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Human object recognition is remarkably efficient. In
recent years, significant advancements have been
made in our understanding of how the brain
represents visual objects and organizes them into
categories. Recent studies using pattern analyses
methods have characterized a representational space
of objects in human and primate inferior temporal
cortex in which object exemplars are discriminable
and cluster according to category (e.g., faces and
bodies). In the present study we examined how
category structure in object representations emerges
in the first 1000 ms of visual processing. In the study,
participants viewed 24 object exemplars with a
planned categorical structure comprised of four levels
ranging from highly specific (individual exemplars) to
highly abstract (animate vs. inanimate), while their
brain activity was recorded with
magnetoencephalography (MEG). We used a sliding
time window decoding approach to decode the
exemplar and the exemplar’s category that
participants were viewing on a moment-to-moment
basis. We found exemplar and category membership
could be decoded from the neuromagnetic recordings
shortly after stimulus onset (,100 ms) with peak
decodability following thereafter. Latencies for peak
decodability varied systematically with the level of
category abstraction with more abstract categories
emerging later, indicating that the brain hierarchically
constructs category representations. In addition, we
examined the stationarity of patterns of activity in the
brain that encode object category information and

show these patterns vary over time, suggesting the
brain might use flexible time varying codes to
represent visual object categories.

Introduction

Human object recognition is remarkably efficient,
taking less than a fraction of second. In recent years,
great strides have been made in our understanding of the
neural machinery that underlies this remarkable capacity
in humans. Functional magnetic resonance imaging
(fMRI) enabled the study of coarse scale organization of
object representations in the ventral temporal pathway,
the region of the brain that underlies object vision
(Logothetis & Sheinberg, 1996; Ungerleider & Miskin,
1982). Early studies identified regions in the ventral
occipital temporal (VOT) cortex that respond selectively
to objects (Malach et al., 1995), and a few specific
categories, in particular faces, places, and bodies
(Downing, Jiang, Shuman, & Kanwisher, 2001; Epstein
& Kanwisher, 1998; Kanwisher, McDermott, & Chun,
1997). Studies using multivariate pattern analysis
(MVPA), which arguably give researchers access to more
fine scale organization (Kamitani & Tong 2005),
challenged the notion that there are regions in VOT that
are selective for categories (Haxby et al., 2001), instead
arguing for a large scale distributed coding scheme.
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Recent work utilizing MVPA has revealed a representa-
tional space of objects in monkey and human inferior
temporal cortex (IT) (Kiani, Esteky, Mirpour, &
Tanaka, 2007; Kriegeskorte et al., 2008), in part
reconciling these disparate views. In this space, object
representations form a hierarchy of clusters that reflect
conventional object categories, while discriminating
exemplars within categories.

How does this representational space emerge? The
aforementioned fMRI studies focused on the informa-
tion in spatial brain activity patterns, derived from
neuronal activity averaged across time. Noninvasive
electrophysiological studies in humans have investi-
gated the temporal structure of visual object responses,
averaged across space (Bentin, Allison, Puce, Perez, &
McCarthy, 1996; Liu, Harris, & Kanwisher, 2002).
While this approach is successful at revealing certain
category-related overall responses, it cannot address
the emergence of the detailed hierarchical clusters in IT
representational space. Monkey studies investigating
the temporal structure of visual object responses have
similarly neglected the information in spatial patterns
across populations of neurons, reporting, for example,
that the response latency of neurons can vary between
object categories (Bell et al., 2011; Kiani, Esteky, &
Tanaka, 2005). One notable study using a sliding time
window decoding approach to investigate the decod-
ability of categories and exemplars from monkey IT
population response patterns found that category and
exemplar information appeared at similar latencies:
about 100 ms after stimulus onset (Hung, Kreiman,
Poggio, & DiCarlo, 2005). Other neurophysiological
studies, however, have reported discrepancies in the
emergence of category and exemplar representations
dependent on the level categorical specificity (Matsu-
moto, Okada, Sugase-Miyamoto, Yamane, & Kawano,
2005; Sugase, Yamane, Ueno, & Kawano, 1999). It
thus remains unclear if, and if so how, categorical
structure emerges in the brain.

In recent years, neurophysiological investigations
have moved towards studying the dynamics of popu-
lation codes over time (Buonomano & Maass, 2009;
Crowe, Averbeck, & Chafee, 2010; Mazor & Laurent
2005; Nikolic, Hausler, Singer, & Maass, 2009;
Rabinovich, Huerta, & Laurent, 2008) to study how
information is encoded in these representations. In the
brief time it takes for a human to recognize an object,
the brain will rapidly undergo changes in its represen-
tational state to promote recognition. Visual areas
represent objects as features (e.g., oriented edges and
color) shortly after the onset of a stimulus. These
representations later will be refined into object repre-
sentations in higher visual areas. MEG and EEG
measure whole brain activity with millisecond temporal
resolution—the brain’s representational state at a given
time—which affords researchers the capacity to study

the representational dynamics of perceptual processes.
Contemporary human neuroimaging, however, has
largely neglected to examine how these states emerge
and to characterize their dynamics (see Philiastides &
Sajda, 2006).

We have previously employed a sliding time window
MEG decoding approach to show position invariant (or
position tolerant) object category information emerges
shortly after the onset of the visual stimulus (Carlson,
Hogendoorn, Kanai, Mesik, & Turret, 2011). In the
present study, we extend this work to study the
emergence of object representations in the human brain.
In particular, we asked (1) when do exemplar represen-
tations of several categories become discriminable, (2)
when do exemplar representations cluster in contiguous
regions corresponding to the categories, (3) when do
decodable category divisions emerge, and (4) what are
the temporal characteristics of the patterns of brain
activity that enable decoding? To address these ques-
tions, we used magnetoencephalography (MEG) to
record brain activity in high temporal resolution while
participants’ viewed 24 object exemplars with a planned
categorical structure; and, to characterize the structure
of object representations on a moment-to-moment basis
we used sliding-temporal-window pattern decoding.

Methods

Participants

Twenty volunteers (seven male, 13 female) with an
average age of 19.9 years participated in the experiment.
All participants had normal or corrected-to-normal
vision. Informed written consent was obtained from
each volunteer prior to the experiment. Participants were
paid a base rate of $15 for their participation. They were
awarded an additional $5 for achieving a high level of
performance on the experimental task (see below). The
University of Maryland Institutional Review Board
approved all experimental procedures.

Display apparatus

Subjects were supine in the recording chamber. Stimuli
were projected onto a translucent screen located 30 cm
above the participant. Experiments were run on a Dell
PC desktop computer using MATLAB (Natick, MA).

