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Abstract 

Our senses are continuously bombarded with more information than our brain can process up to 

the level of awareness. The present study aimed to enhance understanding on how attentional 

selection shapes conscious access under conditions of rapidly changing input. Using an attention 

task, EEG, and multivariate decoding of individual target- and distractor-defining features, we 

specifically examined dynamic changes in the representation of targets and distractors as a function 

of conscious access and the task-relevance (target or distractor) of the preceding item in the RSVP 

stream. At the behavioral level, replicating previous work and suggestive of a flexible gating 

mechanism, we found a significant impairment in conscious access to targets (T2) that were 

preceded by a target (T1) followed by one or two distractors (i.e., the attentional blink), but striking 

facilitation of conscious access to targets shown directly after another target (i.e., lag-1 sparing and 

blink reversal). At the neural level, conscious access to T2 was associated with enhanced early- and 

late-stage T1 representations and enhanced late-stage D1 representations, and interestingly, could 

be predicted based on the pattern of EEG activation well before T1 was presented. Yet, across 

task conditions, we did not find convincing evidence for the notion that conscious access is 

affected by rapid top-down selection-related modulations of the strength of early sensory 

representations induced by the preceding visual event. These results cannot easily be explained by 

existing accounts of how attentional selection shapes conscious access under rapidly changing 

input conditions, and have important implications for theories of the attentional blink and 

consciousness more generally. 

 

Keywords 

Attentional selection, conscious access, MVPA, neural representations, attentional blink, lag-1 

sparing, EEG 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 8, 2020. ; https://doi.org/10.1101/2020.08.30.274019doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.30.274019
http://creativecommons.org/licenses/by/4.0/


 2 

1 Introduction 

 

Over the past few decades, research has shown that visual information processing preceding 

conscious access tends to cluster in several functionally distinct stages after stimulus presentation 

(Carlson, Tovar, Alink, & Kriegeskorte, 2013; Grootswagers, Robinson, & Carlson, 2019; Kaiser, 

Oosterhof, & Peelen, 2016; Marti & Dehaene, 2017; Marti, Sigman, & Dehaene, 2012; Sergent, 

Baillet, & Dehaene, 2005; Weaver, Fahrenfort, Belopolsky, & Van Gaal, 2019). The early and 

intermediate phases of stimulus processing, up to ~300 ms after stimulus presentation, are 

characterized by bottom-up and local recurrent processing in sensory cortex (Dehaene, Changeux, 

Naccache, Sackur, & Sergent, 2006; Lamme & Roelfsema, 2000). During these stages, stimulus 

processing is primarily bottom-up and non-conscious, supported by a greatly parallel processing 

architecture, which permits multiple visual stimuli to be represented in the brain at the same time. 

The subsequent processing phase is however selective to those stimuli amplified in a top-down 

manner depending on their goal relevance, i.e., that are attentionally selected (Marti & Dehaene, 

2017; Olivers & Meeter, 2008; Sergent et al., 2005; Sigman & Dehaene, 2008). At this relatively 

late processing stage, stimuli are encoded into working memory, a process thought critical for 

translating fleeting sensory representations into a more durable consciously accessible format 

(Dehaene et al., 2006; Marti & Dehaene, 2017; Olivers & Meeter, 2008). Yet, the current literature 

accommodates two conflicting views about what determines whether or not a stimulus becomes 

available for conscious access: the serial nature of limited-capacity late-stage processing, or 

dynamic gating effects on lower-stage sensory representations.   

 

Limited-capacity models (Chun & Potter, 1995; Jolicœur & Dell'Acqua, 1998; for review see Dux 

& Marois, 2009 and Olivers & Meeter, 2008) and some theories of consciousness (e.g. Global 

Neuronal Workspace; Dehaene, Charles, King, & Marti, 2014) postulate a serial bottleneck during 

late-stage processing. Specifically, only one item can be encoded at a time by late-stage capacity-

limited processes allowing conscious access (Marti & Dehaene, 2017; Marti et al., 2012; Sergent et 

al., 2005; Sigman & Dehaene, 2008). According to these accounts, conscious access fails when an 

item cannot be attentionally selected for late-stage encoding, for example when this stage is still 

occupied by a previous item. This is well illustrated by the so-called attentional blink (AB): an 

impairment in identifying a second target (T2) presented after a first target (T1) within close 

temporal proximity (200 to 500 ms) in a rapid stream of distractor stimuli (Raymond, Shapiro, & 

Arnell, 1992). According to limited-capacity accounts, conscious access to T2 fails because T1 

encoding into working memory ties up limited processing resources, rendering them temporarily 
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unavailable for T2 (Lagroix, Spalek, Wyble, Jannati, & Di Lollo, 2012; Marti & Dehaene, 2017; 

Marti, Sigman, & Dehaene, 2012; Sergent, Baillet, & Dehaene, 2005). 

 

Notwithstanding their popularity, limited-capacity accounts fall short in explaining several more 

recent behavioral observations. First, overall high target accuracy is observed, even for targets 

presented in the typical AB time window, when targets are presented sequentially with no 

intervening distractors (e.g., TTTDD; T – target; D – distractor), a phenomenon called sparing 

(Di Lollo, Kawahara, Ghorashi, & Enns, 2005; Lunau & Olivers, 2010; Olivers, Hilkenmeier, & 

Scharlau, 2011; Olivers, Van Der Stigchel, & Hulleman, 2007). What is more, T2 performance 

often exceeds T1 performance when the two targets are shown consecutively (Dell’Acqua, Doro, 

Dux, & Losier, 2016; Di Lollo et al., 2005; Olivers et al., 2011). Even more problematic for limited-

capacity accounts is the so-called AB reversal, whereby in a TDTT sequence T3 seems to “escape” 

the AB. That is, T3 accuracy is higher when T3 is preceded by a target (TDTT) than a distractor 

(TTDT) and higher than T2 accuracy at this same temporal position in the stream (TDDT) 

(Kawahara, Kumada, & Di Lollo, 2006; Olivers et al., 2007). These findings are difficult to explain 

assuming a T1-triggered late-stage bottleneck. 

 

In an alternative account, the boost and bounce theory of temporal attention (Olivers & Meeter, 

2008), the AB, sparing of conscious access, and blink reversal are consequences of (dys)functional 

gating of information into working memory. More specifically, this theory proposes that a 

combination of excitatory and inhibitory gate neurons form an attentional gating system into 

working memory, i.e., implement the attentional set, and provide excitatory (“boost”) and 

inhibitory (“bounce”) feedback upon target and distractor detection, respectively. Critically, this 

top-down feedback peaks rapidly, approximately 100 ms after stimulus presentation (e.g. 

Shimozaki, Chen, Abbey, & Eckstein, 2007; Wyble, Bowman, & Potter, 2009, for a review, see 

Olivers, 2012) thereby also affecting the chance of conscious access for the following item. In this 

account, the attentional blink to T2 is caused by strong inhibitory feedback (a bounce) triggered 

by the distractor after T1 (D1), that itself was accidentally boosted by strong excitatory feedback 

evoked by T1. This account can also readily explain sparing: if the first post-T1 stimulus in the 

stimulus stream is T2, this stimulus, as well as other immediately ensuing target stimuli, will be 

boosted into working memory (hence the observation of extended sparing in a TTTDD sequence). 

Rapid reversal of the AB is similarly explained by the workings of this rapid gating system: T3 is 

relatively boosted when it directly follows T2 (TDTT) compared to a distractor (TTDT), rendering 

it more likely that it will gain access to consciousness. Thus, according to this account, the 

attentional blink reflects dysfunctional gating of information to late-stage processing and not a 
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capacity limitation of late stage visual information processing per se. Another influential model, 

the serial token/simultaneous type (STST/eSTST) model, also attributes the AB to dysfunctional 

gating of information into working memory in that during T1 encoding, an attentional ‘blaster’ is 

temporally unavailable to boost the representation of next task-relevant items (Bowman & Wyble, 

2007; Wyble, Bowman, & Nieuwenstein, 2009). In this model, a T1-triggered attentional 

enhancement can also strengthen the representation of a subsequently presented item, such as D1. 

Yet, this model does not assign a critical role to D1, as the AB is caused by T1-triggered resource 

depletion (i.e., the unavailability of the blaster during T1 encoding), not enhanced D1 processing. 

 

Neural evidence for rapid boost and/or bounce gating of conscious access is so far scarce and 

relatively inconsistent. ERP studies have reported an attentional selection response to T1, the 

frontal selection positivity component peaking approximately 250 ms after the onset of T1, 

followed 100-150ms later by a frontal negativity, on target-present (TD) in contrast to target-

absent (DD) trials (Martens, Munneke, Smid, & Johnson, 2006). The frontal negativity was 

furthermore found to increase in amplitude as the number of stimuli that had to be ignored grew, 

which was also related to a deficit in awareness of the subsequent target, hence presumably 

signaling stronger frontal gating or inhibition (Niedeggen, Hesselmann, Sahraie, Milders, & 

Blakemore, 2004). These findings were interpreted as post-T1 attentional enhancement followed 

by distractor-triggered inhibition, and taken as evidence for the boost and bounce theory (Olivers 

& Meeter, 2008). However, a more recent study that compared the negativity arising after the 

frontal selection positivity component between two conditions that differed only in the temporal 

position of the first post-T1 distractor (TD and TTD) did not observe a latency shift of the frontal 

negativity component, challenging the assumption that the frontal negativity reflects a distractor-

evoked inhibitory response (Dell’Acqua et al., 2016). Furthermore, a recent study that used 

inverted encoding modeling to decode the orientation of each item in the AB task (stimuli were 

oriented gratings with different spatial frequencies), which could thus isolate single-item 

processing dynamics, only observed AB-related changes in early orientation tuning to T2, but no 

differences in the representational strength of D1 as a function of T2 visibility (Tang et al., 2020). 

The lack of effects on the sensory representation of D1 in this study may argue against the notion 

that accidental selection or boosting of D1 causes the AB to T2. However, no differences in T1 

representation were observed either, which is surprising as limited capacity accounts, the 

STST/eSTST model, and boost and bounce theory all predict that the attentional blink is related 

to having to encode T1, albeit only indirectly in the latter account. Possibly, as only spatial 

frequency but not orientation was a predictable/defining feature of targets in the Tang et al. study, 
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and hence only spatial frequency could drive attentional search, their orientation decoding may 

have been less sensitive to top-down feature selection-related effects. 

