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Representation-theoreti c aspect s of two-dimensional
quantu m system s in singula r vecto r potentials : Canonical
commutatio n relations , quantu m algebras , and reduction
to lattic e quantu m systems

Asao Araia)

Department of Mathematics, Hokkaido University, Sapporo 060, Japan

~Received 23 June 1997; accepted for publication 13 January 1998!

Some representation-theoretic aspects of a two-dimensional quantum system of a
charged particle in a vector potential A, which may be singular on an infinite
discrete subset D of R2 are investigated. For each vector v in a set V(D),R2\$0%,
the projection Pv of the physical momentum operator P:5p2aA to the direction of
v is defined by Pv:5v–P as an operator acting in L2(R2), where p5(2 iD x ,
2 iD y)@(x,y)PR2# with Dx ~resp., Dy! being the generalized partial differential
operator in the variable x ~resp., y! andaPR is a parameter denoting the charge of
the particle. It is proven that Pv is essentially self-adjoint and an explicit formula is

derived for the strongly continuous one-parameter unitary group $ei tP̄v% tPR gener-
ated by theself-adjoint operator P̄v ~theclosureof Pv!, i.e., themagnetic translation
to the direction of the vector v. The magnetic translations along curves in R2\D are
also considered. Conjugately to Pv and Pw @wPV(D)#, a self-adjoint multiplica-
tion operator Qv,w is introduced, which is a linear combination of the position
operators x and y, such that, if A is flat on R2\D, then pv,w

A :5$Qv,w ,Qw,v ,
Pv ,Pw% gives a representation of the canonical commutation relations ~CCR! with
two degrees of freedom. Properties of the representationpv,w

A are analyzed. In
particular, a necessary and sufficient condition for pv,w

A to be unitarily equivalent
~or inequivalent! to the Schrödinger representation of CCR is established. The case
where pv,w

A is inequivalent to the Schrödinger representation corresponds to the
Aharonov–Bohm effect. Quantum algebraic structures @quantum plane and the
quantum group Uq(sl2)# associated with the pair $P̄v ,P̄w% are also discussed.
Moreover, for every A in a class of vector potentials having singularities on the
infinite lattice L (v1 ,v2):5$mv11nv2um,nPZ% @the case D5L (v1 ,v2)#, where
v1PR2 andv2PR2 are linearly independent, it is shown that the magnetic trans-

lations eiP̄vj , j 51,2, with A replaced by a modified vector potential are reduced by
the Hilbert space l 2

„L (v1 ,v2)… identified with a closed subspace of L2(R2). This
result, which may be regarded as one of the most important novel results of the
present paper, establishes a connection of continuous quantum systems in vector
potentials to lattice ones. © 1998 American Institute of Physics.
@S0022-2488~98!02805-9#

I. INTRODUCTION

This article is a continuation of the previous articles1–5 concerning gauge theory ~quantum
mechanics of a particle interacting with an external gauge potential! on a nonsimply connected
space in two dimensions. In such a gauge theory, a representation of the canonical commutation
relations ~CCR! with two degrees of freedom is realized by the position and the physical momen-
tum operators if the gauge potential is flat. The nonsimply connectedness of the base space is
essential for this representation to be nontrivial, i.e., not necessarily be equivalent to the Schrö-
dinger representation of CCR with two degrees of freedom. The unitary equivalence or inequiva-
lence of the representation to the Schrödinger representation is completely characterized in terms
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of the local Wilson loops. An interesting feature to be noted here is that the celebrated Aharonov–
Bohm effect6 may be mathematically well understood as the representation inequivalent to the
Schrödinger one. Some physical implications of the inequivalent representation in the Abelian
case ~the case of quantum mechanics of a charged particle in an external vector potential! are
discussed in terms of the Dirac–Weyl operator ~Ref. 2!. Moreover, it is shown that, in the case
where the vector potential is given in terms of the Weierstrass Zeta function with singularities at
z5mv11 inv2 , m,nPZ ~v j.0, j 51,2!, the inequivalent representation induces representations
of quantum planes ~rotation algebras! and the quantum group Uq(sl2) with uqu51, qPC ~Ref. 5!.

In this paper we further pursue representation-theoretic aspects of a two-dimensional Abelian
gauge theory in which the vector potential may have singularities on an infinite set of points in R2

and show by bringing some new aspects to light that such a gauge theory may have richer and
deeper structures. We first demonstrate by an explicit construction that, associated with the posi-
tion and the physical momentum operators, there exists a wide class of inequivalent representa-
tions of CCR that includes those given in Refs. 1 and 5. The basic idea of the construction is to
consider projections of the position and the physical momentum operators to directions of vectors
in R2. As in the previous simpler cases discussed in Refs. 1 and 5, these new discovered repre-
sentations of CCR give new representations of quantum planes and Uq(sl2) if the singularities of
the vector potential form an infinite lattice.

Another new aspect of the present article is concerned with magnetic translations. These
objects can be defined in both continuous and lattice quantum systems in external magnetic fields.
Magnetic translations in the former systems in uniform magnetic fields have been discussed in
some detail ~e.g., Refs. 7–10!, but, it seems that investigations of magnetic translations in the case
of nonuniform magnetic fields are missing in the literature. In this paper we define, in the con-
tinuous quantum system under consideration, magnetic ~parallel! translations as the strongly con-
tinuous one-parameter unitary groups generated by the projected physical momentum operators
and study their properties.

On the other hand, magnetic translations on lattice quantum systems have been extensively
discussed in connection with models of the Hofstadter type ~e.g., Refs. 11–13 and references
therein!. Lattice models are usually defined by ad hoc procedures from continuous quantum
systems ~e.g., ‘‘tight-binding approximation’’ or other analogies!. From a unified point of view,
this situation is obviously unsatisfactory. It would be natural and interesting to investigate if there
exists any internal ~non-ad hoc! reduction mechanism by which a lattice quantum system ‘‘dy-
namically’’ emerges from a continuous quantum system. In this paper we show that such a
mechanism exists. We regard this result as one of the most important new results of the present
paper.

We now describe the outline of the present article in more detail. As already mentioned above,
we consider a continuous quantum system of a charged particle with chargeaPR\$0% moving in
the Euclidean plane R2 under the influence of a perpendicular magnetic field B. We denote by

A~r !:5„A1~r !,A2~r !…, r5~x,y!PR2, ~1.1!

the vector potential of the magnetic field ~up to gauge transformations!, so that

B5DxA22DyA1 , ~1.2!

where Dx and Dy are the generalized ~distributional! partial differential operators in the variables
x and y, respectively.

Let

D:5$an5~an1 ,an2!%nPN ~1.3!

be a set of points in R2 such that anÞam if nÞm and the set $an j%n51
` ( j 51,2) has no accumu-

lation point in R. Then

M :5R2\D ~1.4!

is an open set of R2. We assume that A is continuous on M . But A may be singular on D and B
may be adistribution on R2 with support in D. Except for some general aspects, it is essential for

2477J. Math. Phys., Vol. 39, No. 5, May 1998 Asao Arai

  

Copyright ©2001. All Rights Reserved. 



the theory presented below to be nontrivial that A has singularities in D. The Hilbert space of state
vectors of the quantum system under consideration can be taken to be L2(R2).

The operators,

p1:52 iD x , p2:52 iD y , ~1.5!

acting in L2(R2) with domain D(p1):5$CPL2(R2)uDxCPL2(R2)% and D(p2):5$C
PL2(R2)uDyCPL2(R2)% are self-adjoint, where, for an operator T, we denote by D(T) its
domain. The physical momentum operator ~the velocity operator up to a constant multiple!
P:5(P1 ,P2) is given by

Pj :5pj2aAj , j 51,2, ~1.6!

acting in L2(R2) with D(Pj )5D(pj )ùD(Aj ).
For each vector v5(v1 ,v2)PR2\$0%, we define

Pv:5v–P:5(
j 51

2

v j Pj . ~1.7!

We call it the projection of the physical momentum operator ~or simply the projected physical
momentum operator! to the direction of v. The operator Pj is a special case of Pv :

Pj5Pej
, j 51,2, ~1.8!

with

e1:5~1,0!, e2:5~0,1!. ~1.9!

We introduce asubset of vectors R2. Let

v∧w:5v1w22v2w1 , v,wPR2. ~1.10!

