
Representation of Three-Dimensional Digital Images

SARGUR N. $RIHARI

Department of Computer Science, State Unwerstty of New York at Buffalo, Amherst, New York 14226

Three-dimensional digital images are encountered m a variety of problems, including
computed tomography, biological modeling, space planning, and computer vision. A wide
spectrum of data structures are available for the computer representation of such images.
This paper is a tutorial survey of three-dimensmnal spatial-data representation methods
emphasizing techniques that apply to cellular (or voxel-based) images. We attempt to
unify data structures for representing interior, surface, and structural information of
objects in such images by companng their relative efficmncy. The derivation of high-level
representatmns from serial sectmn images is also discussed The representations include
topological representations (Euler characteristic and adjacency trees), geometrical
representatmns {borders, medial axes, and features), and spatial organization
representations {generalized cyhnders and skeletons).

Key Words and Phrases three-dimensmnal analysis, image-data structures, pattern
representatmn, computed tomography, computer wsmn, Linage reconstruction, computer
graphms, space planning, three-dLmensional features

CR Categorws: 3.6, 5.3, 8.2

INTRODUCTION

New challenges have been created in the
field of image analysis and pat tern recog-
nition by the introduction of modern image-
data collection techniques such as com-
puted tomography, scanning electron mi-
croscopy, and digital stereoscopy. These
methods make possible the computat ion of
the three-dimensional (3D) s tructure of
scenes, ranging from organs interior to the
human body to rock microstructures, in the
form of a 3D array of numbers. Developing
systems for processing and displaying these
images has revealed the need for developing
new data structures, and more generally,
for developing spatial-knowledge represen-
tat ion schemata.

While numeric-computat ional methods
of picture-processing and symbolic-compu-
tational methods of image analysis have

evolved over the past two decades, repre-
sentat ion methods have primarily con-
cerned two-dimensional (2D) images (e.g.,
optical character recognition and chromo-
some analysis) and monocular 2D projec-
tions of 3D scenes (e.g., remote sensing).
Methods for handling t rue 3D digital im-
ages are now being developed for tasks such
as the display of cross-sectional and
shaded-surface reconstruct ion images on a
graphics terminal, quanti ta t ive measure-
ment of 3D shape, and computer under-
standing of spatial organization. In this pa-
per we review some of the more promising
approaches for the representat ion of 3D
discrete images. Since the topic covers a
wide spectrum of techniques, from data
s tructures for image intensity arrays to
knot ty problems of knowledge representa-
tion, and since much of the l i terature is
very recent (and somewhat inaccessible),

Permiss ion to copy wi thout fee all or par t of this mater ia l is granted provided t ha t the copies are no t m a d e or
distr ibuted for dLrect commercia l advantage, the AC M copymght notice and the title of t he publ icat ion and i ts
date appear, and notme is given tha t copying is by permlsmon of the Associat ion for Compu t ing Machinery . To
copy otherwise, or to republish, requires a fee a n d / o r specific permission.
© 1981 ACM 0010-4892/81/1200-0399 $00 75

Computing Surveys, Vol. 13, No 4, December 1981

400 • S. N. Srihan

CONTENTS

INTRODUCTION

1 APPLICATION AREAS

2. DIGITIZATION

2.1 Neighbors

2 2 Dmtance

2 3 Digital Image

2 4 Digital Bmary Image

3. DATA STRUCTURES

3.1 Dope Vectors
3.2 Margmal Indexing

3 3 Symmetric Recurstve Indexmg

3 4 Asymmetrm Recursive Indexmg

4 TOPOLOGICAL REPRESENTATIONS

4 1 Components

4 2 Holes

4 3 Euler Charactermtm

4 4 Adjacency Trees

5. GEOMETRICAL REPRESENTATIONS

5.1 Space Curves

5.2 Surfaces

5 3 Features

6 STRUCTURAL REPRESENTATIONS

6 1 Generahzed Cyhnders

6 2 Skeletons

7 CONCLUSIONS

ACKNOWLEDGMENTS

REFERENCES

A

v

this review is not intended to be a compre-
hensive survey. The methods discussed are
primarily concerned with discrete images,
with emphasis on image analysis applica-
tions. Although some of the relevant results
of computational geometry and topology
are touched upon, we do not consider con-
ventional 3D techniques such as those used
in flight simulators, animation, and com-
puter-aided design.

1. APPLICATION AREAS

The method of computer representation of
a 3D digital image is necessarily influenced
by the processing for which the represen-
tation is used. It is thus useful to begin with
the problem domains in which the methods
discussed here are applicable. Each of the
following domains have the common char-
acteristic of the image being in the form of
a 3D array, or equivalently, a folio of 2D
images of serial sections.

Perhaps the most significant of the new
3D scanning techniques is the process of

computed tomography (CT). Essentially,
the attenuation caused by each object point
(referred to as a CT number) is recon-
structed from a set of translucent projec-
tions (such as by x-ray, emission, ultra-
sound, or nuclear magnetic resonance
(NMR)) of the object [GoRD74, ALTS81].
CT is useful for reconstructing internal
parts of the human body such as the brain,
the skull, and the heart. The potential of
CT to reconstruct industrial objects for
nondestructive testing is now being ex-
plored [KRUG78]. Figure 1 shows an ex-
ample of a 3D image of the human body
produced by CT.

Methods of 3D image representation are
needed in quantitative microscopy
[DEHO75]. In the analysis of biological mi-
crostructures, such as neurons and blood
vessels, the object is physically sliced in
parallel planes and each slice is photo-
graphed and the photograph digitized
[REDD78]. Computer serial section meth-
ods are also useful in the analysis of grain
microstructures in rocks and metals
[BARR70], where sections are obtained by
repeated polishing of the surface. Pattern
recognition techniques for identifying 3D
geometrical structures are also required in
pharmacology and x-ray crystallography
[LESK79].

The analysis of time-varying 2D images
is a problem where certain 3D representa-
tions are useful. Here a stack of successive
frames in a time sequence of 2D images
constitutes the 3D arrays. As opposed to
the intraframe approach of image analysis,
for example, in detecting the boundary of
an object in each frame, the 3D approach
not only tends to be more efficient but also
is necessary to preserve time continuity
[UDuP79].

To a lesser extent, the methods discussed
here are applicable to the domain of com-
puter vision in which the 3D description of
an object's shape is derived from infor-
mation encoded in images of its surface.
Methods of mapping the 3D coordinates
of a surface using stereopsis [GENN77,
POTE79], laser ranging [NEVA77], shadows
[WALT75], and shading and texture gra-
dients [HORN75] yield partial 3D descrip-
tions. One such description, called a 2½D
sketch, is a data structure that contains

Computing Surveys, Vol. 13, No 4, December 1981

Representation of Three-Dimensional Digital Images • 401

(a) (b) (e)
Figure 1. An example of a 3D digital image. (a) CT scan of abdominal section of a patient with region of
interest (spine) marked by a rectangle, (b) top: four consecutive slices containing only the region of interest
marked in (a), bottom: corresponding binary slices, with elements containing bone indicated bright, all other
elements inchcated dark, (c) shaded surface 3D display of spree represented in (a) and (b). [Adapted from Raven
Press, "The Use of three-dimensional computer display in the study of disk disease," G. T. Herman and C. G.
Coin, J. Cornput. Assist. Tornography 4, 4 (Aug. 1980), 564-567.]

information about the orientation {relative
to the viewer) of small patches of surfaces
spaced evenly over the visual field
[MARR78, BAJC80]. Space planning for ro-
bot movement [EAST70] and volumetric
modeling for mechanical engineering design
are related problems where 3D data struc-
tures are called for. Surveys for represen-
tations that deal more generally with com-
puter vision, computer graphics, and rigid
solid objects have been done by Shirai
[SHIR78], Badler and Bajcsy [BADL78], and
Requicha [REQu80], respectively.

In the application areas discussed so far,
computer representations are needed both
for displaying images on a graphics screen
and for automatic analysis of images. In
addition to cross-sectional images, it is use-
ful to display shaded 3D reconstructions of
objects; the reconstructions are especially
valuable because very little is known about
the ability of human beings to imagine 3D
objects when presented with a series of
cross-sectional images. Shaded reconstruc-
tion requires the application of a sequence
of 3D image-handling algorithms to the 3D
intensity array; a typical sequence is image
segmentation, boundary detection, hidden
surface removal, and shading. Algorithms
for performing each of the steps of 3D dis-
play in real time are facilitated by careful
design of data structures for image data.
Computer recognition and description of
objects in 3D images require more sophis-
ticated spatial-knowledge representation
schemes.

2. DIGITIZATION

Images that are produced by sensing ob-
jects through a form of radiant energy, for
example, by reflection, transmission, or
emission, are inherently continuous. Com-
puter representation of 3D images requires
a sampling of the volume to extract a dis-
crete set of values. Although numerically
created images, such as CT, are obtained as
a discrete set of values, a discretization
process has to be introduced at some stage.

One method of volume sampling is to use
a regularly spaced array of points (jS, kS,
18), whose coordinates are multiples of some
unit distance 8. A point V---- (V1, V2, V3)
of this array is referred to as a digitalpoint.

We associate with each digital point V
those points (xl, x2, x3) of continuous space
satisfying Vi - 8/2 <_ xi < Vi + 8/2 (for
i ffi 1, 2, 3); we refer to the resulting unit
cube volume element as voxel V (the term
voxel is short for "volume element," anal-
ogous to pixel for "picture element" in two
dimensions). Note that each digital point
uniquely specifies a voxel and that each
voxel contains exactly one digital point.
This method yields a cellular or polyhe-
dral-close-packed tessellation of the vol-
ume. Among the five Platonic solids, tetra-
hedron, cube, octahedron, pentagonal do-
decahedron, and icosahedron, only the cube
yields a close-packed tessellation; this dif-
fers from the 2D case in which three tessel-
lations {triangular, square, and hexagonal)
are possible. It should, however, be noted

Computing Surveys, Vol. 13, No. 4, December 1981

402 • S. N. Srihari

(a) (b) (c)

Figure 2. Neighbors of a digital element in a cube array" (a) 6-neighbors (face neighbors); (b) 18-neighbors
(face and edge neighbors), (c) 26-neighbors (face, edge, and vertex neighbors).

tha t when the restriction of identical Pla-
tonic solids is removed, o ther 3D close
packings are possible [HILB52].

The relative positions of voxels is of im-
por tance in deriving certain representa-
tions. For this purpose we define the con-
cepts neighborhood of a voxel and distance

between voxels.

2.1 Neighbors

Each voxel has three kinds of neighbors, 6
abutt ing a face of the unit cube at distance
8, 12 abutt ing an edge at distance 8 ~ , and
8 abutt ing a vertex at distance 8J'3. Similar
to square array sampling of planes
[RosE76], we can group these together as
6-, 8-, and 26-neighbors (Figure 2). We say
tha t if not more than n of their components
differ by 1 and the rest are identical, then
the two voxels V and U are n-adjacent,
denoted by the relation Rn for 1 _ n _< 3.
Thus if Di ~- I Vi - Ui], then

Rn -~ ((Y, V) l V ~ U, D i E {0, 1},

Di <- n}.
t

Thus the 6-, 18-, and 26-neighbors of V are
precisely its 1-, 2-, and 3-adjacent voxels.
An equivalent definition of Rn in terms of
Boolean functions is

R , - - ((V, U)IDi ~ (0, 1} and Fn =- 1}

m

where F1 = D 1 . D 2 . D 3 ÷ D 1 . D 2 . D 3

+ D__I.D2.D3, F2 = D 1 . D 2 + D 2 . D 3

+ D1.D3, and F 3 -- D1 -t- D2 + D3. We
use the symbol ~n(V), tha t is, the n-neigh-
bors of V, to denote the set (U] (V, U) E

Rn}, whose cardinality is ~-1 2J (j 3).

