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Abstract We show that, over an arbitrary field, q-rook monoid algebras are iterated
inflations of Iwahori-Hecke algebras, and, in particular, are cellular. Furthermore we
give an algebra decomposition which shows a q-rook monoid algebra is Morita equiv-
alent to a direct sum of Iwahori-Hecke algebras. We state some of the consequences
for the representation theory of q-rook monoid algebras.
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Introduction

The rook monoid is the monoid of all n × n matrices containing at most one entry
equal to 1 in each row and column and zeros elsewhere, with the operation of matrix
multiplication. It is also sometimes called the symmetric inverse semigroup. For any
field K , we consider the rook monoid algebra Rn . This has been studied (mostly in
the case where K has characteristic zero) by, amongst others, Munn [13], Grood [6]
and Solomon [14]. More generally, Solomon [15] defined a q-analogue of the rook
monoid algebra and its representation theory was investigated by various authors in
[1, 7, 8].

We shall take the approach suggested by Henke in her review of [6] on MathSciNet,
where it is stated that Rn can be shown to be a cellular algebra using methods similar
to those employed in [12]. Firstly we shall show that the q-rook monoid algebra
is cellular, and in fact is an iterated inflation of Iwahori-Hecke algebras. Halverson
and Ram (in [8]) already showed a connection between the q-rook monoid algebra
and Hecke algebras—they showed that the q-rook monoid algebra is isomorphic to
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a quotient of the affine Hecke algebra of type A. We will find another connection.
Our result will allow us to prove that the q-rook monoid algebra is actually Morita
equivalent to a direct sum of Iwahori-Hecke algebras. This will allow us to reprove
several results from the literature, as well as giving us some new results such as the
block decomposition of these algebras.

Throughout, K will denote an arbitrary field unless otherwise stated. All tensor
products are taken over K .

1. Background

1.1. Cellular algebras

Cellular algebras were originally defined by Graham and Lehrer in [5], who proved
that many familiar algebras are cellular, and also showed that cellular algebras possess
many good properties. Let us recall the equivalent basis-free definition by König and
Xi (from [10]). Let K be a field, and A be a finite dimensional K -algebra with an
anti-involution i , that is a K -linear anti-automorphism (i(ab) = i(b)i(a)) of order 2.
A cell ideal of A is a 2-sided ideal, J , satisfying:

(i) i(J ) = J ;
(ii) there exists �, a left ideal of A, � ⊂ J and there is an A − A-bimodule isomor-

phism α : J ∼= � ⊗ i(�) such that the following diagram commutes:

The algebra A is cellular if there is a decomposition of A as a vector space:

A = J ′
1 ⊕ J ′

2 ⊕ · · · ⊕ J ′
n

for some n, with i(J ′
j ) = J ′

j , such that setting Jj = J ′
j ⊕ J ′

j+1 ⊕ · · · ⊕ J ′
n gives a chain

of 2-sided ideals of A:

0 = Jn+1 ⊂ Jn ⊂ · · · ⊂ J1 = A

(each fixed by i), and, for each j , J ′
j = Jj/Jj+1 is a cell ideal of A/Jj+1 with respect

to the anti-involution induced by i on the quotient.
The left ideals of A (that is left A-modules), �1, . . . , �n appearing in the definition

are called the cell modules.
As an example of a cellular algebra, and for use later, we recall the Iwahori-Hecke

algebra of the symmetric group. For q ∈ K ×, the Hecke algebra of the symmetric group
Hn(q) is defined to be the associative K -algebra with a 1 generated by T1, . . . , Tn−1

Springer



J Algebr Comb (2006) 24:239–252 241

subject to the relations:

T 2
i = q · 1 + (q − 1)Ti for 1 ≤ i ≤ n − 1,

Ti Ti+1Ti = Ti+1Ti Ti+1 for 1 ≤ i ≤ n − 2,

Ti Tj = Tj Ti when |i − j | > 1.

If we take q = 1 we obtain the group algebra of the symmetric group KSn . As is well-
known, to each w ∈ Sn one can associate an element Tw ∈ Hn(q) to obtain a basis
of Hn(q). Graham and Lehrer showed that Hn(q) (and, in particular, the symmetric
group algebra) is a cellular algebra (see [5]), the anti-involution i sending a generator
Tj to itself, and therefore sending a basis element Tw to Tw−1 for w ∈ Sn .