 

The present EEG study aimed to advance understanding of how attentional selection shapes 

conscious access using multivariate decoding of individual target- and distractor-defining features, 

and an attention task that allowed us to examine dynamic changes in the representation of 

individual targets and distractors in attentional blink, sparing and AB reversal conditions. 

Specifically, we tested two predictions that disentangle limited-capacity and boost and bounce 

accounts at the neural level. First, while limited-capacity accounts generally assign no critical role 

to D1, the boost and bounce theory posits that the AB is related to accidental selection of D1 for 

late-stage processing: T1-evoked top-down feedback meant to strengthen its low-level neural 

representation also accidentally amplifies the sensory representation of D1, because of its close 

temporal proximity to T1, boosting it into working memory. Therefore, this account predicts 

quantifiable differences in the quality of D1 representations in T2 seen vs. unseen trials, which we 

examined here directly. Second, as noted above, limited-capacity accounts have trouble explaining 

the behavioral observations of extended sparing and AB reversal, which the boost and bounce 

account links to dynamic attentional gating of information, depending on the nature of the 

preceding item in the stream. Here, we hence also investigated changes in the quality of target (e.g., 

T3) and distractor representations as a function of the nature of the preceding item in the stream 

(i.e., target or distractor).     

 

To test these predictions, participants performed an attention task (cf. Olivers et al., 2007) in which 

they had to identify up to three target numbers presented in a rapid serial visual presentation 

(RSVP) stream of distractor letters, while in each trial, we varied the number of targets and their 

temporal order. Concurrently, we measured their brain activity using EEG to which we applied 

multivariate pattern analysis (MVPA) (Grootswagers, Wardle, & Carlson, 2017; King & Dehaene, 

2014). This approach enabled us to identify individual stimulus-specific sensory representations at 

distinct processing stages with high temporal precision and at the whole-brain level. MVPA neural 

pattern classifiers trained at each time point were also applied to all other time points, so that using 

the resulting generalization across time matrix, we could also examine whether and when neural 

patterns were stable and thus generalized across time (King & Dehaene, 2014). Recent studies 

have identified (at least) three visual information processing stages that can be separated using the 

generalization across time approach. Its early diagonal portion (<200 ms) is thought to reflect 

early-stage sensory processes driven by bottom-up input characteristics (Fahrenfort et al., 2017; 
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King et al., 2016; Marti & Dehaene, 2017), and a late-stage (~300-600 ms) period with a sustained 

temporal profile, extending off diagonal, that correlates with conscious access and task-related 

goals (Marti & Dehaene, 2017; Meijs et al., 2019; Weaver et al., 2019). Early decoding can also 

extend off the diagonal, reflecting maintenance of a low-level sensory representation over time 

(Meijs et al., 2019; Weaver et al., 2019). Building on this body of work, we specifically examined 

dynamical changes in neural representations across these different processing stages, with the 

ultimate goal of gaining a better understanding of the underlying processing architecture that 

determines conscious access.  

 

2 Methods 

 

2.1 Participants 

 
Thirty-five right-handed subjects (29 female, mean age = 20.91 years, SD=2.16 years), all students 

from the University of Amsterdam, who reported normal or corrected-to-normal vision and no 

history of a psychiatric or neurological disorder, participated in this study. Participants gave written 

informed consent prior to the start of the study and received research credits or money (10 euros 

per hour) for their participation. The study was approved by the ethical committee of the 

Department of Psychology of the University of Amsterdam. One participant was excluded from 

the final analyses because of misunderstanding the task instructions, while two other participants 

dropped out before finishing the third session. The final sample thus consisted of thirty-two 

participants who each completed three EEG sessions (27 female, mean age = 20.78 years, 

SD=1.83 years). 

 

2.2 Stimuli and apparatus 

 
All stimuli were generated using Matlab 8 and Psychtoolbox-3 software (Kleiner et al. 2007) within 

a Matlab environment (Mathworks, RRID:SCR_001622). Stimuli were presented on a 1920x1080 

pixels BenQ XL2420Z LED monitor at a 120-Hz refresh rate on a “black” (RGB: [0 0 0], ± 3 

cd/m2) background and were viewed with a distance of 90 cm from the monitor. 
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2.3 Procedure 

 
The study consisted of three EEG sessions in which participants either searched for one target in 

an RSVP stream (localizer task session) or for up to three targets in an RSVP stream (two attention 

task sessions), while their brain activity was recorded using EEG. EEG cap placement was 

standardized for each participant across the three recording sessions to reduce the chance that 

differences in electrode locations across sessions contributed to our decoding results. Specifically, 

in each session, we measured the distance from the nasion to the inion, across the top of the head, 

assuring that the central Cz electrode was positioned exactly in the middle. We then measured the 

distance from the tragus of the left ear to the tragus of the right ear, across the top of the head, 

again making sure that the Cz was located in the middle. 

 

2.4 Localizer task 

 
The study started with one 180-minute localizer task session in which, on each trial, participants 

had to identify a single target embedded in an RSVP stream of 13 distractor stimuli. In half of the 

trials, the target was a number presented among distractor letters, while in the other half of trials, 

the single target was a letter presented among distractor numbers. The target stimulus, one of eight 

numbers (2-9) or one of eight letters (A, D, H, K, L, M, R, U), always appeared on positions 5-9 

(balanced across trials). The distractor stream consisted of the eight stimuli of the other category, 

presented in a random fashion without consecutive repetitions. All stimuli were shown at fixation 

in a monospaced font (font size: 55 points) in white (RGB: [255 255 255]) for 83 ms with no inter-

stimulus interval (ISI). Each trial started with a fixation cross for 400ms +/- 150ms jitter (25ms 

step size). After the last stimulus in the stream, the fixation cross was shown again for another 600 

ms, after which participants were asked to identify which target number or letter (depending on 

the block) they had seen using 8 yellow-marked keys (a, s, d, f, j, k, l and ;) on the keyboard in front 

of them, which spatially corresponded to 8 numbers or letters shown on the computer screen in a 

specific order, for example: 5 6 7 8  9 2 3 4. In this example, if for instance they saw the target 

number 7, they needed to press the third yellow key on the keyboard. The position of items on 

the screen and hence their associated response key varied across trials (e.g., 2 3 4 5  6 7 8 9; 4 5 6 

7  8 9 2 3; etc.). This was done so that our subsequent decoding analysis could not pick up on any 

consistent stimulus-response relationships and decoding results would not be confounded by 

activity related to specific response preparation. Numbers and letters were always presented in 

ascending order, with the starting item varying from trial to trial. For instance, on ⅛ of trials the 

response sequence started with the number 2, on other ⅛ of trials with the number 3 and so on. 
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This resulted in eight possible number response orders and eight possible letter response orders, 

which were presented equally often over the course of the experiment. Participants were asked to 

maintain fixation at all times except, if necessary, during the response period. 

 

The task consisted of 1440 trials, presented in 18 blocks. Half of the participants first completed 

9 blocks of trials in which they needed to identify a target letter, while in the remaining 9 blocks 

they needed to identify a target number. The order of letter and number blocks was reversed for 

the other half of the participants. Blocks of trials were interleaved with self-paced breaks, except 

after every forth block when a longer break, paced by the experimenter, was administered. After 

every block, participants received feedback about their performance (percentage of correct target 

identifications for that block). 

 

EEG activity was concurrently recorded so that we could build classifiers to decode identity-

specific neural representations of the different target stimuli, unbiased by any task manipulation 

that we employed in the following two experimental sessions (see below). The EEG data was used 

to build two types of classifiers: one that classified eight different letters and one that classified 

eight different numbers. 

 

2.5 Attention task 

 

In the second and the third session of the study, participants performed an attention task (adopted 

from Olivers et al., 2007), while their brain activity was again recorded using EEG. On each trial, 

they saw 1-3 target numbers (T1, T2, T3) embedded in a stream of distractor letters. Participants’ 

task was to report the identity of all targets they had seen in the stimulus stream.  

 

Stimuli and the design of the attention task were identical to the localizer task except for the 

following differences.  Each RSVP stream consisted of 18 stimuli in total. Target stimuli were 

numbers ranging from 2 to 9, while distractors could be 15-17 letters (A, D, H, K, L, M, R, U, C, 

E, F, G, I, J, N, O, P, T, V, W, X, Y, Q, Z). Each number appeared as T1, T2 and T3 equally 

often. Only the distractor letters A, D, H, K, L, M, R, U, shown as targets in the localizer task, 

could appear at positions 5 to 9. We pseudo-randomized their order such that each letter appeared 

at each given position within a condition equally often. The other distractor letters were randomly 

presented at the other temporal positions (i.e., 1-4, 10-17). The same target number and distractor 

letter was never repeated within a trial.  
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Each trial started with a fixation cross shown at the center of the screen for 700 ± 100 ms with a 

25 ms step size. After the stream ended, the fixation cross reappeared for 800 ms, after which the 

response screen appeared. The manner of responding was identical to the localizer task, except 

that participants could now report more than one target. They were instructed to report any target 

seen and in case of multiple targets, in the order they had seen them in the stream, but the latter 

was not emphasized as crucial. After indicating seen targets, participants needed to press the 

spacebar to confirm their entry and to start the next trial. Participants were asked to maintain 

fixation at all times except, if necessary, during the response period. 

 

We manipulated the number of targets shown in each trial (1-T: 12%, 2-T: 50%, 3-T: 38% of trials) 

and the lag at which T2 and T3 were presented after T1 similar to Olivers et al. (2007) to be able 

to measure four critical phenomena: the attentional blink, lag-1 sparing, extended sparing, and AB  

reversal. Specifically, a combination of the two factors (number of targets and lag) resulted in 

following 8 conditions: 1. T1D1D2D3..T2 (12% long-lag trials), 2. T1T2D1D2D3 (10% lag-1 trials), 3. 

T1D1T2D2D3 (14% lag-2 trials), 4. T1D1D2T2D3 (14% lag-3 trials), 5. T1T2T3D1D2 (10% extended 

sparing trials), 6. T1T2D1T3D2 (14% lag-2 and 4 trials), 7 .T1D1T2T3D2 (14% AB reversal trials), 8. 

D1D2D3D4T1 (12%, single target trials). T1 was shown in each trial at temporal position 5 in the 

stream in all conditions, except for the condition with one target (1-T condition: 8), when a single 

target was presented at one of the late temporal positions (13-16). In conditions with two targets 

(2-T conditions: 2, 3, 4), T1 was followed by T2 at lags 1, 2 or 3, or at one of the long lags 8, 9, 10 

or 11 (in long-lag trials). In the three conditions with three targets (T-3 conditions: 5, 6, 7), T1 was 

followed by T2 either at lag 1 or 2, whereas T3 appeared either at lag 2 or 3 (depending on T2).  

