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Summary 
The Green’s function solutions for a shear dislocation with symmetry in 
the direction of infinite length have been integrated analytically over the 
direction of infinite length. The displacement solution is reduced from a 
surface integral over the fault plane to a line integral of temporal con- 
volutions over the width of the fault. If the time history function of fault 
displacement is any piecewise linear function the convolutions can be 
integrated analytically, reducing the solutions to line integrals. Numerical 
results and plots are presented for a simple example. The two-dimensional 
solutions give exact first motions at points ‘ over ’ the fault. Also the 
solutions can be used to test two-dimensional finite difference and finite 
element computer programs. 

1. Introduction 

Although the general Green’s function solutions for displacements in an elastic 
body have been known formally for many years (e.g. de Hoop 1958). the solutions 
were not presented in a form suited to computation until interest grew in numerical 
modelling of near field effects. Maruyama (1963) demonstrated that displacements 
from dynamic dislocation are equivalent to displacements caused by time varying 
double couples. Haskell (1964) showed that double couples corresponded to only one 
of the terms of de Hoop’s representation theorem. 

Haskell (1 969) presented general surface integral representations for the displace- 
ment caused by a shear dislocation. Haskell & Thomson (1972) presented similar 
representations for the displacement caused by a tensile (or compressive) dislocation. 
Thomson & Haskell (1972) presented numerical results for transverse shear dis- 
locations. The numerical results accompanying the 1969 paper were computed for 
the much simpler cases of piecewise linear time functions with infinite rupture velocity 
along the length? of the fault plane. In effect Haskell’s model differed from a com- 
pletely two-dimensional treatment only in that his fault had finite length. 

Haskell’s (1969) solutions are exactly equivalent to the two-dimensional case 
until waves from the edge reach a point at which one is computing displacements. 
(If a point does not lie in the cylinder defined by the fault length the first arrival at 
that point is from the edge.) Thus a two-dimensional treatment will give exact first 
motion solutions at any point ‘ above ’ the fault. Another use for analytic solutions 
for two-dimensional shear dislocation problems is in testing two-dimensional finite 
element and finite difference computer programs. 

* Division of Geological and Planetary Sciences, Contribution No. 2456. 
t In this paper length is along the xa axis; width along the xt axis. 
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FIG. 1. Fault model used in this paper. D is the slip vector. 

Two-dimensional dislocation solutions are effectively the result of adding up 
line sources. Although it has long been known that the two-dimensional Green’s 
function could formally be derived by integrating the three-dimensional Green’s 
function from -co to +a7 the integral has not been explicitly evaluated. The 
derivation of the explicit two-dimensional solutions is the subject of the next section. 

2. Two-dimensional dislocation fault models 

The fault model used in this paper is shown in Fig. 1. We will calculate the dis- 
placement solutions for a fault in an isotropic homogeneous whole space with 
infinite length in the x2 direction (from - co to + co) and no geometrical or functional 
dependence on x2. (i.e. all planes perpendicular to the x2 axis are exactly identical 
at any fixed time.) 

Notation 

S 

S +  

n+ 

W 

= Bounding surface of linearly elastic region, 
consisting of a surface at R = to and the 
surface enclosing the (non-linear) fault zone. 

= Bounding surface above ( x g  intercept > 0) 
the fault zone. 

= Unit normal outward from S +  into non-linear 
zone. = (070, -1) for the fault model in 
Fig. 1. 

= A line on Sf perpendicular to the x2 axis, 
traversing the fault surface. 

= Displacement vector at any point. 
= Co-ordinates of a point at which displacement 

= Co-ordinates of points on S’. 
= Density. 
= Lame’s constants. 

will be evaluated. 
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@, = J(”-””) = Compressional velocity. 

= Shear velocity. 

= Kronecker delta. 

= Heaviside step function. 

= Convolution. 

= Latin subscripts take values of 1,2 and 3. 
= Greek subscripts take values of 1 and 3 only. 
= The (three-dimensional) Green’s tensor 

operator. 

= Spatial derivative of Green’s tensor operator. 

= Two-dimensional direction cosine. 

= Dislocation across the fault. 

xz - t, 
Y I  = 7 
D(4, t) = u+-u-  

The convention of summation over repeated dummy indices is used throughout. 

The Green’s function operator was shown to be 

by de Hoop. Haskell used the equivalent, usually more convenient form 
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With no body forces in the linearly elastic region, and with tractions equal in 
magnitude and opposite in direction acting on S +  and S -  the representation theorem 
of de Hoop, becomes (Haskell 1964) 

(Even if the tractions are not equal and opposite while the dislocation is occurring, 
the thinness of the fault zone means that only very high frequencies will be affected.) 

We will integrate out g2 dependence to derive the two-dimensional Green's 
function derivative 

(I) 

;z=-m 

For the remainder of the paper we will write functions as $(&, t )  with the implicit 
convention that no function has cz dependence. Further we assume that any function 
we deal with, $(c, t )  E 0, t < 0 and that there exists some positive 2 such that +(!, t )  
is constant, t > 2. Also, since the solution is symmetric with respect to x2,  we will 
evaluate all solutions at x2 = 0 for algebraic convenience. Because of the symmetry 
of the two-dimensional problem 

L($(h 0) = L,($<S, 0) = 0. (4) 

Therefore, as one might expect, the equations decouple to give an ' SH' solution 
(for u2) and a ' P - S V  ' solution (for u1 and u3).  