Definition 1.1: We say that vPR2\$0% is in the set V~D! if the sequence $v∧an%n51
` has no

accumulation point.
By the assumption for D stated above, ejPV(D), j 51,2.
In Sec. II we prove the essential self-adjointness of Pv with vPV(D) and clarify the spectral

properties of the self-adjoint operator P̄v ~the closure of Pv! ~Theorems 2.4 and 2.5!.
The essential self-adjointness of Pv allows one to define the continuous magnetic translations

to the direction of v as the elements of the strongly continuous one-parameter unitary group,

Tv
A~ t !:5ei tP̄v, tPR, ~1.11!

generated by P̄v . We prove that there exist no nontrivial finite-dimensional subspaces of L2(R2)
left invariant by Tv

A(t) ~Proposition 2.6!.
Section II I is devoted to a basic analysis of of the continuous magnetic translations. We derive

an explicit formula for Tv
A(t) ~Theorem 3.2! and, using it, we compute commutation relations of

Tv
A(s) and Tw

A(t) @s,tPR,wPV(D)# ~Theorem 3.3!.
In Sec. IV we define magnetic translations along curves in M and investigate their properties.
Section V is devoted to analysis of representations of CCR appearing in the quantum system

under consideration. We first introduce multiplication operators given as linear combinations of
the position operators,

q1:5x, q2:5y. ~1.12!

Namely, for vectors v,wPV(D) linearly independent, we define

Qv,w:5
q∧w

v∧w
, ~1.13!
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where q:5(q1 ,q2).
We denote by Ck(M ) the set of k times continuously differentiable functions on M and by

C0
k(M ) the set of functions in Ck(M ) with bounded support in M .

We say that A with AjPC1(M ) ( j 51,2) is flat on M if B(r )50 for all rPM . The flatness
of A on M physically means the magnetic field B is concentrated on the discrete set D in the
distribution sense.

We show that, if AjPC1(M ), then

pv,w
A :5$L2~R2!,C0

2~M !,Qv,w ,Qw,v ,P̄v ,P̄w% ~1.14!

is a representation of the CCR with two degrees of freedom if and only if A is flat on M ~for the
terminology on the representation theory of CCR, we refer to Ref. 5, Sec. 1!. We analyze prop-
erties of this representation. We see that results similar to those of simpler cases in Refs. 1 and 5
hold in the present case too, generalizing them.

In Sect. VI we give some remarks on quantum algebraic structures @representations of quan-
tum planes and Uq(sl2)# associated with the representationpv,w

A .
In the last section we consider the problem of reduction of the continuous quantum system

under consideration to a lattice one. For this purpose, we fix arbitrarily two linearly independent
vectors,

v1:5~v11,v12!, v2:5~v21,v22!PR2, ~1.15!

such that v1∧v2.0 and take as D an infinite lattice,

L ~v1 ,v2!:5$Vm,num,nPZ%, ~1.16!

where

Vm,n:5mv11nv2 . ~1.17!

The Hilbert space of state vectors of a quantum system on the lattice L (v1 ,v2) is taken to be

l 2
„L ~v1 ,v2!…:5H c5$c~Vm,n!%m,nPZU, c~Vm,n!PC, m,nPZ,

(
m,nPZ

uc~Vm,n!u2,`J . ~1.18!

This Hilbert space can be regarded as aclosed subspace of L2(R2) in a natural way. Indeed, let
Sm,n be the interior domain of the parallelogram determined by the four vectors Vm11,n2Vm,n ,
Vm11,n112Vm11,n , Vm,n112Vm,n , Vm11,n112Vm,n11 andxm,n be the characteristic function
of Sm,n . Then each elementcP l 2

„L (v1 ,v2)… can be regarded as an element of L2(R2) by the
correspondence

c→c̃:5 (
m,nPZ

c~Vm,n!xm,nPL2~R2!,

so that, under this correspondence, l 2
„L (v1 ,v2)… can be identified with the closed subspace,

Lv1 ,v2

2 ~R2!:5H CPL2~R2!UC5 (
m,nPZ

Cm,nxm,n ,Cm,nPC, (
m,nPZ

uCm,nu2,`J , ~1.19!

consisting of elements in L2(R2) being constant on each Sm,n . It is easy to see that vj

PV(L (v1 ,v2)…, j 51,2. If the unitary operators,

T6vj

A :5T6vj

A ~1!, j 51,2, ~1.20!
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leave Lv1 ,v2

2 (R2) invariant, then they are reduced by Lv1 ,v2

2 (R2) and their restriction to

Lv1 ,v2

2 (R2) gives a set of magnetic translations on aquantum system on the lattice L (v1 ,v2). In

that case, models of the Hofstadter type on L (v1 ,v2) are obtained as internal or ‘‘dynamical’’
reductions of models on the continuous space R2\L (v1 ,v2). Thus, the problem is to determine
the class of vector potentials A such that T6vj

A leave Lv1 ,v2

2 (R2) invariant. At first sight, such

vector potentials may seem not to exist, except for some physically trivial cases. This is certainly
true as long as one considers regular vector potentials on R2. But, if the vector potential is
allowed to be singular on the lattice L (v1 ,v2), then the situation changes drastically. Indeed, in
that case, we can show that there exists a method of constructing vector potentials A for which
T6vj

A leave Lv1 ,v2

2 (R2) invariant. Roughly speaking, the method is as follows. Let

v j5v j 11 iv j 2 , j 51,2, ~1.21!

be the complex numbers corresponding to vjPR2, j 51,2( i :5A21). We take a meromorphic
function f (z) on C with poles at

Vm,n:5mv11nv2 , m,nPZ, ~1.22!

such that d f(z)/dz is an elliptic function with periodsv j , j 51,2 and define avector potential A
by

A1~r !:5Tf ~z!, A2~r !:5Rf ~z!, r5~x,y!PR2, z5x1 iy . ~1.23!

We show that T6vj

A themselves may not leave Lv1 ,v2

2 (R2) invariant, but there exists a correspon-

dence A→Ã of the vector potential such that T6vj

Ã do leave Lv1 ,v2

2 (R2) invariant.

Unfortunately we have been unable to solve the problem of determining all the vector poten-
tials A such that T6vj

A ( j 51,2) leave Lv1 ,v2

2 (R2) invariant. We leave this problem for future

study.
We remark that, in the same way as in Refs. 3 and 4, the results presented in Secs. II–V can

be extended in a natural way to the case of non-Abelian gauge theories. If any significant aspects
are discovered in the non-Abelian case, then we shall report them in a separate paper.

II. BASIC PROPERTIES OF THE PROJECTED PHYSICAL MOMENTUM OPERATORS

A. The physica l momentu m operator

The mathematical analysis of the physical momentum operator P in the present case can be
made quite similarly to that in the case where D is a finite discrete set ~Ref. 1!. But, for the
reader’s convenience as well as for later reference, we briefly describe some basic properties of
Pj , j 51, 2. We introduce two sets:

M1:5$~x,y!PR2uxPR,yÞan2 ,nPN%, ~2.1!

M2:5$~x,y!PR2uxÞan1 ,nPN,yPR%, ~2.2!

which, by the assumed property of D, are open sets of R2. Let

U1~x,y!:5e2 iaE
0

x

A1~x8,y!dx8, U2~x,y!:5e2 iaE
0

y

A2~x,y8!dy8. ~2.3!

Then U jPC(M j ), j 51,2. Since the Lebesgue measure of the set $(x,y)uxPR, y5an2 , nPN%
~resp., $(x,y)uyPR, x5an1 , nPN%! is zero, U1 ~resp., U2! defines auniquemultiplication unitary
operator on L2(R2), which we denote by the same symbol U1 ~resp., U2!.

In what follows, we assume the following.
Hypothesis (A)k : For a non-negative integer k, AjPCk(M ), j 51,2.
Proposition 2.1: The operator Pj ( j 51,2) is essentially self-adjoint on C0

k(M j ) and the op-
erator equations,
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P̄j5U j
21pjU j , j 51,2, ~2.4!

hold.
Proof: The unitary operator U j maps C0

k(M j ) to itself bijectively and, for all CPC0
k(M j ),

PjC5U j
21pjU jC, j 51,2. Since pj is essentially self-adjoint on C0

k(M j ), it follows that Pj is
essentially self-adjoint on C0

k(M j ) and ~2.4! is obtained. j

We denote by s( P̄j ) @resp.,sac( P̄j ), sp( P̄j ), ssc( P̄j )# the spectrum ~resp., absolutely con-
tinuous, point, singular continuous spectrum! of P̄j .