Stimuli

Stimuli were a set of 24 naturalistic images of objects
segmented from personal photos, and stock photos
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from www.photos.com and www.gettyimages.com. The
objects in the images had a planned categorical
structure informed by earlier studies (Kiani et al., 2007;
Kriegeskorte et al., 2008), which observed clustering of
object exemplars by object category in IT cortex, in
particular faces and bodies, and a broad category
distinction between animate and inanimate objects. The
set of object exemplars used in the present study were
selected such that they could be similarly hierarchically
grouped (Figure 1A). The hierarchy has an exemplar
level, which are the individual images and several
higher order groupings (i.e., categories). The highest
tier in hierarchy (animacy) was balanced such that
there were an equal number of animate (12 exemplars)
and inanimate objects (12 exemplars). Below this, the
animate objects grouped into four intermediate tier
categories. The first two intermediate tier categories
were faces (six exemplars) and bodies (six exemplars),

categories that have delineated regions of the human

brain that show selectivity for the category (Downing et

al., 2001; Kanwisher et al., 1997). The other two

intermediate tier categories are human and animal,

which are made of the same set of images, but grouped

differently. The lowest tier categories grouped the

exemplars into animal bodies (three exemplars), animal

faces (three exemplars), human bodies (three exem-

plars), human faces (three exemplars), man-made

objects (six exemplars), and natural occurring objects

(six exemplars).

Visual models of the stimuli

The use of naturalistic images introduces the

possibility that low-level feature differences can dis-

Figure 1. Experimental methods. (A) Stimuli. Stimuli were 24 images of objects with a planned hierarchical category structure. The

exemplar level is the individual images. These images group into six lower tier categories: animal bodies, animal faces, human bodies,

human faces, man-made objects, and natural objects. The animate objects group into images depicting intermediate tier categories

faces and bodies. They also can be grouped as images depicting intermediate tier categories humans and animals (Level 2b). The

highest tier distinguishes animate and inanimate objects. (B) Trial sequence. Each image was displayed for 533 ms with a variable

interstimulus interval that ranged from 900 to 1200 ms. In the center of each image was a letter. The participants’ task was to report

whether the letter was a consonant or vowel. (C) Same exemplar decoding. The classifier is trained to decode the category of the

stimulus. 90% of the data is used to train the classifier. The trained classifier is then tested with the remaining 10% of the data. Color

coding in the figure corresponds to the colors in Figure 1A. In the example shown, the classifier is trained to decode whether or not

the image shown to the observer is an animal bodies (denoted by the asterisk). (D) Novel exemplar decoding. The classifier is again

trained to classify animal bodies (denoted by the asterisk) from other stimuli. Here, the classifier is trained with block of exemplar

data. The ratio of training to test is 2:1. Two thirds of the exemplars from each category are used to train the classifier. The excluded

exemplars’ data are used to test the classifier.
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criminate categories (e.g., based on shape and color)
and account for the decoding results. We employed
several visual feature models to examine this possibil-
ity. The first model compares the difference between the
shapes of the figures (i.e., the silhouettes; Jaccard,
1901). The second compares the difference between the
images in uniform color space (CIE) color space. The
third compares the images using a hierarchal model of
visual object processing (HMAX; Riesenhuber &
Poggio, 1999). In particular, we compared the image
representations in the C2 layer of HMAX. For each
model, we constructed a dissimilarity matrix (DSM)
representing the difference between the individual
images according the model outputs. Each model’s
DSM was constructed by correlating the model outputs
for all possible pairwise comparisons between the
images.

Experimental design

Figure 1B diagrammatically shows a sequence of
trials. In each trial, an image of an object was shown
for 533 ms. The inter-trial interval between the stimuli
was random (uniform distribution) with a range of 900
to 1200 ms. For the purpose of the task, a small letter
was superimposed onto the center image. The letter was
randomly selected from the following set: (O, U, R, N,
X, S, T).

Participants were shown blocks of trials, composed
of a sequence of 240 images. Each exemplar was shown
ten times in each block (24 Exemplars · 10 ¼ 240
Trials). The order of the images was randomized for
each block. Participants were requested to perform
eight blocks of trials. Seventeen participants completed
the entire experiment (eight blocks, 80 trials per
exemplar); one terminated the experiment after seven
blocks (seven blocks, 70 trials per exemplar); one
terminated the experiment after six blocks (six blocks,
60 trials per exemplar); and one subject opted to
complete 10 blocks (10 blocks, 100 trials per exemplar).

Experimental task/results

Participants performed a task unrelated to the aims
of the experiment to encourage them to maintain
vigilance. The task was to report as quickly and
accurately as possible whether the letter at fixation was
a vowel or consonant. Participants received feedback
after each trial. After each block, they received a
summary of their performance for the block. Addi-
tional monetary compensation was awarded to partic-
ipants with an average reaction time less than 500 ms
and accuracy above 95% correct for the entire
experiment. The mean accuracy across participants was

93% correct (standard deviation 5.1%). The average
reaction time was 453 ms (standard deviation 48 ms).

MEG recordings and data preprocessing

MEG recordings were made with a 160 channel
whole-head axial gradiometer (KIT, Kanazawa, Ja-
pan). Signals were digitized at 1000 Hz and filtered
online from 0.1 to 200 Hz using first-order RC filters.
Offline, time-shifted principal component analysis
(TSPCA) was used to denoise the data (de Cheveigne &
Simon, 2007). TSPCA removes noise from neurophys-
iological signals by making use of hardware reference
channels that measure environmental noise. TSPCA
filters the reference channels to optimally estimate the
noise in the signal channels, using PCA to generate the
filters, and then subtracts the estimated noise from the
signals.

Trials were epoched from 0.1 s before to 1 s after
stimulus onset. Each trial was visually inspected for
eye-movement artifacts. The average rejection rate was
7.4% with a standard deviation of 2.7% across
participants. Principle component analysis (PCA) was
used to reduce the dimensionality of the dataset. We
used a criterion of retaining 98% of the variance, which
on average reduced the dimensionality of the dataset
from 157 recording channels to 58 components
(standard deviation 4.6 components). The time series
data was resampled to 50 Hz. The choice of sampling
rate was selected to balance several considerations.
Ideally, we would like to retain as much temporal
resolution as possible, which favors the use of the
original sampling rate (1000 Hz). At the same time, a
lower sampling rate reduces the time for processing the
data and increases the signal to noise. Our preliminary
analyses using sampling rates of 1000, 200, 50, and 20
Hz found 50 Hz to be a good balance of these factors.
The data was downsampled to 50 Hz in MATLAB
using function that low-pass filters the data before
downsampling. The latency latency offset introduced
by this filter (estimated by simulation to be ;20 ms; see
VanRullen, 2011) was corrected for after downsam-
pling.

Pattern classification analysis

The aim of the study was to examine when and how
categorical structure emerges in the brain. To this end,
we used naı̈ve Bayes implementation of linear dis-
criminant analysis (LDA, Duda, Hart, & Stork, 2001)
to do single trial classification of the exemplar and
category of the stimuli that participants were viewing.
Additional analyses were conducted using Euclidean
distance and correlation based decoding methods.
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LDA accuracy was found to be consistently higher.
Only the LDA results are presented. Classification
results are reported in terms of d prime.