We shall use the following lemma of Xi to demonstrate the cellularity of the q-rook
monoid algebra. The lemma formalizes the method applied by König and Xi in [12] to
show that Brauer algebras are cellular, ideas which first appeared in their article [11].

Lemma 1 ([16], 3.3). Let A be a K -algebra with an anti-involution i . Suppose that
the following hold:

(i) As a vector space,

A =
m⊕

j=1

Vj ⊗ Vj ⊗ B j

and, for each j , Vj is a vector space and B j is a cellular algebra with respect to
anti-involution σ j and cell chain 0 ⊂ J ( j)

s j ⊂ · · · ⊂ J ( j)
1 = B j .

(ii) The restriction of i to Vj ⊗ Vj ⊗ B j is (for v, v′ ∈ Vj , b ∈ B j ):

v ⊗ v′ ⊗ b → v′ ⊗ v ⊗ σ j (b).

(iii) For each j , there is a bilinear form φ j : Vj ⊗ Vj → B j such that for all v, v′ ∈
Vj :

σ j (φ j (v
′, v)) = φ j (v, v′).

(iv) Putting Jt = ⊕m
j=t Vj ⊗ Vj ⊗ B j , the multiplication in Jj/Jj+1 is given by:

(v1 ⊗ v′
1 ⊗ b1)(v2 ⊗ v′

2 ⊗ b2) = v1 ⊗ v′
2 ⊗ b1φ j (v

′
1, v2)b2 modulo Jj+1

for v1, v
′
1, v2, v

′
2 ∈ Vj , b1, b2 ∈ B j .

(v) For all j, l, we have that Vj ⊗ Vj ⊗ J ( j)
l + Jj+1 is an ideal in A.

Then under these conditions A is a cellular algebra.

In this situation A is called an iterated inflation of B1, B2, . . . , Bm . For more details
on inflations see Section 3 of [12].
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1.2. The q-rook monoid

For K a field of characteristic zero, q ∈ K ×, Solomon defined the q-rook monoid
algebra In(q) to be the associative K -algebra with identity 1 and generators
T1, . . . , Tn−1, N and defining relations:

T 2
i = q · 1 + (q − 1)Ti for 1 ≤ i ≤ n − 1,

Ti Ti+1Ti = Ti+1Ti Ti+1 for 1 ≤ i ≤ n − 2,

Ti Tj = Tj Ti when |i − j | > 1,

N i+1Ti = q N i+1 for 1 ≤ i ≤ n − 1,

Ti N n−i+1 = q N n−i+1 for 1 ≤ i ≤ n − 1,

Ti N = N Ti+1 for 1 ≤ i ≤ n − 2,

N T1T2 · · · Tn−1 N = qn−1 N .

We will allow K to be an arbitrary field in the above definition.
Halverson, in [7], defines Rn(q) to be the associative K -algebra with identity gen-

erated by T1, . . . , Tn−1 and P1, . . . , Pn subject to the relations:

(A1) T 2
i = q · 1 + (q − 1)Ti for 1 ≤ i ≤ n − 1,

(A2) Ti Ti+1Ti = Ti+1Ti Ti+1 for 1 ≤ i ≤ n − 2,

(A3) Ti Tj = Tj Ti when |i − j | > 1,

(A4) Ti Pj = Pj Ti = q Pj for 1 ≤ i < j ≤ n,

(A5) Ti Pj = Pj Ti for 1 ≤ j < i ≤ n − 1,

(A6) P2
i = Pi for 1 ≤ i ≤ n,

(A7) Pi+1 = Pi Ti Pi − (q − 1)Pi for 1 ≤ i ≤ n − 1.

Again Halverson is concerned only with the case where K has characteristic zero, but
we will allow K to be any field in this definition.