Computing Surveys, Vol. 13, No. 4, December 1981

2.2 Distance

The Eucl idean distance between voxels V
and U is defined as dE(V, U) = (~, (Di) 2) 1/2.

Thus the Eucl idean distance between the
opposite corners of an N x N x N cube is
N~/3 and the distance between opposite
corners of a face of the cube is N~/2. A
disadvantage of the Eucl idean distance is
tha t distance is not always integer valued;
modifications such as round(dE), ldEJ,
[dE], and d~ violate the requi rement of a
metric. Thus we define the following non-
Euclidean metrics.

Absolute Metric. d6(V, U) =- ~ Di; tha t
is, the voxels at absolute distance of 1 from
V are just its 6-neighbors. Th e distance
between opposite corners of an N × N × N
cube is 3N and tha t between opposite cor-
ners of a face of the cube is 2N. Voxels at
distance _<t f rom V (analogous to a sphere
with dE} form a cube with faces of side
length tV2 inclined at +_45 ° to each axis.

Maximum Metric. d26(V, U)--max,(Di};
tha t is, the voxels at absolute distance of 1
from V are just its 26-neighbors. Th e dis-
tance between opposite corners of an
N × N x N cube is N, which is equal to the
distance between opposite corners of a face.
Voxels at distance _ t from V form a cube
centered at V and with side length 2t.

The re does not appear to be any simple
metric function corresponding to dis(V, U);
for this reason a choice of ei ther 1- or 3-
adjacency is preferable in neighborhood
definitions.

2.3 Digital Image

A 3D digi tal zmage is a mapping that as-
sociates each voxel with a value; the value
is usually of one of the types: real, integer,

Representation of Three-Dimensional Digital Images

or binary. When the 3D digital image is a
sampled 3D continuous function, sampling
is followed by quantization, a process
which enables image representation with
finite precision. Some problems require a
third step, solving the correspondence
problem of identifying the same object in
adjacent slices. This may require a subtle
solution, particularly when there is no
precise control of image registration
[REDD78]. When the 3D image consists of
a folio of 2D slice images, the between-slice
resolution tends to be less than the within-
slice resolution, in which case the interme-
diate slice images are usually obtained by
interpolation (in a typical example, 40 CT
slices 1.5 mm apart were interpolated to
create 74 estimated slices 0.8 mm apart
[ARTZ81]).

2.4 Digital Binary Image

A 3D digital binary image is defined by a
function f(V), also called the characteristic
function, whose domain is the set of all
voxels Vand range is the set (0, 1). The set
of voxels S = {VIf(V) = 1} is referred to
as the object and the set S = (V I/(V) = 0}
is referred to as the background.

The high-level topological and geometri-
cal representations that are discussed later
in this paper utilize digital binary images.
In some application areas, the input data
are in the form of a 3D binary array, and in
others they are in the form of a multivalued
(gray level) 3D image (which is quite often
processed to yield a binary array}. We
briefly discuss each of these cases.

In applications such as space planning,
the characteristic function f is specified
by a 3D binary array with value 1 repre-
senting full and value 0 representing void.
Such a 3D array is obtained from continu-
ous space using a mapping such as the
following: if Q is a point set in 3D Euclidean
space, then f(V) = 1 if the points of V have
a nonempty intersection with the points of
Q, and f(V) = 0 otherwise. An alternative
mapping is to have ~(V) = 1 only if more
than half the points of V are in Q. With an
appropriately defined mapping/, the set S
of all voxels that have value 1 is said to be
the digitization of Q and denoted as S =
I(Q).

ACT image, on the other hand, is usually
in the form of a multivalued 3D array. The

• 4 0 3

process of isolating object voxels from back-
ground voxels in such an array is known as
segmentation. As in the case of 2D image
processing [ROSE76], segmentation proce-
dures for 3D images can be grouped into
region-based and boundary-based meth-
ods.

A region-based method of segmentation
is one that proceeds by assigning a voxel
into object or background on the basis of
partitioning an appropriate feature space
by means of a decision function. When the
feature used is only the value associated
with the voxel, then the procedure is known
as thresholding. If f(V) represents the
value of the image at V and ~ is the range
of f(V), then the thresholding operation is
defined by the characteristic function

1, if f(V) e ~ ' _ C ~ ,
f (V) = 0, otherwise.

Thresholding is effective when there is high
contrast between object and background
values and little clutter. An example of
segmentation of serial section images using
two different sets @' is shown in Figure 3.

Boundary-based segmentation proceeds
in two steps by detecting local edges using
some form of 3D spatial differentiation, and
by grouping local edges into boundary con-
tours that separate object voxels from back-
ground voxels. A number of 3D edge oper-
ators have been defined for this purpose.
They are based on the principle that the
magnitude of the gradient can be estimated
from the directional derivative of f (V)
along three orthogonal directions. If Vi,
i = 1, 2, 3, are the three derivative magni-
tudes, then the gradient magnitude is given
by the Euclidean norm (F., Vi2) 1/2, which is
approximated by V1 + V2 + V3. One ap-
proach to defining the directional deriva-
tives [LIu77] is to use the cross operator of
ROBE65 along mutually perpendicular
planes. In this case, using the notation
V, jk = (V1 + i, V2 + j, V3 + k), we get

Vl = I f (V ~) - f (V o .) I

+ If(Vo,o) - f (V ~ l) I ,

V2 = [f(Vooo) - f(V, ol) l

+ If(V, oo) - f(Voo,)I,

V3 = If(V~) - f (vl ,o) I

+ If(V, oo) - f(Volo)I.

Computing Surveys, Voi 13, No. 4, December 1981

404 • S. N. Srihari

: o:

: ~ i "

(a) (b)

Figure 3. Multwalued 3D tmages can be represented as binary 3D images by applying
an image segmentation procedure. In both (a) and (b) rows 1 and 3 show (top view)
slices 14-21 of a 64-slice NMR reconstruction of a human brain. Rows 2 and 4 are shces
of the binary image obtained by thresholding. The range @' for (a) was chosen to include
all voxels withm the cortex, and a much narrower range was chosen for (b). [Adapted
with permmsion from G. T. Herman, D. M. Kramer, P. C. Lauterbur, A. M Rudin, J. S.
Schneider, and J. K. Udupa, "The three-dimensional display of nuclear magnetic
resonance images," Proc. 9th SPIE Conf. Applied Optwal Instrumentatton in Med~czne,
March 22-25, 1981]

Other 3D edge opera tors have been defined
as generalizations of the 2D Hueckel oper-
a tor [ZUCK81] and the 2D Prewi t t opera tor
[MORGS0a]. A more detailed discussion of
the p rob lem of 3D image segmenta t ion is
given by Altschuler et al. [ALTS81].

3. DATA STRUCTURES

In 3D image analysis it is necessary to
represent object information, such as CT
number , which corresponds to different ob-
ject points. Bu t me thods which store every
object space point are f requent ly excessive
in their space requirements . For example,

if an object can be modeled by dividing it
into 1000 par ts along each axis, t hen the
internal representa t ion requires 1 billion
points. As in the case of 2D image represen-
tation, more efficient me thods of represen-
ta t ion can be made possible by exploiting
special proper t ies of the data.

In designing me thods for storing high-
resolution data, a n u m b e r of trade-offs, in-
volving, among others, computa t ion neces-
sary to access the data, overhead storage
needed, and visual qual i ty of display gen-
erated, mus t be considered. We present four
different me thods here. T h e first is the well-
known dope vector method used by com-
pilers in the linearization of mul t id imen-

Computing Surveys, Vol 13, No 4, December 1981

sional arrays. T h e o ther me thods are essen-
tially t ree da ta s t ructures which are suited
for 3D region representat ion. T h e la t ter
me thods are called marginal, symmetric

recursive, and asymmetric recursive index-

ing, each of which requires successively
more overhead storage, less computat ion,
and more storage efficiency with da ta ho-
mogenei ty . In the following elaborat ions we
assume tha t X, Y, and Z are the three
coordinates which are divided into N equal
par ts , giving a m a x i m u m of N 3 da ta ele-
men t s to be stored.

3.1 Dope Vectors

This is an exhaust ive me thod of represen-
ta t ion which assumes tha t each da ta ele-
m e n t requires the same amoun t of storage.
T h e da ta e lements occupy consecutive lo-
cations (addresses) with the first subscr ipt
X varying mos t rapidly, Y next, and Z least
rapidly. In order to find the descr iptor for
index (X, Y, Z), six compar isons are made
to de te rmine whe ther X, Y, and Z are within
their respect ive upper and lower bounds; if
so, the address of the descr iptor is calcu-
la ted using the coefficients (or strides)
Di f rom the formula DO + (X,D1)
+ (Y, D2) + (Z.D3). I f A is the first address
and indices are in ranges L1 -< X <- U1,

R e p r e s e n t a t i o n o f T h r e e - D i m e n s i o n a l D i g i t a l I m a g e s

L2 _< Y _< U2, L3 _< Z _ U3, then the strides
Di are defined as DO ffi A - [L3*(U2 - L2
+ I)*(UI - L1 + i)] - [L2*(UI- L1 + i)]
-L1, DI= I, D2= U I - L I + l, andD3
-- [(U2 - L2 + I)*(UI - LI + I)]. The
indexing program only needs to store the
four so-called dope vectors: (DO), (U1, L1,

DI), (U2, L2, D2), and (U3, L3, D3). For
example, in the case of a 2 × 3 × 4 array
with (LI, L2, L3) = (1, I, 1), (U1, U2, U3)
= (2, 3, 4), and A -- 0, the dope vectors are
(-9), (2, i, I), (3, i, 2), and (4, i, 6). Thus
the location of element (X, Y, Z) of this
array is given by -9 + X + 2Y + 6Z.

This method is useful when all elements
must be stored, as is the case with highly
fluctuating data. Accessing an element re-
quires two multiplications and three addi-
tions; a parallel implementation can reduce
the cost to one multiplication and two ad-
ditions. Local operations are simple to im-
plement, since if a voxel is accessed at ad-
dress a, then its n-adjacent voxels are ob-
tained by adding (or subtracting) the
strides to (from) a. It follows that data in
cross sections can also be easily obtained.

3.2 Marginal Indexing

This method is based on the idea of using
a linked set of tables to store the data. In
order to find element (X, Y, Z), Xis used as
an index into the first table to get a pointer
to a second table. Then Y is used as an
index into the second table to get a pointer
to a third table. Each block in the third
table contains the data for the given values
of X and Y and varying values of Z. By
using Z as the index, the proper element
can be found.

The method may be thought of as speci-
fying a slice of the volume by X at the first
level (root) of a three-level tree, then a strip
of this slice by Y (at the second level), and
finally an element of this strip by Z (at the
third level). When all data elements of a
slice are identical, data are stored at that
level (either in the table or via a pointer)
and no pointer proceeds from the first level
to the second. Similarly, when a strip is
homogeneous, no pointer proceeds from the
second level to the third level. If two or
more slices are identical but nonhomoge-
neous, then a single copy of the slice is
stored, in effect, with multiple pointers

° 405

pointing to the same slice. Similarly, when
two or more strips are identical, a single
copy of the strip is maintained. An example
of this method of indexing is shown in Fig-
ure 4 for the case of binary-valued data
elements. The storage required by marginal
indexing is sensitive to the ordering of in-
dices. However, the maximum storage re-
quired for pointers is N + N2; thus the
storage complexity of the method is domi-
nated by the N 3 required for data.