 

In each of the two 180-minute sessions, each participant completed 16 blocks of 67 trials. Between 

blocks, participants could take a short break. After every fourth block, there was an enforced, 

longer break. After each block, participants received feedback about their performance (percentage 

of correct T1 identification). The experimenter also kept track of the percentage of T2 and T3 

false alarms and warned participants not to guess if their false alarm rate exceeded 20%. 

 

2.6 EEG recording and preprocessing 

 

During each session, participants’ brain signals were sampled continuously at 512 Hz using a 

BioSemi ActiveTwo system (www.biosemi.com) with 64 scalp electrodes placed according to the 

10/10 system. Two electrodes were placed on the earlobes for offline rereferencing and four 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 8, 2020. ; https://doi.org/10.1101/2020.08.30.274019doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.30.274019
http://creativecommons.org/licenses/by/4.0/


 10 

electrooculographic (EOG) electrodes measured horizontal and vertical eye movements. After 

data acquisition, preprocessing and subsequent analyses were performed using custom-written 

analysis scripts which are publicly available and can be downloaded at 

https://github.com/dvanmoorselaar/DvM. These custom written analysis scripts are largely 

based on MNE software functionalities (Gramfort et al., 2014). EEG data were referenced offline 

to the average activity recorded at the earlobes and high-pass filtered using a zero-phase ‘firwin’ 

filter at 0.1 Hz as implemented in MNE to remove slow drifts. EEG signals were visually inspected 

for extremely noisy or malfunctioning electrodes, which were temporarily removed from 

subsequent preprocessing (20 participants had no channels removed, while the median=2 

(range=2) for the remaining 12 participants). Epochs with excessive EMG artifacts were rejected 

using an adapted version of the ft_artifact_zvalue automatic trial rejection procedure, as 

implemented in the Fieldtrip toolbox (Oostenveld, Fries, Maris, & Schoffelen, 2011, 

http://fieldtriptoolbox.org). This function applies a frequency filter between 110 and 140 Hz and 

assigns a variable z-value score cutoff per participant based on the within-subject variance of z 

scores (cf. van Moorselaar & Slagter, 2019). On average, 16.3%, 15.9% and 17% of trials were 

removed per participant in the first, second and third session, respectively, using this approach. 

 

Epochs of EEG data containing all events of interest for a given trial were created for the localizer 

and the attention task data from -400 to 1440 ms and -400 to 2000 ms, respectively, centered on 

T1 presentation time. Epoched data was baseline corrected to the average activity between -200 

and 0ms pre-T1 stimulus presentation. Independent component analysis (ICA), as implemented 

in MNE using the ‘extended-infomax’ method, was performed on non-epoched 1 Hz high pass-

filtered data to remove eye-blink components from the 0.1 Hz filtered data (cf. van Moorselaar & 

Slagter, 2019). Components topographies were visually inspected and compared to EOG signals. 

A single eye blink component per session was removed from epoched participant’s EEG data. 

Malfunctioning electrodes were then interpolated using spherical splines (Perrin, Perring, Bertrand, 

& Echallier, 1989).  

 

2.7 Multivariate decoding analyses 

 

Multivariate pattern analysis (MVPA) was applied to EEG data to decode patterns of neural 

activity specific to each target number and each distractor letter (i.e., only those shown on positions 

5-9) in the RSVP streams for each condition of interest in the attention task. Classifiers were 

trained on the localizer task data and applied to the attention task data (cross-task decoding). This 
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allowed us to examine if 1) the strength of target and distractor stimulus-specific representations 

preceding T2 were associated with conscious access to T2, and 2) whether stimulus-specific 

representations were generally stronger versus weaker depending on whether they were shown on 

boosted or bounced positions in the RSVP stream. 

 

In order to decrease the computational time needed for MVPA, we downsampled the EEG data 

to 128Hz and shortened epochs used for training and testing classifiers to -200 to 900 ms with 

respect to the presentation time of the stimulus of interest. Decoding analyses were applied using 

the Scikit-learn Python (Python Software Foundation, https://www.python.org/) package. We 

applied a linear discriminant analysis using default settings (Pedregosa, Weiss, & Brucher, 2011) to 

raw EEG data recorded at all 64 electrodes, using each time sample in the cross-task validation 

procedure or 10-fold cross-validation procedure (see below). When classifiers were trained and 

tested on each time sample of two independent datasets to decode classes of stimuli, training was 

done using the localizer task and testing was done on the attention task data. Based on the localizer 

task data, we thus built letter-specific and number-specific classifiers for each time point of the 

data, which were then applied to the attention task data. The multi-class decoding problem (i.e. 

decoding 8 different numbers and 8 different letters) was formulated as multiple binary 

classification problems such that each class was tested against all other classes (i.e. the so-called 

“one-vs-all” approach) (Bishop, 2006). This means that a single classifier is trained per class to 

decode that class from the “other class”, consisting of all remaining classes (e.g., the number two 

versus any other possible number). This is done serially for each class, i.e., for each of eight letters 

or eight numbers shown in the localizer task. Each classifier is then applied to an unseen sample 

from the testing set of the attention task, for which the label is predicted by choosing the classifier 

that yields the highest confidence score for that class. The final score is obtained by averaging 

scores for all classes. 

 

We also used the localizer task or attention task only in combination with a 10-fold cross-validation 

procedure in order to within-task decode target and distractor stimulus-specific representations 

(multi-class decoding) and target versus distractor stimulus classes (binary decoding, “target” vs. 

“distractor”), respectively. One participant’s data was not included in the analysis of the attention 

task when decoding T2 stimulus-specific representation due to an insufficient number of trials in 

a fold to train the classifier on all possible T2 numbers. Using the 10-fold cross-validation scheme 

we also decoded whether T2s were reported seen versus whether they were missed in the attention 

task, using “seen” vs. “unseen” labels for decoding. In general, in the 10-fold cross-validation 
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scheme, the classifier was trained on 90% of the data to classify between stimulus classes, and then 

tested on the remaining 10% of the data. This procedure was repeated 10 times, until all data were 

tested exactly once. The percentage of correct class assignments was averaged across the 10 folds. 

Classifier’s performance in separating two or more classes of stimuli was expressed as the area 

under the curve (AUC), which indicates the degree of separability between classes by integrating 

the receiver operating characteristic (ROC) curve (Fawcett, 2006; Myerson, Green, & 

Warusawitharana, 2001). The training procedure was done on balanced stimulus classes, which 

means that each stimulus class was present equally often during training.  

 

We used the so-called generalization across time approach in applying the pattern classifiers (King 

& Dehaene, 2014)  - a classifier trained on a specific time point was tested on that time point as 

well as on all other time points. The resulting generalization across time matrix (training time on 

y-axis x testing time on x-axis) for targets and distractors can therefore reveal periods during which 

a representation is stable, i.e. generalizes across time. For instance, a classifier trained to distinguish 

between stimulus classes at 170 ms can be applied to an entire time course or smaller segments of 

time data (e.g., 170-220 ms and 300-600 ms) to test whether a stimulus representation is 

maintained. This approach is thus informative of stimulus-specific representations at different 

stages of visual information processing, permitting us to examine when in time and at what 

processing stage representations might be modulated, and comparing the results to predictions 

from the two theoretical account.  

 

 

2.8 ERP analyses 

 

Awareness of stimuli such that they can be reported is typically associated with a late (300-500ms) 

broadly distributed positive P3 ERP component (Cohen, Ortego, Kyroudis, & Pitts, 2020; 

Dehaene & Changeux, 2011; Derda et al., 2019; Sigman & Dehaene, 2008). For example, it has 

been shown that only seen T2s elicit a P3 (Vogel, Luck, & Shapiro, 1998). Here, we also aimed to 

replicate this finding. To this end, we selected a subset of centro-parietal channels (POz, Pz, CPz, 

CP1, CP2, P1, P2, PO3, PO4) which are known to capture the P3 component topography and 

created ERP waveforms using trials in which T1 was correctly identified, but splitting the analysis 

on correctly identified T2s (i.e. allowing order reversals in report, which meant that a response was 

considered correct when a correct number was reported at the end of a trial irrespective of the 

report order) and missed or incorrectly identified T2s (T2 seen and unseen in further text) in the 
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T1D1T2D2D3 condition. We also computed the P3 to correctly-identified T1s using the 

T1D1D2D3..T2 condition in which T2s were shown at late latencies and could thus not impact the 

T1-elicited P3 component. By contrasting ERP waveforms to T2-late, T2-seen and T2-unseen 

trials, we could thus better distinguish between P3’s elicited by T1 and T2 stimuli. All ERP 

waveforms were time-locked to T1 presentation time.  

 

2.9 Statistical analyses 

 

2.9.1 Behavior 

 

To evaluate behavioral performance, for each participant we computed the percentage of correct 

target identifications in the localizer and attention task. In the attention task, given that participants 

could report up to three targets, percentage correct for each target, i.e. separately for T1, T2 and 

T3, was computed by taking into account the total number of trials in which that target was 

present. As in Olivers et al. (2007), we computed percentages of correct target identifications in 

the attention task for each target separately allowing order reversals in report. This means that a 

response was considered correct when the correct number was reported at the end of the trial even 

if the report order did not match the target presentation order. Furthermore, as in Olivers et al., 

accuracy for the post-T1 targets was contingent on T1 correct identification. For the attention 

task, we also removed trials which were rejected from the EEG dataset during preprocessing using 

automatic trial rejection procedure. 

 

To verify the presence of an attentional blink, sparing, and blink reversal, we conducted three 

separate repeated-measures ANOVAs as in Olivers et al. (2007), with T1, T2 and/or T3 

identification accuracies as the dependent variable. Note that we included temporal position (TP) 

instead of lag as a within-subject factor in these statistical analyses to denote the timing of an event 

in the stream. This is because our ANOVA models could include T1 performance as well. At the 

earliest, T1 could appear on position 5 in the stream, which we coded as TP1 into the ANOVA 

analysis. Accordingly, targets on position 9 in the stream, for instance, were coded as TP5 targets. 

