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REPRESENTATION THEOREMS FOR
COMPLEMENTED ALGEBRAS

BY
FREDA E. ALEXANDER

Introduction. In this paper we obtain Hubert space representations for as large
a class of complemented algebras as possible. In [2] the same problem was considered
for complemented £*-algebras. It was shown then that if A is a topologically
simple £*-algebra, then a sufficient (subject to a dimension restriction) and a
necessary condition that a complementor p be expressible in terms of a Hubert
space representation of A (or, equivalently, in the form Rp = (£,)# for some
involution # in A) was that p be continuous. Throughout the present paper the
same dimension restriction (that the algebra has no minimal left ideals of dimension
less than three) will be imposed. In §5 a counterexample shows that it cannot be
removed. The definition of continuity in [2] is not applicable to a general comple-
mented algebra, but in §2 we give an alternative definition and show that this is an
extension of the previous definition. In §3 we consider the case when A is a primitive
Banach algebra. We obtain a faithful, continuous, strictly dense Hubert space
representation for A when endowed with a continuous complementor. Under this
we identify A with a left ideal of £(//) that is closed under a norm that majorises
the operator norm. We then show that this representation characterizes primitive
Banach algebras with continuous complementers. In §4 we use the results of §3 to
obtain a faithful, continuous Hubert space representation for any semisimple
Banach algebra A with a continuous complementor. Conversely, we show that,
if any complemented algebra admits a representation of this form, then the
complementor is continuous. We deduce that, if A is £*, then a necessary and suffi-
cient condition that its complementor be expressible in the form £" = (£,)# is that
it be continuous. This extends the result of [2]. In §5 we apply the results of §4 to
show that the condition C2 in the definition of a complementor cannot be relaxed.

1. Preliminaries. Throughout the paper A will denote a semisimple complex
Banach algebra whose norm is || || ; {/A : A e A} is the set of all minimal closed
two-sided ideals of A ; RA is the set of all closed right ideals of A and MA the set
of all minimal right ideals of A.

Following [8] we say that A is a right complemented algebra if there is a mapping
p: R -> R" of Ra onto itself that has the following properties:

Cx: RnRp = iO) iReRA);
C2: R + Rp = A iReRA);
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C3: (R>y = R (ReRA);
C4: if Rx^R2 then Rpx=>Rp2 (Rx,R2eRA).
The mapping p is called a right complementor on A. A left complementor and a

left complemented algebra are defined analogously. Since we shall be exclusively
concerned with right complemented algebras we shall refer to them as comple-
mented algebras and to right complementers as complementors.

We recall that, from Lemma 5 and Theorem 4 of [8], if A is a complemented
algebra, then A has a dense socle and is the direct topological sum of the family
{/A : A e A}. In particular, if A is primitive, then it is topologically simple.

The notation we adopt is mostly that of [6]; however, we follow [3] in denoting
by Sh Sr respectively the left and right annihilators of a subset S of an algebra.
Also we use cl ( ) to denote closure.

Some other specific points of notation should be mentioned here. Let X he a
Banach space. Then [x] will denote the one-dimensional linear subspace of X
generated by a single element x of X. B(X), K(X) are the algebras of all bounded,
compact (respectively) linear operators on X. The operator norms will always be
denoted by |  |. If B is a subalgebra of B(X) then:

1. S(R) is the smallest closed subspace of X that contains the range of each
operator in a subset R of B;

2. Jb(S) is the set of all elements in B whose range is contained in a subset
SofX.

Suppose S and F are closed linear subspaces of X such that S © T=X. Then by
Theorem 4.8.D in [7] there is a bounded linear projection operator E on X such
that x = Ex + (\ — E)x gives the unique decomposition of an element x of X into
components Ex in 5 and (1 — E)x in T. We write P(S, T) for E. This notation is
used most frequently for the operator P(R, Rp) on A.

The following set notations are adopted :
(1) if A, B are subsets of an algebra then AB={ab : a e A, b e B},
(2) if S is a subset of a space X and T a set of mappings of X into another space

Y then TS={ts : teT,seS},
(3) if a -> Ta is a representation of an algebra and A is a subset of the algebra

then TA = {Ta : aeA).
C will denote the complexes and Z the set of positive integers and zero.

2. Complementors and continuous complementors on A, IK. We first observe
that since A is semisimple, Lemma 1 of [8] applies to A; thus /? = (7A)¡ = (/A)r and,
in particular, is a two-sided ideal of A. Also from the proof of Lemma 2.8.8 in [6]
it can be seen that every minimal right (or left) ideal of A is contained in a minimal
closed two-sided ideal of A. A third consequence of the semisimplicity of A is
that a e cl (aA) for all a in A (Lemma 3 in [1]).