Accessing data in cross-sectional slices
and strips of slices is quite simple with
marginal indexing. Finding the values of
voxels n-adjacent to (X, Y, Z) is best done
by making independent accesses through
the data structure for appropriate combi-
nations of X _ 1, Y _+ 1, and Z _ 1.

3.3 Symmetric Recursive Indexing

This method differs from marginal indexing
in the method of partitioning the volume.
The cubic space is subdivided into eight
subcubes (octants) of equal volume. Each
of these octants will either be homogeneous
(e.g., uniform attenuation) or have some
nonuniformity. The heterogeneous octants
are further divided into suboctants. This
procedure is repeated as long as necessary
until we obtain blocks (possibly single vox-
els) of uniform properties. The method is
thus a 3D version of the 2D quad-tree data
structure, which latter has been expounded
by Tanimoto [TANI80].

Recursive indexing can be modeled by a
tree of degree 8, variously referred to as an
oct-tree [JACK80], octal-tree [SRIH80], and
octree [MEAGS0]. Each nonterminal node
of an oct-tree has eight successors and the
leaves of an oct-tree correspond to data
elements. In order to access a single point
(X, Y, Z), the binary representations of X,
Y, and Z are obtained as xoxl XM-1,

yoyl, • • • , yM-I , and ZoZl, . . . , ZM-1, respec-
tively, where M = log~q. At the top level of
the tree is a table of eight elements, one for
each octant. The index of this table, called
s o n - t y p e , is obtained by concatenating the
high bits of the X, Y, and Z coordinates.
Thus Xoyozo selects an octant from the table.
If that octant is to be further subdivided,
then x~y , z , selects a suboctant, and so on.
The oct-tree representation of an object

Computing Surveys, Vol. 13, No. 4, December 1981

406 • S. IV. Srihari

X= 0 4 2 3

Y: 0 I 2 3

Z : 0 2 3

(a)

I Z= 0 4 2

Y= o t 2 5 ~ l _ T [l
iol lol,, 1 _ , - I

 ljj
X= 0 t 2 3 X= 0 4 2 3 X= 0 1 2 3

Io],1o1 1 Io1 1olol I,Itlo1 1
(b)

Storage

Index ordering Pointers Data

XYZ 3 13

XZY 10 10

YXZ 5 15

YZX 16 12

ZXY 12 16

ZYX 12 12

(c)

Figure 4. Marginal indexing of a 4 × 4 × 4 binary array: (a) linked hst using index order XYZ; (b) equivalent
[ist using index order ZYX; (c) storage reqmrements for 6 permutatzons of mdmes.

is shown in Figure 5 where, again, the
elements are binary valued. The equivalent
list representation of this tree is
(010(10000000)(110011(00001010)0)100).

The maximum overhead storage required
by the method of recursive indexing is given
by

M-1 N 8 - 8
Y, 8 ' - - -
Z~I 7

As a comparison with marginal indexing,
consider the case where N = 128, or each
axis is divided into 128 equal parts. In this
case there are a maximum of N 3, or approx-
imately 2.1 million data items. Marginal
indexing requires a maximum of 16,512
pointers, or less than 2 percent of the data,
whereas recursive indexing requires 299,592
pointers, which is less than 15 percent of
the data. When the arrays are sparse, these
overheads can be expected to be signifi-
cantly lower. As in the case of marginal
indexing, the storage required by recursive
indexing can be further minimized by de-

tecting and maintaining a single copy of all
isomorphic subtrees.

The method of recursive indexing is par-
ticularly suitable for hardware implemen-
tation owing to the simple bit manipula-
tions necessary to determine pointers at
each level. An algorithm for generating the
oct-tree representation of a binary image
from the quad-trees of its slices is given by
Yau and Srihari [YAu81a]; the method al-
lows voxels to have "don't-care" values,
which allows the development of a compact
data structure even in the case of a volume
whose sides are not a power of 2. This
algorithm was applied to a 64 × 64 × 64
binary array representing the human brain
(8 of whose slices are shown in Figure 3a).
The oct-tree, with 2539 nonterminal nodes
over 6 levels, was constructed in 72 seconds
on a CDC Cyber 174 computer. (Since this
oct-tree can be completely represented us-
ing 8 12-bit fields per nonterminal node, the
243,744 bits needed for the oct-tree reflects
savings over the 262,144 bits needed for the
array.)

Computing Surveys, Vol 13, No 4, December 1981

Representation of Three-Dimensional Digital Images • 407

v=(YoylY2), • /

111 [
110 1-

101 ~_

100 I"

011 ~_

010 I"

- ~/~__(zOZlZ2)

101

' i a 000~ X=(XOXlX2)
000001 010011 lO0 lOl 110 111

(a)

I Ii I
(b)

XoYoZo

XlYlZ 1 0~ f1~2~3 /4 /5 16 \ 7 \ 0

x2Y2Z2
(c)

Figure 5. Recurswe indexing of a binary-valued 3D object: (a) object having 83 = 512 data items, (b) octant
mdzces as specified by concatenating corresponding index bits, (c) oct-tree reqmring 37 data ztems including
pointers.

Computing Surveys, Vol. 13, No. 4, December 1981

408 • S. N. Srihari

Operations with Oct-Trees. Certain op-
erations on images are simple to implement
with recursive indexing. For instance, clock-
wise rotation by 90 ° along an axis perpen-
dicular to, and centered at, the midpoint of
the YZ cross section is done by permuting
the son-types at every node according to
the permutation ((0, 2), (1, 0), (2, 3), (3, 1),
(4, 6), (5, 4), (6, 7), (7, 5)}. Scaling up by 2
is done by deleting the root node and mak-
ing one of its 8 sons the new root. Similarly,
scaling down by 2 is done by making the
root node to be one of the sons of a new
root node.

Translation of an oct-tree-represented
object by integer distances along the three
axes is somewhat more involved. The goal
of a translation algorithm is to convert both
a source oct-tree, representing a 3D object,
and a movement vector into a target oct-
tree representing the translated object. The
basic strategy is to generate node values of
the target tree in a postorder traversal (in
which the sons of a node are visited first)
by simultaneously traversing the source
tree. Each target node is compared with a
list of the source tree's nodes whose octants
overlap the target node's octant; thus a
target node may derive its value from
source nodes that terminate at a higher
level. Further details of this translation al-
gorithm are given by Jackins and Tanimoto
[JACK80].

Since an oct-tree maintains object voxels
in a spatially presorted format, a hidden-
surface view can be generated without
searching or sorting. If octants are visited
and displayed in the proper sequence, as
determined by the location of the viewer,
no octant can obscure the view of an octant
later in the sequence. Thus if voxels are
displayed such that later voxels overwrite
earlier voxels on the screen, a hidden-sur-
face view will be generated [MEAG80].

Other operations involving spatial sorting,
such as convex hull computation (see Sec-
tion 5.3.3), can be performed efficiently
with recursive indexing [YAu81b].

3.4 Asymmetric Recursive Indexing

One way to extend recursive indexing is to
employ some knowledge about the partic-
ular volume being represented so that its
data structure can be more concise. In this

method, the space to be subdivided is bro-
ken into rectangular parallelepipeds rather
than into cubes. Division of the space is
done with planes perpendicular to the X, Y,
and Z axes, but the planes are not equally
spaced and there can be a different number
of planes along each axis. Because the sub-
division is variable along the axes, storage
can be saved by intelligent subdivision. For
example, if a very small object is to be
represented in the middle of a large empty
volume, the equal subdivision model will
have to traverse many levels of the tree
before it gets to the detail of the object.
Using unequal subdivision, two closely
spaced planes along each axis will exactly
single out the object so that the next level
of subdivision can begin at the proper de-
tail.

Point accessing is more difficult with this
model because each level of subdivision
needs three vectors that indicate the loca-
tion of the X, Y, and Z planes which make
up the subspaces. The X, Y, and Z compo-
nents of the desired point must be located
in these vectors so that the indices can be
used to select the proper subspace.

The concept of asymmetric recursive in-
dexing is illustrated in Figure 6, which is an
oct-tree of the object in Figure 5a. In this
model, at each nonterminal node, three in-
dices representing the positions of the par-
titioning planes are placed. Let (Xjk, Y~h,
Zjk) represent the indices of the partitioning
planes at the kth nonterminal node of level
j, where 0 _< k _< 7, 0 _<j _< log2 N - 1. Then
point (X, Y, Z) is accessed by selecting a
branch at each nonterminal node by the
concatenated bits xjyjzj, where

1 if X>_Xjk,

xj = 0 otherwise;

01 if Y~-Yjk,
YJ -- otherwise;

1 if Z>_Zjk,
zj = otherwise.

3.4.1 Dtstnbuted Indexing

A variation of asymmetric recursive index-
i ng -one more suitable for continuous

Computing Surveys, Vol. 13, No 4, December 1981

(4,4,4)

Representation of Three-Dimensional Digital Images

Figure 6. Oct-tree of object in Figure 5a obtained by asymmetric recur-
sire indexing. Each nontermmal node has three indmes that specify the
location of partitioning planes.

• 4 0 9

spaces--is to break down the volume into
rectangular parallelepipeds that are not
necessarily aligned with an axis. The par-
allelepipeds can be any size and orientation,
but any point that is not in one of these
parailelepipeds is empty. In this scheme,
therefore, one finds a point's attributes by
determining which parallelepiped it occu-
pies. If the point is found in a parallele-
piped, then the next level of detail is ex-
amined. This level has another set of par-
allelepipeds that isolate the nonempty parts
within it. Sublevels in this model operate in
the coordinate space of the parallelepiped
that encloses them, so accessing of points is
done recursively. The implementation of
this method, as proposed by Reddy and
Rubin [REDD78], is as follows. The system
is presented with a point {X, Y, Z) that lies
in the object space. At the top level of the
structure there are N transformation ma-
trices, TI through TN, and each is a 4 × 4
transformation that converts the object
space point into the coordinate system of
its parallelepiped. In this new system, the
point (0, 0, 0) is at one corner of the sub-
space, and the point (UX, UY, UZ) is at
the diagonally opposite corner. The object
space point is within parallelepiped ~ if,
after transforming {X, Y, Z) through T, to
become (X', Y', Z'),

O~_X" ~ UX, AO~_ Y'
~_ UY, A O ~ Z ' ~_ UZ,.

If none of the parallelepipeds at a given

level is found to contain the requested
point, then that point is reported to be
empty. If the point falls within one of the
parallelepipeds, then there is a possibility
that it is nonempty. To find out, all of the
subparallelepipeds within this new object
space must be searched. The algorithm is
recursive and the point (X', Y', Z') is ex-
tracted from the subspace. This recursion
continues until the level at which there is
no more detail of the object is reached. At
this level a point that falls within a paral-
lelepiped is nonempty and the properties of
the points are extracted.

3.4 2 Dynamic Indexing

A data structure that has been proposed for
representing multidimensional accumula-
tor arrays, such as those encountered in
implementing the Hough transform (see
DUDA73, p. 335), is known as dynamic in-
dexing [O'Rou81]. It could also be applied
to the representation of 3D images.