Proposition 2.1 ~the unitary equivalence of P̄j to pj ! and the well-known spectral property of
pj imply the following.

Proposition 2.2: For j 51,2,

s~ P̄j !5sac~ P̄j !5R, sp~ P̄j !5ssc~ P̄j !5B. ~2.5!

B. The projecte d physica l momentu m operators

Let V~D! be as in Definition 1.1. For vPV(D), we define

L~an ;v!5$an1svusPR%, ~2.6!

which is the straight line passing through the point an with the direction of v. Then

Mv~D!:5R2\øn51
` L~an ;v!, ~2.7!

is an open set of R2.
It is well known that the angular momentum operator,

L:5q1p22q2p1 , ~2.8!

is essentially self-adjoint on C0
`(R2) ~e.g., Ref. 14, Sec. 3!. We denote its closure by the same

symbol L. Then, for all uPR andCPL2(R2), we have

~eiuLC!~r !5C„R~u!r …, a.erPR2, ~2.9!

where

R~u!:5S cosu 2sin u

sin u cosu D ~2.10!

is the rotation matrix in R2.
We write v5(v1 ,v2)PV(D) in the polar coordinate as

v15v cosuv , v25v sin uv , v5uvu, 0<uv,2p. ~2.11!

The function

Av~r !:5
v–A„R~uv!r …

v
~2.12!

is in Ck
„R(2uv)Mv(D)…. We define

P1~v!:5p12aAv . ~2.13!

Proposition 2.3: The operator P1(v) is essentially self-adjoint on C0
k
„R(2uv)Mv(D)….

Proof: We need only to apply Proposition 2.1 with A1 and an replaced by Av and
R(2uv)an , respectively. j

The following theorem is ageneralization of Proposition 2.1.
Theorem 2.4: Let vPV(D). Then Pv is essentially self-adjoint on C0

k
„Mv(D)… and the op-

erator equation,
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eiuv LP̄v e2 iuvL5vP1~v!, ~2.14!

holds.
Proof: Let

p:5~p1 ,p2!. ~2.15!

Then it is easy to see that, for all uPR,

eiuLpe2 iuL5R~u!p, on C0
`~R2!.  ~2.16!

Hence

eiuv Lv–pe2 iuv L5vp1 , on C0
`~R2!.  ~2.17!

It is easy to see that

e2 iuvLC0
k
„R~2uv!Mv~D!…5C0

k~Mv~D!… ~2.18!

and

eiuv Lv–Ae2 iuv L5vAv , on C0
k
„R~2uv!Mv~D!….

Hence

eiuv LPve
2 iuv L5vP1~v!, on C0

k
„R~2uv!Mv~D!….  ~2.19!

It follows from Proposition 2.3, ~2.18! and ~2.19!, that Pv is essentially self-adjoint on
C0

k
„Mv(D)…. This result implies that ~2.19! can be extended to the operator equation ~2.14!. j

Remark 2.1: If D is a finite discrete set, then Pv is essentially self-adjoint for all v
PR2\$0%.

By ~2.14! and Proposition 2.2, we obtain the following result on the spectral property of P̄v .
Theorem 2.5: For all vPV(D),

s~ P̄v!5sac~ P̄v!5R, sp~ P̄v!5ssc~ P̄v!5B. ~2.20!

C. Nonexistenc e of nontrivia l finite-dimensiona l subspace s lef t invarian t by
continuou s magneti c translations

Let Tv
A(t) be defined as in ~1.11!. The following fact is important in considering the algebra

generated by the magnetic translations Tvj

A (t), j 51,...,n ~nPN, vjPV(D)).

Proposition 2.6: Let tPR\$0% and vPV(D). Then there exist no nontrivial finite dimensional
subspaces of L2(R2) that are left invariant by Tv

A(t).
Proof: Suppose that there exists a finite-dimensional subspace K Þ$0% of L2(R2) that is left

invariant by Tv
A(t). Then Tv

A(t) is reduced by K . Since Tv
A(t) is unitary and K is finite dimen-

sional, the reduced part Tv
A(t) dK has an eigenvalue l0 with ul0u51. This is also an eigenvalue of

Tv
A(t) on L2(R2). It follows from the spectral theorem of self-adjoint operators that P̄v has an

eigenvalue of the form (arg l012pn0)/t (n0PZ). But this contradicts the fact that sp( P̄v)5B
~Theorem 2.5!. Thus, we obtain the desired result. j

III. CONTINUOUS MAGNETIC TRANSLATION S GENERATED BY THE PROJECTED
PHYSICAL MOMENTUM OPERATORS

A. Explici t representations

Let

pv5v–p, vPR2. ~3.1!

Then we have for all tPR and CPL2(R2),
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~ei tp̄v C!~r !5C~v1tv!, a.e. rPR2. ~3.2!

Let Tv
A(t) be defined by ~1.11!. Proposition 2.1 implies that, for all tPR,

Tej

A~ t !5ei tP̄j5U j
21ei tpjU j5U j

21ei tp̄ejU j , j 51,2. ~3.3!

For two vectors a,bPR2, we denote by *a
bA(r )–dr the line integral of A over the straight line

from a to b.
Using ~3.3! and ~3.2!, we can obtain an explicit formula for Tej

A (t).

Theorem 3.1: For all tPR, and CPL2(R2),

„Tej

A~ t !C…~r !5e2 ia*
r
r1tejA~r8!–dr8C~r1tej !5e2 ia*

r
r1tejA~r8!–dr8~ei tp̄ejC!~r !, a.e. r . ~3.4!

Theorem 3.1 can be extended to the case of the magnetic translation Tv
A(t) with any vector

vPV(D).
Theorem 3.2: Let vPV(D). Then, for all tPR and CPL2(R2),

„Tv
A~ t !C…~r !5e2 ia* r

r1tvA~r8!–dr8C~r1tv!5e2 ia* r
r1tvA~r8!–dr8~ei tp̄vC!~r !, a.e. r . ~3.5!

Proof: By Theorem 2.4, we have, for all tPR,

Tv
A~ t !5e2 iuv LeitvP1~v!eiuv L. ~3.6!

Let CPL2(R2) and set R(2uv)r5„x(v),y(v)…. Then we have, by ~3.4!,

„Tv
A~ t !C…~r !5e2 ia*x~v!

x~v!1tvAv „x8,y~v!…dx8C~r1tvR~uv!e1…, a.e. r .

Noting that vR(uv)e15v and

E
x~v!

x~v!1tv
Av„x8,y~v!…dx85tE

0

1

v–A~r1ltv!dl5E
r

r1tv
A~r 8!–dr 8,

we obtain ~3.5!. j

Remark 3.1: We have, for all tPR\$0% and vPV(D),

t P̄v5 P̄tv , ~3.7!

which implies that

Tv
A~ t !5Ttv

A ~1!. ~3.8!

Thus, as for the magnetic translations generated by P̄v , it is sufficient to consider the unitary
operator,

Tv
A:5Tv

A~1!. ~3.9!

B. Commutatio n relations

Let v,wPV(D) such that v and w are linearly independent, and set

Cr~v,w!:5$r1lvu0<l<1%+$r1v1lwu0<l<1%+$r1~12l!v1wu0<l<1%

+$r1~12l!wu0<l<1%, ~3.10!

which is the closed curve starting and ending at the point r , forming the circumference of the
parallelogram with vertices r , r1v, r1v1w, r1w. We introduce

Mv,w~D!:5R2\øn51
` @L~an ;v!ø„L~an ;v!2w!øL~an ;w…ø„L~an ;w!2v…#. ~3.11!
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Note that, if rPMv,w(D), then Cr(v,w) does not intersect D. We define

Fv,w
A ~r !5E

Cr~v,w!
A~r 8!–dr 8, rPMv,w~D!, ~3.12!

which physically means the magnetic flux passing through the interior domain of Cr(v,w). Since
the Lebesgue measure of R2\Mv,w(D) is zero, the function Fv,w

A defines a unique multiplication
self-adjoint operator on L2(R2). We denote it by the same symbol.

Theorem 3.3: Let v and w be as above. Then

Tv
ATw

A5exp~2 iaFv,w
A !Tw

ATv
A. ~3.13!