Sliding-time-window analysis

A new classifier was trained and tested for each time
point. This sliding time window approach was used to
study the emerging categorical structure of object
representations using cross validation approaches:

Independent measurement cross validation
(IMCV, Figure 1C)

In this analysis, we trained a classifier to discriminate
response patterns elicited by exemplars and exemplars
grouped by category. Generalization of the classifier
was evaluated using on independent measurements
using k-fold cross validation. We used 10-fold cross
validation with a ratio of nine (training) to one (test) to
evaluate decoding accuracy. In this procedure, the data
is divided into two sets, which were determined by the
specific comparison (e.g., human stimuli and nonhu-
man stimuli). The two sets of trials were subdivided
into 10 subsets with individual trials assigned ran-
domly. For each set, nine of the subsets were pooled to
train the classifier (90% of the data). The remaining
subsets, one from each set, were used to test the
classifier (10% of the data). This procedure was
repeated ten times such that each subset was tested
once. Decoding results are summarized as the averag-
ing decoding accuracies (d0) across participants.

Pairwise exemplar decoding and
multidimensional scaling

For each time point, we constructed a DSM by
conducting IMCV for decoding all possible pairwise
exemplar comparisons. Multidimensional scaling
(MDS) (Torgerson, 1958) with a metric stress criterion
was used to visualize the DSM for each time point. To
add continuity over time in the movie, we used a
random initial position seed for MDS for the first time
point. Thereafter, MDS was seeded using the solution
from the preceding time point.

Category decoding using IMCV (Figure 1C)

Each category of objects was contrasted with the
nonoverlapping set of exemplars from other categories
using IMCV. Decoding performance was evaluated for
all of the categories in each of the tiers of the stimulus

hierarchy. The lower tier category contrasts were
animal bodies, animal faces, human bodies, human
faces, man-made objects, and natural objects. The
intermediate tier category contrasts were faces, bodies,
humans, and animals. The highest tier was animate
versus inanimate objects.

Independent exemplar cross validation (IECV,
Figure 1D)

We additionally conducted a second form of cross
validation. Here, the classifier is trained and tested with
different sets of exemplars. This analysis is important,
because same-exemplar linear decoding of a category
dichotomy is expected to work even for a low-level
representation such as V1 that distinguishes the
exemplars but does not group exemplars of each
category in a contiguous region of response-pattern
space. Novel-exemplar decoding serves to test for
generalization of a category decoder to new exemplars.
Significant novel-exemplar decodability indicates that
each category is associated with a contiguous region of
response-pattern space. For example in the animal face
category contrast, the classifier would be trained on
data from the alligator face and deer face exemplars,
which would represent the target category of animal
faces, and an equal proportion of exemplars from the
other categories (2/3 of the exemplars) would be used to
complete the training data set. The classifier would then
be tested on the monkey face exemplar data, which
represents the target category of animal faces, and an
equal proportion of exemplars from the other catego-
ries (1/3 of the exemplars). Critically, the classifier must
generalize to new exemplars to successfully decode the
category of the stimulus. Some of the categories had
different numbers of exemplars (e.g., three human face
and six man-made objects). To maintain a balance in
terms of the amount of data contributed by each
category to the training and test, we used the same
proportion of exemplars for training and test. Similar
to same-exemplar decoding, this procedure was re-
peated such that each trial was tested exactly once.
Note IECV preclude analyses at the exemplar level (i.e.,
comparing the decodability of a pair of exemplars).
Pairwise decoding of exemplars therefore is limited to
IMCV.

Category decoding using IECV (Figure 1D)

Category decoding was also evaluated using the
IECV. The analysis was only conducted at the three
categorical levels, as IECV precludes decoding at the
exemplar level. The contrasts were identical to the
category contrasts used in IMCV.
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MEG category contrasts and low-level feature
models of stimuli

To examine the relationship between the visual
object categories and low-level feature differences
between categories, we compared the model DSMs to
models of the contrasts used in the study. For each
contrast, we generated a DSM with zeros for compar-
isons within a category (i.e., same category) and ones
for comparisons between categories (i.e., different
category). For example in the human face contrast, all
of the entries in the DSM corresponding to compari-
sons between human face stimuli would have zeros
(e.g., Human Face 1 and Human Face 2), and all of the
DSM entries contrasting human face with other object
exemplars would be zero (e.g., Human Face 1 and the
camel body). The relevant entries (i.e., those populated
with zeros or ones) of the category contrast DSM were
then correlated (Spearman q) with the corresponding
entries of the visual model DSM. The resultant q value
was compared to a null distribution of correlations
values. To generate the null distribution, the visual
model DSM labels were shuffled randomly and the
entries of the shuffled model DSM were similarly
correlated with the category contrast DSM. This
procedure was repeated 1,000 times to generate a null
distribution of correlation coefficients. The actual
correlation coefficient was then compared to the null
distribution to compute a p value.

Table 1 shows resultant correlation coefficients along
with the outcome of significance tests for all the
category contrasts compared to each of the models.
The three models had varying degrees of success. The
silhouette model could discriminate human faces from

the other objects, presumably owing to the similarity in
shape. HMAX could successfully discriminate the man-
made objects, possibly due to man-made objects having
more high contrast edges. And, the CIE model was able
to capture the ‘‘human body’’ and ‘‘human’’ contrasts,
possibly due to the similar coloring of human skin.
Each of the models thus had some success in
discriminating the categories. Even the most successful
model (CIE), however, could only discriminate 20% (2
out of 10) categories analyzed in the study. In the
results section, we further examine how feature
differences between the categories (described by these
models) might account for the decoding results.

Measures of the latency of decodability

Our study used two decodability-latency measures.
Onset latency is the earliest time that the exemplar/
category of a stimulus can be decoded from the MEG
recordings. For the purposes of the present study, onset
latency is defined as the earliest time point where the
classifier is above chance on at least two consecutive
time points (a 40 ms period) using a threshold of p ,
0.01 (uncorrected). Significance was evaluated with a
nonparametric Wilcoxon signed rank test contrasting
classification performance with chance (d0 of zero).
Peak latency is the time that the classifier maximally
differentiates the exemplar/category of the stimulus.
Operationally, peak latency was defined as the time
with the maximum d0 value within the interval of 0 to
540 ms (the time the stimulus was displayed on the
screen). A Wilcoxon signed rank test was used to

Category/Visual model comparisons

Jaccard (rho) HMAX (rho) CIE (rho)

Category (lower tier)

Animal bodies �0.030 0.116 �0.058

Animal faces �0.011 0.012 0.011

Human bodies 0.068 0.124 0.1761**

Human faces 0.179** 0.127 0.111

Natural objects 0.018 0.006 �0.186

Manmade objects 0.079 �0.2097** �0.033

Category (intermediate tier)

Faces 0.200 0.136 0.094

Bodies �0.126 0.226 0.157

Animals �0.024 0.153 �0.017

Humans 0.027 0.179 0.302**

Category (highest tier)

Animacy 0.039 0.031 0.072

Table 1. Visual models and MEG category contrasts. Shown are the correlation values between three visual models of the stimuli and
the category contrasts. Significance was evaluated using a bootstrap test. Significance is uncorrected for multiple comparisons. Notes:
* indicates significance p , 0.05 ** indicates significance p , 0.01.
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compare differences in peak latencies between levels in
the stimulus hierarchy.