Lemma 2.1. IfR e RA and R<=IU then Rp=>Ixfor all AeA, X^p.
Proof. Using C4 it is clearly sufficient to show that /£=>/* (/¿^A). Now Ig r\ IA
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is a closed two-sided ideal of A that is contained in 7A. It must, therefore, be (0)
or 7A. Suppose that there is some A e A {X^p) such that Ip n 7A = (0). Then let x,
x' be any elements of 7A. Write x=y + z where y e /„, z e Ip. Thenyx' eIuC\ £ = (0)
and zx' e Ip n 7A = (0) ; therefore xx' = 0. Thus (/A)2=(0) which contradicts the
semisimplicity of A. This completes the proof.

We now give the definition of continuity of a complementor/?. It is shown at the
end of this section that if A is B* then the present definition is equivalent to that
of [2].

Definition. A sequence {£n : neZ}<^MA is p-convergent to R0 if £(£„, ££)
converges uniformly to £(£0, Ro) (as n -» oo) on any minimal left ideal of A. The
complementor p is continuous if whenever anA e MA in e Z) and an -> a0 as
n -» oo then {anA} is ^-convergent to a0A.

Theorem 2.2. Every closed right (or left) ideal of IK is also a closed right ilefit)
ideal of A. A complementor pk can be induced in Ix by RV* = RP n 7A (£ e R¡Á).
Further, p is continuous if and only if pK is continuous for all X in A.

Proof. Let R be any closed right ideal of /A. Then

RA = £(/, + £?) = £(/A + (/A)r) = Rh c R-

The proof for a left ideal of/A is similar. It is now possible to define px and the
verification that it is a complementor is easy.

Now suppose that each pK is continuous. Let {Rn : neZ}^MA. For each n
let In be the minimal closed two-sided ideal of A that contains Rn. Suppose there
exist elements an e Rn such that an —> a0#0 as n -> oo. We show first that there is
some integer N such that, for all n>N, Rn<=I0. Suppose the contrary if possible.
Then, taking a subsequence if necessary, we have an e A, an^-a0 (t^O) as
n->co, and an/0 = /0an = (0). Let t e I0: \\ta0\\ = ||í(a0-a„)| Ú \\t || ||a0-an|| and,
letting /i->co, we see that ra0=0. Thus 70a0 = (0) and hence by the topological
simplicity of/0 we have a0 = 0 which is the required contradiction. Thus we can
assume that Rn^h for all n in Z. Then, by hypothesis {£„} is />0-convergent to R0.
However, for any R e MA, with Äc/0 and any minimal left ideal L of A there are
two possibilities (let IK be the minimal closed two-sided ideal of A that contains £):

(1) /07^/A: then £(£, R") = 0 on £ since L<=Ih<=Rp,
(2) /0 = /A: then £(£, £")=£(£, Rpo) on L.

Thus {£„} /?-convergent to £0 is equivalent to {Rn} /^-convergent to R0. Therefore
{/?„} is /^-convergent to R0 and so p is continuous.

The converse is now easily proved since {£n}cM/A implies {Rn}'=MA.

Theorem 2.3. Let R e RA. Then R=cl (2 R n /A : A e A), and

Rp m cl (2 (£ n ZA)"A : A e A).

Proof. Let a be any element of R, and let e > 0. Then, since a eel iaA), there is an
element b of A such that || a - ab || < e/2. Also since A = cl (2 /A : A 6 A) there exists
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{A, : /=1,2,.. .,n}<=A  and  elements  b{  of IM  such  that   \\b-(bx-\-h¿„)||
<e/(2||o||). Now llc-a^!-)- ■ • • +M| <e. Thus

R c cl (2 Rh ■ A e A) «= cl (2 R n /A : A e A).
Conversely, F=>Än/A for all A in A and so R=>cl (2 R n /A : AeA).
Now, applying this result to R", we have

Rp = cl (2 Rp n /A : A e A) c cl (2 (Ä n 7A)P n /A : A e A)

= cl (2 (R n /a)"« : A e A).

Also, since J? = cl (2 Ä n 7A : AeA) and Ig=>Iu (p^X), it is easily seen that
Äccl ((/? n 7A) + /AP). Therefore

R" => (cl ((R n /A) + /£))" = (Ä n /A)p n /A       (by Lemma 2 in [1])
= (R n Z^a.

Hence /?" => cl (2 (Ä n hY* : A e A) and, combining this with the previous in-
clusion, we have equality.