Proof: Using Theorem 3.2, we have, for all CPL2(R2) and a.e. r ,

~Tv
ATw

AC!~r !5e2 ia* r
r1vA~r8!–dr8e2 ia* r1v

r1v1wA~r8!–dr8C~r1v1w!, ~3.14!

from which ~3.13! easily follows. j

Remark 3.2: Formula ~3.13! is a generalization of a formula established in Ref. 1 @see ~2.1! in
Ref. 1, which corresponds to the case where v5e1 , w5e2 , and A may be singular on a finite
discrete set of points#.

IV. MAGNETIC TRANSLATION S ALONG CURVES

In this section we consider magnetic translations along curves in M . Throughout this section
we assume that

V~D!5R2\$0%, ~4.1!

so that, for every vector vPR2\$0%, the projected physical momentum operator P̄v can be defined
as a self-adjoint operator.

An example of such D is given by D5$Vm,numPZ,nP@2M ,M 8#ùZ%, where Vm,n is given
by ~1.17! and M ,M 8PN.

Let C be a continuous curve in M with parametrization C5$u(s)usP@a,b#%(2`,a,b
,`). Let $s0 ,s1 ,...,sn% be a partition of @a,b# (a5s0,s1,¯,sn21,sn5b) such that
maxk51,...,n(sk2sk21)→0(n→`) and Duk:5u(sk)2u(sk21), k51,...,n. Then we define

U~C!:5s2 lim
n→`

e2 i P̄Dune2 i P̄Dun21¯e2 i P̄Du1, ~4.2!

if the right-hand side ~rhs! exists, where s-lim means strong limit . It follows that U(C) is unitary.
We call U(C) the magnetic translation along the curve C.

We introduce

F~C!:5E
C
A~r !–dr , ~4.3!

the line integral of A along the curve C. For rPR2 we define acurve Cr by

Cr:5C1r2u~b!. ~4.4!

We denote by F(C) the multiplication operator by the function: r→eiaF(Cr):

„F~C!C…~r !5eiaF~Cr !C~r !, CPL2~R2!, a.e. rPR2. ~4.5!

Remark 4.1: In the case where A has singularities on D, the function: r→F(Cr) is originally
defined only on R2\ønPN$an1u(b)2u(s)usP@a,b#%. But the Lebesgue measure of the set
ønPN$an1u(b)2u(s)usP@a,b#% is zero, so that eiaF(Cr) defines a unique multiplication unitary
operator on L2(R2).

Theorem 4.1: The rhs of (4.2) exists and
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U~C!5F~C!ei p̄u~a!2u~b!. ~4.6!

Proof: Let

Un~C!5e2 i P̄Dune2 i P̄Dun21¯e2 i P̄Du1.

By applying ~3.5! repeatedly, we have, for all CPL2(R2),

„Un~C!C…~r !5eiaFn~r !~ei p̄u~a!2u~b!C!~r !, a.e. r ,

with

Fn~r !5 (
k51

n21 E
r2Duk2Duk112¯2Dun

r2Duk112Duk122¯2Dun
A~r 8!–dr 81E

r2Dun

r
A~r 8!–dr 8.

Hence

E
R2

u~Un~C!C!~r !2~F~C!ei p̄u~a!2u~b!C!~r !u2dr5E
R2

ueiaFn~r !2eiaF~Cr !u2uC~r2u~b!

1u~a!…u2dr .

It is easy to see that, for all rPR2\ønPN$an1u(b)2u(s)usP@a,b#%, limn→` Fn(r )5F(Cr),
and

ueiaFn~r !2eiaF~Cr !u2uC~r2u~b!1u~a!…u2<4uC~r2u~b!1u~a!…u2.

Hence, by the Lebesgue dominated convergence theorem, we have

lim
n→`

E
R2

ueiaFn~r !2eiaF~Cr !u2uC~r2u~b!1u~a!…u2dr50.

Hence ~4.6! follows. j

Remark 4.2: ~1! Suppose that C is continuously differentiable. Then we can show that U(C)
is the product integral of the operator-valued function: s→2 i P̄du(s)/ds on the interval @a,b# ~for
the product integral, see Ref. 15!.

~2! By ~4.6!, we have, for all CPL2(R2),

„U~C!C…~r !5eiaF~Cr !C„r1u~a!2u~b!…, a.e. r . ~4.7!

Let E5M3C be the trivial vector bundle with base space M , fibre C, and structure group U(1)
~the one-dimensional unitary group!, and Vr5C be the fibre at the point rPM . Then the rhs of
~4.7! geometrically means the parallel transport of the vector C„r1u(a)2u(b)…PVr1u(a)2u(b) to
the point r along the curve Cr with the connection one-form 2 iA:5(2 i )(A1dx1A2dy) ~see,
e.g., Ref. 16!.

As a corollary of Theorem 4.1, we obtain the following.
Theorem 4.2: ~i! We have

U~C!* 5e2 i p̄u~a!2u~b!F~C!*  ~4.8!

5s-lim
n→`

eiP̄Du1eiP̄Du2¯eiP̄Dun. ~4.9!

~ii ! Let C1 and C2 be any continuous curves in M such that the terminal point of C1 coincides
with the initial point of C2 , so that thecomposition C1+C2 is also acontinuous curvewhose initial
(resp., terminal) point is that of C1 ~resp., that of C2!. Then

U~C1!U~C2!5U~C1+C2!. ~4.10!
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Proof: ~i! Equation ~4.8! follows from taking the adjoint of ~4.6!. In general, if unitary
operators Vn ,V on a Hilbert space satisfy s-limn→` Vn5V, then s-limn→` Vn* 5V* . Applying
this fact, we obtain ~4.9!.

~ii ! This easily follows from applying formula ~4.6!. j

Let a<t<b and

C~ t !5$u~s!usP@a,t#%. ~4.11!

Then the correspondence t→U„C(t)… gives an operator-valued function from @a,b# into the set of
unitary operators on L2(R2). We want to derive adifferential equation for U„C(t)….

For a Hilbert space H, we denote by B~H! the set of bounded linear operators on H.
Lemma 4.3: Let H be a Hilbert space, and V and W be B~H!-valued functions on @a,b#.

Assume the following (i) and (ii) : (i) V is strongly continuous on H; (ii ) there exist subspaces D1

and D2 of H such that V and W are strongly differentiable on D1 and D2 , respectively, and
W(t)D2,D1 for all tP@a,b#. Then the B~H!-valued function: t→V(t)W(t) is strongly differ-
entiable on D2 and, for all cPD2 ,

d

dt
V~ t !W~ t !c5

dV~ t !

dt
W~ t !c1V~ t !

dW~ t !

dt
c, tP@a,b#, ~4.12!

where dV(t)/dt @resp., dW(t)/dt# denotes the strong derivative of V(t) @resp., W(t)# on D1

~resp., D2!.
Proof: Let X(t)5V(t)W(t) and cPD2 . Then we have for all tP(a,b) and ePR with ueu

sufficiently small,

X~ t1e!2X~ t !

e
c2

dV~ t !

dt
W~ t !c2V~ t !

dW~ t !

dt
c

5V~ t1e!H W~ t1e!2W~ t !

e
c2

dW~ t !

dt
cJ 1@V~ t1e!2V~ t !#

dW~ t !

dt
c

1H V~ t1e!2V~ t !

e
2

dV~ t !

dt J W~ t !c.

By the strong continuity of V and the principle of uniform boundedness, we have
suptP@a,b#iV(t)i,`. Using this fact and the assumed properties of V and W, we obtain the
desired result. j

Let

MC5R2\ønPN$an1u~ t !2u~s!us,tP@a,b#%. ~4.13!

Theorem 4.4: Let C be continuously differentiable. Suppose that MC is an open set and
Hypothesis (A)1 holds. Then the operator-valued function U„C(•)…* on @a,b# is strongly differ-
entiable on C0

1(MC) with

d

dt
U„C~ t !…* C5 iU „C~ t !…* Pdu~ t !/dtC, tP@a,b#, CPC0

1~MC!. ~4.14!

Proof ~Outline!: Let V(t)5e2 i p̄u(a)2u(t) and W(t)5F„C(t)…* . Then we have U„C(t)…*
5V(t)W(t). It is not so difficult to show that V is strongly continuous on L2(R2) and strongly
differentiable on C0

1(R2) with

dV~ t !

dt
C5 i V~ t !pdu~ t !/dtC, CPC0

1~R2!