Halverson proves [7, Corollary 2.2] that, over a field of characteristic zero, In(q) ∼=
Rn(q). We will show that this result extends to the general case below. In Section 2 of
[7], Halverson gave a basis of Rn(q) defined over a field of characteristic zero, which
we shall now recall. Let us denote {1, 2, . . . , n} by [n]. For A = {a1, . . . , ak} ⊆ [n],
with a1 < a2 < · · · < ak , we have a j ≥ j , so let:

TA = (Ta1−1 · · · T2T1)(Ta2−1 · · · T3T2) · · · (Tak−1 · · · Tk),

where the j-th factor is read as 1 if a j = j . For A, B ⊆ [n] with |A| = |B| = k, and
w ∈ S{k+1,...,n}, define:

T(A,B,w) = TA Pk TwT −1
B ,

where, when k = 0, we interpret P0 = 1 so T(∅,∅,w) = Tw.
Write �k={(A, B, w) : A, B ⊆ [n], |A| = |B| = k, w ∈ S{k+1,...,n}} and � =⋃n

k=0 �k . Halverson proves that, when the characteristic of K is zero, the follow-
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ing set is a basis of Rn(q):

{
T(A,B,w) : (A, B, w) ∈ �

}
. (1)

Proposition 2 ([7, Corollary 2.2] over a field of characteristic zero). Over an arbi-
trary fieldIn(q) ∼= Rn(q). Moreover {T(A,B,w) : (A, B, w) ∈ �} forms a basis of Rn(q).

Proof: We shall see that Halverson’s proof of this in [7] generalises to this situation.
Halverson proves that the set in (1) spans Rn(q) in [7, Theorem 2.1] and this proof is
readily seen to hold for an arbitrary field. So the dimension of Rn(q) is at most |�|. He
shows that one can define a surjection from Rn(q) to In(q) (see [7, Lemma 1.4]) and
this is valid over any field. Thus dimK (In(q)) ≤ dimK (Rn(q)) ≤ |�|. To get equality,
Halverson appeals to Solomon’s proof that the dimension of In(q) is at least |�| (see
[15, Remark 2.28]). The argument here is that if there is an algebra I ′ of dimension
|�| which satisfies the defining relations of In(q), then I ′ is a homomorphic image of
In(q) and so dimK (In(q)) ≥ dimK (I ′) = |�|. Solomon defines such an algebra ([15],
2.33, 2.34) and shows that it can be defined for any field K . This therefore means
that Halverson’s proof that In(q) ∼= Rn(q) is valid for the algebras defined over an
arbitrary field, and also shows that (1) is a basis of Rn(q). �

From now on we shall use Halverson’s presentation, and write Rn(q) for the q-rook
monoid algebra.

The q-rook monoid algebra is indeed a q-analogue of the rook monoid, as one
sees by setting q = 1 where we obtain the rook monoid algebra Rn . The generators
Ti become the permutation matrices associated to the transpositions (i, i + 1), and Pi

becomes Ei+1,i+1 + · · · + En,n (where Ei, j denotes the elementary matrix with a 1 in
position i, j). If we set q = 1 in Solomon’s presentation then the generator N should
be identified with E1,2 + E2,3 + · · · + En−1,n .

Let us record a few obvious statements which can be deduced from the relations:

T −1
i = (q−1 − 1) · 1 + q−1Ti , (2)

Pi Pj = Pj if i ≤ j, (3)

Pi T
−1

i Pi = q−1 Pi+1. (4)

The subalgebra of Rn(q) generated by T1, T2, . . . , Tn−1 is isomorphic to Hn(q). So
for w ∈ Sn one can associate an element Tw ∈ Rn(q) in the usual way.

2. A new basis

2.1. The anti-involution

As we saw above, part of the definition of a cellular algebra is the existence of an anti-
involution on the algebra. We define an anti-involution, that is an anti-automorphism
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i satisfying i2 = id, on Rn(q) by extending:

i : Rn(q) → Rn(q)

i(Tj ) = Tj for 1 ≤ j ≤ n − 1

i(P1) = P1.

From Eq. (2) we see i(T −1
j ) = T −1

j , and thus from Eq. (4) we obtain i(Pj ) = Pj for
1 ≤ j ≤ n.