Temporal cross-decoding (TCD)

In the sliding-window decoding approach, classifiers
are trained and tested on data from the same time
point. This quantifies the information represented by
the brain at particular times. How the informative
patterns the enable decoding emerge over time can be
studied by training classifiers at one time point and
testing on other time points. The TCD procedure is to
train classifiers for each time point in the time series;
and then test each on the full time series. This approach
has been used previously to study the dynamics of
visual object processing (Carlson et al., 2011; see also
Meyers, Freedman, Kreiman, Miller, & Poggio, 2008)
and human perceptual decision making with EEG
(Philiastides & Sajda, 2006).

For the TCD analysis, we opted to only examine the
animate/inanimate object category decoding contrast,
as this in one of the most prominent categorical
distinctions in IT pattern response organization (Kiani
et al., 2007; Kriegeskorte et al., 2008). We also chose to
utilize IMCV because both approaches had qualita-
tively similar results and IMCV had higher decoding
accuracy. To allows us to compare differences between
brain activity associated with animate and inanimate
objects across different time points, we modified the

LDA classifier to use a single covariance estimate,
which was estimated using all the of the time points.
The procedure removes the influence of time varying
changes in noise on the classifier. This procedure was
also used in the analysis of scalp topographies, as this
analysis similarly aimed to study changes in brain
activity associated with animate and inanimate objects
across different time points.

Results

Multidimensional scaling: The emergence of
category divisions

We first examined the IMCV decoding data in an
unsupervised fashion using MDS (Figures 2A and 2B).
The distances between exemplars on each frame of the
movie represent their dissimilarity in the brain’s
representation, i.e., decodability between exemplars. In
using MDS, there is no presupposition of categorical
structure. Nevertheless, categorical structure is prom-
inent after the brain begins to process the stimuli. In the
early time points (,60 ms), the exemplars are very close
to one another, i.e., they are relatively indistinguishable
based on brain activity. This is expected because the
stimuli have not yet been presented before 0 ms, and
the arrangement thus reflects the noise. Between 0 and
60 ms visual inputs from the retina have yet to reach

Figure 2. The emergence of object representations. The MDS movie graphically depicts how the brain’s representation of the visual

objects emerges over time. Distances between exemplar images represent the difference in brain activity between exemplars (i.e.,

decodability).
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the cortex (Aine, Supek, & George, 1995; Brecelj,
Kakigi, Koyama, & Hoshiyama, 1998; Di Russo,
Martinez, Sereno, Pitzalis, & Hillyard, 2002; Jeffreys &
Axford, 1972; Nakamura et al., 1997; Portin, Vanni,
Virsu, & Hari, 1999; Supek et al., 1999), thus decoding
exemplars is still at chance. The arrangement changes
dramatically at 80 ms. At this point, there is a marked
increase in the distance between exemplars, which
suggests that individual exemplars are decodable
(statistical inference below). The arrangement also
suggests categorical structure (grouping of points
representing exemplars of the same category), which
becomes more prominent after 120 ms. Note how in the
figures the human face stimuli cluster and distance
themselves from the group, and the monkey face stays
with this group until 180 ms. At this point, the human
face stimuli cluster alone, which is consistent with a
distinct response to human faces (Bentin et al., 1996;
Liu et al., 2002). From 120 ms onward, object
categories appear to cluster to varying degrees. The
most notable distinction is that between animate and
inanimate objects. After 160 ms, the animate and
inanimate exemplars separate and remain distin-
guished. This is compatible with Kriegeskorte et al.
(2008) and Kiani et al. (2007), who used a similar

approach to discover categorical structure using MDS,
and a range of studies showing differences in the
representation of categories in the brain (Caramazza &
Shelton, 1998; Chan, Halgren, Marinkovic, & Cash,
2011; Chao, Haxby, & Martin, 1999; Epstein &
Kanwisher, 1998; Kanwisher et al., 1997; Konkle &
Oliva, 2012; McCarthy, 1995; Shinkareva et al., 2008).
In particular, the animate/inanimate dichotomy
emerges as a prominent division (Caramazza &Mahon,
2003).

MDS provides a data-driven and descriptive global
view of the results. We now describe the hypothesis-
driven inferential analyses that address the questions
posed at the outset.

The emergence of exemplar representations

We first studied the brain’s individuation of the
exemplars by examining the IMCV pairwise exemplars
comparisons. Figure 3A shows the average accuracy
across all possible pairwise combinations (264 com-
parisons total) and participants. In accordance with the
MDS results, the exemplar decoding reached signifi-
cance at 80 ms. The peak accuracy from exemplar

Figure 3. Emergence of exemplar and category discriminability for IMCV. (A) Average discriminability (d0) for all exemplar pairs. (B)

Within category exemplar discriminability (d0) for Level 1 exemplar pairs. Exemplars are discriminable within each category. (C), (D), &

(E) Discriminability of each Level 1, Level 2, and Level 3 category from stimuli outside the categories. The dashed line is average

category decoding performance for 100 arbitrary categories (i.e., a categories comprised of randomly assigned exemplars). Solid lines

are d0 averaged across subjects. The shaded region is 1 SEM across subjects. Color coded asterisks below the plots indicate above

chance performance, as evaluated by a Wilcoxon signed rank test with a threshold of p , 0.01. Peak performance is indicated by

color coded arrows above the plots. The onset and peak latencies are reported in the figure legends. The thick solid line below Plot A

indicates the time the stimulus was on the screen (stimulus duration: 500 ms).
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Figure 4. Peak discriminability across categories for IMCV. (A) Decoding peak latencies for each level of the stimulus hierarchy

(averages of within-category pairs). Central red lines indicate the median peak latency, box edges indicate the 25th and 75th

percentiles, and whiskers indicate the most extreme values that are not outliers. Outliers are plotted as red crosses; those outside of

0 to 400 ms are plotted on the lower and upper bounds. Above the figure, the outcomes of Wilcoxon signed rank tests comparing

levels of the stimulus hierarchy are summarized. Thick lines indicate the base comparison; thin lines indicate the comparison. A single

asterisk indicates significance less than 0.05, double asterisks indicate significance less than 0.01. (B) Correlations category differences

evaluated by visual models and observed onset and peak latency estimates. Asterisks indicate significant correlations (Spearman

bootstrap test, uncorrected for multiple comparisons).

Journal of Vision (2013) 13(10):1, 1–19 Carlson, Tovar, Alink, & Kriegeskorte 9



decoding was 100 ms. Thereafter, performance decays
slowly. An apparent second peak can be seen at 740 ms,
which is 220 ms after stimulus offset. In an earlier
study, we similarly observed a second peak and showed
it originated from the offset of the stimulus (Carlson et
al., 2011). Since the second peak in the present study
has a rough temporal correspondence to the offset, it
presumably also reflects brain activity in response to
the offset of the stimulus.

Decoding object exemplars within categories

Object exemplars are distinct in terms of their
category (e.g., animate vs. inanimate) and low-level
visual features (e.g., edges, color, etc.). Decoding
performance therefore might reflect the brain’s repre-
sentation of an exemplar’s category and/or the visual
features associated with a specific exemplar. To study
the brain’s representation of features that distinguish
exemplars within a category of objects, we analyzed
exemplar discriminability within each category by

delineating pairwise exemplars comparisons within
categories. The average decoding of within-category
exemplar pairs for each categories is shown in Figure
3B. The results show that exemplars within categories
are decodable. Given the short onset and peak
latencies, within-category exemplar discriminability is
likely based on feature representations in early visual
areas.