~cf. the proof of Theorem 4.1!. Let CPC0
1(MC). Then
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„W~ t !C…~r !5expS 2 iaE
a

t

A~u~s!2u~ t !1r !–
du~s!

ds
dsDC~r !.

It follows from this formula and the present assumption for A that W(t)C0
1(MC),C0

1(MC) and
W(t) is strongly differentiable on C0

1(MC) with

S dW~ t !

dt
C D ~r !5expS 2 iaE

a

t

A„u~s!2u~ t !1r …–
du~s!

ds
dsD S 2 ia

du~ t !

dt
–A~r !

1 ia (
j ,k51

2 E
a

t duj~ t !

dt
~] jAk!„u~s!2u~ t !1r …

duk~s!

ds
dsDC~r !,

where]1:5]/]x, ]2:5]/]y. On the other hand, we have

~ ipdu~ t !/dtW~ t !C!~r !5expS 2 iaE
a

t

A„u~s!2u~ t !1r …–
du~s!

ds
dsD

3S 2 ia (
j ,k51

2 E
a

t duj~ t !

dt
~] jAk!„u~s!2u~ t !1r …

duk~s!

ds
dsDC~r !

1„iW~ t !pdu~ t !/dtC…~r !.

By applying Lemma 4.3, we obtain ~4.14!. j

Remark 4.3: ~1! It follows from Theorem 4.4 that

d

dt
~C,U„C~ t !…F!25~ iPdu~ t !/dtC,U~C~ t !!F!2 , CPC0

1~MC!, FPL2~R2!, ~4.15!

where (•,•)2 denotes the inner product of L2(R2). But, in the case where A has singularities on
D, it seems difficult to find a dense subspace D on which U„C(t)… is strongly differentiable and
such that U„C(t)…D,D( P̄du(t)/dt).

~2! If A is differentiable on the whole space R2, then U„C(t)… is strongly differentiable on
C0

1(R2), with

dU„C~ t !…C/dt5 iPdu~ t !/dtU„C~ t !…C, CPC0
1~R2!.

V. REPRESENTATIONS OF CCR

In this section we show that, associated with the projected physical momentum operators,
there exist representations of the CCR with two degrees of freedom and give acomplete charac-
terization on the unitary equivalence or inequivalence of the representations to the Schrödinger
representation of the CCR with two degrees of freedom. The inequivalent representations corre-
spond to the Aharonov–Bohm effect ~Ref. 6!. The results of this section include generalizations of
those of the previous works ~Refs. 1 and 5!.

Let Qv,w@v,wPV(D)# be the self-adjoint multiplication operator given by ~1.13!. It is easy to
see that, if AjPC1(M ), j 51,2, then the set $Qv,w ,Qw,v ,P̄v ,P̄w% of self-adjoint operators has the
following commutation properties: for all CPC0

2(M ),

@Qv,w ,P̄v#C5 iC, @Qw,v ,P̄w#C5 iC, ~5.1!

@Qv,w ,P̄w#C50, @Qw,v ,P̄v#C50, ~5.2!

@Qv,w ,Qw,v#C50, ~5.3!

@ P̄v ,P̄w#C5 ia~v∧w!BC. ~5.4!
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Remark 5.1: Let Gd be the algebra generated by elements Qj , P j , F jk , j 51,...,d, with
identity I , obeying the commutation relations

@Qj ,Qk#50, @Qj ,Pk#5 id jkI , @P j ,Pk#5 iF jk , @F jk ,Ql #50, j ,k,l 51,...,d.

These relations have an origin in a quantum theory of a charged particle in an external electro-
magnetic field on Rd, where Qj and P j are realized as the position and the physical momentum
operators, and may be regarded as an extension or a deformation of the CCR with d degrees of
freedom. A special class of representations of Gd is discussed in Ref. 14 in connection with
exactly solvable models. Relations ~5.1!–~5.4! show that, if A is in C`(M ), then the operators
Qv,w , Qw,v , P̄v , and P̄w restricted to the subspace C0

`(M ) give arepresentation of G2 with the
correspondence

Q1→Qv,w , Q2→Qw,v , P1→ P̄v , P2→ P̄w , F12→a~v∧w!B.

It would be interesting to classify Hilbert space representations of the algebra Gd .
The following fact easily follows from ~5.1!–~5.4!.
Proposition 5.1: Assume Hypothesis (A)1 . Then the setpv,w

A given by (1.14) is a represen-
tation of the CCR with two degrees of freedom if and only if A is flat on M .

We denote by F ~D! the set of vector potentials A that satisfy Hypothesis (A) 1 and flat on M .
The following example shows that the set F ~D! is large to some extent.
Example 5.1: Let an5an11 ian2PC (nPN) be the complex number corresponding to the

vector an and D:5$an%n51
` . Without loss of generality, we can assume that ua1u<ua2u<ua3u

<¯ . By the assumption for D, we have an→` as n→`. Let

Pn~z!5
cn,1

z2an

1
cn,2

~z2an!2 1¯1
cn,kn

~z2an!kn
,

where knPN and cn, jPC ( j 51,...,kn) are arbitrarily given constants. Then, by the Mittag–Leffler
theorem, there exists a meromorphic function f (z) on C having the following properties: ~i! f is
holomorphic on C\D; ~ii ! the principal part of f at z5an is given by Pn(z). Let A5(A1 ,A2) with
Aj , j 51,2, given by ~1.23!. Then AjPC`(M ). Moreover, the Cauchy–Riemann equation for f
implies that A is flat on M and divergence-free:

]xA11]yA250, on M . ~5.5!

Hence APF (D). j

The special case,

pe1 ,e2

A 5$L2~R2!,C0
2~M !,$qj ,P̄j% j 51

2 % @APF ~D!#,

of the above representation of CCR with D being a finite discrete set has been analyzed in detail
~Refs. 1, 2, and 17!. Similar analyses can be made in the present general case.

We first consider irreducibility of the representationpv,w
A with APF (D). For this purpose,

we introduce two kinds of commutants.
A weak commutant of the representationpv,w

A may be defined by

~pv,w
A !8:5$TPB„L2~R2!…u~TSC,F!25~TC,SF!2 , for all C,FPC0

2~M ! and

S5Qv,w ,Qw,v ,Pv ,Pw%. ~5.6!

We set

Uv,w~ t !5eitQv,w, tPR. ~5.7!

Another commutant is associated with the operator algebra generated by
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W v,w
A :5$Uv,w~ t !,Uw,v~ t !,Tv

A~ t !,Tw
A~ t !utPR%, ~5.8!

i.e.,

~W v,w
A !8:5$TPB„L2~R2!…uTW5WT, for all WPW v,w

A %. ~5.9!

It is easy to see that

~W v,w
A !8,~pv,w

A !8. ~5.10!

Theorem 5.2: Let APF (D). Then (pv,w
A )85(W v,w

A )85CI , where I denotes the identity
operator on L2(R2).

Proof: Since v and w are linearly independent, qj ~resp., Pj ! can be written as a linear
combination of Qv,w and Qw,v ~resp., Pv and Pw!. Hence, we have (pv,w

A )85(pe1 ,e2

A )8. On the

other hand, in quite the same way as in the proof of Theorem 3.8 of Ref. 17, we can show that
(pe1 ,e2

A )85CI . This result and ~5.10! imply (W v,w
A )85CI . j

We next consider commutation properties of the operators in W v,w
A . Using Theorem 3.2, we

can show that, for all A satisfying Hypothesis (A) 0 ,

Uv,w~ t !Uw,v~s!5Uw,v~s!Uv,w~ t !, ~5.11!

Uv,w~ t !Tw
A~s!5Tw

A~s!Uv,w~ t !, Uw,v~ t !Tv
A~s!5Tv

A~s!Uw,v~ t !, ~5.12!

Uv,w~ t !Tv
A~s!5e2 i tsTv

A~s!Uv,w~ t !, Uw,v~ t !Tw
A~s!5e2 i tsTw

A~s!Uw,v~ t !. ~5.13!

A commutation relation between Tv
A(s) and Tw

A(t) is given by ~3.13!, with v and w replaced by sv
and tw, respectively.

Definition 5.3: We say that the magnetic flux is locally quantized ~with respect to the pair
$v,w%! if the function Fsv,tw

A on M sv,tw(D) is 2pZ/a valued for alls,tPR.
Remark 5.2: It is easy to see that, if AjPC1(M ), j 51,2, and the magnetic flux is locally

quantized, then A is flat on M .
Theorem 5.4: For all s,tPR, the set W v,w

A of unitary operators satisfies the Weyl relations
with two degrees of freedom if and only if the magnetic flux is locally quantized.