Before specializing to the topologically simple case in the next section we justify
our present definition of a continuous complementor by showing that, if A is B*,
it is equivalent to the definition given in [2].

We recall the concepts of [2] using the notation of this paper. Suppose that A
is B*. Then a minimal idempotent/of A is said to be a /^-projection if multiplica-
tion on the left by / is P((fA), (fA)p). Every minimal right ideal of A contains a
unique ^-projection as well as a unique hermitian idempotent which corresponds
to the special case when p is the natural complementor R -> (/?.)*. This gives rise
to the ^-derived mapping P from the set F of all hermitian minimal idempotents
onto the set F of all ^-projections in A (Pe=f : fA = eA). In [2] the complementor
p was said to be continuous if F was continuous with respect to the relative metric
topologies induced in F, F by the norm in A.

In the special case when A=K(H) for some Hubert space H then, for any x in H,
ex, fx denoted the unique elements of F, F respectively that are contained in
Ja(M). Thus multiplication on the left by fix corresponds to P(JA([x]), (JA([x]))p)
and by ex corresponds to P(JA([x]), JA(xL))=P(JA([x]), (JA([x]))f). Also ex =
x ® x/(x, x).

This definition is essentially a relative one in that it presupposes the existence of a
natural (continuous) complementor R -> (R¡)*. Accordingly we shall refer to it
as relative continuity. In the next theorem we show that the two definitions do in
fact coincide.

Theorem 2.4. If A is B* thenp is continuous if and only if it is relatively continuous.

Proof. Suppose that p is continuous and that e0 e F. If F is not continuous at e0
then there are elements en of F and k > 0 such that

(i) ||en-e0|| < \¡n,        ¡|F(e0)-F(en)|| > k       (n=\,2,...).
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It is easy to verify that e0, en are contained in the same minimal closed two-sided
ideal I of A. Also £(e0), £(0 e I. Now since any minimal left ideal of/is a minimal
left ideal of A and the left regular representation of / on any minimal left ideal is
an isometry, the continuity of p contradicts (i).

Conversely, suppose that p is relatively continuous. Let {anA : neZ}<= MA be
such that an^ra0 as n->co. Let I0 be the minimal closed two-sided ideal of A
that contains a0; then there is an integer N such that anel0 for all n>N. (See
proof of Theorem 2.2.) Also for n> N:

PianA, ianA)p)/h = 0   (/A * /0),       PianA, ianA)p)¡I0 = PianA, ianA)po).

Thus it is sufficient to prove the result in the topologically simple case. Suppose
that A=K~iH) where His a Hubert space with inner product ( , ) and norm || ||.
Suppose that an=xn <g> yn in e Z) and an -*■ a0 =£ 0 as n -»■ co (xn, yne H). We may
clearly assume that for all n in Z, ||xn|| = 1 and |(j>0, yn)\ =iy0, yn)- We wish to show
that

PianA,ianA)p)-Pia0A,ia0A)p)

tends uniformly to zero on any minimal left ideal of A. This is certainly the case if
!l/xn-/*0|| -*■ 0 as n -+ oo ; by the relative continuity of p the latter will follow if
ll^-^oll -^Oasrt-s-co.

We prove this. Since ||a„—a0\\ ->0, we have

\\(xn® yn)y0-ix0<8> y0)yo\\ = \\(yotyn)xn-(yo,yo)xo\\-+o.
Therefore

(yo,yn)-(y0, y0) = \\(y0,yn)xn\\ - \\(y0, y0)x0\\ -> o.
Now

(yo,y0)\\xn-x0\\ â \(yo,yo-yn)\-\\xn\\ + \\(yo,yn)xn-(y0,yo)xo\\^o.

Thus ||jcn—JColl -*■ 0 and hence ||e*B —e*0|| = \\xn <g> xn—x0 <8> x0|| -+ 0 as n -> oo.

3. The primitive case. In this section A will denote a primitive Banach algebra
with a complementor p. Since A has a dense socle it is topologically simple. (See
the discussion at the beginning of §2 in [1].)

Let L = Ae be a fixed minimal left ideal of A and e a fixed minimal idempotent.
Following [1], for any closed right ideal R of A and any closed linear subspace S
of L, we write

SiR) = RnL = cl iRL) = RL,      JiS) = cl iSA) = {ae A : aL <= S}.