Moreover, in order to evaluate the performance for T1s and T2s shown on the 4 late positions in 

the single-target and long lag conditions (conditions 1 and 8), respectively, we aggregated 

performance accuracies across those positions within a condition and entered the score as the “late 

TP” target. One omnibus repeated-measures ANOVA was not possible because not all conditions 

had targets at same temporal positions. To verify the presence of the AB, we first conducted a 
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one-way repeated measures ANOVA with T2 identification accuracy obtained in 2-T conditions 

(i.e., T1T2D1D2D3, T1D1T2D2D3, T1D1D2T2D3, and T1..D1D2D3T2) as the dependent variable and 

Temporal Position (TP 2, 3, 4, and late (13-16)) as a within subjects factor. To determine evidence 

for extended sparing (Di Lollo et al., 2005; Olivers et al., 2007), we conducted a repeated measures 

ANOVA with Number of Targets (2-T or 3-T) and Temporal Position (TP 1-3) as within subject 

factors based on target accuracy in the 2-T conditions (T1T2D1D2D3 and T1D1T2D2D3) and the 3-

T condition (T1T2T3D1D2). Finally, we statistically verified the presence of attentional blink reversal 

using a repeated measures ANOVA with Number of Targets (2-T vs. 3-T) and Temporal Position 

(TP 1, 3 and 4) as within subject factors based on target accuracy in the following conditions: 

T1D1T2D2D3, T1D1D2T2D3, and T1D1T2T3D2. In all analyses, significant main and interaction 

effects were followed-up by paired-sample t-tests. 

 

2.9.2 EEG  

 

In order to statistically evaluate classifier’s performance across time in picking up stimulus-specific 

representations, we tested whether classifier’s performance (AUC) at each time point of the 

generalization across time matrix was significantly different than at chance decoding. For this, we 

applied group-level permutation testing with cluster correction for multiple comparisons (two-

tailed cluster-permutation, alpha p<.05, cluster alpha p<.05, N permutations=1000) (Maris & 

Oostenveld, 2007). The permutation distribution of t-values was constructed by storing the 

maximum summed absolute t-value at each iteration. Statistical significance of observed clusters 

was evaluated according to the p-value obtained by calculating the proportion of t-values under 

random permutation that were larger than the t-value of the observed cluster.  

 

In addition to cluster-based, group-level permutation testing, specific hypotheses-driven 

comparisons between conditions in classifiers’ performance were additionally evaluated using 

paired-sample t-tests on AUC values averaged across specific time windows. This is especially 

warranted when quantifying relatively weak effects, because the latter statistical tests are more 

resilient to noise since the tests are not performed per sample, and furthermore, they can be more 

sensitive to short-lived effects that would otherwise not pass cluster thresholding (van Moorselaar 

& Slagter, 2019). Earlier work has identified two processing stages using the generalization across 

time approach: an early (<250-300ms) time-window, reflecting initial sensory encoding and a late 

processing stage (>300ms) associated with conscious report (e.g. Kaiser et al., 2016; Marti & 

Dehaene, 2017; Weaver et al., 2019). Based on this earlier work and based on observed time 
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windows of significant decoding for letters and numbers in the localizer task of the current study 

(see the Result section), we focused our statistical analyses on two decoding clusters - one between 

150-250ms and the other between 300-600ms. The diagonal AUC values within those two clusters 

were averaged separately and tested against each other using the paired-sample t-test. In cases 

where a specifically tested hypothesis did not indicate a significant result, using JASP software 

(JASP Team, 2020), we followed up that null-effect by a Bayesian equivalent of the same test in 

order to quantify the strength of evidence for the null hypothesis (H0) (Wagenmakers et al., 2018). 

By convention proposed by Jeffreys (1961), Bayes factors from 1 to 3 can be considered as 

anecdotal, 3 to 10 as substantial, and those above 10 as strong evidence in favor of H0. 

 

Finally, we examined correspondence between our behavioral and decoding results. That is, we 

tested the extent to which the pattern of stimulus-specific target decoding (cross-task validation 

scheme) resembled behavioral results, reflecting conscious access across conditions. To that end, 

we used the same conditions that were entered into the behavioral analysis, but here, we used the 

average AUC decoding scores as the dependent measure in the repeated measures ANOVA. 

Again, one omnibus ANOVA was not possible since not all conditions had targets on the same 

TPs. We thus entered decoding scores into three repeated measures ANOVAs, investigating 

whether decoding scores across conditions reflect the AB, sparing, and blink reversal, respectively. 

We ran these three separate repeated measures ANOVAs, separately for early- and late-stage (150-

250ms and 300-600ms) average AUC scores. Non-significant main and interaction effects were 

followed-up by a Bayesian equivalent of the same test in order to quantify the strength of evidence 

for the null hypothesis (H0) (Wagenmakers et al., 2018). Using JASP software (JASP Team, 2020), 

we conducted the Bayesian equivalent of the repeated measures ANOVA with the same within-

subject factors as in the classical repeated measures ANOVA and computed exclusion Bayes factor 

(BFexcl) across matched models, which indicates the extent to which data supports the exclusion of 

an interaction effect, taking all relevant models into account.  

  

3 Results 

 

3.1 Behavioral performance reveals flexibility of conscious access 

 

We first aimed to replicate three key behavioral findings: the AB, sparing of conscious access, and 

AB reversal (Di Lollo et al., 2005; Olivers et al., 2007).  Figure 1B shows percentages of correct 
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target identification for our 8 conditions, which differed according to (1) the number of targets, 

and (2) their temporal position in the RSVP stream. In Figure 7, the behavioral results are also 

shown, but split up per conditions showing the AB (Fig. 7A), sparing (Fig. 7B), and attentional 

blink reversal (Fig. 7C). As can be seen in Figure 1B, participants identified single targets shown 

at the beginning and at the end of the stream equally well, suggesting that T1 performance was not 

significantly affected by target position in the stream alone. A paired-sample t-test revealed that 

there was no difference in performance for T1s presented on TP1 in condition 1 and T1s presented 

on late TPs in condition 8 (T1D1D2D3..T2: 87.6% vs. D1D2D3D4..T2: 87.9%, t31=-0.24, p=0.81, d=-

0.043). 

 

As expected, we observed both a robust attentional blink to T2 and lag-1 sparing, as statistically 

captured by differences in T2 identification accuracy in 2-T conditions as a function of its temporal 

position with respect to T1 (main effect Temporal Position (2, 3, 4, and late (13-16)); F3,93=164.11, 

p<.001, ηp
2=0.841) and confirmed by planned follow-up pair-wise comparisons. Specifically, these 

revealed a clear AB to T2: T2s on TP3 (46.2%) in the T1D1T2D2D3 condition and on TP4 (35.7%) 

in the T1D1D2T2D3 condition were identified significantly less frequently than T2s at late TPs in 

the T1D1D2D3T2 condition (75.3%) (t31=10.69, p=<.001, d=1.891; t31=13.14, p<.001, d=2.32). 

Furthermore, indicative of lag-1 sparing, we found that T2s on TP2 (lag-1) were detected more 

frequently than T2s shown late in the stream (T1T2D1D2D3: 80.7% vs. T1D1D2D3T2: 75.3%, t31=-

2.82, p=.008, d=-0.49). Moreover, in line with some prior work (Dell’Acqua, Doro, Dux, & Losier, 

2016; Di Lollo, Kawahara, Ghorashi, & Enns, 2005; Olivers, Hilkenmeier, & Scharlau, 2011), we 

found that T2 identification accuracy at lag-1 (TP2) was higher than T1 identification accuracy in 

the same condition (T1T2D1D2D3; 73.4% vs. 80.7%, t31 =-3.94, p<.001, d=-0.69).  
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Figure 1. Attention task and behavioural results. (A) Conditions and the trial structure of the attention task. Each trial consisted 

of a sequence of rapidly presented letters in which 1-3 targets needed to be detected and reported at the end of the stream. 

Responses were registered using 8 marked keys on the keyboard, which spatially corresponded to 8 numbers shown on the 

computer screen in a specific order, for example 4 5 6 7   8 9 2 3, as shown in the figure. The order of stimuli on the response 

screen changed in every trial. (B) Percentage correct target identification for T1, T2 and T3 (given that T1 was correctly identified) 

as a function of temporal position and condition. Error bars represent SEM. As can be seen, our behavioral data demonstrate the 

presence of a robust AB, lag-1 sparing, AB reversal, but not of extended sparing (see also Figure 7). 

 

 

We next examined whether sparing of conscious access extended beyond T2 to T3, as previous 

studies have demonstrated (Di Lollo et al., 2005; Olivers et al., 2007). A repeated measures 

ANOVA revealed that the pattern of results in the 3-T condition (T1T2T3D1D2) differed 

significantly from 2-T conditions (T1T2D1D2D3 and T1D1T2D2D3), as revealed by a Number of 

Targets (2-T vs. 3-T) x Temporal Position (1-3) interaction (F2,62=3.88, p=.026, ηp
2=0.11). A 

follow-up analysis showed that, in line with our earlier demonstration of target sparing on TP2 in 

the 2-T condition (T1T2D1D2D3), T2 accuracy was also spared on TP2 in the 3-T condition, and 

in fact, exceeded that of T1 (67%(T1) vs. 75%(T2), t31=-4.21, p<.001, d=-0.75). Nevertheless, our 

results suggested that the sparing did not extend to T3s presented immediately following T1 and 
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T2. That is, a follow-up pair-wise comparison revealed that access to T3 on TP3 in the T1T2T3D1D2 

condition was not significantly different from identification accuracy observed for targets on the 

same TP in the 2-T condition T1D1T2D2D3 (46.2% vs. 44.2%, t31=1.24, p=.225, d=0.22, 

BF01=2.64). These results thus suggest that conscious access was spared for the second, but not 

the third of three consecutive targets in the T1T2T3D1D2 condition in our study. This latter finding 

is unexpected given prior studies demonstrating extended sparing (Di Lollo et al., 2005; Olivers et 

al., 2007), and may be explained by the relative complexity of our target report procedure. Albeit 

speculative, having to remap which response button corresponded to which target number in each 

trial (necessary to decouple responses from target perception for our MVPA analyses) may have 

interfered with multiple target maintenance in working memory, and specifically affected T3 

report. 