Because there is no x2 dependence: 

After differentiating and then integrating by parts, we find that 

Take the Laplace transform of (6), giving 
a, 

Now use the Cagniard technique (Dix 1954) to rewrite (7) as 

The Laplace transform can be inverted by inspection to get a convolution (Churchill 
1958) 
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After some straightforward, but tedious, algebra along the same general lines, we 
find that the integral in (3) becomes 

A = ‘8, YlJ+’,lI yK+’K, 7, 
B = YrYlcYlJ.  

Note that Tz2, , converges to the correct static solution 

where @(g) = lim $(g, t) .  
t-+ 00 

Because none of the spatial derivatives associated with rEK, ,,(4(e, t ) )  are zero (lOa) 
should approach the general static solution as a limit. The general static solution is the 
Somigliana tensor (given in Love 1927, article 169, but in a different form). 

If we define 
m 

then 

The solutions for displacements for the fault plane we have chosen are 

uZ(x, t ,  = 1 - p r 2 2 ,  3[02( ‘k  ?) ldW ( 15a) 
W 

uq(X, t )  = 1 - c C ( r q i ,  3 [ 0 1 ( 6 ,  t ) I + r q 3 ,  1[01(4, t ) l )dN (1%) 

Note that G ,  as used in this paper is the negative of Haskell’s M ,  k. When written 
out explicitly, equations (1 5 )  become 

W 
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1 
uz(x,  t )  = - j [D,(S, t ) ]  * [ t H ( f - r / p )  ] dW 

2.n w J ( t 2 - r 2 / P 2 )  

H ( t  - rim) 
2.n 

The integrands of equations (16a) and (16c) are equal to Niazy's (1973) U ,  and 
W, when D, is a step function in time. 

3. Solutions when the time function is a ramp 

The basic source time history function used by Haskell (1969) is a ramp. 

Ai is the final displacement offset, T is the rise time and v the rupture velocity, A3 = 0 
for a shear fault. 

The convolutions in equations (16) can be evaluated analytically for the time 
functions in (17). We will use c as a symbol which can represent either 01 or f l  in the 
two independent forms of the convolutions. 

[big, t ) ]  * [ tH( t - r / c )  -3 
J( t2- r2 /cZ)  
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i 

Clearly the convolutions can be evaluated analytically for any piecewise linear 
Therefore the dynamic solution for any source function can be 

The solutions in equations (16) were evaluated numerically for source functions 

source function. 
approximated to any desired degree of accuracy. 

of the type in (17). Parameters used were 

A, = 100 cm v = 2.3  kms-’ 

Az = 100 cm 

T = 3 .0s  

CI = 6.0kms-’ 

j? = 3.5kms-‘ 

for a fault surface 0 < c1 < 10 km (and of course - m < t2 < a). The solutions 
in Figs 2-4 were computed at the point x = (0, 0, - 5 )  km. As a check on the 
results we also show the displacement solutions computed for a long three-dimensional 
shear dislocation with parameters (19), but finite length (O,< c1 -= 10km; -25 < 
c2 < 25 km). The three-dimensional fault model is based on Haskell’s 1969 paper. 

Kanamori (1974, private communication) has corrected two errors in Haskell’s 
(1969) paper. In the last line of equation (3.3), b(C1, t2, t-rl j?) should be 

4 ( 5 1 Y  t 2 Y  t -r /B) .  
In the first line of equation (4.3), 57,’ should be 57,’. 
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FIG. 2. Displacements computed at x = (0, 0, - 5 )  for parameters (19). 
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FIG. 3. Velocities computed at x = (0, 0, - 5) for parameters (19) 

The displacements from the two-dimensional model are plotted in Fig. 2 as 
continuous lines. Displacements from the three-dimensional model are plotted as 
dots. Both solutions are almost identical until the P arrival from the end of the 
three-dimensional fault (at t = 4.25 s). Major differences between the three-dimensional 
solutions and the two-dimensional solutions occur only after the S arrival from the 
end of the fault (at t = 7.28 s). Even in the worst case (the x2 displacement) the final 
static values differ only by about 7 per cent. Note that first motion in the x1 direction 
is positive until the S wave dominates. 

Velocities (Fig. 3) and accelerations (Fig. 4) for the two-dimensional model 
were computed by difference operators. The letters used as labels in Figs 3 and 4 
correspond to either starting or stopping of rupture directly ' below ' and observation 
point; they are explained in more detail in Table I. (The computed accelerations 
were smoothed to remove numerical noise caused by the fact that each of the 
labelled features is actually a t - '/' singularity. The singularity can be eliminated by 
convolving the accelerations with an accelerograph response.) Perhaps studies of 
simple models like the one in this paper may help in interpreting possible ' breakout ' 
phases on strong motion records. 

I I I 
I 10 20 

Time, sec 
FIG. 4. Accelerations computed at x = (0, 0, - 5 )  for parameters (19). 
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Table 1 

Labels in Figs 3 and 4 
Label Time (s) 

A .83 P arrival from rupture start (0, 0,O) 
B 1 *43 S arrival from rupture start (0, 0,O) 
C P arrival from rupture end (0, 0,O) 
D 4.43 S arrival from rupture end (0, 0,O) 
E 6.21 P arrival from rupture start (10, 0,O) 
F 7.54 S arrival from rupture start (lO,O, 0) 
G 9.21 P arrival from rupture end (lO,O, 0) 
H 10.54 S arrival from rupture end (10, 0, 0) 

3 * 83 
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4. Conclusions 
Analytic solutions for a two-dimensional shear dislocation with an arbitrary time 

function are given. The analytic solutions have been evaluated numerically for a 
propagating ramp source function. 
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