2.2. A chain of ideals

For 1 ≤ k ≤ n, let us write Jk to denote the 2-sided ideal of Rn(q) generated by Pk ,
(and for convenience let us write J0 = Rn(q) and Jn+1 = 0). Then this gives a chain
of 2-sided ideals:

0 = Jn+1 ⊂ Jn ⊂ Jn−1 ⊂ · · · ⊂ J1 ⊂ J0 = Rn(q). (5)

Solomon also uses these ideals (see [15], (1.10)), where they are written �k .

2.3. A new basis

We shall use a slightly different basis of Rn(q) than that defined by Halverson, and
recalled above. For (A, B, w) ∈ �k , k = 0, 1, . . . , n, define:

T̃(A,B,w) := i
(
T −1

A

)
Pk TwT −1

B .

Proposition 3. The set {T̃(A,B,w) : (A, B, w) ∈ �} is a basis of Rn(q).

Proof: We shall see that Halverson’s basis elements T(A,B,w) can be expressed as
linear combinations of the elements T̃(C,D,w′). We use induction on the length of TA.
If the length is zero then A = {1, 2, . . . , k} and T(A,B,w) = T̃(A,B,w). Otherwise write
T(A,B,w) as Tj T(A′,B,w), where j = ai − 1 if {a1, . . . , ai−1} = {1, . . . , i − 1} but ai �= i ,
and A′ = {1, . . . , ai−1, ai − 1, ai+1, . . . , ak}. The inductive hypothesis tells us we
can express T(A′,B,w) in the required form so it remains to check that Tj T̃(C,D,u), or
equivalently (using the expression for inverses)
T −1

j T̃(C,D,u) can be written as a linear combination of elements T̃(C,D,w′). To do this

we refer to the proof of Theorem 2.1 in [7]. Here Halverson shows that Pk T −1
C T −1

j

can be written as a linear combination of elements Tu′ Pk T −1
C (for u′ ∈ S{k+1,...,n}).

But then applying the anti-involution i shows that T −1
j i(T −1

C )Pk is a linear combina-

tion of elements i(T −1
C )Pk Tu′−1 . So T −1

j T̃(C,D,u) can be written as a sum of elements

i(T −1
C )Pk(Tu′−1 Tu)T −1

D , which can be written in the required form. �
Springer
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Clearly the images of the basis elements T̃(A,B,w) for (A, B, w) ∈ �k form a basis
of Jk/Jk+1, for 0 ≤ k ≤ n. Observe also that i(T̃(A,B,w)) = T̃(B,A,w−1).

3. Basis calculations

Our aim is to show that Rn(q) is an iterated inflation of Hecke algebras, coming from
the chain of ideals (5). To do this we shall need to understand how to multiply elements
within a layer Jk/Jk+1, where 0 ≤ k ≤ n. Suppose (A, B, w), (C, D, w′) ∈ �k . Then
(A5) implies that Pk Tw = Tw Pk , hence:

T̃(A,B,w)T̃(C,D,w′) = i
(
T −1

A

)
Pk TwT −1

B i
(
T −1

C

)
Pk Tw′ T −1

D

= i
(
T −1

A

)
Tw X B,C Tw′ T −1

D ,

where

X B,C = Pk T −1
B i

(
T −1

C

)
Pk .

Suppose that B = {b1, . . . , bk}, C = {c1 . . . , ck} where b1 < b2 < · · · < bk and c1 <

c2 < · · · < ck . Observe that by the relation (A5) along with Eq. (3), we can write X B,C

in the following way:

X B,C = Pk
(
T −1

k T −1
k+1 · · · T −1

bk−1

)
Pk−1

(
T −1

k−1T −1
k · · · T −1

bk−1−1

)
Pk−2 · · ·

· · · P1

(
T −1

1 T −1
2 · · · T −1

b1−1

)(
T −1

c1−1 · · · T −1
2 T −1

1

)
P1 · · ·

· · · Pk−2

(
T −1

ck−1−1 · · · T −1
k T −1

k−1

)
Pk−1

(
T −1

ck−1 · · · T −1
k+1T −1

k

)
Pk .

Lemma 4. Suppose b, c > i and b �= c. Then:

Pi T
−1

i T −1
i+1 · · · T −1

b−1T −1
c−1 · · · T −1

i+1T −1
i Pi

=
{

q−1T −1
c−1 · · · T −1

i+1 Pi+1T −1
i+1 · · · T −1

b if b < c

q−1T −1
c · · · T −1

i+1 Pi+1T −1
i+1 · · · T −1

b−1 if b > c.

