range data provided 
by a projected laser image [NEvA77]. More 
robust techniques are possible for serial- 
section images owing to complete spatial 
data. The medial axis of a 3D object is not 
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a suitable candidate for the natural axis, 
since it is not always a space curve and is 
extremely sensitive to minor indentations 
in the object's surface. Methods of topology 
preserving shrinking, or skeletonization, 
are more useful for representing an object's 
structure, particularly for elongated objects 
(see Section 6.2). 

Structural relationships between seg- 
mented parts can be described by attach- 
mentpoints, which are like tinkertoys: parts 
have predefined points at which other 
pieces may be attached. For all primitive 
objects, cube, cylinder, and so on, the at- 
tachment points (base, top, side, and back) 
are predeclared. For nonprimitive objects, 
declaring a new attachment point involves 
specifying a transform or relative displace- 
ment with respect to the base of an object. 
This method can be used to describe com- 
plex objects by assemblies of GCs making 
use of axes inherent to the primitives. A 
program to translate such descriptions into 
polyhedral models and line drawings in an 
image synthesis mode is discussed by Agin 
[AGIN81], who gives examples of a screw- 
driver, a model airplane, and a chair. 

A method of structural description that 
is related to the GC representation is the 
generalized blob model [SHAP80]. In this 
representation there are three kinds of 3D 
parts: sticks, plates, and blobs. Sticks are 
long thin parts that have significant length 
but very small width and depth, plates are 
flat wide parts that  have two significant 
dimensions, and blobs are neither thin nor 
flat. All three kinds of parts are near con- 
vex; that is, a stick cannot bend very much, 
the surfaces of a plate cannot fold too much, 
and a blob can be bumpy but cannot have 
large concavities. A 3D object is then de- 
scribed by specifying the relative sizes of 
sticks, plates, and blobs and the constraints 
on how they are put together. 

The derivation of generalized cylinder 
representations from serial section images 
have been considered for a bin of identical 
L-shaped mechanical parts [SRIH79], ab- 
dominal anatomy [SHAN80], and the hu- 
man heart [SORO79]. 

6.2 Skeletons 

The skeleton of a 3D object is an intuitive 
concept that refers to a stick figure which 

captures the structure of the object. A 3D 
skeletonization (or thinning) algorithm may 
be based on the principle that a voxel V in 
an object S may be deleted as long as its 
deletion does not cause a change in the 
topology of S. The object that  results when 
no voxel can be deleted is referred to as the 
skeleton of S. 

The suggested skeletonization algorithm 
implies determining the relevant topologi- 
cal properties before and after the deletion 
of V. Because of computational considera- 
tions it is preferable to restrict the topo- 
logical property to a local neighborhood of 
V. For example, one can determine within 
a 3 × 3 × 3 neighborhood of V whether the 
deletion of V changes either the connect- 
edness of remaining object voxels [SRm79, 
TSAOS1] or the connectivity number 
[LOBR80]. (It should be noted that if we 
adopt the local criterion, there is no guar- 
antee that  the topology of the scene is 
unaltered after deletion.) However, such 
algorithms produce reasonably good results 
for elongated objects. In what follows we 
develop further details of a specific skele- 
tonization algorithm. 

Deletability alone does not yield a satis- 
factory skeletal axis, since a space curve 
will be eroded into a single voxel. To avoid 
this, criteria determining layer and end vox- 
els are needed. Corresponding to the posi- 
tive and negative directions of the three 
axes there are six types of border voxels. A 
voxel V in S is an m-border voxel, where 
m is a member of the set of directions 
d ffi {X, -X, Y, -Y,  Z, - Z )  if V does not 
have a 1-adjacent neighbor within S in the 
m-direction. V is said to be a k-layer voxel, 
where k is a member of {X, Y, Z}, if V is 
both a k-border voxel and -k-border voxel. 
V is said to be an (ml, m2)-border voxel if 
it is both an ml-border voxel and an m2- 
border voxel (such that I mll ~ I m21); in 
other words, V does not have 1-adjacent 
neighbors in the ml and m2 directions. Note 
that there are 12 distinct (m~, m2) pairs 
that specify diagonal directions. A voxel V 
in S is a simple voxel if its deletion does not 
affect the n-connectivity of object voxels in 
its 3 × 3 × 3 neighborhood. Finally, a voxel 
V in S is an end voxel if there is only one 
object voxel n-adjacent to V. 

Based on the above concepts, the follow- 
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(a) (b) (c) 

Figure 14. The structure of 3D objects can be represented by their skeletons (a) object S represents a bin of 
L-shaped objects; (b) the skeletal stratum S' of S, which consists of one-voxel-thick layers; (c) the skeleton S" 

which consists of space curves. The array of 16 × 16 × 22 voxels was skeletonized m 35 seconds on a Data 
General Eclipse computer. [From SRIH79.© IEEE 1979.] 

ing two-step approach is suggested 
[SRIH79]. Algorithm S1 converts a set of 
object voxels S to a s k e l e t a l  s t r a t u m  S '  

which may contain both one-voxel-thick 
layers and branching space curves. Algo- 
rithm $2 erodes a skeletal stratum S '  into 
a s k e l e t a l  S "  which consists of branching 
space curves only. 