Here the space is divided into rectangular
parallelepipeds by means of planes perpen-
dicular to the axes. Unlike the oct-tree data
structure, a given rectangular parallele-
piped is divided into only two halves {upper
and lower) by means of a plane which is
perpendicular to, say, the X axis, and posi-
tioned midway along the extent of the par-
allelepiped along that axis. The two result-
ing parallelepipeds are divided recursively
until each parallelepiped is uniform. The

Computing Surveys, Vol. 13, No. 4, December 1981

410 • S. N. Srihari

Figure 7. Bmary tree of object in Figure 5a obtained
by dynamic indexing. Each nonterminal node has an
index that specifies the direction of the partitioning
plane. The left and right subtrees, respectively, de-
scribe the upper and lower halves of the space with
respect to the plane.

resulting data structure is in the form of a
binary tree, where each nonterminal node
has an index that specifies the direction of
the plane as X, Y, or Z. The left subtree can
be regarded as describing the upper half of
the parallelepiped and the right subtree as
describing the lower half of the parallele-
piped. Using this convention, the binary
tree shown in Figure 7 is an exact represen-
tation of the object in Figure 5a.

As in the case of other asymmetric index-
ing methods, and unlike the symmetric oct-
tree, the binary tree representation of a
given image is nonunique, unless other cri-
teria for determining the directions of the
partitioning planes are imposed. Since the
space is divided into only two halves at
each level, the binary tree can be expected
to have more levels than the oct-tree.

4. TOPOLOGICAL REPRESENTATIONS

Fundamental to the definition of high-level
representations of digital images are the
topological concepts of connectedness and
mathematical relationships between vol-
ume subsets (containment, adjacency, etc.).
In this section we discuss definitions of
connectivity, components, and holes in bi-
nary-valued 3D discrete images and con-

sider algorithms for deriving certain topo-
logical representations. Some of these ideas
are straightforward generalizations from
the 2D case, for example, MISS72 and
ROSE76; related ideas in discrete 3D com-
putational topology are also given in
GRAY70, MYLO71, PARK71, and YONE80.

4.1 Components

The concept of adjacency of voxels can be
used to define connectedness of objects in
3D discrete space. Corresponding to differ-
ent types of adjacency, we have different
types of connectivity. If S is a finite set of
voxels, then two voxels V and U are n-
connected in S if there exists a sequence of
n-adjacent voxels (or n-path) between V
and U, V = v °, v 1 v m = U, all i n S ,

such that v ~-1 is n-adjacent to v p, for
1 _ p __ m. Thus a sequence of object voxels
that are 6-neighbors of each other is a 1-
connected set, which is sometimes referred
to as being 6-connected. Similarly, a se-
quence of 26-neighboring object voxels is a
3-connected set or 26-connected, and so on.

An n-component of S is an equivalence
class of the partition induced by n-connec-
tivity on S. Further, we say that an object
is n-connected when it has a single n-com-
ponent. An n-connected object is also re-
ferred to as a digital solid. In order to avoid
the violation of certain topological invar-
iants, the order of connectivity chosen for

should be r~ ~ n; we limit the choice of
(n, ~) to either (1, 3) or (3, 1).

4.2 Holes

In the case of 2D digital objects, holes of S
are defined as finite components of S. This
definition in the 3D case is equivalent to
the notion of a cavity, as in the case of the
enclosed space of a hollow shell. Thus we
define a cavity of S as a finite ~-component
of $. The background of S is simply the
infinite ri-component of S.

Another type of hole encountered in the
3D case is that of a tunnel, as in the case of
the puncture in a doughnut. A tunnel (or
handle) is said to be formed when we take
a solid, say a sphere, make two circular
holes in its surface, and join them by con-
necting the two ends of a tube to the two

Computing Surveys, Vol. 13, No 4, December 1981

Representation of Three-Dimensional Digital Images

/ /
/ /

/

/

/

tUJ. /
/ /

/ /
/

(a) (b) (c)

411

: : ,oo" : . , o ,

O~ect K C T V E F ~ X

a 1 0 0 32 60 30 2 1

b 1 0 1 32 64 32 0 0

c 1 1 0 56 108 54 4 2

(d)

Figure 8. Three digital solids. (a) closed object, (b) object with a tunnel; (c) object with a cavity; (d) their
topological invanants.

holes. This process yields a sphere with one
handle. Additional handles can be added by
the same process. A sphere with one handle
can be continuously deformed into a surface
that can be thought of as the surface of a
doughnut. This surface, called a toms, can
be mathematically described by rotating a
circle which lies in a plane about a line in
that plane that does not intersect the circle.
A sphere with T handles can be put into
direct correspondence with a torus with T
tunnels. The number of tunnels present in
an object is sometimes referred to as handle
number or genus of the object [BARR70].

The genus of a digital solid can be deter-
mined by a property that holds for netted
surfaces. A closed surface ~ that can be
divided into ~faces by drawing ~:vertices
and 8 connecting edges that are geodesics
(shortest paths on the surface) so that faces
are simply connected (i.e., each non-self-
intersecting closed curve in the face can be
deformed to become a point while lying in
the face) is a closed netted surface. A

topological property of such a netted sur-
face [HILB52] is that

Y~- 8 + ~--- 2 - 2T. (4.1)

(From differential geometry [CoxE69], it
can also be shown that 2 - 2T is propor-
tional to the surface characteristic of ~,
which is defined by the integral of Gaussian
curvature over ~.)

The surface of a digital solid S consists of
square faces between the abutting voxels of
S and S. Such a surface is a closed netted
surface whose faces are simply connected.
It follows that the genus of S can be deter-
mined by counting the number of faces,
edges (where two faces meet), and vertices
(where four faces meet) on the surface of S.
Equation {4.1) can be verified for the three
1-connected digital solids shown in Figure
8 by counting the number of faces, edges,
vertices, and tunnels. It should be noted
that sometimes an edge may locally belong
to k surfaces, in which case the edge is
counted k times; if S consists of two voxels

Computing Surveys, Vol. 13, No. 4, December 1981

412 • S. N . S r i h a r i

that touch at an edge, for example, the
common edge belongs to two local surfaces
and is therefore counted twice.

4.3 Euler Characteristic

The Euler characteristic of a 2D figure with
K components and H holes is defined as
X = K - H (see DUDA73). Its 3D generali-
zation is defined (see GRAY70) for a 3D
scene with K components, C enclosed cav-
ities, and T tunnels as

X = K - T + C. {4.2)

It can be shown that X is computable by a
local operator, as follows.

In general, when an object consists of
more than one component and closed cav-
ities are present in components, then for
each netted surface ~ which encloses an
object or cavity, we have from (4.1)

- ~ + ~ i = 2 - 2T i . (4.3)

For the entire object one may define a
c o n n e c t i v i t y n u m b e r ,

K+C

71 = ~. (2 - 2TD. (4.4)

Combining (4.1), (4.3), and (4.4) and the
fact that ~, T i = T,

K+C

= 2 X= ~ (~ f ~ i - ~ i + ~ i) . (4.5)

Thus the consequence of (4.5) is that the
Euler characteristic (and connectivity num-
ber) of a 3D object in cellular space is
computable by a local operator that counts
the number of faces, edges, and vertices.
These concepts are also illustrated in Fig-
ure 8d.

Consider next an algorithm to compute
connectivity number ~ of a 3D digital ob-
ject. Counting the contribution of each ob-
ject voxel to ~? is rather slow since it requires
a procedure operating on 27 voxels for each
object voxel; and the potentially fast
method of enumerating all possible local
configurations and storing their individual
additive contributions to y is impractical
due to the 227 possible configurations. An
alternative formulation is to visit each ver-
tex of each object voxel exactly once and
determine the contribution of the 2 × 2 x

2 voxel neighborhood of the vertex to ~.
The 2 s possible configurations can then be
described by an 8-bit byte. The contribu-
tion to ~ by each vertex has to take into
account the fact that faces and edges touch-
ing at that vertex also touch other vertices.
Lobregt et al. [LOBR80] derive the table
entries for the particular case where T/needs
to be evaluated in the 3 × 3 × 3 neighbor-
hood of an object voxel and then show them
to belong to one of 22 basic different pos-
sibilities.

4.4 Adjacency Trees

The topology of a 2D black-and-white fig-
ure is given by its a d j a c e n c y tree , a graph
showing the containment relationship be-
tween the background, components, and
holes. An algorithm for constructing the
adjacency tree of a 2D figure, which is
based on a single raster scan, is given by
Buneman [BtTNE69]. The adjacency trees
of parallel 2D slices of a 3D object, together
with adjacency information about compo-
nents in successive slices, provides a simple
topological representation. The adjacency
of components in neighboring slices can be
determined by maintaining a set of 2D co-
ordinates corresponding to each component
and checking for overlaps.

Let {~,} be the forest of adjacency trees
of parallel slices. The choice of order of
connectivity in determining ~, is as follows:
if n = 1 use 4-connectivity; otherwise use 8-
connectivity. Let i j k represent the kth node
(component of S or ~) at the j th level of ~,,
and let [i jk] represent the set of 2D coor-
dinates (figure) corresponding to i jk . Then
we define a c o m p a t i b i l i t y relation between
nodes as

~bffi { (i jk , i ' j ' k ') [] i - i ' l = 1,

and [i j k overlaps [i ' j ' k '] }

where o v e r l a p between two figures implies
the existence of a common point (for n --
1), a common 4-connected point (for n = 2),
or a common 8-connected point (for n -- 3).

Next we show that {~,} and ~ are suffi-
cient to determine various topological prop-
erties. Define i j k to be compatible to i :] ' k '

if and only if there exists at least one se-
quence of the form ao, am am such that
ao = i jk , am = i ' j ' k ' , and (ap, ap+l) ~ ~ for

Computing Surveys, Vol. 13, No 4, December 1981

R e p r e s e n t a t i o n o f T h r e e - D i m e n s i o n a l D ig i t a l I m a g e s • 413

Slice number

Row number 0 and 7 1 2 and 6 3 and 5 4

0

1

2

3

4

5

6

7

8

9

10

11

12

0000000 0000000 0000000 0000000 0111110

0000000 0000000 0000000 0000000 1000001

0000000 0011100 0011100 0011100 1011101

0000000 0010100 0010100 0010100 1010101

0000000 0010100 0011100 0011100 1011101

0000000 0010100 0011100 0010100 1010101

0000000 0010100 0011100 0010100 1011101

0000000 0010100 0011100 0010100 1010101

0000000 0010100 0011100 0011100 1011101

0000000 0010100 0010100 0010100 1010101

0000000 0011100 0011100 0011100 1011101

0000000 0000000 000O000 0000000 1000001

0000000 0000000 0000000 0000000 0111110

(a)

000 100 200 300 400 500 600 700

. - : _

i HO 2t0 3t0 \x 4t0 / / 5t0 . 6t0
I I
I \ /

, } ,, T / ,N- :
I \ \ / / I

/ IX ./IX,, ,, I ,, //I\ / X ,
t20 220 221 320 321 322\\ \\420," ,/520 52"1 522 620 62t i

~-_J.__ . e Jt .• e. ~ \ \ ~" / /) t . $ 9. ~(#Lf /

, , " - , , ' , " , I ," , ,f ~'---'*

\ ~,~. - \ / 1 1 / / /
x , - x ',430, / / , .,

440 44t 442 443

(b)

Figure 9. AdJacency tree representation' (a) data for slices 0-7; (b) the 8 adjacency
trees of slices 0-7, where dotted lines indicate connectivity. The object consists of two

components, one of which has a single tunnel, the other of which has two tunnels and
a cavity, which in turn has a tunnel

1 _< p _ m. The resulting equivalence classes
of (i jk} represent the components and cav-
ities of S; a compat ible set of nodes of S is
a component , and a compat ible set of nodes
of $ is ei ther a cavity or a background. For
a given level j , two compat ible nodes i jk

and i ' j ' k ' (i < i') are said to enclose t - 1
tunnels if there exist t sequences of com-

patible nodes with no two sequences aoa,,

. . . , am-lam and aob, bm-lam having
at = bt, ar = br for some l, r (1 _ 1 < r
< m) .