Proof: Consider the case b < c. By (A3) and (A5),

Pi T
−1

i T −1
i+1 · · · T −1

b−1T −1
c−1 · · · T −1

b+1T −1
b T −1

b−1 · · · T −1
i+1T −1

i Pi

= T −1
c−1 · · · T −1

b+1 Pi T
−1

i T −1
i+1 · · · T −1

b−1T −1
b T −1

b−1 · · · T −1
i+1T −1

i Pi .
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Now use (A2) to write T −1
b−1T −1

b T −1
b−1 = T −1

b T −1
b−1T −1

b , and then apply (A3) and (A5)
again to get equality with:

T −1
c−1 · · · T −1

b+1T −1
b Pi T

−1
i T −1

i+1 · · · T −1
b−2T −1

b−1T −1
b−2 · · · T −1

i+1T −1
i Pi T

−1
b .

Repeat this argument until we reach:

T −1
c−1 · · · T −1

i+1 Pi T
−1

i Pi T
−1

i+1 · · · T −1
b = q−1T −1

c−1 · · · T −1
i+1 Pi+1T −1

i+1 · · · T −1
b

by Eq. (4). The other case is analogous. �

Lemma 5. Suppose bi < · · · < bk and ci < · · · < ck with bi �= ci . Then:

Pk

(
T −1

k · · · T −1
bk−1

)
Pk−1 · · · Pi

(
T −1

i · · · T −1
bi −1

)(
T −1

ci −1 · · · T −1
i

)
Pi · · · Pk−1

(
T −1

ck−1 · · · T −1
k

)
Pk

lies in Jk+1.

Proof: Consider the case ci < bi (as the other case is analogous). Use Lemma 4 to
replace

Pi T
−1

i · · · T −1
bi −1T −1

ci −1 · · · T −1
i Pi

by q−1T −1
ci

· · · T −1
i+1 Pi+1T −1

i+1 · · · T −1
bi −1. Now consider the subexpression

Pi+1T −1
i+1 · · · T −1

bi+1−1T −1
ci

· · · T −1
i+1 Pi+1.

As ci < bi < bi+1, we have ci < bi+1 − 1, so we can use Lemma 4 again and replace
the subexpression by q−1T −1

ci +1 · · · T −1
i+2 Pi+2T −1

i+2 · · · T −1
bi+1−1. Keep repeating this step

until we have shown that:

Pk

(
T −1

k · · · T −1
bk−1

)
Pk−1 · · · Pi

(
T −1

i · · · T −1
bi −1

)(
T −1

ci −1 · · · T −1
i

)
Pi · · · Pk−1

(
T −1

ck−1 · · · T −1
k

)
Pk

= T −1
ci +k−i · · · T −1

k+1 Pk+1u

for some element u ∈ Rn(q). �

Lemma 6. For a ≥ 0,

Pk T −1
k T −1

k+1 · · · T −1
k+a T −1

k+a · · · T −1
k+1T −1

k Pk

= q−(a+1) Pk + q−(a+2)(1−q)Pk+1 + (1−q)
a∑

j=1

q−a+ j−2T −1
k+ j · · · T −1

k+1 Pk+1T −1
k+1 · · · T −1

k+ j .
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Proof: When a = 0 we have

Pk
(
T −1

k

)2
Pk = Pk

(
q−1 · 1 + (1 − q)q−1T −1

k

)
Pk = q−1 Pk + q−2(1 − q)Pk+1.

For a ≥ 1, substitute (T −1
k+a+1)2 = q−1 · 1 + (1 − q)q−1T −1

k+a+1 into the following:

Pk T −1
k T −1

k+1 · · · T −1
k+a(T −1

k+a+1)2T −1
k+a · · · T −1

k+1T −1
k Pk . Use the inductive hypothesis for

the first term, and use Lemma 4 for the second. The result follows by induction. �

Lemma 7. Let B = {b1, b2, . . . , bk} with b1 < · · · < bk. Then X B,B is equal to

q−(b1−1)−···−(bk−k) Pk

plus terms of the form

T −1
j T −1

j−1 · · · T −1
k+1 Pk+1u j Pk+1T −1

k+1 · · · T −1
j−1T −1

j ,

for k ≤ j ≤ bk − 1, where each u j ∈ Rn(q) (and we read this as Pk+1uk Pk+1 for
j = k).