 

Finally, we statistically verified the presence of attentional blink reversal (Olivers et al., 2007). As 

expected, T3s presented right after a T2 (T1D1T2T3D2) were detected more often compared to 

when they were separated by a distractor (T1T2D1T3D2) or compared to T2 at the same temporal 

position (T1D1D2T2D3), as indicated by a Number of Targets (2-T vs. 3-T) x Temporal Position 

(1, 3 and 4) interaction (F2,62=58.18, p <.001, ηp
2=0.65). This was confirmed by follow-up planned 

paired-sample t-tests which revealed that, although T2 identification was lower on TP3 in the 3-T 

condition than on the same TP in the 2-T condition (40.1% in T1D1T2T3D2 vs. 46.2% in 

T1D1T2D2D3, t31=4.68, p<.001, d=0.83), identification accuracy on TP4 in 3-T condition 

(T1D1T2T3D2, 44.8%) was significantly higher than accuracy on the same position in the 2-T 

condition (T1D1D2T2D3, 35.7%; t31=-5.92, p<.001, d=-1.05). Furthermore, T3 accuracy on TP4 

was also higher than T2 accuracy on TP3 in the same 3-T condition (T1D1T2T3D2, 44.8% vs. 

T1D1T2T3D2, 40.1%; t31=-2.5, p=.019, d=-0.44). Lastly, we compared T3 accuracy on TP4 between 

two three target conditions which differed only in the temporal position of a preceding T2. 

Critically, when T3 immediately followed T2, as in the T1D1T2T3D2 condition, T3 accuracy was 

significantly higher compared to when T3 followed after T2 and a distractor, as in the T1T2D1T3D2 

condition (44.8% vs. 18.1%; t31=-12.4; p<.001, d=-2.19). Together, these results reveal a clear 

reversal of the attentional blink.  

 

Considered together, we replicated three key behavioral findings: the AB, sparing of conscious 

access for T2s presented immediately after T1 (i.e., lag-1 sparing), and AB reversal. However, we 

did not observe extended lag-2 sparing (to T3), possibly as noted above, due to our complex 

response protocol. The observed AB reversal for T3 in the T1D1T2T3D2 sequence in particular 
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suggests that processes shaping conscious access are not necessarily temporally sluggish (e.g., 

determined by slow T1 encoding) (Marti & Dehaene, 2017; Marti et al., 2012; Sergent et al., 2005), 

but may depend on a fast information gating mechanism, e.g., dynamic excitation-inhibition 

feedback loops that modulate the strength of sensory representations as proposed by the boost 

and bounce theory (Olivers & Meteer, 2008; Olivers, et al., 2007). We next examined this 

hypothesis using EEG decoding analyses that allowed us to examine dynamic changes in the 

representational content of brain activity over time. 

 

3.2 Decoding identity-specific target and distractor representations  

 

Before examining neural representations of individual target and distractor stimuli, separately for 

T2 seen and unseen trials, and separately for boosted and bounced positions in the RSVP stream, 

we first verified that we could robustly decode individual letters and numbers using the localizer 

task data. As shown in Figure 2, individual numbers and letters could be decoded well above 

chance using classifiers trained on the localizer task data in the localizer task itself and, using cross-

task classification, in the attention task. The resulting generalization across time matrices for the 

localizer task, shown separately for numbers and letters in Figure 2A, exhibited a mixture of 

diagonal and square shape decoding. Diagonal classification peaked at ~203 ms for numbers 

(AUC=53.09) and at ~156 ms (AUC=54.69) for letters. The decoding profile of stimulus-specific 

representations for numbers and letters also extended off diagonal after around ~450 ms, revealing 

the characteristic late-stage sustained squared-shaped profile (Carlson et al., 2013; King & 

Dehaene, 2014; Marti & Dehaene, 2017), which lasted for several hundred milliseconds, suggestive 

of stable stimulus representations across time. Note, however, that we did not observe early off-

diagonal decoding, indicative of perceptual maintenance of early sensory representations (Marti & 

Dehaene, 2017; Meijs et al., 2019; Weaver et al., 2019). 
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Figure 2. Time course of stimulus-identity decoding in the localizer (A, D) and attention task (B, C). (A) Generalization 

across time matrices based on within localizer task decoding reveal robust decoding of individual numbers and letters. Following 

a 10-fold cross-validation procedure, classifiers were trained on all time points and tested on all other time points, resulting in the 

generalization across time matrix for each stimulus category. The black contours on generalization across time matrices for number 

and letters indicate clusters of significant decoding of a stimulus identity (two-tailed cluster permutation test, alpha p<.05, cluster 

alpha p<.05, N-permutations=1000). (B) T1 identity decoding in the main attention task, based on training the classifiers on the 

localizer task data (left panel). T1 identity decoding based on a 10-fold cross-validation scheme, using the attention task data (right 

panel). (C) D1 identity decoding in the main attention task, based on localizer task classifier (cross-task validation procedure). (D) 

Diagonal T1 identity decoding in the attention task based on the localizer task classifier, using accuracy to evaluate classification 

performance. Note that classification accuracy and AUC scores, which are used as classification metric throughout the paper, show 

highly similar decoding pattern (see Fig. 3A) All plots show classification performance averaged over all conditions and all 

participants. Time 0 ms in all plots corresponds to T1 presentation time, except for data shown in panel C and the D1 diagonal 

line in panel D, where D1 time course was shifted back one temporal position for visualization purposes. 

 

(B) T1 decoding

(C) D1 decoding

(A) Localizer decoding

Numbers Letters

Localizer        Attention task Attention task

Localizer        Attention task

(D) T1 decoding

Localizer        Attention task
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Cross-task classification (i.e., localizer to attention task data classification) also showed robust 

decoding of both target (number) and distractor (letter) stimulus identity in the attention task (Fig. 

2B-C), with representations of successive stimuli partially overlapping in time (Fig. 3). T1-specific 

patterns of activity emerged around 116 ms, with diagonal classifier performance peaking at ~172 

ms (Fig 2B, left panel). A similar decoding profile was observed for D1s: identity specific patterns 

emerged around 100 ms, with diagonal decoding peaking at ~164 ms. The cluster of significant 

T1 decoding was notably more temporally extended in comparison to D1 decoding, lasting until 

528 ms versus 378 ms, respectively, likely reflecting stimulus differences in task relevance (i.e., 

report numbers). Therefore, and in line with previous work that identified two similar processing 

stages using MVPA analyses (e.g. Marti & Dehaene, 2017; Meijs et al., 2019; Weaver et al., 2019) 

(see Fig. 2A-B), in subsequent statistical analyses comparing decoding accuracy in different 

conditions, we averaged diagonal AUC values across two time windows that capture these two 

processing stages: an early 150-250 ms time-window, reflecting initial sensory encoding, and a later 

300-600 ms time-window, associated with conscious report. 

 

It should be noted that overall, early decoding accuracy for letters (distractors) was higher than for 

numbers (targets) in both the localizer task (see early diagonal decoding scores for numbers and 

letters in the localizer task in Fig. 2A) and the attention task (Fig 3A). As in the localizer task, both 

letters and numbers were decoded as targets, these differences in early decoding accuracy cannot 

reflect differences in task relevance, and likely reflect the fact that letters and numbers are 

processed in different brain regions (Carreiras, Quiñones, Hernández-Cabrera, & Duñabeitia, 

2015), whose activity may be differentially measurable on the scalp (e.g., due to anatomical 

differences in how they are oriented with respect to the scalp). For this reason, target and distractor 

decoding is not statistically compared directly in any of the reported analyses in the further text.  

 

To summarize, we could robustly decode, in parallel (see Fig. 3B), individual numbers and letters 

in the attention task and replicate previous reports of two distinct processing stages (Kaiser et al., 

2016; Marti & Dehaene, 2017; Meijs et al., 2019). We next examined 1) if, how and when in time 

(early vs. late) these sensory representations differed between T2 seen and unseen trials and 2) if 

they were modulated depending on whether the stimuli were presented on boosted or bounced 

positions in the RSVP stream (i.e. depending on the category of the preceding stimulus: target or 

distractor). 
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Figure 3. Time-resolved identity decoding as a function of stimulus class (target, distractor) and temporal position in 

the attention task. (A) Target and distractor identity decoding in the attention task, based on the localizer task classifier (cross-

task validation), as a function of the target or distractor number in the RSVP stream of the attention task. EEG data of all stimuli 

except T1 were locked to the presentation time of a given stimulus and then shifted to T1 presentation time, given the variable 

presentation times of stimuli across conditions. (B) Cross-task decoding for target and distractor stimuli as a function of temporal 

position for two conditions. The colored dashed vertical lines indicate objective presentation times of each stimulus in a given 

condition. Note that because letter identity was better decodable than number identity in the localizer task, target and distractor 

identity decoding in the attention task cannot be directly compared. This figure simply demonstrates the ability of our approach to 

decode each individual stimulus in the RSVP stream. (C) Binary target versus distractor diagonal decoding per temporal position 

using 10-fold validation scheme. At each temporal position (TP), target and distractor labels were obtained from 2 conditions: TP1 

– D1D2D3D4..T1 vs. T1D1D2D3..T2; TP2 – T1D1D2D3..T2 vs. T1T2D1D2D3; TP3 – T1D1D2D3..T2 vs. T1D1T2D2D3; TP4 – 

T1D1D2D3..T2 and T1D1D2T2D3. In all plots, the colored horizontal lines indicate periods of significant decoding with respect to 

chance (two-tailed cluster permutation test, alpha p<.05, cluster alpha p<.05, N-permutations=1000). All plots show classification 

performance averaged over all participants.   
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3.3 Early identity-specific stimuli representations are not ‘boosted’ or ‘bounced’ 

 

In contrast to limited-capacity theories that propose that the attentional blink to T2 is caused by 

late-stage T1 encoding (Lagroix et al., 2012; Sergent et al., 2005), the boost and bounce theory 

posits that the attentional blink is due to D1-related dysfunctional gating of information, and hence 

the theory predicts differences in the neural representation of D1 in T2 seen vs. unseen trials 

(Olivers & Meeter, 2008). Therefore, we next examined possible differences in early and late 

sensory representation of T1, D1, and T2 as a function of whether T2 was seen or not. By splitting 

the analysis for T2 seen and unseen trials, we aimed to test 1) whether the duration and/or the 

strength of T1 processing differs between T2 seen and unseen trials as limited-capacity accounts 

would predict (i.e. resulting in longer and/or stronger T1 representations in T2 unseen trials), 2) 

whether, as proposed by the boost and bounce account, early D1 representations are amplified in 

T2 unseen versus seen trials and 3) if T2 representations are weaker when T2 is not seen vs. seen, 

as both accounts would predict. To foreshadow our results, shown in Figure 4, these analyses 

yielded an unexpected link between the strength of stimulus-specific representations and conscious 

access. First, we found that T1 stimulus representations were significantly stronger on T2 seen 

versus unseen trials both during the early (t31=2.78, p=.01) and late (t31=2.62, p=.01) time window. 