The forest of adjacency trees of eight
slices of a 3D object with n = 3 is shown in
Figure 9. The t rees can also be represented

in terms of list structures as ~o ffi ~7 ffi (0),

~1 = (((0))) , ~'2 ffi ~6 -- (((0) (1))) , ~'3 -- ~5 ffi

(((0)(1)(2))), and ~4 = (((((0)(1)(2)(3))))).
The ou te rmos t parentheses indicate the
background, and the corresponding pairs of
inner parentheses a l ternately denote com-
ponents and holes. For example, in ~2 =
~6 = (((0)(1))), the ou te rmos t parentheses
denote the background, the next set of pa-
rentheses denotes a single component , and
the two sets of innermost parentheses in-
dicate two holes. T h e label in the innermost
p a r e n t h e s e s r e p r e s e n t s a l e a f n o d e , w h i c h

is e i t h e r a c o m p o n e n t or a h o l e d e p e n d i n g

o n w h e t h e r i t is n e s t e d a n e v e n or o d d

Computing Surveys, Vol. 13, No. 4, December 1981

414 • S. N. Srihari

/
25

13 12 tl

Figure 10. Chain code for digital space curves T h e
nodes are n u m b e r e d 0-7 and 10-18, 20-28 a round t he
middle and the two ends, respect ively (The central

node of the middle shce touches nothing, and so it is
no t numbered.}

number of times. The set of nodes of the
object has four equivalence classes. Equiv-
alence classes {410} and {110, 210, 310, 430,
510, 610} correspond to components, equiv-
alence class {321, 441,442, 521} corresponds
to a cavity, and the remaining equivalence
class {000, 100, 120, 200, 220, 221, 300, 320,
322, 400, 420, 440, 443, 500, 520, 522, 600,
620, 621, 700} corresponds to the back-
ground. The object has four tunnels: a tun-
nel in the first component due to two se-
quences between 000 and 700, and one tun-
nel in the cavity due to two sequences be-
tween 321 and 521.

5. GEOMETRICAL REPRESENTATIONS

Representation methods that are con-
cerned with details of shape information
are referred to as geometrical representa-
tions. In this section we consider the exact
representation of space curves, derivation
and representation of surfaces, and the rep-
resentation of shape by properties.

5.1 Space Curves

A digital space curve may be defined as a
connected set of voxels all but two of which
have exactly two neighbors in the set, while
the exceptional twomthe end voxelsmeach
have exactly one neighbor in the set. The
method of chain coding in 2D can be easily
extended to digital space curves [FREE74].

From each data node there are 6, 18, or 26
possible directions to the next node depend-
ing on whether the order of adjacency n is
1, 2, or 3. Thus each possible direction can
be uniquely designated by 3 bits for 1-con-
nected space curves and by 5 bits for 2- or
3-connected space curves. One particular
coding arrangement for the 26 possible di-
rections of a 3-connected space curve is
shown in Figure 10. Since each 26-neighbor
of a given voxel can be designated by spec-
ifying for each coordinate whether it is in-
cremented by 1, unchanged, or decre-
mented by 1, each possible direction of a 3-
connected space curve can also be specified
by a 3-digit ternary number [RosE80].

5.2 Surfaces

An important representation of a 3D object
is by means of its 3D surface. Such a rep-
resentation is necessary for shaded display
on a graphics screen. We consider next the
problem of exact representation of surfaces
of objects in cellular space, where we as-
sume that object voxels have value 1 and
background voxels have value 0. Our dis-
cussion thus excludes methods of repre-
senting 3D manifolds by triangular fac-
ets [FucH77] and interpolative patches
[YORK80]; the former, however, does yield
a fast algorithm that is used in many CT
display programs [CooK80].

We have seen previously (Section 4.2)
that the surface of an object S consists of
voxel faces that are at the interface of S
and S. Since the voxel is a convenient prim-
itive element for 3D data structures, it is
useful to redefine the concept of surface in
terms of voxels. This can easily be done
since a face is uniquely defined by two
abutting voxels. Thus the surface of an
object S in 3D cellular space can be defined
as the set of voxel pairs

Y~[S] = {(V, U)IVES, UES, VR, U}.

If S is a finite n-connected object with K
enclosed cavities, then ~[S] can be
uniquely partitioned into one external sur-
face and K internal surfaces. An example
of the external surface of an object is shown
with shading in Figure ic; a procedure for
shaded display of voxel faces is described
by Herman and Liu [HERM79].

CompuUng Surveys, Vol 13, No 4, December 1981

Representation of Three-Dimensional Digital Images • 415

The surface of a 3D object can be repre-
sented by specifying a set of constituent
faces or indirectly by means of border vox-
els, graphs (whose nodes are faces and
whose edges specify touching faces), and
medial axes. In the following, we define
these concepts and briefly describe algo-
rithms for deriving such representations.

5 2.1 Borders

Determination of the surface of an object
S, and the surface's partition, is facilitated
by defining the border of S (which is a one-
voxel-thick layer) as

B(S) = { VI V ~ Sand
~ (V) A S is nonempty}

where (n, ti) = (1, 3) or (3, 1) as before.

Since

{(V, U)IV E B(S), U ~ (S, VRIU}
= ~ [s] ,

it follows that the surface of S is uniquely
specified by B (S). More important, each n-
component of B(S) specifies either the ex-
ternal or one of the internal surfaces of S;
or if resolution is low enough to separate
two surfaces by fewer than two voxels, each
specifies the union of the surfaces (the proof
rests on showing that the border of an n-
connected object without cavities is also n-
connected). A detailed discussion of the
mathematical properties of borders is given
by Udupa et al. [UDuP79] and Morgen-
thaler and Rosenfeld [MoRcS0b].

A method of determining whether a voxel
V is an element of B (S) is to determine
whether any element of N~(V) belongs to
~. This leads to the following parallel algo-
rithm for determining B (S): if { V' } are the
elements of N~(V), then V ~ B(S) if and
only if

f (V) . t i l l (V ')) = 1

where H denotes logical product. This is
a fast method of determining the set union
of all external and internal borders of the
object.

In order to isolate a single external or
internal border of an object, it is necessary
to track connected voxels sequentially. An
algorithm to detect a connected 3D border
differs fundamentally from its 2D counter-

~5

tt /

~o /

Figure 1 1. Example of border-following The initial
voxel is labeled 0 Shaded faces correspond to the
surface already traversed by the time the current voxel
is 9, at this point voxels 10-18 are in the queue. The
voxels were traversed in the order" 0, 1, 2, 3, 4, 5, 6, 7,

8,9.

part. A connected 2D border can be repre-
sented by a one-dimensional circular list of
elements, where neighboring elements of
the list represent adjacent border pixels; 2D
border following is unique once the starting
point and direction are specified [RosE76].
Sequential traversal of the border of a 3D
object requires a queue (or stack) to store
"leads" to be followed; this is because there
does not always exist a connected, non-
overlapping traversal of the surface (or bor-
der) of a nonconvex object.

A 3D border-following algorithm is illus-
trated with the aid of Figure 11 where ob-
ject S is a 4 × 4 x 4 cube, the initial voxel
is V ° which is the corner voxel labeled 0,
and we chose (n, fi) ffi (1, 3). Tracking
proceeds by placing those voxels V of
Nn(V °) that have value 1 and belong to
B(S) (because an element of N~(V) has
value 0), called Y 1°°° Y 3, into a queue Q
and by marking V ° as having already been
traversed, say by changing its value from 1
to 2. Next the front element of Q, V 1, is
removed as the current element of traver-
sal. The elements of N, (V 1) having value
1 and belonging to B(S) but not to Q,
namely, V 4. . . V 6, are entered at the end of
Q. Similarly, current element V 2 contrib-
utes V v and V s to Q, and so on. A detailed
discussion of the complexity of this algo-
rithm, its improvements, and its perform-

Computmg Surveys, Vol. 13, No. 4, December 1981

416 • S. N. Srihari

I ~ l \ I !5~.,... \ ~ ,, ,,

\ \ f ' - - 2 - . \ /

5

(a) (b)

FJguce 12. Directed graph representation of the surface of a 3D object: (a) each of the
6 types of voxel faces has 2 incoming and 2 outgoing edges as shown here for a single voxel;
(b) the directed graph of the voxel in (a), where nodes correspond to voxel faces.

ance with CT data is given by Udupa et al.
[UDUP79J.

Instead of determining the border voxels
and collecting the faces that contribute to
5z(S), an alternative approach to determin-
ing a single internal or external surface is
to track "connected" faces. That such an
algorithm is possible is based on the fact
that the surface of any closed digital object
can be represented by a directed graph
whose nodes correspond to faces, each node
having exactly two incoming and two out-
going edges. The incoming and outgoing
connected faces are defined as shown in
Figure 12 for each of the six types of faces
of a voxel. It can be shown that each inter-
nal or external surface of a digital object
corresponds to a maximally connected
subgraph of such a directed graph
[ARTZ81]. Therefore sequential traversal of
a closed surface of the object is equivalent
to determining a binary spanning tree of
the appropriate maximally connected
subgraph.

5 2.2 MedlalAxes

Compact boundary representations of a 2D
figure are given by the chain code and by
the medial axis transformation (MAT)
[DYER80]. Of these two, only the latter can
be generalized to the 3D case.

Computing Surveys, Vol 13, No 4, December 1981

Surface points are specified in the MAT
representation by a collection of overlap-
ping spheres. Given the centers and radii of
the maximal spheres, it is possible to recon-
struct the boundary representation by
choosing those points that are not in the
interior [BLUM79]. An algorithm for per-
forming such a conversion in continuous
3D space is given by O'Rourke and Badler
[O'Rou79].

The MAT is defined in the discrete case
by a collection of overlapping digital
spheres (or blocks). A voxel V E S is said to
belong to the medial axis M (S) if

c a r d { U [(U , V) = min d (V , W) } > I
W e B (S)

where d is a 3D metric and card A is the
cardinality of set A. This definition implies
that M (S) consists of those voxels of S
whose distances from ~ are local maxima;
that is, V is an element of S if and only if
for all U E N, (V) A S, minweB(S) d(V, W)
>-- minwes(s) d(U, W). Thus S is the union
of maximal digital spheres centered at the
voxels of M(S). If d is the maximum value
metric, then the digital sphere is a cube and
the MAT representation is similar to the
oct-tree representation; in fact, they are
equivalent if we constrain the locations of
centers of digital spheres to powers of 2.

Representation of Three-Dimensional Digital Images

It should be noted that although the lo-
cus of centers of a 2D medial axis consists
of linear structures, its 3D counterpart is
not necessarily a space curve; M(S), for
instance, may consist of one-voxel-thick
layers. Thus the 3D medial axis may
be referred to as a medial or symmetric
layer.