Proof: It follows from Theorem 3.3 and ~3.8! that Tv
A(s) and Tw

A(t) commute for all s,tPR if
and only if the magnetic flux is locally quantized. This fact and ~5.11!–~5.13! imply the desired
assertion. j

In the rest of this section, we consider only the case APF (D); hencepv,w
A is a representation

of the CCR with two degrees of freedom.
Theorems 5.2 and 5.4 together with the von Neumann uniqueness theorem on the Weyl form

of CCR18,19 give the following result.
Theorem 5.5: The representationpv,w

A is unitarily equivalent to the Schrödinger representa-
tion $qj ,pj% j 51

2 if and only if the magnetic flux is locally quantized.
Remark 5.3: As in the case of the special representationpe1 ,e2

A discussed in the previous

papers ~Refs. 1, 2, and 5!, the case where the representationpv,w
A is inequivalent to the Schrö-

dinger representation, which, by Theorem 5.4, occurs if and only if the magnetic flux is not locally
quantized, physically corresponds to the Aharonov–Bohm effect @see ~3.13! and Remark 4.2~2!#.

The function Fv,w
A can be explicitly represented, as is shown below. By the assumption for D,

we have

d:5 inf
mÞn

uan2amu.0. ~5.14!

It follows from the flatness of A and the Green’s theorem that, for all eP(0,d), the line integral,

gA~an!:5E
ur2anu5e

A~r !–dr , ~5.15!
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along the circle $e(cosu,sinu)1anu0<u<2p% is independent ofe. It is easy to see that

Fv,w
A ~r !5 (

anPDr~v,w!
sgn~v∧w!gA~an!, rPMv,w~D!, ~5.16!

where D r(v,w) is the interior domain of the curve Cr(v,w) and sgn(l):51 ~resp., 21! for l.0
~resp., l,0!. Thus we obtain the following result.

Proposition 5.6: The magnetic flux is locally quantized if and only if gA(an)P2pZ/a for all
nPN.

This proposition and Theorem 5.4 imply the following theorem.
Theorem 5.7: The representationpv,w

A is unitarily equivalent to the Schrödinger representa-
tion $qj ,pj% j 51

2 if and only if gA(an)P2pZ/a for all nPN.
Example 5.2: Let A be the vector potential given in Example 5.1. Then

gA~an!52pRcn,1 .

Hence, if Rcn0,1¹Z/a for somen0PN, then pv,w
A is unitarily inequivalent to the Schrödinger

representation $qj ,pj% j 51
2 . Thus, there exist lots of inequivalent representations of CCR. j

In concluding this section, we make aremark on the unitary inequivalence between the two

representationspv,w
A and pv8,w8

A8 @A8PF (D) and v8,w8PV(D) are linearly independent#. We
introduce a 232 matrix:

K~v,w,v8,w8!5
1

v8∧w8 S v1w282w1v28 w1v182v1w18

v2w282w2v28 w2v182v2w18
D . ~5.17!

It is easy to see that K(v,w,v8,w8) is bijective, with

det K~v,w,v8,w8!5
v∧w

v8∧w8
, ~5.18!

K~v,w,v8,w8!K~v8,w8,v,w!5I . ~5.19!

Proposition 5.8: Suppose that pv,w
A is unitarily equivalent to pv8,w8

A8 . Then, for all s,tPR,

exp~2 iaFsv,tw
A

„K~v,w,v8,w8!r …!5exp„2 iaFsv8,tw8
A8 ~r !…, a.e. rPR2. ~5.20!

Proof: To make explicit the dependence of Pv on A, we write P̄v5 P̄v(A). By the present
assumption, there exists a unitary operator U on L2(R2), such that

UQv,wU215Qv8,w8 , UQw,vU
215Qw8,v8 , ~5.21!

UP̄v~A!U215 P̄v8~A8!, UP̄w~A!U215 P̄w8~A8!. ~5.22!

By Theorem 3.3 and ~5.22!, together with functional calculus of self-adjoint operators, wehave for
all s,tPR,

exp~2 iaUF tv,sw
A U21!5exp~2 iaF tv8,sw8

A8 !. ~5.23!

It is easy to show that

q15v1Qv,w1w1Qw,v , ~5.24!

q25v2Qv,w1w2Qw,v . ~5.25!

These relations and ~5.21! imply that
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UqU215K~v,w,v8,w8!q. ~5.26!

Hence, by functional calculus, the self-adjoint operator UFv,sw
A U21 is equal to the multiplication

operator by the function F tv,sw
A (K (v,w,v8,w8)r ). This fact and ~5.23! imply ~5.20!. j

Remark 5.4: ~1! There exist many triples $v,w,A% and $v8,w8,A8%, where A,A8PF (D), such

that ~5.20! does not hold. Hence, there exist many pairs $pv,w
A ,pv8,w8

A8 % of representations that are
unitarily inequivalent to each other.

~2! In the case v5v8, w5w8, we have

K~v,w,v,w!5I , ~5.27!

so that ~5.20! becomes

exp„2 iaFsv,tw
A ~r !…5exp„2 iaFsv,tw

A8 ~r !…, a.e. rPR2. ~5.28!

VI. QUANTUM ALGEBRAI C STRUCTURES

In this section we discuss quantum algebraic structures associated with continuous magnetic
translations $Tv

A%vPV(D) . We first introduce aspecial class of vector potentials.
Definition 6.1: We say that a vector potential A is in Av,w(D) if the function Fv,w

A is equal to
a constant on Mv,w(D).

Example 6.1: Constant magnetic fields. Let B0PR be a constant and

A1~r !52
B0y

2
, A2~r !5

B0x

2
.

Then B(r )5B0 , i.e., the magnetic field is uniformly constant. Hence, by the Green’s theorem, we
have

Fv,w
A ~r !5~v∧w!B0 , rPMv,w~D!.

Thus APAv,w(D). j

Example 6.2: Vector potentials singular on an infinite lattice. Let L (v1 ,v2) be the infinite
lattice given by ~1.16! and consider the case D5L (v1 ,v2) and v5v1 , w5v2 . Let Vm,n be as
in ~1.22! and f (z) be a meromorphic function on C with the following properties: ~i! f is holo-
morphic on C\$Vm,n%m,nPZ ; ~ii ! the principal part of f at z5Vm,n is of the form

Pm,n~z!5
c

z2Vm,n
1

cm,n
~2!

~z2Vm,n!
1¯1

cm,n
~km,n!

~z2Vm,n!km,n
,

where km,nPN,c,cm,n
( j ) are constants ~c is independent of m, n!. The existence of such a function

f is ensured by the Mittag–Leffler theorem ~see Example 5.1!. As in Example 5.1, we define a
vector potential A5(A1 ,A2) by ~1.23!. Then APF „L (v1 ,v2)… with Aj being infinitely many
times differentiable on the open set,

ML:5R2\L ~v1 ,v2!. ~6.1!

As in Example 5.2, we have

gA~Vm,n!52pRc, m,nPZ. ~6.2!

For all rPMv1 ,v2
„L (v1 ,v2)…, D r(v1 ,v2) contains only one point in $Vm,n%m,nPZ . Hence,

noting that sgn(v1∧v2)51, we have, from ~5.16! and ~6.2!,

Fv1 ,v2

A ~r !52pRc. ~6.3!

Thus, APAv1 ,v2
„L (v1 ,v2)…. j

We denote by Rv,w,A the algebra generated by Tv
A and Tw

A.
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Let APAv,w(D). Then, by definition, Fv,w
A is a constant on Mv,w(D). We denote the constant

by Cv,w
A . By Theorem 3.3, we have

Tv
ATw

A5e2 iaCv,w
A

Tw
ATv

A. ~6.4!

Hence Rv,w,A is arepresentation on L2(R2) of a rotation algebra ~e.g., Ref. 20, Chap. VI ! or the

quantum plane with the deformation parameter q5e2 iaCv,w
A

~Ref. 21!.
Proposition 6.2: There exist no nontrivial finite-dimensional subspaces of L2(R2) left invari-

ant by Rv,w,A .
Proof: This follows from Proposition 2.6. j

Proposition 6.3: Let APAv,w(D) and A8PAv8,w8(D). Suppose that Cv,w
A

2Cv8,w8
A8 ¹2pZ/a. ThenRv,w,A and Rv8,w8,A8 are unitarily inequivalent.