Further, contrary to what the limited capacity account would predict, we also found that T1 

stimulus-specific representations could be decoded for a longer period of time on T2 seen trials 

than on T2 unseen trials. In both trial categories, T1 identity could be decoded above chance from 

~117 ms onwards, but T1 decoding was significant until ~433 ms in T2 seen versus ~275 ms in 

T2 unseen condition (see Figure 4A), although the magnitude of this difference was not significant.  

 

Next, we tested differences in D1 representation between T2 seen and unseen trials. While early 

D1 representations did not significantly differ between T2 seen and unseen trials (t31=1.00, p=.32, 

BF01=3.34), the strength of D1 representations, like T1 representations, was significantly higher in 

trials in which T2 was seen vs. unseen during the late (300-600 ms) processing stage (t31=2.83, 

p<.01). Additionally, a group-level cluster-based permutation test indicated that diagonal D1 

decoding was more extended in time on T2 seen versus unseen trials (lasting until ~560 ms vs. 

~299 ms). Thus, we found that both T1 and D1 were better decodable in trials in which T2 was 

seen vs. blinked. These results are unexpected from a limited capacity perspective, which assumes 

stronger or longer-lasting late-stage processing (representation) of T1 in T2 unseen, rather than 

T2 seen, trials, but also from the boost and bounce account, which would propose that the AB is 

associated with attentional selection of D1 in T2 unseen trials. Yet, our results suggest that both 
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T1 and D1 were more strongly represented on T2 seen versus unseen trials.  

 

Furthermore, we found that early T2 representations did not differ in strength as a function of 

whether T2s were seen or unseen. Figure 4C shows classifiers’ AUC scores for T2 decoding in 

three conditions, T1D1T2D2D3, T1D1D2T2D3 and T1D1T2T3D2. The reason for collapsing across 

these three conditions was that in each of these conditions, T2 followed T1 after one or two 

distractors and individual conditions had too low trial numbers to achieve robust identity decoding. 

At the behavioral level, T2 accuracy in each of these conditions was very comparable (Figure 1B). 

Both cross-task and within attention task T2 decoding did not provide evidence for differences in 

T2 seen and unseen AUC scores during the early 150–250 ms time window (cross-task: t31=-1.71, 

p =.098, BF01=1.45; within-task: t30=-1.12, p=0.28, BF01=2.95) or late 300–600 ms time-window 

(cross-task: t31=-0.44, p=.66, BF01=4.84; within-task: t30=0.98, p=0.34, BF01=3.37) (Figure 4C; 

within-task decoding is not shown in the figure). Note that accuracy of late-stage T2 decoding, 

both on and off diagonal, was close to chance. This weak late-stage decoding likely reflects the fact 

that employed classifiers were tuned to identity-specific patterns of activation, and thus less 

sensitive to later processes associated with encoding and conscious access. It is conceivable that 

in a context with multiple targets, representational codes of later targets become more variable in 

latency or in format in which a target is encoded, which would thus render robust classification 

between the tasks difficult. Overlap from preceding items may have also interfered with T2 

decoding.  

 

We did uncover differences between T2 seen and unseen processing using two different analysis 

approaches. First, replicating prior work (Sergent et al., 2005; Sigman & Dehaene, 2008; Vogel et 

al., 1998), we found that the magnitude of the T2-evoked centro-parietal P3 ERP component was 

significantly larger on T2 seen compared to unseen trials (600-800ms post-T1: t31=5.26, p<.001) 

(Figure 5A). As can been seen in this figure, the T2-evoked P3 was preceded in time by the T1-

evoked P3 around 300-550 ms post-T1. That this reflects T1-evoked activity is supported by the 

fact that this first positivity was also observed in long lag trials (T1D1D2D3..T2), in which T2 was 

presented much later, and in which hence, as expected, no second positivity was observed between 

600 and 800ms post-T1. The T1-evoked P3 did not differ between T2-seen and unseen short-lag 

trials (t31=0.81, p=0.43). 
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Figure 4. Time-resolved decoding of T1, D1 and T2 stimuli, separately for T2 seen and unseen trials. Cross-task diagonal 

decoding and generalization across time of stimulus identity for T1 (A), D1 (B) and T2 (C) in T2 seen and unseen trials based on 

T1D1T2D2D3, T1D1D2T2D3 and T1D1T2T3D2 conditions. In all diagonal decoding plots, the colored horizontal lines indicate 

periods of significant decoding with respect to chance (two-tailed cluster permutation test, alpha p<.05, cluster alpha p<.05, N-

permutations=1000). The black dashed rectangles indicate the early and late-stage time windows used to compare AUC decoding 

scores between conditions. All plots show classification performance averaged over all participants. This figure shows that 

conscious access to T2 was associated with stronger early and late stage T1 representations and stronger late stage D1 

representations, but no differences in T2 neural representation itself. In all figure panels, time 0 ms corresponds to the presentation 

time of the stimulus of interest (e.g., T1 onset latency in A). 
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Figure 5. ERP analysis and time-resolved binary decoding for T2 seen and unseen trials. (A) Seen T2s evoked a larger P3b 

than unseen T2s. Shown is the centro-parietal P3 component measured on channels POz, Pz, CPz, CP1, CP2, P1, P2, PO3 and 

PO4, separately for T2 seen and unseen trials in the T1D1T2D2D3 condition (green and orange lines), and for the T1D1D2D3...T2 

condition in which T2 appears on a late temporal position (blue line), given that T1 was correctly identified. The purple line is the 

difference waveform between T2 seen and T2 unseen waveforms in the T1D1T2D2D3 condition. Time 0 ms corresponds to T1 

presentation time. (B) T2 seen versus unseen decoding based on the main attention task data, using three conditions (T1D1T2D2D3, 

T1D1D2T2D3 and T1D1T2T3D2). In this analysis, using a 10-fold cross validation procedure, a classifier was trained to distinguish 

between two classes of labels: T2 seen versus unseen (T2 identity was therefore irrelevant). Seen T2s were differently represented 

than unseen T2s for up to 900ms post-T2 presentation, and conscious access to T2 was also associated with differences in the 

pattern of brain activity prior to T2 presentation. Time 0 ms corresponds to T2 presentation time. 

 

Second, classifiers trained to decode whether a T2 was seen or unseen in the main attention task, 

irrespective of the T2 identity (classifier labels: T2 seen vs. T2 missed; i.e., T2 identity was 

irrelevant) revealed clusters of significant decoding scores for over 900ms after T2 presentation 

(Fig. 5B), confirming that the neural signal contained information related to conscious T2 access 

throughout the trial. Interestingly, this analysis also showed enhanced decoding well before T2 

presentation suggesting that, besides T2 processing, neural activity prior to T2 presentation also 

predicted whether T2 would be seen or not. Diagonal decoding started rising above chance 

approximately around the onset of the first item in the RSVP stream (between ~580 ms and ~500 

ms) and reached a maximum around T1 presentation time (approximately -300 to -100 ms before 

T2 presentation time; Figure 5B). This finding may corroborate previous findings suggesting that 

baseline fluctuations in neural excitability and attention across trials shapes the likelihood of 

conscious access to a significant extent (Iemi, Chaumon, Crouzet, & Busch, 2017; Mathewson, 

Gratton, Fabiani, Beck, & Ro, 2009). It could also reflect differences in temporal expectation of 

T1 (which had a fixed position in the stream) between blink and no-blink trials.  

 

To summarize, we found that the attentional blink was associated with weaker representations of 

T1 and D1, rather than enhanced or prolonged late-stage T1 encoding, as limited capacity accounts 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 8, 2020. ; https://doi.org/10.1101/2020.08.30.274019doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.30.274019
http://creativecommons.org/licenses/by/4.0/


 27 

propose, or amplified D1 representations, as the boost and bounce theory assumes. Rather, we 

could better decode T1 both during early- and late-stage processing and D1 during late stage 

processing in trials in which T2 was seen.  

 

Next to examining T1 and D1 stimuli representations as a function of T2 visibility, we investigated 

whether target and distractor representations are modulated according to whether the position at 

which they are presented in the RSVP stream is boosted (following a target) or bounced (following 

a distractor that is itself boosted). As noted above, limited-capacity accounts have trouble 

explaining the behavioral observations of extended sparing and AB reversal, which the boost and 

bounce theory links to dynamic changes in top-down attentional modulation. According to the 

latter account, a rapidly responding gating system enhances target and suppresses distractor 

representations, but when these stimuli are quickly followed in time by another stimulus, this also 

affects their early representation and thereby their reportability. To investigate if the sensory 

representation of a stimulus is affected by the nature of the preceding stimulus (target or 

distractor), we first focused on the phenomenon of AB reversal - enhanced identification of T3s 

when directly preceded by a target (T1D1T2T3D2) vs. a boosted distractor (T1T2D1T3D2). The boost 

and bounce account predicts that the sensory representation of T3 should be enhanced when 

directly preceded by T2 compared to when it is preceded by a distractor. However, although T3 

decoding was numerically stronger along the diagonal in the T1D1T2T3D2 versus T1T2D1T3D2 

condition during late-stage processing, the difference between conditions did not reach 

significance in the early or late time window (early stage: t31=0.31, p=.76, BF01=5.06; late stage: 

t31=1.44, p=.16, BF01=2.09) (Figure 6A).  

 

Lastly, we investigated whether distractor representations may be modulated depending on 

whether they were preceded by a target (T1) and/or a distractor (Figure 6B & C). Specifically, we 

compared distractor representations in the T1D1D2T2D3 condition and D1D2D3D4..T1 condition, 

separately for distractors shown on TP2 and TP3. Note that both positions in the D1D2D3D4..T1 

condition can be considered neutral since TP2 and TP3 distractors were always preceded by other 

distractors. In the T1D1D2T2D3 condition, distractors on TP2 directly followed T1 (i.e., ‘boosted’ 

D1s), while those on TP3 directly followed D1 (i.e., ‘bounced’ D2s). Statistical comparison of 

decoding scores for distractor representations on boosted and neutral TP2 positions suggested 

that those did not differ significantly during the early (t31=-1.57, p=.13, BF01=1.75) and late (t31=-

0.67, p=.51, BF01=4.3) time interval. The same was true for distractors on neutral and bounced 

positions. That is, the chance to decode distractor representations was not statistically different on 
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neutral versus bounced TP3 positions during the early (t39=-1.33, p=.19, BF01=2.37) or late (t39=-

0.68, p=.50, BF01=4.27) time period of decoding. Taken together, our results provide no 

convincing evidence for a modulation of identity-specific representations as a function of the task- 

relevance of the preceding stimulus. 