5.3 Features

The application of pattern-classification al-
gorithms to 3D digital images requires rep-
resentations in the form of descriptive fea-
tures. The types of features that can be
extracted depend on whether we are dealing
with a sampled function of three variables
or with a discrete 3D object (although the
former can be segmented into regions and
each region can be considered an object).
In this section we consider features for rep-
resenting the shape of a 3D object. The
challenge of shape description is that of
finding properties that not only discrimi-
nate between different shapes but are also
invariant to certain transformations {such
as translation, rotation, and magnification,
among others) of the low-level data struc-
ture. We discuss here the 3D counterparts
of properties that are frequently used in 2D
image recognition.

5.3.1 Metric properties

The surface area of an object S in the
cellular space is the number of elements in
its surface ~.~(S), measured in units of the
area of a single voxel face. Similarly, the
volume of S is the number of elements in S,
measured in units of the volume of a voxel.
If S is the digital representation of an object
in continuous space, then surface area and
volume are sensitive to the resolution of
digitization S. A method of estimating vol-
ume as a diagnostic feature in CT is dis-
cussed by Cook [CooK80].

5.3.2 Analytic Descriptions

Analytic shape description by means of ex-
pansion of the intrinsic function and mo-
ments are well known in two dimensions
[DUDA73]. The intrinsic function of a closed
2D figure specifies boundary curvature as
a function of arc length, and the coefficients

• 4 1 7

of the Fourier series expansion of the pe-
riodic intrinsic function constitute the
Fourier descriptors of the shape of the
figure. The concept of Fourier descriptors
generalizes to space curves [BADR80] but
not to arbitrary closed 3D surfaces. One
representation that is related to Fourier
descriptors is applicable to any closed sur-
faces satisfying the property that every
point of the surface is viewable from at
least one point in the interior. Such surfaces
are termed "museum-viewable" or "stel-
lar." The distance (or radius) from the
viewing point to such a surface is a function
of the direction from the point to the sur-
face. We can describe the direction in space
in terms of position on a sphere centered
about the viewing point, with the radius to
the surface given by a continuous function
on that sphere. Given a polar coordinate
system on the sphere, the radius of a
smooth stellar surface can be represented
as a weighted sum of spherical harmonics
(which are the basis functions in a Laplace
series expansion). The method of spherical
harmonics have been used in describ-
ing cardiac shape in ultrasound data
[SCHu79].

Moments of a 3D object S can be defined
a s

A(P, Q, R) = ~ (V1)P(v2)Q(v3) R . f (V)
v

where/(V) = 1 if V = (V1, V2, V3) is in S,
and 0 otherwise. Thus A (0, 0, 0) is simply
the volume of the object. Dividing
A(1, 0, 0), A(0, 1, 0), and A(0, 0, 1) by
A (0, 0, 0) yields the coordinates of the cen-
troid of the object. If we shift the coordinate
system so that the origin is at the centroid
of S, then the resulting moments are its
central moments M(P, Q, R). The first
central moments M(1, 0, 0), M(0, 1, 0), and
M(0, 0, 1) are zero, and the second central
moments M(2, 0, 0), M(0, 2, 0), M(0, 0, 2),
M(1, 1, 0), M(1, 0, 1), and M(0, 1, 1) are the
moments of inertia of S. The eigenvectors
of the matrix of second central moments
are the directions about which S has maxi-
mum and minimum moments of inertia.
Ratios of the eigenvalues describe fatness
or thinness of S in different directions. Sad-
jadi and Hall discuss the use of 3D moments
in discriminating between a parallelepiped,

Computing Surveys, Vol. 13, No. 4, December 1981

418 • S. N. Srihari

pyramid, and cylinder in continuous space

[SADg79].

5.3.3 Convexity

A method of describing the shape of an
object is to state whether it is convex or not
and to describe its convex deficiency (the
space between the smallest convex object
enclosing Q and Q itself). An object Q in
Euclidean {continuous) space is said to be
convex if the line segment joining any pair
of points of Q lies within Q, or, equivalently,
if every straight line meets Q at most once.
The convex hull of Q, denoted H(Q), is the
smallest convex object that encloses Q. The
convex deficiency of Q is the set difference
H (Q) - Q. If Q = {V'} is a finite set of
points in Euclidean space, then H (Q) =

{ x I x = Y., a, V' where ~, a, = 1 and a, _ 0}
is a polyhedron; intuitively, H(Q), the con-
vex hull, is the polyhedron obtained by
stretching a rubber sheet over points of Q.
The design of efficient algorithms for deter-
mining the convex hull of a finite set of
points in Euclidean space has received con-
siderable attention. One such algorithm
based on the recursive "divide-and-con-
quer" principle, is as follows:

(1) Sort Q into a list (according to the first
coordinate) and partition the list into two
{nearly) equal subsets Q1 and Qe.

(2) Compute H(Q1) and H(Q2) recursively.
(3) Apply a merge algorithm to H(Q1) and

H(Q2) to obtain H(Q) and halt.

Since the merge step is of complexity O (~)
in 3D space [PREP77], the overall complex-
ity of the algorithm is O (~ log ~).

Definition of convexity for objects in dis-
crete space requires some care. It is reason-
able to define a set of voxels S to be convex
if there exists a convex point set Q in Eu-
clidean space such that its digitization I(Q)
ffi S for some definition of I (see Section
2.4). Since this definition of convexity does
not lend itself to the formulation of a finite
procedure, an alternative definition is
needed. One such definition invokes the
concepts of simple solidness and of a semi-
digital point.

A simple solid S is a finite 1-connected
set of voxels, having no pair of voxels V 1,
V 2 E S, such that the line segment joining
the digital points of V ~ and V 2 is parallel to

Computing Surveys, Vol 13, No 4, December 1981

an axis and lies outside the voxels of S. A
point (a, b, c) is said to be a semidigital
point if at least one of its coordinates is an
integer.

Let H (S) be the Euclidean convex hull
of the digital points of S. We define a simple
solid to be convex if and only if every sem-
idigital point on the faces of H (S) is near
a digital point of S; two points (a, b, c) and
(a', b', c') are said to be near each other if

m a x ([a - a' I, I b - b'l, I c - c' I} < 1. This
definition of digital convexity does not nec-
essarily imply the existence of a convex set
Q in Euclidean space such that I (Q) = S;
however, this one implies that there exists
a convex object Q in Euclidean space such
that I ' (Q) = E (S) where E (S) is the half-
cell expansion of S obtained by assuming
the corner points of voxels of S to be the
digital points in a new lattice and I ' (Q) is
the digital binary image of Q in this lattice
[KIM80].

On the basis of this second definition of
digital convexity, the digital convex hull
9~(S) of a set of voxels S is given by ~ (S)
=- S 0 AS, where AS is the smallest set of
voxels such that 9~(S) is simple and that
each semidigital point on the boundary of
~q~(S) is near a digital point of ~¢t~(S). An
example of a digital object S, the Euclidean
convex hull of the digital points of S, H (S) ,
and the digital convex hull ~ (S) is shown
in Figure 13.

Yau and Srihari consider the computa-
tion of digital convex hulls from oct-tree
representations by taking advantage of the
implied sorting in the data structure
[YAu81b]. The complexity of such a convex
hull algorithm is related to the compactness
of the oct-tree rather than to the number
of points in the object.

6. STRUCTURAL REPRESENTATIONS

Topological and geometrical properties
are abstract image representations which
can be mapped into class descriptions
[DuDA73]. With complex objects it is more
useful for cognitive purposes to represent
objects by structural descriptions of spatial
organization. Thus we define serial-section
image understanding as the process of pro-
ducing, from a slice-by-slice image of the
external world, a representation of spatial
organization that is useful to a higher level

Representation of Three-Dimensional Digital Images

(a) (b) (c)

Figure 13. Digital convex hull representation: (a) object S; (b) Euchdean convex hull
H(S) of the digital points of S; (c) digital convex hull ~ (S) .

• 4 1 9

human or machine cognitive processor (re-
cognizer), uncluttered by irrelevant infor-
mation. The goals of serial-section image
understanding and of computer vision
[MARR78] are identical; they differ, though,
in the modality of input image data and
therefore in the methods of deriving the
representation.

Criteria for judging the effectiveness of a
method of structural image representation
are derivability, scope and uniqueness, and
stability and sensitivity. Derivability is con-
cerned with the ability to generate the rep-
resentation, given the limits on image res-
olution, on storage and on computation
time. Scope pertains to the class of shapes
that the representation is suitable for; if the
representation is to be used for recognition,
it is also important that the description be
unique for each member of that class.
Within the above scope and uniqueness
conditions, stability is a measure of how
well we can capture more general (or less
varying) properties of a shape, and sensitiv-
ity is a measure of our ability to distinguish
finer shape characteristics.

Shirai has surveyed various methods of
structural representation in the context of
computer vision [SHIR78]. In what follows,
we describe structural representations that
seem promising for serial-section image
analysis.

6.1 Generalized Cylinders

A large class of 3D objects, including bricks,
pyramids, and vases, can be described by
the so-called generalized cylinder (GC)
representation [WINS76]. A GC is defined
by a 3D space curve called the axis and by
planar cross sections of arbitrary shape nor-

mal to the axis. Since there are an infinite
number of GCs representing a single object,
the following constraints help to assure
uniqueness: (1) parametric form of cross-
sectional shape (ellipse, for example), and
(2) a sweeping function which describes
how the cross section changes in shape as
it moves along the axis. Given the GC rep-
resentation, the surface of the object can be
synthesized for the purpose of recognition.

In the case of complex shapes, the object
has to be decomposed into simpler compo-
nents before describing each component by
a GC. Critical issues in GC representation
are the following: segmentation into parts
that can be simply described, selection of
natural or useful axes, and definition of
structural relationships among parts. Each
of these tasks can only be approached using
heuristic or interactive techniques.

Successful heuristics for 2D shape seg-
mentation, or decomposition, have been
based on identifying points of high curva-
ture on the boundaries. The objective is to
decompose a figure into near-convex parts.
Generalization of this idea has to contend
with the fact that a single 3D surface point
can have different (normal) curvatures in
different directions. A study of the relation-
ship between the boundary curvature of an
object and the curvature of the medial sur-
face of the object, in continuous 3D space,
has been done by Nackman [NACK80].

Selection of natural axes for GC repre-
sentation has been attempted for computer
vision by guessing from range data provided
by a projected laser image [NEvA77]. More
robust techniques are possible for serial-
section images owing to complete spatial
data. The medial axis of a 3D object is not

Computmg Surveys, Vol 13, No. 4, December 1981

420 • S. N. Srihari

a suitable candidate for the natural axis,
since it is not always a space curve and is
extremely sensitive to minor indentations
in the object's surface. Methods of topology
preserving shrinking, or skeletonization,
are more useful for representing an object's
structure, particularly for elongated objects
(see Section 6.2).

Structural relationships between seg-
mented parts can be described by attach-
mentpoints, which are like tinkertoys: parts
have predefined points at which other
pieces may be attached. For all primitive
objects, cube, cylinder, and so on, the at-
tachment points (base, top, side, and back)
are predeclared. For nonprimitive objects,
declaring a new attachment point involves
specifying a transform or relative displace-
ment with respect to the base of an object.
This method can be used to describe com-
plex objects by assemblies of GCs making
use of axes inherent to the primitives. A
program to translate such descriptions into
polyhedral models and line drawings in an
image synthesis mode is discussed by Agin
[AGIN81], who gives examples of a screw-
driver, a model airplane, and a chair.