Definition. Suppose A' is a Banach space and S -> S" a map of the set S of all
closed linear subspaces of X onto itself that has the following properties :

Lx: SnS"=iO) iSeS);
L2: S+S"=X iSeS);
£3: iSr=SiSeS);
£4 : if Sy <= S2 then Sf => Sg (Si, S2 e S).
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Then q: 5-> S" is a linear space complementor (LSC) on X. The LSC is continuous
if P([xn], [xn]") converges uniformly to P([x0], [x0]q) whenever {xn : n eZ}<=X and
xn-+x0í=0.

Now it can be shown using [8] (in particular Lemma 6 and corollary to Lemma
10) that the maps J, S are one-to-one, that J is the inverse of «S*, and hence that
S->Sq = S((J(S))p) is an LSC on L. (See the discussion at the beginning of §2
in [13.)

Theorem 3.1. The map q is an LSC on L. If p is continuous then q is continuous.

Proof. The first part is discussed above. Now suppose that p is continuous. Let
{xn} be a sequence in L that converges to a nonzero element x0 of L. Then for n in Z,
xnA e MA. LetEn beP((xnA), (xnA)p). Since xn e cl (xnA) = xnA and p is continuous,
{EA converges uniformly to F0 on L. Now for any z in L:

Enz+(l — En)z = z = ze = Enze+(l — En)ze

and hereEnz, Enze exnA and (1 —En)z, (l—En)ze e(xnA)p. Thus, by C2, Enz = Enze,
and so Enz e xnA n L = S(xnA) = [xn]. Similarly (1 -En)z e [xn]q. Therefore,
En¡L=P([xn], [xn]q). It is now immediate that q is continuous.

Corollary. An inner product ( , ) can be induced into L. With this inner product
L becomes a Hilbert space with norm equivalent to its original norm.

Proof. This is an immediate consequence of Theorem 2 of [4].
We now consider the algebra F=K(L). By the above corollary F, under an

equivalent norm, is a dual 5*-algebra. Via the left regular representation on L,
A can be imbedded in F. We now show that F has a complementor pe that is a
natural extension of p.

Theorem 3.2. A complementor pe is induced in F by p. If p is continuous then pe
is continuous.

Proof. For any ReRF define Rp' to be JF((S(R))q). It is clear that pe maps RF
into itself and satisfies Cj, C4. Now for any Re RF and o in F write F for
P(S(R), (S(R))q). Then o=Iimn^OT an where {an} is a sequence of operators of finite
rank on L. Thus Pan e F. Also {Pan} is Cauchy and so converges to an element
b of F. From Theorem 18 in [3] Pan e R, and, since 7? is closed, b e R. Now by a
si milar argument {( 1 - P)an} converges to an element c of Rp'. Then a=b + c e R+Rpe.
Since a and R were arbitrary, this proves C2. Finally, by another application of
Theorem 18 in [3], R=JF(S(R)) (R e RF) and thus/?e satisfies C3.

Now suppose that p is continuous. Let {an} he a sequence of operators of rank
one on L such that an -> a0^0 as n -> oo. Then we wish to show that {anF} is
/^-convergent to a0F. Every maximal right ideal in F is modular (since F is dual)
and so by Corollary 3.3 in [2] every minimal right ideal in F contains a unique
/^-projection. Let/, be the /»„-projection satisfying fnF=anF (neZ). Then it is
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clearly sufficient to show that |/„-/0| -*> 0 as n ->- oo. However, in the verification
of C2 for pe it was shown that for a e F, R e RF

a = Fo+(l -P)a,      P = P(S(R), (S(R))q)

is the decomposition of a into its components in R, Rp*. Since we know this decom-
position to be unique we may deduce that /„ is P(anL, (anL)q). Now by Theorem
3.1, q is continuous and so \fn— fi0\ —> 0 as n —> oo and the proof is complete.

Thus when p is continuous F is, under an equivalent norm, a dual )5*-algebra
with a continuous complementor pe. Thus the work of [2] is applicable to F. We
recall some notation of [2].

Notation. Let 77 be a Hubert space, F be K(H), and < , > any equivalent
inner product in 77 (i.e., one that gives rise to a norm that is equivalent to the
given norm in 77). Then p< > denotes the complementor R-^-JF((S(R)L< >) = (/?,)*< >
(where 1< >, *< > denote respectively the orthogonal complement and the adjoint
with respect to < , ». For the proof that this a complementor and that the two
expressions for it are the same see Corollary 4.3 in [2].

Now Theorem 6.11 of [2] gives the following.

Theorem 3.3. If p is continuous and the dimension of L is at least three then an
equivalent inner product < , > can be introduced into L such that pe =/><>• The
LSC q in L corresponds to orthogonal complementation with respect to < ,   >.

We can now prove the main result of this section.