 

Figure 6. Time-resolved stimulus identity decoding does not reveal differences in representational strength on ‘boosted’ 
versus ‘bounced’ positions. (A) Cross-task diagonal T3 identity decoding in condition T1D1T2T3D2 (T3 on boosted position) 

versus T1T2D1T3D2 (T3 on bounced position), and the generalization across time matrix of T3 identity decoding for each condition 

separately. Cross-task diagonal identity decoding for distractors presented (B) on temporal position 2 (TP2) in the D1D2D3D4..T1 

condition (neutral position) versus in the T1D1D2T2D3 condition (boosted position), and (C) on temporal position 3 (TP3) in the 

D1D2D3D4..T1 condition (neutral position) versus the T1D1D2T2D3 condition (bounced position). In all plots, the colored 

horizontal lines indicate periods of significant decoding with respect to chance (two-tailed cluster permutation test, alpha p<.05, 

cluster alpha p<.05, N-permutations=1000). The black dashed rectangles indicate time periods used for statistical comparisons 

between conditions. All plots show classification performance averaged over all participants. In all figure panels, time 0 ms 

corresponds to the presentation time of the stimulus of interest (e.g., T3 onset latency in A).  

 

 

3.4 Target decoding does not resemble target report accuracy across conditions  
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Post-hoc trial sorting and analysis based on an outcome measure (seen vs. unseen), as was done in 

the above decoding analyses, can create confounds in condition comparisons (Shanks, 2017), and 

moreover, reduces the number of trials per analysis cell. Moreover, above, we contrasted decoding 

accuracy between two specific conditions (e.g., D1 decoding in T2 seen vs. unseen trials), while 

there is naturally more information in result patterns across multiple conditions. We therefore next 

directly evaluated whether the pattern of decoding results exhibits three key events, namely the 

AB, lag-1 sparing and AB reversal, which we observed behaviorally. To that end, we ran three 

separate repeated measures ANOVAs, identical to those we ran on behavioral data, separately for 

early- and late-stage (150-250 ms and 300-600 ms) average AUC scores. In this way, we could 

determine whether the strength of (early or late stage) target decoding resembles target 

identification accuracy, taking multiple conditions into account, as we did previously for the 

behavioral analysis. Figure 7 displays the patterns of target identification accuracy and early and 

late target decoding accuracy separately for the conditions used to identify the AB, lag-1 sparing 

and AB reversal.  

 

First, we tested whether early stage T2 decoding varied across the 2-T conditions, reflecting the 

behavioral pattern of the AB. A one-way repeated measures ANOVA on the early decoding data 

(150-200 ms), showed that early T2 decoding accuracies did not differ across temporal positions 

(F3,93=0.49, p=.69, BF01=12.56). This was also the case for the late-stage (300–600 ms) decoding 

scores, as reflected by the absence of a main effect of Temporal Position in a one-way repeated 

measures ANOVA on AUC scores (F3,93=0.38, p=.77, BF01=15.06). Thus, the AB was not 

reflected in early or late T2 decoding scores (Figure 7A). Next, we tested whether the pattern of 

target decoding in 2-T and 3-T conditions (T1T2D1D2D3, T1D1T2D2D3, T1T2T3D1D2) exhibited 

sparing for targets, as observed behaviorally for T2s. A two-way repeated measures ANOVA using 

AUC  decoding scores as the dependent variable did not provide evidence for sparing (higher 

decoding scores of targets preceded by another target vs. distractor), as decoding scores did not 

differ significantly between 2-T and 3-T conditions across temporal positions, as indicated by a 

non-significant Number of Targets x Temporal Position interaction for early-stage decoding 

scores (F2,62=0.26, p=.77, BF01=8.20) and late-stage decoding scores (F62,2=0.11, p=.89, BF01=9.88) 

(Figure 7B). The main factor Number of Targets was also not significant for early- or late-decoding 

scores (early: F1,31=8.99e-4, p=.98, BF01=6.51; late: F1,31=3.85, p=.06, BF01=1.01) suggesting that 

there was no difference in decoding between conditions with two versus three targets. Yet, 

decoding was found to be significantly lower for later temporal positions, as indicated by the main 

effect of Temporal Position for early decoding scores (F2,62=4.61, p=.01), but not for late decoding 
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scores (F2,62=0.97, p=.39, BF01=6.14) (Figure 7B). Finally, we also did not find convincing evidence 

for AB reversal using target decoding scores (Figure 7C). A two-way repeated measures ANOVA 

again revealed that the Number of Targets x Temporal Position interaction was not significant for 

the early decoding (F2,62=1.26, p=.29, BF01=3.85), although the interaction was trend-level 

significant for the late decoding scores (F2,62=2.73, p =.07), supported by weak evidence for the 

null hypothesis as revealed by the Bayes factor of BF01=0.75. Suggested by the null-effect of the 

factor Number of Targets for early decoding (F1,31=0.54, p =.47, BF01=5.1) and late decoding 

(F1,31=0.78, p=.39, BF01=4.82), decoding was not modulated by the number of targets in analyzed 

conditions, but decoding was affected by the temporal position of targets, although only during 

early-stage decoding (main effect of Temporal Position, early: F1,31=4.82, p =.01, late: F1,31=1.37, 

p =.26, BF01=4.43).  

 

In summary, we found that target representational strength did not reliably reflect the attentional 

blink, sparing, or AB reversal as differences in decoding across corresponding conditions were 

statistically not significant.  
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Figure 7. Subjects’ behavioral and classifiers’ decoding performance in identifying targets as a function of temporal 

position (TP). (A) Average behavioral accuracy (left column) and AUC decoding scores, separately for early-phase (middle 

column) and late-phase (right column) decoding, shown for conditions that at the behavioral level demonstrate the presence of an 

AB and lag-1 sparing in the attention task, (B) conditions that at the behavioral level demonstrate the presence of lag-1 sparing, 

but not of extended sparing in the attention task, (C) and conditions that at the behavioral level demonstrate AB reversal. 
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4 Discussion 

 

The present study aimed to enhance understanding on how attentional selection shapes conscious 

access under conditions of rapidly changing input. Using an attention task and multivariate 

decoding of individual target- and distractor-defining features, we specifically examined dynamic 

changes in the representation of targets and distractors as a function of conscious T2 access and 

the task-relevance (target or distractor) of the preceding item in the RSVP stream. At the 

behavioral level, we found compelling evidence for a flexible gating mechanism, replicating 

previous findings (Di Lollo et al., 2005; Lunau & Olivers, 2010; Olivers et al., 2011, 2007). That 

is, we found a significant impairment in conscious access to targets that were preceded by one or 

two distractors (i.e., the AB), but striking facilitation of conscious access to targets shown directly 

after another target (i.e., lag-1 sparing and AB reversal). Yet, our neural data did not provide 

convincing evidence for selection-related feedback effects on early-stage visual representations as 

a determinant of conscious access under rapidly changing input conditions (Olivers & Meeter, 

2008): early-stage representations of D1 did not differ between trials in which T2 was seen versus 

blinked, nor was the early-stage representation of T3 affected by whether T3 was preceded by 

another target or a distractor. Furthermore, overall, the strength of early stimulus representations 

across conditions exhibited little variability, and our statistical models suggested that the general 

pattern of early, as well as late, decoding results did not resemble that which we observed in 

behavioral performance.  Our findings thus indicate that conscious access under rapidly changing 

input conditions may be dependent on other mechanisms than rapid top-down modulation of 

early low-level sensory representations. Notably, conscious access to T2 was associated with 

stronger early- and late-stage T1 representations, as well as stronger late-stage D1 representation, 

suggesting that both differences in T1 and D1 processing may precede the attentional blink to T2. 

These findings have implications for theories of the attentional blink and consciousness more 

generally, discussed below. 

 

Our findings corroborate previous work showing that multiple sensory representations can coexist 

in patterns of neural activity for a few hundred milliseconds, presumably at different (early) stages 

of processing (Grootswagers et al., 2019; Marti & Dehaene, 2017; Tang et al., 2020). Temporal 

decoding profiles of target and distractor stimuli were robust and remarkably similar up to 

approximately 250 ms, confirming that early stages of visual processing are common to all stimuli  

- seen or unseen - entering the visual system, while late-stage processing is selective to consciously 

perceived stimuli (Marti & Dehaene, 2017). One of our main findings was that conscious access 
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to T2 was associated with stronger early- and late-stage T1 representations, as well as stronger late-

stage D1 representation, indicating that encoding of both T1 and D1 may dynamically affect 

conscious perception and access of subsequent stimuli (Fahrenfort et al., 2017; Martin, Cox, Scholl, 

& Riesenhuber, 2019). A striking aspect of our findings was the direction of the observed 

differences, namely, conscious access to T2 was associated with enhanced T1 and late-stage D1 

representations. Thus, when T2 was blinked, the strength of early and late-stage T1 representations 

and of late-stage D1 representations was lower. This observation is not only difficult to reconcile 

with theories that postulate that enhanced T1 encoding causes the AB and that do not assign a 

critical role to D1 in the AB (e.g. Chun & Potter, 1995), but are also surprising in light of accounts 

that posit that the attentional blink is due to D1 accidentally being boosted into working memory 

(Olivers & Meeter, 2008) and thus would predict D1 processing to be enhanced or prolonged in 

T2 blink trials, not in T2 seen trials, contrary to what we observed.  

 

One explanation for our findings, which could reconcile them with the larger literature, is that an 

enhanced sensory representation may reduce the time necessary for higher-level encoding of a 

stimulus into a durable format, and thus indicates more efficient working memory encoding. The 

serial token/simultaneous type model (Bowman, Wyble, Chennu, & Craston, 2008) actually makes 

this prediction. That is, this model proposes that a reciprocal relationship between T1 bottom-up 

trace (or stimulus) strength and encoding time underlies the AB. Specifically, stronger T1 

representations necessitate less attentional enhancement, so that attention can be more quickly 

reallocated to T2, rendering it more likely that T2 will be perceived. The serial token/simultaneous 

type model would hence predict an initial stronger T1 representation in no-blink trials, as we find 

here. In the boost and bounce model  (Olivers & Meeter, 2008), a more robust bottom-up T1 

representation could also reduce the need for top-down amplification due to stronger initial 

evidence for its presence, which would consequently also reduce the strength of the subsequent 

D1-evoked bounce response. However, our results do not show any evidence for distractor-

evoked suppression of the representation of following items.  