A method of structural description that
is related to the GC representation is the
generalized blob model [SHAP80]. In this
representation there are three kinds of 3D
parts: sticks, plates, and blobs. Sticks are
long thin parts that have significant length
but very small width and depth, plates are
flat wide parts that have two significant
dimensions, and blobs are neither thin nor
flat. All three kinds of parts are near con-
vex; that is, a stick cannot bend very much,
the surfaces of a plate cannot fold too much,
and a blob can be bumpy but cannot have
large concavities. A 3D object is then de-
scribed by specifying the relative sizes of
sticks, plates, and blobs and the constraints
on how they are put together.

The derivation of generalized cylinder
representations from serial section images
have been considered for a bin of identical
L-shaped mechanical parts [SRIH79], ab-
dominal anatomy [SHAN80], and the hu-
man heart [SORO79].

6.2 Skeletons

The skeleton of a 3D object is an intuitive
concept that refers to a stick figure which

captures the structure of the object. A 3D
skeletonization (or thinning) algorithm may
be based on the principle that a voxel V in
an object S may be deleted as long as its
deletion does not cause a change in the
topology of S. The object that results when
no voxel can be deleted is referred to as the
skeleton of S.

The suggested skeletonization algorithm
implies determining the relevant topologi-
cal properties before and after the deletion
of V. Because of computational considera-
tions it is preferable to restrict the topo-
logical property to a local neighborhood of
V. For example, one can determine within
a 3 × 3 × 3 neighborhood of V whether the
deletion of V changes either the connect-
edness of remaining object voxels [SRm79,
TSAOS1] or the connectivity number
[LOBR80]. (It should be noted that if we
adopt the local criterion, there is no guar-
antee that the topology of the scene is
unaltered after deletion.) However, such
algorithms produce reasonably good results
for elongated objects. In what follows we
develop further details of a specific skele-
tonization algorithm.

Deletability alone does not yield a satis-
factory skeletal axis, since a space curve
will be eroded into a single voxel. To avoid
this, criteria determining layer and end vox-
els are needed. Corresponding to the posi-
tive and negative directions of the three
axes there are six types of border voxels. A
voxel V in S is an m-border voxel, where
m is a member of the set of directions
d ffi {X, -X, Y, -Y, Z, - Z) if V does not
have a 1-adjacent neighbor within S in the
m-direction. V is said to be a k-layer voxel,
where k is a member of {X, Y, Z}, if V is
both a k-border voxel and -k-border voxel.
V is said to be an (ml, m2)-border voxel if
it is both an ml-border voxel and an m2-
border voxel (such that I mll ~ I m21); in
other words, V does not have 1-adjacent
neighbors in the ml and m2 directions. Note
that there are 12 distinct (m~, m2) pairs
that specify diagonal directions. A voxel V
in S is a simple voxel if its deletion does not
affect the n-connectivity of object voxels in
its 3 × 3 × 3 neighborhood. Finally, a voxel
V in S is an end voxel if there is only one
object voxel n-adjacent to V.

Based on the above concepts, the follow-

Computing Surveys, VoL 13, No 4, December 1981

R e p r e s e n t a t i o n o f T h r e e - D i m e n s i o n a l D i g i t a l I m a g e s • 421

(a) (b) (c)

Figure 14. The structure of 3D objects can be represented by their skeletons (a) object S represents a bin of
L-shaped objects; (b) the skeletal stratum S' of S, which consists of one-voxel-thick layers; (c) the skeleton S"

which consists of space curves. The array of 16 × 16 × 22 voxels was skeletonized m 35 seconds on a Data
General Eclipse computer. [From SRIH79.© IEEE 1979.]

ing two-step approach is suggested
[SRIH79]. Algorithm S1 converts a set of
object voxels S to a s k e l e t a l s t r a t u m S '

which may contain both one-voxel-thick
layers and branching space curves. Algo-
rithm $2 erodes a skeletal stratum S ' into
a s k e l e t a l S " which consists of branching
space curves only.

Algorithm S1 (*Converts object S to skeletal
layer S'*);

begin

d := Ix, -x, y, -y, z, -z]; (*direction vector*)
repeat

D := {~}; (*the null set*)
for i :ffi 1 to 6 do begin

m := d(i); (*the tth component of d*)
k :-- I m I; (*the absolute value of m*)
in parallel for each V in S do begin

if (V ts an m-border voxel and
V is not a k-layer voxel and

V is simple) then
mclude V in D end;

S : = S - D
end

until (D = (~});
S ' : = S

end;

Algorithm 82 (*Converts skeletal layer S" to
skeleton S"*);

begin
d' := [(x, y), (- x , - y) , (x, - y) , (- x , y), etc.];

(*direction vector*)
repeat

D := (~};
for i :-- 1 to 12 do begin

(ml, m2) :-- d'(i);
in parallel for each V m S' do begin

if (V is an (ml, m2)-border voxel
and V is a simple voxel and
V is not an end voxel) then

include V in D end;
S ' : = S ' - D

end
until (D = {~});
S " f f i S '

end;

An example skeletal representation S '
and S " of a simulated 3D object S, which
was obtained using the above algorithms, is
shown as a series of 3D displays in Figure
14. Although the skeleton may be consid-
ered intuitively acceptable in this example,
additional criteria for deletability may be
useful. One such criterion based on "check-
ing planes" is suggested by Tsao [TsAo81]
and has been shown to yield acceptable
skeletal representations for connected L-
shaped objects and a block letter A.

7. CONCLUSIONS

There exists a wide spectrum of methods
for the computer representation of 3D dig-
ital images. Our survey has emphasized
methods applicable to the analysis of im-
ages represented in 3D cellular (or voxel-
based) space. These have included data
structures for 3D arrays and methods that
capture topological, geometrical, and struc-
tural properties of objects embedded in 3D
cellular space. We have also discussed some
algorithms associated with the derivation
of such representations from serial-section
images.

Computing Surveys, Vol. 13, No. 4, December 1981

422 • S . N . S r i h a r i

A n u m b e r of h i e r a r c h i c a l d a t a s t r u c t u r e s

for exp lo i t i ng u n i f o r m i t i e s p r e s e n t in 3D

d ig i t a l i m a g e s h a v e b e e n e x a m i n e d . T h e

choice o f t h e d a t a s t r u c t u r e s h o u l d be b a s e d

on carefu l c o n s i d e r a t i o n o f t h e t r a d e - o f f

b e t w e e n s t o r age space a n d c o m p u t a t i o n a l
c o m p l e x i t y of t y p i c a l o p e r a t i o n s on t h e d a t a ARTZ81

s t ruc tu re . S u c h o p e r a t i o n s m a y be a com-

b i n a t i o n o f g r a p h i c a l o p e r a t i o n s (e.g.,

s h a d e d su r face 2D d i s p l a y w i th h i d d e n sur-
faces e l i m i n a t e d) a n d i m a g e - p r o c e s s i n g op- BADL78

e r a t i o n s {e.g., 3D s e g m e n t a t i o n , t r a n s l a t i o n ,

or ro t a t i on) . In fact , t h e d a t a s t r u c t u r e m a y

on ly be an i n t e r m e d i a t e s t ep in de r iv ing BADR80

h igh - l eve l 3D r e p r e s e n t a t i o n s .

A l t h o u g h s o m e of t h e m e t h o d s for der iv-

ing t o p o l o g i c a l a n d g e o m e t r i c a l r e p r e s e n -

t a t i o n s can be g e n e r a l i z e d f r o m e x p e r i e n c e

w i th d ig i t a l p i c t u r e s , - c o m p u t a t i o n a l i s sues BAJC80

b e c o m e m u c h m o r e s ign i f i can t due to t h e

e x p o n e n t i a l i n c r e a s e in t h e n u m b e r of im-

age e l e m e n t s w i t h d i m e n s i o n a l i t y . S t r u c - BARR70

t u r a l r e p r e s e n t a t i o n s a r e c r i t i ca l for t h e

c o m p u t e r r e c o g n i t i o n a n d u n d e r s t a n d i n g o f

t h e s p a t i a l o r g a n i z a t i o n of 3D env i ron -
men t s . T h e p r o p o s e d f r a m e w o r k s for s t ruc - BLUM79

t u r a l r e p r e s e n t a t i o n d e v e l o p e d in t h e con-

t ex t o f c o m p u t e r v i s ion s e e m to be ade -

qua te , b u t t h o s e m e t h o d s t h a t de r ive such
r e p r e s e n t a t i o n s f r o m s e r i a l - s e c t i o n i m a g e s BUNE69

h a v e m a n y a s p e c t s t h a t n e e d f u r t h e r deve l -

o p m e n t . T h e v a r i e t y of o p e n p r o b l e m s in COOK80

e v e r y a s p e c t of r e p r e s e n t a t i o n of 3D s p a t i a l

da t a , a n d in i ts s ign i f i can t app l i ca t i ons ,

p o i n t s to a fe r t i le a r e a o f r e s e a r c h in t h e

c o m i n g years .

ACKNOWLEDGMENTS

Many of the ideas dmcussed in thin paper have arisen
as a result of discussmns with my students and col-
leagues at SUNY/Buffalo. In partmular, I am indebted
to Gabor Herman, Mann-may Yau, and Gideon Yuval,
who gave me comments on an earher version of this
paper, and to Gloria Calato who prepared the manu-
script.

This work was supported m part by the National
Science Foundatmn under Grant IST-80-10830 and m
part by SUNY/Buffalo BRSG funds.

AG1N81

ALTS81

REFERENCES

AGIN, G J "Hierarchmal representa-
tion of 3D objects using verbal models,"
I E E E Trans. Pattern Anal. Mach In-
tell PAMI-3 (1981), 197-204.
ALTSCHULER, M. D., CENSOR, Y, HER-

COXE69

DEHO75

DUDA73

DYER80

EAST70

FREE74

FUCH77

MAN, G T., LENT, A., LEWITT, R. M.,
SRIHARI, S. N., TUY, H., AND UDUPA, J
K. "Mathematmal aspects of image re-
construction from projections," m A. Ro-
senfeld and L. Kanal (Eds), Progress ~n
pattern reeogn~tmn, North Holland, The
Netherlands, to appear
ARTZY, E., FRIEDER, G., AND HERMAN,
G.T. "The theory, design, implemen-
tation and evaluation of a 3D surface
detection algorithm," Comput. Gr. Im-
age Process. 15 (1981), 1-24.
BADLER, N., AND BAJCSY, R. "3D rep-
resentation for computer graphics and
computer vmlon," Comput Gr 12 (1978),
153-160
BADRELDIN, A., WONG, A. K C., PRA-
SAD, T., AND ISMAIL, M. A "Shape de-
scriptors for n-dimensional curves and
trajectories," in Proc. Int. Conf Cy-
bernw Society, Cambridge, Mass, 1980,
pp. 713-717.
BAJCSY, R. "Three-dunensional scene
analysis," m Proc. 5th Int. Conf. Pattern
Recognttmn, Miami Beach, Fla., 1980,
pp. 1064-1074.
BARRETT, L. K., AND YUST, C S.
"Some fundamental ideas m topology
and their application to problems m met-
allography," Metallurgy 3 (1970), 1-33.
BLUM, H. "3D symmetric axis coordi-
nates an overview and prospectus," pre-
sented at the Workshop on Representa-
tion of 3D Objects, Philadelphia, Pa,
1979.
BUNEMAN, O. P "A grammar for the
topological analysis of plane figures,"
Mach Intell. 4 (1969), 383-393.
COOK, P .N. "3D reconstruction from
serial sections for medical applications,"
Ph.D. dissertation, Unw. Missouri-Co-
lumbia, 1980.
COXETER, H. S.M. Introductmn to ge-
ometry, 2nd ed., Wiley, New York, 1969.
DEHOFF, R. T , AND GEHL, S M.
"Quantitative mmroscopy of lineal fea-
tures in three dimensions," in Proc. 4th
Int. Congress on Stereology, 1975, pp
29-40.
DUDA, R. O., AND HART, P. E.
Pattern classtf~eatmn and scene analy-
sts, Wiley-Interscience, New York, 1973.
DYER, C. R., ROSENFELD, A., AND
SAMET, n. "Region representation"
boundary codes for quadtrees," Comm
A C M 23 (March 1980), 171-179.
EASTMAN, C. M. "Representations
for space planning," Comm. ACM, 13
(April, 1970), 242-250.
FREEMAN, H. "Computer processing of
hne-drawmg images," Comput. Surv. 6

(March 1974), 57-93.
FUCHS, H., KEDEM, Z M., AND USEL-
TON, S.P. "Optimal surface reconstruc-
tmn from planar contours," Comm. A C M
20 (Oct 1977), 693-702.