Theorem 3.4. Let A be a primitive Banach algebra with a continuous complementor
p and with no left ideals of dimension less than three. Then A has a faithful, continuous,
strictly dense representation a-+Taon a Hubert space H. Also:

(1) Rp={aeA : TaH±TRH} (ReRA);
(2) the socle of A consists of all elements of A whose image is of finite rank on 77.

This image is generated by the set of all operators x (g) y where x ranges through H
and y ranges through a dense subspace HQ of H;

(3) TA is a left ideal of B(H).

Proof. Let L = Ae be a given minimal left ideal of A (e is a minimal idempotent)
and < , > the inner product induced in L by Theorem 3.3. Let H he the resultant
Hubert space and let a -*■ Ta he the representation of A on H corresponding to the
left regular representation of A on L. Since A is primitive and L is minimal a^-Ta
is faithful, continuous, and strictly dense. Properties (1), (2) and that ETA^TA
for any orthogonal projection F on 77 are proved exactly as in Theorem 1 of [1 ]
(for Theorem 3.3 gives (RL)L = (RL)C> = (RPL) for any R in RA; the infinite dimen-
sionality of A was used in [1] solely to establish this). By Theorem 1 in [5] any
element of B(H) is a finite linear combination of orthogonal projections ; (3) is
now immediate.

Note. We say that the inner product < ,   > in L represents p.
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Theorem 3.5. Let H be a Hilbert space and A a strictly dense subalgebra ofKiH).
Suppose that A is a Banach algebra under a norm || || that majorises the operator
norm \ \. Then A has a continuous complementor if it is a left ideal ofB{H).

Proof. Theorem 3 in [1] states that a complementor p is defined in A by PJ
=JAHSiR))1) iR e RA). We show that p is continuous. Let {Än : neZ}cMA and
suppose there are elements an e Rn such that, in A, an -*■ a0^0 as n ->■ oo. Let £n
be PiRn, Rp). Since || || majorises | |, |a„-a0| -»-0. Let £ be K~iH); then the
natural complementor R -* (£,)* in £ is continuous (by Theorem 2.4 and the
definition of relative continuity). Let S„ be S(£n) and £„ be £(Sn, S¿). As in the
proof of Theorem 3.2, it can be verified that left multiplication by £„ is
£(an£, ianF)f) andPianA, ianA)p). By the continuity of Ä-> (£,)* in F, |£„-£0| ->0.

Now let L be any minimal left ideal of A. Then

L — {x <g> g: g e H fixed, xeH variable}

and by Lemma 2.4.13 in [6] the map x <g) g->x is a bicontinuous isomorphism
of L onto H. Under this map £n(x <8> g) -*■ Pnx. It is thus clear that {£„} converges
uniformly to £0 on £. Thus p is continuous.

4. General representation theorems. Throughout this section A will denote a
semisimple Banach algebra with a continuous complementor p. {IK : X e A} is the
set of all minimal closed two-sided ideals of A and px denotes the continuous
complementor induced in 7A by p.

Notation. £a will denote Rnlx iReRA,Xe A). ER will denote £(£, Rp)
iR e RA) and £A will denote £/v

Theorem 4.1. ERk=EK ■ ER and £A(1 - ER) = (1 - £ÄÄ)£A iReRA,Xe A).

Proof. Let ae A. Then:

(1) EKa = £A(£Äa+(l -ER)a) = £A£Äa+£Ä(l -ER)a.

Also:

(2) EKa = £ÄA£Aa + (1 -ER))EKa.

Now, by Lemma 2.1, £A(2«eAÄj=ÄA and by Theorem 2.3 2«eA-K« is a dense
subspace of R = ERA. Thus, since £A is continuous and Rx is closed, we have
ExiERK)=RK. Similarly, ExHI-Er)A)=Rpk Therefore £Ä£Äa, ERhExaeRK and
£A(1— ER)a, il -ER>)Exa e Rfc. Thus by Q for />, the expressions (1), (2) are
identical. Hence £A(1 — ER)a=il - ER/)EKa and

EKERa = Enß^a = £ÄA(a - (1-£*>/) = £ÄAa.

Corollary. For each AeA je/eci £/A such that UhAeMA, UXA<=IX, and
U„=PiUxA, iUÁA)p). Then sup {|£/A//A| : A e A} < oo.
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Proof. Let R=cl(J_AeAUxA); then ReRA and so ER is a bounded linear
operator on A. Now let oe/A; a = ER^a + (l — ERAa and thus, in particular,
(1 -FÄA)o e 7A. Therefore, (1 -ER>)a e 7A n /f^Ä^cRp. Since ERha e RhcR, Q
for/? gives ERfa = ERa or FÄ//A = FÄA//A.