Category decoding without generalization to
novel exemplars

We next examined how category structure emerges
using the categorical comparisons from IMCV. Our
stimuli had a planned hierarchical organization with
three tiers (low, intermediate, and high) corresponding
to the level of abstraction. Each category was
represented by at least three exemplars, which vary in
terms of their visual features (see Visual model
analysis in Methods). Category decoding therefore

Figure 5. Category decoding with IECV. Panels A–C show decoding accuracy as a function of time for the three category levels. Here

the decoder predicts whether a novel exemplar (not used in training) belongs inside or outside the indicated category. The dashed

line is average category decoding performance for 100 arbitrary categories (i.e., a categories comprised of randomly assigned

exemplars). Solid lines are d0 averaged across subjects. The shaded region is 1 SEM across subjects. Color coded asterisks below the

plot indicate above chance performance, as evaluated by a Wilcoxon signed rank test with a threshold of p , 0.01. The onset and

peak latency for each category is shown in the Figure legends. (A) Performance for lower tier category comparisons. (B) Performance

for intermediate tier category comparisons. (C) Performance for the highest tier category comparison (animacy). (D) Summary

boxplots for IECV Central red lines indicate the median peak latency, edges indicate the 25th and 75th percentiles, and whiskers

indicate the extreme values that are not outliers. Outliers are shown as red crosses; those outside of 0 to 400 ms are plotted on the

lower and upper bounds. Above the figure, the outcomes of Wilcoxon signed rank tests comparing levels of the stimulus hierarchy are

summarized. Thick lines indicate the base comparison; thin lines indicate the comparison. Asterisks indicate significance less than

0.05. (E) Correlations category differences evaluated by visual models and observed onset and peak latency estimates. Asterisks

indicate significant correlations (Spearman bootstrap test, uncorrected for multiple comparisons).
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must rely on the brain’s representation of features
shared across the exemplars within a category, which
are indicative of a category, and/or an explicit
category representation. Figures 3C–E show decoding
accuracy as a function of time indicating discrimina-
bility of the exemplars of a given category from the
exemplars outside that category. The hierarchical
category tiers are shown in separate plots with each
category shown as a separate trace. Decoding for
categories created by randomly assigning exemplars to
categories with the same number exemplars is shown
in the figure as a dashed line. Decoding performance
for each ‘‘shuffled’’ category of varying size is based
on 100 randomly constructed categories. Across the
shuffled categories of varying size, there was no
variation in the onset and peak latency. Differences in
latencies between categories thus are unlikely to be
attributed to differences in the number of exemplars
used in the comparisons.

Onset latency is the earliest time that one category of
exemplars can be distinguished from other category
exemplars. The onset latencies were early and stable
(ranging from 80 to 100 ms) across categories. These
times are comparable with exemplar individuation and
similar to the observed onset for artificial categories (80

ms). The analysis shows that there is sufficient
information to reliably decode object category infor-
mation, including artificial categories, shortly after
stimulus onset using IMCV.

Peak latency is the optimal time to distinguish a
category. In the analysis of peak latency, we observed
variations between categories and a relationship
between peak latency and the level of abstraction of the
category. The peak latencies for the lower tier
categories ranged from 120 to 180 ms. Intermediate tier
categories ranged from 160–240 ms. In the intermediate
tier, there was an apparent distinction between the
different groupings. When the lower tier categories
were grouped as faces and bodies, peak decoding was
160 ms. In contrast, when the categories were grouped
as human and animal, peak decoding was much later
(240 ms and 220 ms, respectively). The highest tier
(animacy) had a peak latency of 240 ms.

While there are variations in the peak latencies for
categories within levels, there was a pattern in the data
indicating higher order categories emerge later. We
investigated this possibility first by conducting an
analysis of variance (ANOVA) to test for differences
between levels. In accordance with our early observa-
tions, we found a significant difference between the

Figure 6. Discriminant cross training (A) Columns in the image are the time points the classifier was trained; rows are the times the

classifier was tested. Color values indicate accuracy. Color-coded arrows above and below the image denote the times that the five

classifiers in lower panel of B were trained. (B) The upper panel of the figure shows accuracy across subjects when the classifier is

trained and tested on the same time point (i.e., sliding time window analysis). The shaded region indicates 61 SEM. Black asterisks

below the plot indicate accuracy significantly above or below chance. The lower panel shows accuracy for four classifiers trained at

100 ms, 140 ms, 180 ms, 220 ms, and 260 ms. Color-coded asterisks indicate accuracy significantly above or below chance. The line

drawn through the asterisks indicates the times that training and test occurred on the same time point.
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levels, F(3, 265) ¼ 5.4; p , 0.001. We next tested for
latency differences between individual tiers. The
intermediate tiers of faces and bodies (Grouping 1) and
human and animal (Grouping 2) were evaluated as
separate in the analysis, as there was an apparent
difference between these intermediate tiers in peak
latency. Figure 4A summarizes the peak latency data
with the outcomes of the statistical tests shown above
the plot. The exemplar level was significantly earlier
than all of the category levels (p , 0.01 for all
comparisons). The category tiers sorted into two
groups. Lower tier categories and the faces/bodies
intermediate tier categories (Group 1) peaked first, and
the comparison between these tiers was not significantly
different. The human/animal intermediate tier catego-
ries (Group 2) and the highest tier (animacy) peaked
later, and the comparison between these two tiers also
was not significant. Between these divisions (lower tier
and intermediate faces/bodies) and (intermediate hu-
man/animal and the highest tier), all of the compari-
sons were significant (p , 0.05).

In our analysis of feature differences between stimuli
representing the categories using the silhouette, CIE-
color, and HMAX models, we observed different
models could distinguish one or two categories of
stimuli. To study if feature differences could account

for the onset and peak latency findings, we examined
the relationship between each models capacity to
distinguish a category and the onset and peak latency.
Specifically, we tested if model correlations for category
contrasts (i.e., the effectiveness of the model for a
particular category) had a relationship to onset and
peak decoding. The table in Figure 4B shows the
correlation between model effectiveness and the ob-
served onset and peak decoding performance. We
found significant correlations (Spearman, bootstrap
test) between the silhouette model and onset latencies
within Tier 1 categories. This indicates that larger
feature differences between Tier 1 categories result in
shorter onset latencies. We also observed significant
correlations between both the silhouette and CIE
models and peak latency within the Tier 1 categories.
Here, the interpretation is less clear because the two
models differ in their sign (one positive, one negative).
Thus in one case larger differences result in shorter
peak latencies, and in the other larger differences result
in longer peak latencies. Without a clear interpretation,
we tentatively ascribe these correlations to randomness
and the use of a liberal threshold (p , 0.05,
uncorrected).