Algorithm S1 (*Converts object S to skeletal 
layer S'*); 

begin 

d := Ix, -x, y, -y, z, -z];  (*direction vector*) 
repeat 

D := {~}; (*the null set*) 
for i :ffi 1 to 6 do begin 

m := d(i); (*the tth component of d*) 
k :-- I m I; (*the absolute value of m*) 
in parallel for each V in S do begin 

if ( V ts an m-border voxel and 
V is not a k-layer voxel and 

V is simple) then 
mclude V in D end; 

S : = S - D  
end 

until (D = (~}); 
S ' : = S  

end; 

Algorithm 82 (*Converts skeletal layer S" to 
skeleton S"*); 

begin 
d' := [(x, y),  ( - x ,  - y ) ,  (x, - y ) ,  ( - x ,  y), etc.]; 

(*direction vector*) 
repeat 

D := (~}; 
for i :-- 1 to 12 do begin 

(ml, m2) :-- d'(i); 
in parallel for each V m S'  do begin 

if ( V is an (ml, m2)-border voxel 
and V is a simple voxel and  
V is not an end voxel) then  

include V in D end; 
S ' : = S ' - D  

end 
until (D = {~}); 
S " f f i S '  

end; 

An example skeletal representation S '  
and S "  of a simulated 3D object S, which 
was obtained using the above algorithms, is 
shown as a series of 3D displays in Figure 
14. Although the skeleton may be consid- 
ered intuitively acceptable in this example, 
additional criteria for deletability may be 
useful. One such criterion based on "check- 
ing planes" is suggested by Tsao [TsAo81] 
and has been shown to yield acceptable 
skeletal representations for connected L- 
shaped objects and a block letter A. 

7. CONCLUSIONS 

There exists a wide spectrum of methods 
for the computer representation of 3D dig- 
ital images. Our survey has emphasized 
methods applicable to the analysis of im- 
ages represented in 3D cellular (or voxel- 
based) space. These have included data 
structures for 3D arrays and methods that  
capture topological, geometrical, and struc- 
tural properties of objects embedded in 3D 
cellular space. We have also discussed some 
algorithms associated with the derivation 
of such representations from serial-section 
images. 
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A n u m b e r  of  h i e r a r c h i c a l  d a t a  s t r u c t u r e s  

for  exp lo i t i ng  u n i f o r m i t i e s  p r e s e n t  in 3D 

d ig i t a l  i m a g e s  h a v e  b e e n  e x a m i n e d .  T h e  

choice  o f  t h e  d a t a  s t r u c t u r e  s h o u l d  be  b a s e d  

on  carefu l  c o n s i d e r a t i o n  o f  t h e  t r a d e - o f f  

b e t w e e n  s t o r age  space  a n d  c o m p u t a t i o n a l  
c o m p l e x i t y  of  t y p i c a l  o p e r a t i o n s  on  t h e  d a t a  ARTZ81 

s t ruc tu re .  S u c h  o p e r a t i o n s  m a y  be  a com-  

b i n a t i o n  o f  g r a p h i c a l  o p e r a t i o n s  (e.g., 

s h a d e d  su r face  2D d i s p l a y  w i th  h i d d e n  sur-  
faces  e l i m i n a t e d )  a n d  i m a g e - p r o c e s s i n g  op-  BADL78 

e r a t i o n s  {e.g., 3D s e g m e n t a t i o n ,  t r a n s l a t i o n ,  

or  ro t a t i on ) .  In  fact ,  t h e  d a t a  s t r u c t u r e  m a y  

on ly  be  an  i n t e r m e d i a t e  s t ep  in  de r iv ing  BADR80 

h igh - l eve l  3D r e p r e s e n t a t i o n s .  

A l t h o u g h  s o m e  of  t h e  m e t h o d s  for  der iv-  

ing t o p o l o g i c a l  a n d  g e o m e t r i c a l  r e p r e s e n -  

t a t i o n s  can  be  g e n e r a l i z e d  f r o m  e x p e r i e n c e  

w i th  d ig i t a l  p i c t u r e s , - c o m p u t a t i o n a l  i s sues  BAJC80 

b e c o m e  m u c h  m o r e  s ign i f i can t  due  to  t h e  

e x p o n e n t i a l  i n c r e a s e  in  t h e  n u m b e r  of  im-  

age  e l e m e n t s  w i t h  d i m e n s i o n a l i t y .  S t r u c -  BARR70 

t u r a l  r e p r e s e n t a t i o n s  a r e  c r i t i ca l  for  t h e  

c o m p u t e r  r e c o g n i t i o n  a n d  u n d e r s t a n d i n g  o f  

t h e  s p a t i a l  o r g a n i z a t i o n  of  3D env i ron -  
men t s .  T h e  p r o p o s e d  f r a m e w o r k s  for  s t ruc -  BLUM79 

t u r a l  r e p r e s e n t a t i o n  d e v e l o p e d  in  t h e  con-  

t ex t  o f  c o m p u t e r  v i s ion  s e e m  to  be  ade -  

qua te ,  b u t  t h o s e  m e t h o d s  t h a t  de r ive  such  
r e p r e s e n t a t i o n s  f r o m  s e r i a l - s e c t i o n  i m a g e s  BUNE69 

h a v e  m a n y  a s p e c t s  t h a t  n e e d  f u r t h e r  deve l -  

o p m e n t .  T h e  v a r i e t y  of  o p e n  p r o b l e m s  in COOK80 

e v e r y  a s p e c t  of  r e p r e s e n t a t i o n  of  3D s p a t i a l  

da t a ,  a n d  in i ts  s ign i f i can t  app l i ca t i ons ,  

p o i n t s  to  a fe r t i le  a r e a  o f  r e s e a r c h  in t h e  

c o m i n g  years .  
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