If an enhanced bottom-up sensory representation of T1 reduced the time necessary for 

higher-level encoding of T1 into a durable format, one may also expect the T1-evoked P3b to peak 

earlier or be smaller in amplitude in no-blink compared to blink trials. Yet, the T1-evoked P3b did 

not differ between T2 seen and unseen trials in the present study. While some ERP studies have 

reported a larger T1-evoked P3b in T2 blink trials (e.g., Kranczioch, Debener, Maye, & Engel, 

2007; Martens, Elmallah, London, & Johnson, 2006; Shapiro, Schmitz, Martens, Hommel, & 

Schnitzler, 2006), other ERP studies reported a delayed T1-evoked P3b (e.g., Martens, Munneke, 
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et al., 2006; Sergent et al., 2005). As in the current study, yet other studies did not observe any 

difference in the amplitude or latency of the T1-evoked P3b between blink and no-blink trials (e.g., 

Craston, Wyble, Chennu, & Bowman, 2009; Kihara & Kawahara, 2008; Slagter et al., 2007, pre-

retreat data). Thus, AB-related differences in late-stage T1 processing are not consistently observed 

across studies. Notably, a novel line of evidence suggests that the P3b component does not track 

perception and encoding, but rather post-perceptual processes (e.g., decision making) (Cohen et 

al., 2020; Pitts, Martínez, & Hillyard, 2012; Pitts, Padwal, Fennelly, Martínez, & Hillyard, 2014). 

This could also provide an explanation for the fact that we did find enhanced late-stage T1 

representation, but no differences in the T1-evoked P3b between blink and no-blink trials in the 

same time period.  

Of further note, previous ERP studies did not observe differences in T1 processing 

between T2 seen vs. blink trials until after 300ms. Yet, we found that the neural representation of 

T1 was enhanced also already at the early processing stage (150-250ms). Univariate ERP analyses 

are less sensitive towards changes in the pattern of activity across the scalp, which could explain 

this discrepancy in findings. However, it must be noted that the boost and bounce model assumes 

that it only takes about 100ms for the bulk of the attentional feedback to modulate the sensory 

representation of the evoking stimulus (Olivers & Meeter, 2008). Yet, our early T1 effect occurred 

after 100ms. A recent intracranial EEG study did observe a very early difference in T1 processing 

(Slagter et al., 2017). That is, only in T2 blink trials did T1 induce a very early (~80ms) increase in 

alpha/low beta activity in the ventral striatum, also suggestive of differences in early T1 processing, 

albeit at the subcortical level, which conceivably cannot be picked up with scalp EEG (Cohen, 

Cavanagh, & Slagter, 2011). Animal studies have shown similar short-latency striatal responses to 

salient stimuli and suggest that they may reflect a signal to frontal regions to orient attention to 

enhance the visual representation of a potentially relevant stimulus (Overton, Vautrelle, & 

Redgrave, 2014). This fits with proposals that the basal ganglia play a critical role in gating 

information into working memory (Hazy, Frank, & O’Reilly, 2006) and could explain the relatively 

“late” modulation of T1 processing observed at the scalp level in our study.  

  

The attentional blink was also associated with differences in late-stage D1 representation. This 

finding could suggest that when D1 is treated like a target (i.e., is ‘spared’), as indicated by enhanced 

late stage decoding, T2 is also spared (i.e., seen). If true, this would critically suggest that at least 

some portion of T2 seen trials reflects the well-known phenomenon of extended sparing (Di Lollo 

et al., 2015). However, in the absence of any D1 report data, this possibility remains speculative. 

Future studies are necessary to replicate and determine the functional significance of our D1 effect 
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and to replicate the here observed relationship between early T1 representational strength and the 

attentional blink. 

 

It is worth noting that our pattern classifiers were likely not optimal for uncovering a wider range 

of processes linked to conscious access, as they were specifically sensitive to identity-specific 

features of target numbers and distractor letters, and as our decoding results suggested, were less 

revealing of more generic late encoding and working memory processes (>600ms). The AB has 

also been associated with relatively early differences in T2 processing, within ~200 to 300ms, as 

for example captured in the N2 (Sergent et al., 2005) and the N2pc (Akyürek, Leszczyński, & 

Schubö, 2010). Our classifiers may not have picked up on AB-related differences in T2 processing 

that are generic (i.e., unaffected by number identity). Arguably, our MVPA classifiers were also 

less sensitive to potential generic modulations of neural response gain. Selection-related 

boost/bounce feedback is presumably location-specific, boosting processing of stimuli presented 

at the same spatial location as the feedback-eliciting stimulus (Olivers & Meeter, 2008). This would 

suggest that the mechanism by which selection-related feedback affects subsequent processing 

could be similar to that of spatial attention, which has been shown to modulate neural population 

responses by affecting their response gain, as opposed to sharpening neuronal tuning to stimulus 

features (e.g. David, Hayden, Mazer, & Gallant, 2008; Fang, Becker, & Liu, 2019; Ling, Liu, & 

Carrasco, 2009; Williford & Maunsell, 2006). Indeed, a recent study using EEG and forward 

encoding modelling found that T2 selection was associated with an increase in gain, not the 

precision of its neural representation, suggesting that temporal attention works in a similar manner 

as spatial attention (Tang et al., 2020). Yet, this study unexpectedly did not find any differences in 

T1 or D1 representations between T2 seen and unseen trials. One notable difference between the 

current study and the study by Tang et al. (2020) is that the latter study examined changes in the 

representation of a stimulus feature (orientation) that did not dissociate targets from distractors, 

as target and distractors were defined by spatial frequency. As we decoded features that identified 

targets and distractors, it is possible that we were more sensitive to picking up effects of feature 

attention on sensory representations of T1 and D1. Given these opposing results, future studies 

that can also measure changes in the sharpness of location representations, are necessary to 

determine how spatial and feature attention may jointly or independently affect conscious access.  

  

 

An unexpected aspect of our findings was the absence of differences in the strength of early-stage 

and late-stage T2 identity-specific neural representations between trials in which T2 was seen 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 8, 2020. ; https://doi.org/10.1101/2020.08.30.274019doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.30.274019
http://creativecommons.org/licenses/by/4.0/


 36 

versus not seen. Previous fMRI studies have shown enhanced T2 processing in T2-seen trials, in 

frontal and parietal areas as well as in low-level visual areas, such as the primary visual cortex (Hein, 

Alink, Kleinschmidt, & Müller, 2009; Slagter, Johnstone, Beets, & Davidson, 2010; Williams, 

Visser, Cunnington, & Mattingley, 2008). Using EEG, Tang et al. (2020), as noted above, also 

observed differences in early T2 orientation representation between blink and no-blink trials, 

within 100-150ms post-T2. Yet, here, while we could decode T2 number identity peaking around 

170 ms, we could do so equally well in T2 blink and no-blink trials. Also, late-stage T2 decoding 

was close to chance level regardless of T2 report. One possibility is that in a context with multiple 

targets, representational codes of later targets become more variable in latency or in the format 

(e.g., visual, phonological) in which a target is encoded or maintained, which would thus render 

robust classification of T2 difficult. For example, participants might have later relied on 

phonological representations to perform serial order recall of multiple targets in the main attention 

task, while the simpler localizer task could have been solved by relying on perceptual or semantic 

representations (Nishiyama, 2020). Several EEG studies have also shown that the latency of T2 

processing is more variable during the time window of the AB (Chennu, Craston, Wyble, & 

Bowman, 2009; Slagter, Lutz, Greischar, Nieuwenhuis, & Davidson, 2009). Thus, variability in the 

latency or in the format of T2 representation may have hampered our decoding efforts. It is also 

possible that the inability to decode T2 at later stages is (in part) due to a rapid transformation of 

its representation into an activity-silent neural state. In the context of working memory, it has been 

shown that transiently unattended items in working memory (because another item in working 

memory is prioritized or attended) are no longer represented in the pattern of neural activity, but 

are hidden, in that they can be retrieved using an impulse stimulus or ‘ping’ (Wolff, Jochim, 

Akyürek, & Stokes, 2017). Activity-silent representations could more generally provide an 

explanation for our relative poor late-stage decoding in the attention task (in which multiple targets 

had to be maintained in working memory) compared to the localizer task (in which only one target 

had to be maintained in working memory). Lastly, the at-chance late-stage T2 identity decoding 

may also reflect the selective sensitivity of our classifiers to identity-specific information. In fact, 

using univariate analyses, we replicated the common finding of a larger T2-evoked P3b by seen 

compared to unseen T2s, indicative of access-related differences in late-stage T2 processing. It is 

of note in this regard that classifiers trained to decode whether a T2 was seen or unseen, 

irrespective of its identity, revealed clusters of significant decoding scores for over 900 ms after 

T2 presentation, confirming that the neural signal contained information related to T2 conscious 

access throughout the trial. This analysis also identified differences in neural activity patterns well 

before T2 presentation. While some of these differences likely reflect attentional blink-related 
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differences in T1 and/or D1 processing, the pattern of scalp EEG activity already predicted 

conscious T2 access well before T1 was presented. This finding suggests that baseline fluctuations 

in neural excitability and attentional state or in temporal expectations across trials can shape the 

likelihood of conscious access to a significant extent, in line with previous work (Iemi et al., 2017; 

Kranczioch et al., 2007; Mathewson, Gratton, Fabiani, Beck, & Ro, 2009, Pincham & Szucs, 2012). 

Our data thus also indicate that the attentional blink is likely determined by multiple factors (e.g. 

Lindh, Sligte, Assecondi, Shapiro, & Charest, 2019).      

 

To conclude, our findings do not support the notion that top-down modulation of early-stage 

visual representations is the major determinant of conscious access in rapidly changing input 

conditions as in the RSVP attention task. We did not find evidence for a rapid attentional gating 

mechanism that modulated early representational dynamics preceding conscious access, as 

proposed by the boost and bounce theory. The attentional blink was associated with differences 

in T1 and late D1 neural representation, and in pre-T1 activity patterns, highlighting the complex 

and multifaceted nature of processes determining conscious access and informing theories of 

attention and consciousness.  
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