Proof: Suppose that there exists aunitary operator U on L2(R2) such that UTv
AU215Tv8

A8 ,

UTw
AU215Tw8

A8 . By ~6.4! and the fact that Cv,w
A and Cv8,w8

A8 are constants, we have exp

(2iaCv,w
A )5exp(2iaCv8,w8

A8 ), which is equivalent to that Cv,w
A 2Cv,w8

A8 P2pZ/a. Thus, the desired
assertion follows. j

Example 6.3: Let A be the vector potential given in Example 6.2. Then, by ~6.3!, we have

Tv1

A Tv2

A 5e22p iaRcTv2

A Tv1

A . ~6.5!

Hence we have aone-parameter family Rc:5Rv1,v2 ,A of representations @on L2(R2)# of rotation
algebras ~quantum planes!. It follows from Proposition 6.3 that, if R(c2c8)¹Z/a, then the two
representations Rc and Rc8 are unitarily inequivalent to each other. Thus, associated with singu-
lar magnetic fields concentrated on L (v1 ,v2), there exist infinitely many representations on
L2(R2) of rotation algebras inequivalent to each other. j

Remark 6.1: The same consideration as above applies to the algebra Rv,w,A*  generated by
(Tv

A)* and (Tw
A)* , which is a representation of a rotation algebra. We can also consider the

algebra generated by Tv
A, Tw

A, (Tv
A)* and (Tw

A)* , which is a *-subalgebra of B„L2(R2)….
As is shown in Ref. 5, for any representation of a quantum plane where the generators are

represented as bijections, one can construct a representation of the quantum group Uq(sl2). We
can apply this method to the present case to construct, from Rv,w,A , representations of Uq(sl2) on

L2(R2) with q5e2 iaCv,w
A

or q5e2 iaCv,w
A /2 and analyze them in quite the same way as in Ref. 5.

Here we only mention a basic feature of those representations: they have no weight vectors and
hence no nontrivial finite-dimensional reductions ~cf. Proposition 6.2!. Note that this makes abig
difference from the case of representations of Uq(sl2) constructed in terms of discrete magnetic
translations on a lattice ~Ref. 12!, where finite-dimensional representations of Uq(sl2) appear ~cf.
also Ref. 13!.

VII. REDUCTION TO LATTICE QUANTUM SYSTEMS

In this section we focus our attention on the case D5L (v1 ,v2) and consider the problem of
reduction of the continuous magnetic translations,

Tj :5Tvj

A , j 51,2, ~7.1!

to the closed subspace Lv1 ,v2

2 (R2), which is given by ~1.19! and naturally identified with the

Hilbert space l 2
„L (v1 ,v2)….

A. Genera l aspects

We denote by Sn
(1) ~resp., Sm

(2)! the open set between the straight lines $nv21sv1usPR%
~resp., $mv11sv2usPR%! and $(n11)v21sv1usPR% ~resp., $(m11)v11sv2usPR%!.

Let

f j
A~r !:5E

r

r1vj
A~r 8!–dr 8, j 51,2. ~7.2!
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Definition 7.1: We say that A is in the class C j ( j 51,2) if , for each nPZ, f j
A is constant on

Sn
( j ) , i.e., there exists a constant cj (n)PR, such that

f j
A~r !5cj~n!, rPSn

~ j ! , nPZ. ~7.3!

Remark 7.1: It is easy to see that, if APC j , then the function: r→A(r )–vj is periodic on
ønPZ Sn

( j ) with periodvj . But the converse is not true.
Proposition 7.2: For each j 51,2, Tj and Tj

21 leave Lv1 ,v2

2 (R2) invariant if and only if A
PC j .

Proof: By Theorem 3.2, we have, for all CPL2(R2),

~TjC!~r !5e2 iaf j
A

~r !~ei p̄vjC!~r !, a.e. rPSn
~ j ! .

Note that e6 i p̄vj leave Lv1 ,v2

2 (R2) invariant. Hence, Tj leaves Lv1 ,v2

2 (R2) invariant if and only if

f j
A(r ) is constant on Sm,n5Sn

(1)ùSm
(2) for all m,nPZ. Since Sn

( j ) is connected andf j
A is continu-

ous on Sn
( j ) , it follows that f j

A(r ) is constant on Sm,n for all m,nPZ if and only if it is constant
on Sn

( j ) for all nPZ. Thus, we obtain the desired result. j

We set

C 5C 1ùC 2 . ~7.4!

As a corollary of Proposition 7.2, we have the following.
Theorem 7.3: The four unitary operators T1 , T1

21, T2 and T2
21 leave Lv1 ,v2

2 (R2) invariant if

and only if APC .
By this theorem, if APC , then T1 , T1

21, T2 and T2
21 are reduced by Lv1 ,v2

2 (R2), and the

restrictions

T̂j :5Tj dLv1 ,v2

2 ~R2!, Tj
21̂:5Tj

21dLv1 ,v2

2 ~R2!, j 51,2, ~7.5!

induce magnetic translations on the lattice L (v1 ,v2) with (T̂j )
215Tj

21̂. But, if these reduced
magnetic translations have the trivial holonomy, i.e., T̂1T̂2T̂1

21T̂2
215I , then they are uninteresting.

Thus, we need to find conditions for the magnetic translations to have anontrivial holonomy. The
following proposition gives anecessary condition for that.

Proposition 7.4: Let APC . Suppose that A1 and A2 are continuous on R2. Then T1T2

5T2T1 .
Proof: By the condition APC , we have, for all rPSm,n ,

Fv1 ,v2

A ~r !5f1
A~r !1f2

A~r1v1!2f1
A~r1v2!2f2

A~r !5c1~n!1c2~m11!2c1~n11!2c2~m!.

Since Aj is continuous on R2, so is f j
A . This implies that cj (n)5cj (n11) for all nPZ and j

51,2. Hence Fv1 ,v2

A 50. By this fact and Theorem 3.3 we obtain the desired result. j

Proposition 7.4 shows that, in the case APC , for the magnetic translations T̂j ,T̂j
21, j 51,2, to

have a nontrivial holonomy, it is necessary for A to have singularities in L (v1 ,v2).
We next show that, for a given vector potential A satisfying certain properties, we can

construct an element in C .
Definition 7.5: We say that A is in D(v1 ,v2) if there exist real sequences $n j (n)%nPZ , j

51,2, and real-valued continuous functions F j on ønPZSn
( j ) , such that

f j
A~r !1E

0

1

F j~r1svj !ds5n j~n!, rPSn
~ j ! , j 51,2. ~7.6!

It is obvious that C ,D(v1 ,v2) @note that every element APC satisfies ~7.6! with F j50,
j 51.2#.

The matrix
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W:5S v11 v12

v21 v22
D ~7.7!

is regular, sincev1 andv2 are linearly independent.
Proposition 7.6: Suppose that APD(v1 ,v2) and let n j (n), F j be as in Definition 7.5. Let

F:5~F1 ,F2!, ~7.8!

Ã:5A1W21F. ~7.9!

Then ÃPC with

f j
Ã~r !5n j~n!, rPSn

~ j ! , j 51,2. ~7.10!

Proof: We have, for all rPSn
( j ) ,

f j
Ã~r !5f j

A~r !1E
0

1

W21F~r1svj !–vjds.

Sincet(W21)vj5ej , we have W21F(r1svj )•vj5F j (r1svj ). Hence, ~7.10! follows. j

Remark 7.2: The modified vector potential Ã is not necessarily flat on ML, even if A is flat on
ML. See the next section.

B. Constructio n of a subse t of C fro m quasiperiodi c functions

Definition 7.7: Let f (z) be a holomorphic function on C\$Vm,n%m,nPZ with possible poles at
z5Vm,n , m,nPZ. We say that f is in the class E if there exist constantsj j :5j j 11 i j j 2PC, j
51,2, such that

f ~z1v j !5 f ~z!1j j , j 51,2, zPC\$Vm,n%m,nPZ . ~7.11!