In summary, using IMCV we found that onset
latencies were stable across categories, and that the

Figure 7. Scalp topographies for animate and inanimate objects and classifier weights (A) Average performance for animate/inanimate

decoding. Solid lines are mean performance. The shaded region is 1 SEM across participants. Color coded asterisks below the plot

indicate above chance performance, as evaluated by a Wilcoxon signed rank test with a threshold of p , 0.01. The superimposed

transparent red denotes the time corresponding to the scalp topography and classifier weights shown in Plots B–F. (B)–(C) Average

evoked scalp topography for animate and inanimate objects. (D) The difference in the evoked response between animate (A) and

inanimate objects (IA). (E) Average absolute value of classifier weights across subjects. Data normalized to a range of 0–1 over the

time series. (F) Thresholded classifier weights. Data from Plot D with sensors below statistical significance ( p . 0.05) masked.
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time object categories/exemplars are maximally distinct
(i.e., peak decoding) depends on category and the tier
of category abstraction. These findings suggest the
brain may construct object category representations
hierarchically.

Category decoding with generalization to novel
exemplars

Individual exemplars have features that are both
indicative (e.g., faces have eyes) and features that are
not representative of their category (e.g., not all faces
have green eyes). In the standard approach to
decoding, cross validation is performed by dividing the
data using some criterion, for example odd and even
runs, to train and test the classifier (i.e., IMCV).
Inherent in this procedure, data from individual stimuli
(object exemplars) is included in both training and
testing the classifier. As such, the classifier could learn
to decode the category from brain activation patterns
associated with specific features of exemplars. Standard
cross validation is sensitive to representations specific
to exemplars and also abstract category information.
This is exemplified by the artificial categories in the
IMCV. Despite the absence of a true category, the
classifier could still learn to decode exemplars within
the artificial category from exemplars outside the
artificial category. In a separate analysis, we studied
this further by cross validating using novel exemplars
to test the classifier (IECV, see Methods). IECV is more
stringent than standard cross validation in that
decoding must rely on brain activation patterns shared
by exemplars within a category.

Figure 5 summarizes the IECV decoding results.
Panels A–C show the time series data. Artificial
categories with the same number of exemplars are shown
as dashed and dotted lines. For the artificial categories,
the classifier was at chance. This is expected as the
classifier was tested with novel exemplars and there is no
systematic relationship between the exemplars in the
artificial category. In examining the category contrasts,
the results from IECV and IMCV are qualitatively
similar, e.g., the conspicuous double peak in the human
body decoding is maintained across methods. In
accordance with IECV being a more conservative
approach, accuracy was generally lower for IECV than
IMCV. The onset latencies were also more variable.
Onset latencies ranged from 60 ms (humans, Level 2b) to
160 ms (animal faces) for IECV, in contrast to the
narrow range of 80 to 100 ms for IMCV. The increase in
onset variability is expected because the classifier can
only use activation patterns shared across exemplars
within a category. Novel-exemplar decoding will thus be
more sensitive to the heterogeneity of features of
exemplars within a category. This is supported by the

human face and human body comparisons. These two
categories could be distinguished from the other
categories based on early visual features (see models
outcome in Table 1), and qualitatively appear to be
relatively homogenous in terms of their features.
Accordingly, both categories have early onsets using
IMCV and IECV. The categories of animal faces and
animal bodies, in contrast, appear more heterogeneous
and could not be distinguished by any of the visual
models. Correspondingly, onset latencies for these
categories shift from short latencies in IMCV to longer
latencies for IECV.

Panel D shows boxplots summarizing the peak
latency data. Although the statistical outcomes were
weaker for IECV, there was agreement between the two
cross validation methods in terms of peak latencies.
Median estimates of peak latency were within 20 ms
(one time point) for all the levels (Figure 5D). An
ANOVA conducted to examine differences in latencies
between levels showed a marginal effect, F(2, 132) ¼
2.64; p¼ 0.0749. In accordance with IMCV, lower tier
categories peak earlier compared to the highest level,
and the difference between lower tier categories and the
intermediate face and body groupings was not signif-
icant. The comparison between lower tier categories
and the intermediate human and animal was marginal
(p¼ 0.10). If this marginal were taken as significant,
this result would be in agreement with IMCV. The
intermediate tier face and body groupings had shorter
latencies than the highest tier (p¼ 0.02), and were
marginally shorter than the intermediate tier human
and animal groupings (p¼ 0.07). Again, if the marginal
were taken significant, this is compatible with the
findings using IMCV.

We analyzed the relationship between the output of
the visual models and onset and peak latencies
estimated using IECV. The table in Figure 5E shows
the correlation between model effectiveness and the
observed onset and peak decoding latencies. Again, we
found a correlation between the onset within the Tier 1
categories and the silhouette model, which suggests that
shape similarity within the Tier 1 categories can
account for the decoding onsets. We also observed a
significant correlation between the HMAX model and
onset across all the categories in the hierarchy. The
positive correlation, however, is difficult to interpret
(larger feature differences result in longer latencies).
This might also be attributed to our use of a liberal
threshold. Again the peak latencies findings cannot be
accounted for by any of the models.

In sum, IECV is a more powerful approach as the
technique focuses on activation patterns shared across
exemplars within a category. The method yielded lower
performance overall and increased variability in onsets
relative to same-exemplar decoding. Novel-exemplar
decoding similarly evidenced that the brain hierarchi-
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cally constructs object categories of increasing levels of
abstraction, in agreement with the IMCV decoding
results. It is notable that this approach is still limited by
the experimental selection of the stimuli. If there are low-
level feature differences shared within the experimentally
selected set of exemplars (that are not necessarily
representative of the category), then the activation
patterns evoked by these features could be used by the
classifier to decode the stimuli. The failure of the visual
models to account for the observed latencies differences,
however, moderates this possibility.

Representational dynamics in object coding

We next examined the dynamics of the neural
information that underlies category decoding. The
predominant categorical boundary observed by Krie-
geskorte et al. (2008) and Kiani et al. (2007), and in our
own study, was animacy. We therefore chose to focus
our analysis on this distinction. TCD analysis shows
how well classifiers trained at individual time points
generalize to other time points. For example, a classifier
is trained with data from 100 ms relative to stimulus
onset and then is tested on all the time points in the
time series. Decoding performance over the time series
will reveal the times that the classifier (trained at 100
ms) can generalize, which gives an indication of the
dynamics of the patterns carrying the information.
Figure 6A shows the TCD results for decoding animacy
using IMCV. The figure gives a synopsis of the
dynamics of the brain’s representation of animacy.
Columns in the image represent the times that the
classifiers were trained; rows represent the times that
the classifiers were tested. In this representation, the
data on the diagonal is equivalent to the sliding time
window analysis (plotted in the upper panel of Figure
6B). In the lower panel of Figure 6B, the performance
of classifiers trained at 120, 160, 200, 240 (the peak
performance for the animacy comparison from sliding
time window analysis), and 280 ms are plotted
separately to exemplify different representational tra-
jectories.