Also, 7fA = FÄÄ/l=FAFÄ/i=FA(cl(2AeA C/^))=(7A/(. Therefore FÄA = i/A. Hence
FÄ/7A=F/A/7Aandso|£/A/7A|a|FÄ|.

The following lemma shows that the inner products representing the comple-
mentors pK can be chosen to be uniformly equivalent to the norms on minimal
left ideals of 7A. This is essential for the construction of a representing Hubert
space for A.

Lemma 4.3. Suppose that A has no minimal left ideals of dimension less than
three. Then we can select minimal left ideals FA in 7A and induce inner products
< ,   >A in FA such that < ,   >A represents px and for some finite constant M

\\x\2 = O, x\ ¿ M2\\x\\2      (x e LÁ, A e A).
Proof. Since any minimal left ideal in 7A is a minimal left ideal in A its dimension

is at least three. So we may select minimal left ideals FA of 7A and in them induce
inner products < , >A representing pK as in Theorem 3.3. The inner product
norm | |A is equivalent to the original norm in FA and, since < , >A retains the
above properties on multiplication by a positive real constant we may suppose

(1) ]|x| = |jc|A t V2||*||       (*e7.A,AeA).

Suppose that it is not now possible to find M. Then there exists a sequence
{AJcA such that | |a„<«| II on Z.A. For convenience we shall now replace the
suffices An by n. Then there are elements xn of Ln such that ||*„|| = 1, and <x„, xn)n
=k2>n2. Also, by (1), there are elements z„ of Ln such that ||z„|| = 1, <zn, z„>„^2.
Now write zn=anxn+x'n where (xn, x'n)n=0, an e C. Then:

(2) <zn,zn\=\an\2k2+<x'n,x'nyn.

From (2) we deduce:
(3) <X,;On = 2;
(4) |«„|^V2/A:„<V2/".

Also, since ||zn| + |a„| • \\xn\\ = \\x'n\\ = ||zn|| - |«B| ■ ||*„||, we have from (4)

(5) 1 + V2/« > IK || > l-V2/n.
We shall consider the subspace [yn] of Ln where yn=(llkn)xn+x'n. Let Rn he

Jin([yn])- Then RneMin^MA; let Un he P(Rn, Rp). Then by the corollary to
Theorem 4.1, there exists a finite constant M such that \UJIn\<M. However,
P([yn],yin) is iyn <8>„ yn)Kyn, yùn- (We use J_A, ®A to denote orthogonality and
tensor product respectively with respect to < , >A.) Also, from the proof of
Theorem 3.1, UJLn=P([yn], ji"). Therefore

(6) M ^ \UJIn\ = \UJLn\ Ï \\Unxn\\ = ¡£%fn*„   = l^n'^n| ||j„||.
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However, from the definition of yn and (3), (5) we have
(7) <y„y¿n=l+<x'ntx'¿n£3;
(8) \\yn\\ = \\x'n\\ - \\(llkn)xn\\ >l-V2ln-l/n;
(9) <.xn,yn}n=kn>n.

Substituting (7), (8), (9) in (6): M>(m/3)(1-V2/«-l/n) for all n which is the
required contradiction.

Theorem 4.4. Let A be a semisimple Banach algebra with a continuous comple-
mentor p. Suppose that A has no minimal left ideals of dimension less than three.
Then A has a faithful, continuous representation a-^-Ta on a Hilbert space H.
For any closed right ideal R of A, iTRH)L = cl (£*<•/£); Rp={a e A : TaH _|_ TRH}.

Proof. Select minimal left ideals £A of /A and induce an inner product < , >A in
£A as in Lemma 4.3. Let HA be the resultant Hilbert space for each A in A. We
shall construct the direct sum of the representations a -> T£ of A on Hx correspond-
ing to the left regular representations of A on £A. Let H= 2<2) Hx in the notation
of [6, p. 197]. For each a in A define Ta by (£a/)(A) = £aA/(A) ifeH). Then
||£aY(A)|| <k \\a\\ \\fiX)\\ S M 1/0%. and thus

2 K^/W ^ A/2 2 ll(^/)(A)||2 ̂ M2 2 HW)|2 = ^2Hi2i/i2-
AeA AeA AeA

Therefore, Tafe H for all fin H and a in A and so the direct sum of the repre-
sentations is defined and |£a|^A/||a|| iaeA), so that the representation is
continuous.