Remark 7.3: Every function f PE is a primitive function of an elliptic function with periods
v j , j 51,2. The constantj j on the rhs of ~7.11! is given by, e.g.,

j j5 f S v j

2 D2 f S 2
v j

2 D .

Let f PE and Aj , j 51,2, be defined from f by ~1.23!. Set A5(A1 ,A2). Then the Cauchy–
Riemann equation implies that A is flat on ML and

]xA11]yA250, on ML. ~7.12!

Let j j be as in ~7.11! and

jj :5~j j 1 ,j j 2!, jj8:5~j j 2 ,j j 1!, j 51,2. ~7.13!

Proposition 7.8: For all nPZ, there exist constants cj (n), j 51,2, such that

f j
A~r !5r–jj81cj~n!, rPSn

~ j ! . ~7.14!

Proof: Let v j be as in ~1.21! andu j :5argvj . Let R(u) be defined by~2.10! and let

gj~r !:5A„R~u j !r …–vj , f j8~r !:5f j
A
„R~u j !r ….

Then we have

f j8~r !5E
0

1

gj~r1svj8!ds,
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where vj85uv j ue1 . On the connected domain R(2u j )Sn
( j ) , gj (•1svj8), and f j8 are infinitely

many times differentiable with

]xf j8~r !5E
0

1

]xgj~r1svj8!ds, rPR~2u j !Sn
~ j ! .

It is easy to see that

]xgj~r1svj8!5uv j u21
d

ds
gj~r1svj8!.

Hence

]xf j8~r !5
gj~r1vj8!2gj~r !

uv j u
.

On the other hand, we have, by ~7.11! and ~1.23!,

A~r1vj !2A~r !5jj8 , rPML. ~7.15!

Thus, we obtain

]xf j8~r !5
v j–jj8

uv j u
, rPUnPZ R~2u j !Sn

~ j ! . ~7.16!

By the flatness of A on ML and ~7.12!, we can show that

]ygj~r !5]xvj∧A„R~u j !r ….

Hence, in the same way as above, we obtain

]yf j8~r !5
vj∧jj8

uv j u
, rPUnPZ R~2u j !Sn

~ j ! . ~7.17!

It follows from ~7.16! and ~7.17! that there exist constants cj (n), j 51,2, nPZ, such that

f j
A~r !5FR~u j !S vj–jj8

uv j u
,

vj∧jj8

uv j u
D G–r1cj~n!, rPSn

~ j ! .

The rhs of this equation is equal to the rhs of ~7.14!. j

Theorem 7.9: Let

hj~r !:5S vj

2
2r D –jj8 , rPR2, j 51,2, h5~h1 ,h2!, ~7.18!

and

Ã:5A1W21h. ~7.19!

Then Ã is in C with

f j
Ã~r !5cj~n!, rPSn

~ j ! , j 51,2, nPZ. ~7.20!

Moreover,

~Tvj

Ã !~r !5e2 iacj ~n!C~r1vj !, rPSn
~ j ! , j 51,2, nPZ. ~7.21!
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Proof: By Proposition 7.8, ~7.6! holds with F j5hj andn j (n)5cj (n). Hence, by Proposition
7.6, the desired assertion follows. Formula ~7.21! follows from ~3.5! and ~7.20!. j

Theorem 7.9 establishes the existence of a mapping from E to a subset of C by the corre-
spondence f→Ã defined by ~7.19!.

It is interesting to see when Ã is flat on ML.
Lemma 7.10: The vector potential Ã given by (7.19) is flat on ML if and only if

j18–v25j28–v1 . ~7.22!

Proof: The magnetic field,

B̃~r !:5DxÃ22DyÃ1 , ~7.23!

of the vector potential Ã is constant, with

B̃~r !5
j18–v22j28–v1

det W
, rPML. ~7.24!

Thus, the desired assertion follows. j

We note the following fact.
Lemma 7.11: Let r f be the residue of f at z5Vm,n . Then r f is independent of m,nPZ and

obeys the relation

j1v22j2v152p ir f . ~7.25!

Proof: Let a5(m2 1
2)v11(n2 1

2)v2 and Cm,n be the contour formed by the edges of the cell
whose corners are a,a1v1 ,a1v11v2 ,a1v2 , where the orientation of Cm,n is taken to be
anticlockwise. Then we have

2p ir f5E
Cm,n

f ~z!dz5E
a

a1v1
$ f ~z!2 f ~z1v2!%dz2E

a

a1v2
$ f ~z!2 f ~z1v1!%dz

52j2v11j1v2 ,

where we have used the quasiperiodicity ~7.11! of f . Thus ~7.25! is obtained. j

The following proposition gives acomplete characterization on the flatness of Ã in terms of
only f .

Proposition 7.12: The vector potential Ã given by (7.19) is flat on ML if and only if Rr f

50.
Proof: We note that

j18–v22j28–v15T~j1v22j2v1!.

By Lemma 7.11, the rhs is equal to 2pRr f . From this fact and Lemma 7.10, the desired result
follows. j

Remark 7.4: Let f PE and Rr f50. Then, by Proposition 7.12, Ã is flat on ML. We have
Fv1 ,v2

A 52pRr f50 and

Fv1 ,v2

Ã 5Fv1 ,v2

A 1Fv1 ,v2

W21h 50.

Hence, in this case, the representationspv1 ,v2

A andpv1 ,v2

Ã of CCR are unitarily equivalent to the

Schrödinger representation and the algebras Rv1 ,v2 ,A and Rv1 ,v2 ,Ã are commutative. Thus, for
f PE , the case Rr f50 is uninteresting and only the case where Ã is not flat on ML may be
interesting.

Example 7.1: Consider the case where f (z) is the Weierstrass Zeta function:
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f ~z!5z~z!:5
1

z
1 (

~m,n!PZ2\$0%
H 1

z2Vm,n
1

1

Vm,n
1

z

Vm,n
2 J . ~7.26!

It is well known ~e.g., Ref. 22, Chap. XX, pp. 20–41! that

z~z1v j !5z~z!12h j , j 51,2, ~7.27!

where

h j5z~v j /2!. ~7.28!

Hence,zPE . Sincer z51, Lemma 7.11 implies that, in the present case, Ã is not flat on ML. By
Lemma 7.11 we have

h1v22h2v15 ip.

~This is awell-known formula: e.g., Ref. 22, Chap. XX, 20•411, pp. 446–447.! Hence

h18–v22h28–v15p.

Thus, in the present example,

B̃~r !5
2p

det W
Þ0, rPML.

j

C. Derivatio n of Hamiltonian s of the Hofstadte r typ e fro m continuou s systems

It is well known that some transport phenomena in two-dimensional solids can be modeled in
part by Hamiltonians of the Hofstadter type, which are usually defined on two-dimensional infinite
lattices ~e.g., Ref. 13!. It may be interesting to investigate if Hamiltonians of the Hofstadter type
can be obtained as reductions of self-adjoint Hamiltonians of continuous quantum systems whose
Hilbert spaces of state vectors are equal to L2(R2). For that purpose, we introduce a family
$HA(t)% tPR of bounded self-adjoint operators,

HA~ t !:5Tv1

A ~ t !1mTv2

A ~ t !1e@Tv1

A ~ t !21Tv2

A ~ t !2#1lTv1

A ~ t !Tv2

A ~ t !

1nTv1

A ~ t !Tv2

A ~ t !* 1gTv1

A ~ t !* Tv2

A ~ t !1h.c., ~7.29!

wherem,e,l,n,g are complex parameters and h.c. means the Hermitian conjugate. The operator
HA(t) is a continuous version of Hamiltonians of the Hofstadter type. By Theorem 7.3, if A
PC , then

HA:5HA~1!5T11mT21e~T1
21T2

2!1lT1T21nT1T2* 1gT1* T21h.c., ~7.30!

is reduced by Lv1,v2

2 (R2)> l 2
„L (v1 ,v2)… and its reduced part yields a Hamiltonian of the Hofs-

tadter type on the lattice L (v1 ,v2). This shows that, in the case APC , it is possible to obtain
Hamiltonians of the Hofstatder type on L (v1 ,v2) as reductions of Hamiltonians of the type HA.
By Theorem 7.9, there exists awide class of vector potentials A that give this kind of reduction for
the Hamiltonian HA. We also remark that the reduction of HA with APC to the subspace
l 2
„L (v1 ,v2)… makes it possible to identify the spectrum of HA in part by analyzing the spectra of

Hamiltonians of the Hofstadter type on the lattice L (v1 ,v2) that may have interesting structures
such as fractal ones ~Ref. 13!.
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