The classifier trained at 100 ms exhibits a relatively
simple dynamic. Performance transiently rises in
response to the onset of the stimulus and then returns
to chance. Representations of the stimulus from 80 ms
to approximately 140 ms are of this general nature (see
Figure 6A). This cascading sequence of transient
representations is concordant with a feed forward
sweep of activity (VanRullen, 2007). The trajectory of
the representation measured at 160 ms is more
complex. Decodable brain activity rises in response to
the stimulus. Afterward there is a brief period of time
where accuracy falls below chance (i.e., the classifier is
systematically guessing incorrectly). It is important to

note that the representation contains information
about the categorical distinction during periods that the
classifier is below chance. This pattern of above and
below chance performance shows that decodable
information in the representation changes such that the
patterns of activity that represents a category at some
times are anticorrelated with patterns representing the
same category at other times (see Carlson et al., 2011).
Notably if at these times the classifier was trained and
tested on the same time point, as in the sliding window
analysis (see upper panel of Figure 6B), the classifier
would be above chance because the weights and
decision rule would be different. Decodable informa-
tion is thus sustained over the times that the classifier is
above and below chance, but the patterns of brain
activity that enable decoding is changing. This dynamic
is even more apparent in classifiers trained at 200, 240,
and 280 ms. In each case, the representations are
changing over extended intervals of time (from
approximately 200 to 700 ms) with performance
fluctuating above and below chance. One final note-
worthy aspect of the data is the square region in the
image in Figure 6A around 240 ms. The square region
indicates that there is a period of time that the classifier
generalizes over a larger interval of time (;220 to 300
ms), which is indicative of a period of relative stability.
This can also be seen in the lower panel of Figure 6B.
The classifiers trained at 240 and 280 ms show very
similar trajectories. The peak performance of two
classifiers is different, which is expected, as peak
performance will follow the time the classifier was
trained. Still, both classifiers rise above chance about
the same time and invert to below chance performance
following nearly identical trajectories. This indicates
that both classifiers are relying on the same represen-
tational state to decode animacy. This period of stable
representation is followed by a large period of below
chance performance in the row (large blue swath above
the square in Figure 6A). One interpretation of this is
that the representation inverts its activation profile,
possibly due to excitation followed by inhibition and/or
adaptation. Interestingly, the time of the stable
representation starts around the time of peak classifi-
cation performance (240 ms, see Figure 3D), the
optimal time for readout of category information.
Finally it is notable the information decays while the
stimulus is still on the display, suggesting that the
representation is maintained only until the information
is transmitted. This further illustrates the dominant role
of internal dynamics, as opposed to a stable response to
the stimulus.

We next examined the dynamics of object coding by
studying the scalp topographies and classifier weights.
The movie in Figure 7 shows decoding performance for
animate and inanimate objects (Figure 7A), the average
evoked scalp topography for the two object categories
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(Figures 7B–C), the difference between the scalp
topographies (Figure 7D), and average the classifier
weights across participants (Figures 7E–F). As can be
seen in Figures 7B–C, the evoked response to animate
and inanimate objects change over time but very
similar. The difference (Figure 7D) reveals that the
differential brain activity changes over time. Early in
the time series, the difference is centered over visual
cortex, as one might expect. Beyond this time, the
difference shift to include brain activation patterns over
virtually the entire brain. Notably the difference reveals
little stability over time indicating that the patterns of
brain activity that differentiate the two categories of
objects continually change over time. For virtually of
all of the time points, the topography of the weights
exhibits little spatial coherence (Figures 7E; see also
figure 5 of Chan et al., 2012). There was also little
consistency in the topography of the weights over time.
For each time point, the weights appear to be unique
with little resemblance to other time points. This
accords with the outcome of the TCD analysis;
individual classifiers trained at one time point general-
ize poorly to other time points. This supports the
contention that the neural information that distin-
guishes animate and inanimate objects in the brain is
dynamic. Finally, we examined whether there was any
consistency in the weights across subjects (Figure 7F).
To do so, the classifier weights were thresholded by
statistical significance using a liberal threshold (p ,
0.05, uncorrected). At each time point only a few of the
locations in the sensor array survived threshold, and
those that did appear disbursed randomly and change
over time. This random dispersion presumably reflects
the use of a liberal uncorrected statistical criterion. The
data thus indicate the classifier weights idiosyncratic.
While the spatial variability of the weights described
above and the idiosyncrasies across individuals on the
surface might appear uninformative, there is one
important implication. Traditional analyses in which a
cluster of sensors are selected for analysis, e.g., sensors
covering visual cortex, may not be able to detect the
subtle differences the scalp topography between stim-
ulus conditions. Pattern analysis approaches in contrast
can make use of these differences to successfully decode
stimulus conditions.

In summary, our analysis of the representational
dynamics of the coding of animacy revealed represen-
tational trajectories that are transient and sustained.
Our findings support the idea that the brain may use
transient codes that stabilize only in a brief time
window to represent visual objects. Finally, our data
also suggest that pattern analysis approaches can reveal
decodable information in the brain that is not
immediately apparent from traditional analysis and
thus can be used compliment these traditional ap-
proaches.

Discussion

Our study provides a new perspective on visual
object processing and categorical divisions by revealing
the emergence and decay of the information over the
first 1000 ms. We used 24 object exemplars with a
planned category structure, following previous primate
single-unit recording studies and human fMRI studies
of pattern representations (Kiani et al., 2007; Kriege-
skorte et al., 2008). These studies showed that human
and primate IT represents visual objects with coarse
structure that distinguishes categories of objects (e.g.,
animate and inanimate) and fine-grained structure that
distinguishes exemplars within categories. By marrying
this approach with MEG, we were able to reveal the
temporal dynamics of object categorization in the
human brain.

Our study used naturalistic stimuli that aimed to
engage visual areas specialized for the processing of
real-world objects. In order not to compromise
naturalism, we did not control for low-level feature
differences (e.g., contrast, shape, color). We investi-
gated the impact of feature representations on decoding
category by examining several visual models (silhou-
ette, CIE color, and HMAX) and by employing a
second decoding procedure, in which the classifier
decoded novel exemplars. Our analysis of the visual
models found these models at most could discriminate
2 of the 10 categories, were only modestly successful in
accounting for onset latency, and failed to account for
our observed differences in peak latency. Decoding
using novel exemplars (IECV) largely mirrored the
findings using IMCV.

Studies have found that IT neurons have shorter
latencies for human faces than other object categories
and shorter latencies for human faces than animal faces
(Bell et al., 2011; Carmel & Bentin, 2002; Kiani et al.,
2005; McCarthy, 1995). The implication of these
studies is that category information relates to response
latency. In the present study, we examined this
relationship using two latency measures: onset latency
and peak latency. Using a standard decoding approach
(same-exemplar decoding), we found little variation in
onset latency by category. Decoding exemplars and
categories narrowly ranged from 80–100 ms. Several of
our findings indicate that early decoding (,100 ms) is
feature based. The raw timing is near the time that
visual information first reaches the cortex (Aine et al.,
1995; Brecelj et al., 1998; Di Russo et al., 2002; Jeffreys
& Axford, 1972; Nakamura et al., 1997; Portin et al.,
1999; Supek et al., 1999). We observed greater variation
in onset latencies decoding novel exemplars, a proce-
dure that controls for low-level feature differences
between stimuli. We found similar onset latencies (80–
100 ms) for decoding exemplars within categories and
decoding exemplars based on artificial categories.
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Finally, our previous work has found that showing
stimuli in varied spatial locations, which acts as a
control for low-level feature differences, delays onset
latencies to 110 ms or greater (Carlson et al., 2011).
Although early visual representations may not be
explicit categorization by the brain per se, behavioral
studies have shown that humans use information
represented in early visual areas to categorize objects
(Honey, Kirchner, & VanRullen, 2008). Categorization
in the brain thus might be better viewed as a process of
accumulating evidence for category membership. If so,
our findings suggest that the brain could read out a
variety of object categories as fast as 80 ms based on
biases in early feature representations. This might
account for some of the remarkable behavioral findings
in rapid categorization (Honey et al., 2008; Kirchner &
Thorpe, 2006). As a methodological aside, decoding of
objects from feature representations including highly
homogenous sets of object within a category (e.g.,
faces, see Figure 3B), demonstrates the sensitivity of
MEG decoding methods (and presumably also EEG),
which suggests that model based decoding approaches
(Dumoulin & Wandell, 2008; Kay, Naselaris, Prenger,
& Gallant, 2008) for MEG/EEG may be a promising
avenue for future research.