Let ReRA. Then R = cl (2Aea R>), Rp = cliJ,XeAR^>) and, since the represen-
tation is continuous, {h e TaH; a e 2a£a Rx} and {h e TaH : a e 2A6A Rfc} are dense
subspaces of TRH, TR"H respectively. Thus:

iTRHY = {heTaH:ae^R\   = {h : //(A) e S(£A)M = {h : /¡(A) e SiÄfr)}
I AeA        )

= cl ih e TJi : a e 2 RPA = cl ITR>H).
\ AeA J

Next, we show that the representation a -> Ta is faithful. Let a e A ; then
a eel iaA) which we shall denote by R. Then Rx = cl ((£Aa)/A) : in fact (£Aa)/A
<^EKERA = ER^A = RX and so cl ((£Aa)/A)<=£A; conversely, given AeA, b e RK,
e>0, there exists ce A such that || b - ac || < e/1 £A | and then || b - Exac \\ < e. Suppose
£a = 0; then T^a = T¡¡=0 and, since a-^T£ is faithful on 7A, we have £Aa = 0.
Therefore, ÄA=cl (£Aa/A) = (0) and Ä = cl (£AeA ÄA) = (0). It follows that a=0.

Finally we show that if TaH<= (TRH)L then ae Rp. Given such an a, put a=ay+a2
where ax eR,a2e Rp. Then for any h in H: Tah = Taih + Ta2h. Thus, since (TnH)1
=>TrpH, Taih e TRHniTRH)L = iO). Therefore, £ai=0 and, since the representa-
tion is faithful, ay =0 and a = a2e Rp.

Note. In this case we cannot have TA a left ideal of £(//). Let p., p be distinct
elements of A. Let x, y be elements of H that satisfy xip)=0, yip) ^ 0, x(/¿.)=yip) # 0
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(=n, say). Then for any a in A (Tax)(p) = Tpx(p) = 0. However, since F/u contains
all operators of finite rank on H, there exists b in 7U such that Fö"=h ®„ n. Consider
y® y-Tbx:

(y ® yTbx)(p) = (j, F^)j(p) = (y(p), Tgx(p))-y(P)
= (h,h)2-y(p)*0.

Therefore, there does not exist a in A such that y ® y-Tb = Ta.

Theorem 4.5. Let A be a semisimple algebra of operators on a Hubert space H
that is a Banach algebra under a norm || || that majorises the operator norm | |.
Suppose R -> RP=JA((RH)L) (R e RA) is a complementor on A. Thenp is continuous.

Proof. Let {7A : A e A} be the set of all minimal closed-two sided ideals of A.
Then, since A is complemented, A = cl (2asa 7A); also a complementor /?A is induced
in each 7A. By Theorem 2.2 it is sufficient to show that each px is continuous. Let
7A77=77A, and for any set S in 77 let 51a={x e 77A: x J_ S}. If aeA and aH^HA
then a e 7A : in fact, put a=Oj + a2 where ox e 7A, o2 e 7ap, then o2//c 7/A n 77^ = (0)
and thus a2 = 0. Let Re R¡¿ then

ä»a = 7c" n 7A = {a : o77 c (/c/7)1, a e 7A} = {a : a/7 c (TcTF)^}
= {a : aHÁ <= (7i/7A)^}

and so, from the proof of Theorem 3.5, px is continuous.
We now specialize to the F*-case to extend Theorem 6.11 of [2].

Theorem 4.6. Let A be a B*-algebra (with no left ideals of dimension less than
three) and let p be any complementor in A. Then p is continuous if and only if there is a
subsidiary involution § in A that satisfies Rp = (/?,)# (R e RA). If there is such an
involution # then there is an equivalent norm \\  \\ ' in A that satisfies the B* condition
for #•

Proof. Suppose that p is continuous. Let FA'be a minimal left ideal in 7A and
< , >A an inner product induced in FA as in Lemma 4.3. Let Ta, F* be the repre-
sentations described in Theorem 4.4. Consider the restriction to 7A of a —> F£.
Since 7A is B* and hence its left regular representation on FA is isometric, we have

H/M < \Ti¡HÁ\ < M\\a\\       (a e 7A, A e A).

Also pA is represented by < , >A and it follows that R"a = (Rlf)*w (ReR¡f)
where #(A) is defined in 7A by:

F¿#<a> is the adjoint of F* with respect to < ,   >A

and /A denotes the left annihilator in 7A. Now :

||o#(A>|| < M|F0A#(A)/77A| = M\TÜ¡HA\ < M2\\a\\       (aelx, Xe A).