Computing Surveys, Vol 13, No 4, December 1981

Representation of Three-Dimensional Digital Images • 423

GENN77

GORD74

GRAY70

HERM79

HILB52

HORN75

JACK80

KIM80

KRUG78

LESK79

LIu77

LOBR80

MARR78

MEAGS0

MINE72

MORG80a

GENNERY, D. B. "A stereo vision
system for an autonomous vehicle," in
Proc Int J. Conf Ar t¢cml Intelh-
gence, vol. 2, 1977, pp. 567-582.
GORDON, R., AND HERMAN, G.T. "3D
reconstruction from projections: a rewew
of algorithms," Int. Rev. Cytol 38 (1974},
111-151.
GRAY, S.B. "Local properties of binary
images in two- and three-dimensions," MYLO71
IEEE Trans Comput. Co20 (1971), 551-
561.
HERMAN, G. T., AND LIU, H. K. "3D
display of human organs from computed NACK80
tomograms," Comput Gr. Image Proc-
ess 9 (1979), 1-21.
HILBERT, D., AND COHN-VossEN, S.
Geometry and the tmagmatmn, Chelsea,
New York, 1952
HORN, B. "Obtaining shape from shad-
ing information," in P. H. Winston (Ed.),
The psychology of computer wsmn,
McGraw-Hall, New York, 1975
JACKINS, C. L., AND TANIMOTO, S.
L. "Oct-trees and their use in repre-
senting 3D objects," Comput Gr. Image
Process. 14 (1980), 249-270.
KIM, C. E., AND ROSENFELD, A.
"Convex digital solids," Tech. Rep. TR-
929, Computer Science Center, Univ. PARK71
Maryland, College Park, 1980.
KRUGER, R P , AND CANNON, T
M. "The apphcation of computed to-
mography, boundary detection and
shaded graphics reconstruction to indus- POTE79
trial inspection," Mater. Eval 36
(1978).
LESK, A. M. "Detection of three-di-
mensional patterns of atoms in chemical
structures," Comm. ACM 22, 4 (April PREP77
1979), 219-224.
LIU, H.K. "Two and 3D boundary de-
tectmn," Comput. Gr. Image Process. 6
(1977), 123-134. REDD78
LOBREGT, S., VERBEEK, P. W., AND
GROEN, F. C.A. "3D skeletonization:
principle and algorithm," IEEE Trans.
Pattern Anal Mach Intell PAMIo2
(1980}, 75-77. REQU80
MARR, D., AND NISHIHARA, H K
"Representation and recognition of the
spatial organization of 3D shapes," Proc
Royal Socwty of London B200 (1978), ROBE65
269-274.
MEAGHER, D. "Octree encoding: a new
technique for the representation, mamp-
ulation and display of arbitrary 3D ob-
jects by computer," Tech. Rep. TR-IPL- ROSE76
111, Dep. Electrical Systems Engineer-
ing, Rensselaer Polytechnic Inst, Troy,
N. Y., 1980. ROSE80
MINSKY, M., AND PAPERT, S.
Perceptrons, an tntroductton to compu-
tattonal geometry, MIT Press, Cam-
bridge, Mass., 1972. SADJ79
MORGENTHALER, D. G., AND ROSEN-

MORG80b

NEVA77

O'Rou79

O'Rou81

FELD, A. "Multidimensional edge de-
tection by hypersurface fitting," Tech.
Rep. TR-877, Computer Science Center,
Univ. Maryland, College Park, 1980.
MORGENTHALER, D. G, AND ROSEN-
FELD, A. "Surfaces m 3D digital im-
ages," Tech. Rep. TR-940, Computer
Science Center, Univ Maryland, College
Park, 1980.
MYLOPOULOS, J. P., AND PAVLIDIS,
T. "On the topological properties of
quantized spaces," J. ACM 18, 2 (April
1971), 239-254.
NACKMAN, L . R . "Curvature relations
in 3D symmetric axes," Tech. Rep. TR-
80-011, Dep. Computer Sciences, Umv.
North Carolina, Chapel Hill, 1980
NEVATIA, R, AND BINFORD, T. O.,

"Descnptlon and recognition of curved

objects," Arttf. Intell. 8 (1977), 77-98.
O'ROURKE, J., AND BADLER, N.
"Decomposition of 3D objects into
spheres," IEEE Trans. Pattern Anal
Mach. Intell. PAMI-1 (1979), 295-305
O'RouRKE, J. "Dynamically quantized
spaces apphed to motion analysis," Tech.
Rep. TR-EE 81-1, Dep. Electrical Engi-
neering, Johns Hopkins Umv., Balti-
more, Md., 1981.
PARK, C M., AND ROSENFELD, A.
"Connectivity and genus in three dimen-
sions," Tech Rep TR-156, Computer
Science Center, Umv. of Maryland, Col-
lege Park, 1971
POTEMSIL, M "Generation of 3D sur-
face descriptions from images of pattern
illuminated objects," in Proc IEEE
Conf. Pattern Recognition and Image
Processmg, 1979, pp 553-560.
PREPARATA, F. P., AND HONG, S.
J. "Convex hulls of finite sets of points
in two and three dimensions," Comm.
ACM 20, 2 (Feb. 1977), 87-93.
REDDY, D. R., AND RURIN, S. "Rep-
resentation of 3D objects," Tech. Rep
TR-CMU-CS-78-113, Dep. Computer
Science, Carnegie-Mellon Univ., Pitts-
burgh, Pa., 1978.
REQUICHA, A. A. G. "Representa-
tion for rigid sohds" theory, methods, and
systems," Comput. Surv. 12, 4 (Dec.
1980}, 437-464.
ROBERTS, L. G. "Machine perception
of 3D solids," m J. T. Tnppett et al
(Eds.), Optical and electro-opttcal tnfor-
matron processtng, MIT Press, Cam-
bridge, Mass., 1965, pp. 159-197
ROSENFELD, A., AND KAK, A. C
Dtg~tal pwture processing, Academm
Press, New York, 1976.
ROSENFELD, A. "Three-dimensional
digital topology," Tech. Rep TR-936,
Computer Scmnce Center, Univ. of
Maryland, College Park., 1980.
SADJADI, F. A., AND HALL, E L
"ObJect recognition by 3D moment in-

Computing Surveys, Vol. 13, No. 4, December 1981

424 • S. N. S r i h a r i

SCHU79

SHAN80

SHAPS0

SHIR78

SORO79

SRIH79

SRIH80

TANI80

variants," Proc. IEEE Conf. Pattern TSAO81
Reeognttmn and Image Processing,
1979, pp. 327-336.

SCHUDY, R. B., AND BALLARD, D. H.
"A computer model for extracting mov- UDUP79
ing heart surfaces from four-dimensional
cardiac ultrasound data," in Proc. 6th
Conf. Computer Applwatmns m Radiol-
ogy and Computer A~ded Analysts of WALT75
Radmlogwal Images, 1979, pp. 366-376.

SHANI, U. "A 3D model driven system
for the recognition of abdominal anat-
omy from CT scans," m Proc. 5th Int.
Conf Pattern Recognition, Miami WINS76
Beach, Fla., 1980, pp. 585-591.
SHAPIRO, L G., MULCAONKAR, P G, YAU81a
MORIARITY, J. D., AND HARALICK, R.
M. "A generalized bloh model for 3D
object representation," in Proc. IEEE
Workshop Pwtorml Data Descriptmn
and Management, 1980, pp. 109-116.
SHIRAI, Y. "Recent advances in 3D YAu81b
scene analysis, in Proe. 4th Int. Conf.
Pattern Recognition, 1978, pp. 86-94.
SOROKA, B.I., "Understanding objects
from slices," Ph.D. dissertation, Dep.
Computer Science, Univ. Pennsylvania, YONES0
Philadelphia, 1979.
SRIHARI, S. N., UDUPA, J. K., AND YAU,

M. "Understanding the bin of parts,"

m Proc. IEEE Int. Conf. Cybernetws

and Society, Denver, Colo., 1979, pp. 44- YORK80
49.

SRIHARI, S.N. "Hierarchlcal represen-

tations for serial sectmn Images," in

Proc. 5th Int. Conf. Pattern Recogn~-
tmn, 1980, pp. 1075-1080.

TANIMOTO, S. "Image data structures," ZUCK81
in S. Tanimoto and A. Klinger (Eds.),
Structured computer wsmn, Academic
Press, New York, 1980.

Received July 1980; final revision accepted September 1981

TSAO, Y. F., AND FU, K. S "A parallel
thinning algorithm for 3D pmtures,"
Comput. Gr. Image Processing, to ap-
pear.
UDUPA, J. K., SRIHARI, S. N., AND HER-
MAN, G. T. "Boundary detection in
multidimensions," IEEE Trans. Pattern
Anal. Mach. Intell., to appear.
WALTZ, D. "Understanding line draw-
ings of scenes with shadows," m P. H.
Winston (Ed.), The psychology of com.
puter vision, McGraw-Hill, New York,
1975.
WINSTON, P.H. Artificial ~ntelhgence,
Addison-Wesley, Reading, Mass., 1976.
YAU, M., AND SRIHARI, S. N.
"Reeursive generation of hierarchical
data structures for multidimensional dig-
ital images," in Proc. IEEE Conf. Pat.
tern Recognition and Image Processing,
Dallas, Tex., 1981, pp. 42-44.
YAU, M., AND SRIHARI, S. N. "Digital
convex hulls from hierarchical data
structures," in Proe. Canadian Man-
Computer Communications Socwty
Conf., Waterloo, Ont., Canada, 1981, pp.
163-171.
YONEKURA, T., TORIWAKI, J., FUKU-
MURA, T., AND YOKOI, S. "On connec-
tivity and Euler number of 3D digitized
binary pictures," Trans. IECE Japan E-
63 (1980), 815-816.
YORK, B. W., HANSON, A R., AND RISE-
MAN, E .M. "A surface representation
for computer vmion," in Proc. IEEE
Workshop Pwture Data Description
and Management, Pacific Grove, Calif.,
1980, pp. 124-129.
ZUCKER, S. W., AND HUMMELL, R.
A. "A 3D edge operator," IEEE Trans.
Pattern Anal. Mach. Intell. PAMI-3
(1981), 324-331.

Computing Surveys, Vol 13, No 4, December 1981