Proof: We prove this by induction. When k = 1 this has the required form by Lemma
6. For k > 1, write B ′ = {b1, . . . , bk−1}. Then

X B,B = Pk
(
T −1

k · · · T −1
bk−1

)
X B ′,B ′

(
T −1

bk−1 · · · T −1
k

)
Pk

which, by the inductive hypothesis, equals

q−(b1−1)−...−(bk−1−k+1) Pk
(
T −1

k · · · T −1
bk−1

)(
T −1

bk−1 · · · T −1
k

)
Pk,

plus terms of the form:

Pk
(
T −1

k · · · T −1
bk−1

)
T −1

j · · · T −1
k Pku j Pk T −1

k · · · T −1
j

(
T −1

bk−1 · · · T −1
k

)
Pk,

for k − 1 ≤ j ≤ bk−1 − 1 < bk − 1. Lemma 6 shows that the first term equals
q−(b1−1)−···−(bk−k) Pk plus terms of the required form. The other terms above can be
written as:

Pk
(
T −1

k · · · T −1
j T −1

j+1T −1
j · · · T −1

k Pku′
j Pk T −1

k · · · T −1
j T −1

j+1T −1
j · · · T −1

k

)
Pk

for some u′
j ∈ Rn(q). Applying Lemma 4, this equals

q−2T −1
j+1T −1

j · · · T −1
k+1 Pk+1T −1

k+1 · · · T −1
j+1u′

j T
−1
j+1T −1

j · · · T −1
k+1 Pk+1T −1

k+1 · · · T −1
j+1.

Writing this as T −1
j+1T −1

j · · · T −1
k+1 Pk+1u′′

j Pk+1T −1
k+1 · · · T −1

j+1, we see it has the required
form.

�
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Proposition 8. Suppose |B| = |C | = k. Then modulo Jk+1,

X B,C =
{

qαB Pk if B = C

0 if B �= C.

where, if B = {b1, b2, . . . , bk}, αB = − ∑k
i=1 bi + k(k+1)

2
.

Proof: Lemma 7 deals with the case B = C . Now assume B �= C . If b1 �= c1 then
X B,C ∈ Jk+1 by Lemma 5. So assume B ′ := {b1, . . . , bi−1} = {c1, . . . , ci−1} but bi �=
ci . Then

X B,C = Pk
(
T −1

k · · · T −1
bk−1

)
Pk−1 · · · Pi

(
T −1

i · · · T −1
bi −1

)
X B ′,B ′(

T −1
ci −1 · · · T −1

i

)
Pi · · · Pk−1

(
T −1

ck−1 · · · T −1
k

)
Pk

Use Lemma 7 to express X B ′,B ′ , and substitute into the above. We obtain a term of a
unit times:

Pk
(
T −1

k · · · T −1
bk−1

)
Pk−1 · · · Pi

(
T −1

i · · · T −1
bi −1

)(
T −1

ci −1 · · · T −1
i

)
Pi · · · Pk−1

(
T −1

ck−1 · · · T −1
k

)
Pk

which lies in Jk+1 by Lemma 5, and also terms of the form:

Pk
(
T −1

k · · · T −1
bk−1

)
Pk−1 · · · Pi

(
T −1

i · · · T −1
bi −1

)(
T −1

j · · · T −1
i

)
Piw

(where i − 1 ≤ j < bi−1 − 1 < bi − 1 and w ∈ Rn(q)). Now repeatedly apply
Lemma 4, firstly replacing Pi (T

−1
i · · · T −1

bi −1)(T −1
j · · · T −1

i )Piw by T −1
j+1 · · · T −1

i+1

Pi+1w
′, for some w′ ∈ Rn(q), until we arrive at Pk(T −1

k · · · T −1
bk−1)(T −1

j ′ T −1
j ′+1 · · ·

T −1
k )Pkw̄ for some j ′ < bk − 1 and some w̄ ∈ Rn(q). By Lemma 4, this lies in Jk+1.