Recent studies have suggested perceptual categori-
zation is process of accumulating evidence that depends
on the strength of the perceptual evidence by showing
that neural activity that correlates with behavioral
performance was delayed with increasing task difficulty
(Philiastides & Sajda, 2006). If categorization is viewed
as a process of accumulating evidence, the peak latency
would be the optimal time to ‘‘read out’’ category
information from neuronal activation patterns. While
we observed differences between same-exemplar de-
coding and novel-exemplar decoding in terms of onset
latency, we found that the two approaches were in good
agreement for the peak latency measure, excluding the
exemplar level, which was not included in the novel-
exemplar decoding analysis. In a comparison of the two
methods by individual categories, only two of the
eleven categories (human bodies and natural objects)
differed by more than 20 ms (one time point) in peak
latency estimates. In our analysis of the categorical tiers
of the hierarchy, the two methods showed good
agreement (all estimates of peak latency were within 20
ms). We interpret the cohesion of the two methods on
peak latency estimates to indicate that feature differ-
ences between exemplars do not have a great impact on
peak latency.

For peak latency, we observed category structure
emerges in accordance with our planned hierarchy. Our
findings thus show that the brain delineates lower tier
object categories first along with the intermediate face
and body categories, and then higher order categories
emerge. We observed one notable discrepancy from the

hierarchical stimulus structure. In the intermediate tier,
peak latencies for faces and bodies coincided with lower
tier categories. This discrepancy might be reconciled by
the conjecture that the brain has special mechanisms to
process faces and bodies due to their ecological
significance and/or our extensive perceptual experience
with these categories, a conjecture supported by a large
body of research, which has shown there are areas in
human and primate ventral temporal cortex that
respond preferentially to faces and bodies (Bell et al.,
2011; Downing et al., 2001; Kanwisher et al., 1997) and
neurons in IT that are selective for faces and body parts
(Bell et al., 2011; Desimone, 1991).

In interpreting our data, we do not imply that the
brain categorizes objects in stages that correspond to
the experimentally defined tiers in our hierarchical
stimulus structure, which were arbitrarily defined.
Instead, we take the broad perspective that the
categorization of objects by the brain is a process of
accumulating evidence (Philiastides & Sajda, 2006). In
this view, the finding that category structure emerges
from specific to abstract has the implication that
category representations resolved early can provide
supporting evidence to category representations that
are constructed later, e.g., activation of the category
‘‘human face’’ would support the representations
‘‘human’’ and ‘‘animate.’’ We also would not advocate
the strong conclusion that object recognition takes
places in a strict hierarchical fashion from specific to
abstract. Nonhuman primates studies have shown that
responses to categories (e.g., face) emerge prior to
subordinate members (Matsumoto et al., 2005; Sugase
et al., 1999); a finding that directly contradicts this
interpretation. In reconciling these findings, one could
posit a plausible entry point to be basic level categories
(Rosch, Mervis, Gray, Johnson, & Boyes-Braem,
1976), which humans act faster to categorize than more
abstract and specific instances of categories. Basic level
categories as an entry point for object recognition
could be advantageous as the identification of stimuli’s
basic level category could constrain subordinate
categories that the stimulus belong to and facilitate
identification. This basic level category entry point
hypothesis could be explicitly tested in future research.

In recent years, research has begun to acknowledge
the importance of temporal dynamics in population
codes (Buonomano & Maass, 2009; Rabinovich et al.,
2008; Stokes, 2011). In particular, populations of
neurons may encode information through systematic
changes in the response patterns over time. We used
TCD to study how population responses, measured
using MEG, elicited by visual objects change over time.
The TCD approach is similar to the notion of a virtual
electrode except it centers on a particular representa-
tional state, as opposed a source of activity in the brain.
Classifiers are used to capture and characterize
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information in a specific representational state, and the
dynamics of the information in this state is evaluated as
a function of time. We found that exemplar and
category information can be decoded from brain
activity from approximately 80–800 ms using a sliding
time window. In our analysis of the representational
dynamics, we found representational states that dis-
criminate category membership can be transient or
sustained. Our analysis centered on the coding of
animacy (Figure 6), although the other object catego-
ries exhibited similar dynamics (data not shown). In the
coding of animacy, we found early representations (60–
120 ms) are transient. In the range of 220 to 300 ms,
brain representations were sustained; however, the
representation of category information changed over
time. Empirical and modeling studies have argued
dynamic population codes can confer sensory repre-
sentations the capacity to encode time (Buonomano &
Maass, 2009), memories of past sensory events (Nikolic
et al., 2009), and behavioral goals (Crowe et al., 2010;
Woloszyn & Sheinberg, 2009). Whether the brain uses
dynamic codes to represent information relevant to
object perception is an open question. Furthermore, it
is useful to consider more basic questions like whether
the brain ‘‘reads out’’ category information from these
time varying patterns (cf. Williams et al., 2007), and if
so how. If the brain does use temporal codes, at what
time point does the brain begin to read out the signal
and over what interval of time? It is also possible the
brain does not use a temporal code for encoding object
category information. The brain may instead simply
read out category information at the optimal time (i.e.,
peak decodability) or the earliest time point that a
decision can be made reliably (onset decodability).

Our findings can be summarized as follows: (1)
Visual object categories can be distinguished by early
brain representations encoding visual features, and
biases in category features might be used by the brain
to rapidly categorize stimuli; (2) the time the brain
takes to maximally distinguishes categories (i.e., peak
latency) is dependent on the level of category abstrac-
tion; and (3) the brain encodes category information
using transient representations that dynamically change
over time. Collectively, these findings elucidate how
visual objects are represented in the brain. The brain
initially represents visual objects in a cascading
sequence of representations with limited lifetimes,
concordant with a rapid feed forward sweep (Van-
Rullen, 2007), In this cascade of activity, object
representations emerge. The sequencing of object
representations at different levels is advantageous, as
the immediate categorization of an object at one level,
possibly at the so called basic level (Rosch et al., 1976),
can inform more abstract representations and constrain
the subset of candidate subordinate categories and
identities of a stimulus.

Keywords: object recognition, categorization, magne-
toencephalography, pattern-information analysis, brain
decoding
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