Since A is B*, A is isömetrically *-isomorphic with (2a¡=a 7a)0 [6, Theorem 4.10.14]
and now since M is independent of A we can define # on A by (o#)(A) = (o(A))#(A).
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Also a*a = 0 implies a = 0, since in the proof of (iii) => (ii) of [2, Theorem 6.11] it
was shown that (a(A))#(A)a(A)=0 implies a(A) = 0. Hence by Corollary 7.2 and
Lemma 7.1 in [2]:

iRyy = ( 2 (rjí) = ( 2 (R^) = ( 2 RPA = RP (Re **)■
\ AeA / 0 \ AeA / 0 \ AeA / 0

The converse and the remainder of the theorem are contained in Theorem 7.4
of [2].

The operators £A. It remains unknown whether in general the operators £A are
uniformly bounded. This is true in the case when A is B* (|£A| = 1) and could have
simplified slightly some of the proofs had we been interested only in the £* case.
In general, an equivalent question is whether each a in A may be expressed in the
form a=lim„^0O 2¡>=1 £Ara ({Ar}c A).

5. Two counterexamples.
1. C2 cannot be replaced by cl iR + R") = A.
Let H be a three dimensional Hilbert space with an orthonormal basis {x, y, z}.

Let the inner product in H be denoted by ( , ). Define an operator £„ on H by
Tniax+ßy+yz)=nax+ßy+yz (a, ß, y e C). Then £„ is a bounded, positive,
hermitian operator on H and its inverse is defined and is an operator of the same
kind. Thus we may define an equivalent inner product < , >„ in H by <w, i>>„
= (£„k, v). Let A be ÄY//) and pn be p< v Now let B be the sum (2¡"i ¿)o of the
countable collection {A) where A¡ = A for all /'. Then B is a dual £*-algebra and
so, by Lemma 7.1 in [2], R = (2"= i R)o (R 6 Rb) where R¡ is the intersection of R
with the image of At in B. Define/? on B by Rp = (J.f=x Rp>)0- Then it can easily be
verified that p satisfies Cx, C3, C4 ; also R + Rp is dense in B (Ä e RB). Suppose that
p is a complementor. Then since each pt is continuous, p is continuous. Now it is
clear that we may substitute H for £A in Lemma 4.3. Thus, taking the slightly
stronger result in the proof of that lemma we see that if [ , ]n are inner products
in H, [ , ]n represents pn and \\h\\2^ [h, h]n%2\h\2 QieH) (|| | denotes the norm
in H), then there exists a finite constant M such that [h, h]nSM\\h\\2 for all h in
H and all integers n. Now < , >„ is such a collection of inner products. However,
<x, x>n = «||x||2 which contradicts the existence of M. Therefore B is not comple-
mented.

2. The dimension restriction in Theorems 3.3, 3.4, 4.4, 4.6 cannot be removed.
Let H be a two-dimensional Hilbert space and {x, y} an orthonormal basis in

H. We wish to construct a continuous complementor p in K= £(/£) such that p
is not p< > for any inner product < ,   > in H. To do this it is clearly sufficient (from
the method of Theorem 3.2) to construct a continuous LSC a in H that is not
an orthogonal complementation with respect to any inner product.

Let A=reifl e C, A^O, and let A' be defined by

A' = -e'V cos2 e+b2 sin2 0)/r
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where o, b are any two distinct positive reals. Then A ->- A' is a continuous, one-to-
one, involutory map of C-(0) onto C—(0) and it has no fixed points. A geo-
metrical interpretation of the map is as follows :

Also, as A -> 0, A' -> oo and as A -> oo, A' ->■ 0.
Now q can be defined on 77 by :

Mq = [y],    [y]q = [x],   H" = (0), (0)q = 77,    [x+Xyf = [x+X'y],    A ̂  0.

It is easy to see that q is an LSC. Also :

fx = x®x,      fy= y®y,      fx+w = ix + ty) ® (x+X*y)/(x + X*y, x + Xy)
(X¿ 0, co A* = -1/A').

Then, since A->A' is continuous, A->-A* is continuous on C—(0). As A->0,
A* -> 0, and as A -> co, A* -> oo. It is now clear that/2n ->-/., when zn^-z and z„,

.zeH; thus q is continuous.
Suppose that o is orthogonal complementation with respect to an inner product

< ,   > in 77. Then <[x, j> = <x+Xy, x+ X'y}=0. Therefore,

(1) (x,x) + XcoXXy,y> = 0.

Let A=rei9: then A co A'= — (a2 cos2 d+b2 sin2 6)^constant. Thus (1) cannot be
satisfied for all A.
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