�

4. Main results

Our calculations in the previous section have shown us how to multiply within a layer.

Theorem 9. Let (A, B, w), (C, D, w′) ∈ �k . Then, if B �= C,

T̃(A,B,w)T̃(C,D,w′) = 0 (mod Jk+1)

and, if B = C,

T̃(A,B,w)T̃(C,D,w′) = qαB
∑

u

γu T̃(A,D,u) (mod Jk+1)

Springer



J Algebr Comb (2006) 24:239–252 249

where TwTw′ = ∑
u∈S{k+1,...,n} γu Tu is the multiplication in H{k+1,...,n}(q), and, if B =

{b1, . . . , bk}, then αB = − ∑k
i=1 bi + k(k+1)

2
.

We can translate this into the language of inflations as follows. For k = 0, 1, . . . , n,
let Vk denote a K -vector space with basis labelled by subsets of [n] of size k, that is
{vA : A ⊆ [n], |A| = k}. Now define a bilinear form φ : Vk × Vk → K by extending:

φ(vB, vC ) =
{

qαB if B = C,

0 if B �= C.

where αB is the coefficient appearing in Theorem 9 above

Corollary 10.

Jk/Jk+1
∼= Vk ⊗ Vk ⊗ Hn−k(q),

where the multiplication is given by:

(vA ⊗ vB ⊗ Tw)(vC ⊗ vD ⊗ Tw′ ) = vA ⊗ vD ⊗ (Twφ(vB, vC )Tw′ ).

The cellularity of the q-rook monoid algebra will now follow from Xi’s statement
(Lemma 1) once we verify that condition (v) of that lemma holds. This is done next.

Lemma 11. If I is an ideal of H{k+1,...,n}(q) then Ĩ = Vk ⊗ Vk ⊗ I + Jk+1 is an ideal
of Rn(q).

Proof: Take i(T −1
A )Pk yT −1

B = i(T −1
A )Pk y Pk T −1

B where |A| = |B| = k and y ∈ I and
consider right-multiplication by a basis element, T̃(C,D,w) (and the argument for left-
multiplication is identical). By noting that Pk T −1

B T̃(C,D,w) ∈ Jk , it is sufficient to con-
sider i(T −1

A )Pk yT̃(E,F,w′) = i(T −1
A )y Pk T̃(E,F,w′) for (E, F, w′) ∈ �k , whence we can

apply Proposition 8 to see that the product is in Ĩ . �

Corollary 12. The q-rook monoid algebra Rn(q) is an iterated inflation of the Hecke
algebras: Hn(q),Hn−1(q), . . . ,H1(q),H0(q) = K . Thus Rn(q) is a cellular algebra.

The rook monoid algebra (the case q = 1) was already known to be a cellular algebra
by work of East in [4]. Corollary 12 tells us that, as a vector space:

Rn(q) ∼=
n⊕

k=0

(Vk ⊗ Vk ⊗ Hn−k(q))

where H0(q) is read as K . In fact this is more than just a vector space decomposition.
To see this we use the following lemma of König and Xi.
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Lemma 13 ([12], Lemma 7.1). If A is a ring and J a 2-sided ideal in A then J ⊆ A
induces a ring decomposition A ∼= J ⊕ (A/J ) if and only if J has a unit element.

We briefly recall the proof. One direction is trivial. For the other, assume there is
some e ∈ J such that ex = xe = x for all x ∈ J . Then J = eJe ⊆ eAe ⊆ J , so J =
eAe. Then (1A − e)Ae ⊆ (1A − e)J = (1A − e)eJ = 0 and similarly eA(1A − e) =
0. Hence A = eAe ⊕ (1A − e)A(1A − e).

Theorem 14. As an algebra,

Rn(q) ∼=
n⊕

k=0

(Vk ⊗ Vk ⊗ Hn−k(q))

where H0(q) is read as K .

Proof: By Lemma 13, it is sufficient to find a unit element in each layer. In Jn we define
en = Pn , which is certainly a unit in Jn . Now in Jk/Jk+1

∼= Vk ⊗ Vk ⊗ Hn−k(q), define
ek = ∑

A
1

φ(vA,vA)
T̃(A,A,1). The images of {T̃(B,C,w) : (B, C, w) ∈ �k} form a basis of

Jk/Jk+1, and:

T̃(B,C,w)ek =
∑

A

1

φ(vA, vA)
T̃(B,C,w)T̃(A,A,1)

= 1

φ(vC , vC )
T̃(B,C,w)T̃(C,C,1) (mod Jk+1)

= T̃(B,C,w) (mod Jk+1)

by Corollary 10. Similarly ek T̃(B,C,w) = T̃(B,C,w) (mod Jk+1), and the image of ek in
Jk/Jk+1 is the required unit. �

Solomon proves this for the rook monoid (that is q = 1 case) over a field of char-
acteristic zero, in [14, Corollary 2.19], and it is originally a result of Munn. Although
the assumption on the characteristic is required for later results in Solomon’s paper,
it seems not to be needed for the arguments leading up to Corollary 2.19, so his proof
would also apply to a field of non-zero characteristic when q = 1.

We have the following corollary.

Corollary 15. Over any field Rn(q) is Morita equivalent to

Hn(q) ⊕ Hn−1(q) ⊕ · · · ⊕ H1(q) ⊕ K .

Proof: This follows from the theory of inflations in [12]. The bilinear form φ : Vk ×
Vk → K is non-singular, and thus (by [12], 3.4) we have a Morita equivalence between
Vk ⊗ Vk ⊗ Hn−k(q) and Hn−k(q). �
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This means that the representation theory of the q-rook monoid algebra is the same
as that of the above direct sum of Hecke algebras. This allows us to answer many
representation theoretic questions about Rn(q).� The cell modules of Rn(q) are, as vector spaces, isomorphic to Sλ ⊗ Vl for 0 ≤ l ≤ n

and λ a partition of n − l, where Sλ denotes the usual Specht module for Hn−1(q)
(as defined in Section 4 of [2]). If Rn(q) is semisimple then these form a complete
set of non-isomorphic simple Rn(q)-modules. However, in general they need not be
simple. Let e be the least positive integer such that

1 + q + q2 + · · · + qe−1 = 0 (6)

if such an integer exists, and put e = ∞ otherwise. Then the simple Rn(q) modules
are labelled by the e-regular partitions λ of n − l, 0 ≤ l ≤ n. As vector spaces these
are isomorphic to Dλ ⊗ Vl where Dλ is a simple Hn−l(q)-module (as in [2] Sections
4 and 6.1). In particular this shows that the dimension of the simple Rn(q)-module
labelled by λ equals

(n
l

)
dimK (Dλ).� The block decomposition of Rn(q) is given by the so-called Nakayama Conjecture

(see Section 4 of [3]). Associated to a partition λ is its e-core, obtained by deleting
all rim e-hooks from the Young diagram of λ (see [9], Section 2.7). If λ is a partition
with e-core κ then |λ| = |κ| + ew for some w which is called the e-weight of λ.
Two cell modules for Rn(q), Sλ ⊗ Vl and Sμ ⊗ Vk lie in the same block if and only
if λ and μ have the same e-cores and e-weights.� Rn(q) is a semisimple algebra if and only if n < e. This was proved by Halverson
and Ram in the case when K = C (see [8], 2.21). A block of Rn(q) is simple if and
only if its e-weight equals zero. A block of Rn(q) is of finite type if and only if its
e-weight is at most 1.� The decomposition matrix of a cellular algebra records the multiplicity of each
simple module in each cell module. The decomposition matrix of Rn(q) is just the
block diagonal matrix containing the decomposition matrices of the Hecke algebras
Hn(q),Hn−1(q), . . . ,H1(q), K .� In particular, the rook monoid algebra Rn (that is the q = 1 case) is Morita
equivalent to KSn ⊕ KSn−1 ⊕ · · · ⊕ KS1 ⊕ K . As noted in Henke’s review of
[6], the Morita equivalence of Corollary 15 in the case when q = 1 sends Specht
modules for symmetric groups to the Specht modules constructed by Grood—these
are just the cell modules of Rn , Sλ ⊗ Vl where Sλ is a Specht module of KSn−l (as
defined in Section 7.1 of [9]) for l ∈ {0, 1, . . . , n}.
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