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Abstract

As more information becomes available electronically,
tools for finding information of interest to users become
increasingly important. Building tools for assisting users in
finding relevant information is often complicated by the
difficulty in articulating user interest in a form that can be
used for searching. The goal of the research described here
is to build a system for generating comprehensible user
profiles that accurately capture user interest with minimum
user interaction. Machine learning methods offer a
promising approach to solving this problem. The research
described here focuses on the importance of a suitable
generalization hierarchy and representation for learning
profiles which are predictively accurate and
comprehensible. In our experiments using AQ15¢ and
C4.5 we evaluated both traditional features based on
weighted term vectors as well as subject features
corresponding to categories which could be drawn from a
thesaurus. Our experiments, conducted in the context of a
content-based profiling system for on-line newspapers on
the World Wide Web (the IDD News Browser)
demonstrate the importance of a generalization hierarchy
in obtaining high predictive accuracy, precision and recall,
and stability of learning.

Introduction

As more information becomes available on the Internet,
the need for effective personalized information filters
becomes critical. In particular, there is a need for tools to
capture profiles of users’ information needs, and to find
articles relevant to these needs, as these needs change
over time. Information filtering, as (Belkin and Croft 92),
(Foltz and Dumais 92) point out, is an information access
activity similar to information retrieval, but where the
profiles represent evolving interests of users over a long-
term period, and where the filters are applied to dynamic
streams of incoming data. The research described here
automates the task of building and adapting accurate and

comprehensible individualized user profiles and focuses
on the importance of a suitable generalization hierarchy
and representation for learning.

Our research builds on two particular traditions involving
the application of machine learning to information access:
empirical research on relevance feedback within the
information retrieval community, and interdisciplinary
work involving the construction of personalized news
filtering agents. We will now introduce these briefly, to
better motivate and distinguish our work.

Relevance feedback approaches are a form of supervised
learning where a user indicates which retrieved
documents are relevant or irrelevant. These approaches,
e.g., (Rocchio 1971), (Robertson & Sparck-Jones 1976),
(Belew 1989), (Salton & Buckley 1990), (Harman 1992),
(Haines & Croft 1993), (Buckley, Salton, & Allan 1994),
have investigated techniques for automatic query
reformulation based on user feedback, such as term
reweighting and query expansion. While this body of
work is not necessarily focused exclusively on the
information filtering problem, it demonstrates effectively
how learning can be used to improve queries.

Work on the application of machine learning techniques
for constructing personalized information filters has
gained momentum in recent years. Some early MIT
Media Lab work used a genetic algorithm approach to
generate new profiles, which were evaluated based on
user feedback (Sheth & Maes 1993), (Sheth 1993). One
of the goals of that approach was “exploratory behavior....
s0 as to explore newer domains that might be of interest
to the user.” (Sheth & Maes 1993). Since that time, a
number of other systems for personalized information
filtering have appeared on the scene, such as NewT (Maes
1994), Webhound (Lashkari, Metral, & Maes 1994),
WebWatcher (Armstrong et al. 1995), WebLearner
(Pazzani et al. 1995) and NewsWeeder (Lang 1995).



One of the motivations for our approach was the
discovery that the above research had paid little attention
to learning generalizations about user’s interests. For
example, if a user likes articles on scuba, whitewater
rafting, and kayaking, a system with the ability to
generalize could infer that the user is interested in water
sports, and could communicate this inference to the user.
Not only would this be a natural suggestion to the user,
but it might also be useful in quickly capturing their real
interest and suggesting what additional information might
be of interest. Such an approach could exploit a concept
hierarchy or network to perform the generalizations.
While thesauri and other conceptual representations have
been the subject of extensive investigation in both query
formulation and expansion (e.g., see (Jones et al. 1995)
for detailed references), they have not been used to learn
generalized profiles.

In order to investigate this further, we decided to use
features which would allow us to exploit categories for
generalization, where the categories could be drawn from
a thesaurus. One well-known problem which arises here is
that of word-sense disambiguation, in this case deciding
which of several thesaurus categories are the most likely
ones for a term. We decided to apply the approach used
by (Liddy & Paik 1992) (Liddy & Myaeng 1992), which
exploits evidence from local context and large-scale
statistics. This resulted in our using the Subject Field
Coder (SFC) (Liddy and Myaeng 1992) (Liddy and Paik
1992) (from TextWise, Inc.), which produces a vector
representation of a text's subject categories, based on a
thesaurus of 124 subject categories (the SFC is discussed
in more detail in the next section). We therefore decided
to use a vector of subject categories in our document
representation, with the SFC thesaurus being used for
generalization. In order to compare the influence of these
features on learning compared to more traditional features
based on weighted term vectors, we developed a hybrid
representation which combined the two types of features.

A personalized news filtering agent which engages in
exploratory behavior must gain the confidence of the user.
In many practical situations, a human may need to
validate or edit the system’s learnt profiles; as (Mitchell et
al. 1994) point out, intelligibility of profiles to humans is
important in such situations. We speculated that the use of
such a hybrid representation which exploits summary-
level features such as subject categories would increase
the intelligibility of profiles. To further strengthen profile
intelligibility, we also decided to include other summary-
level features in our document representation, involving
terms relating to people, organizations, and places (along
with their respective attributes). These features were
provided by a name tagger (discussed in the next section).
That such features could help profile learning was
suggested in part by some recent query reformulation
research (Broglio & Croft 1993), which had shown
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improved retrieval performance on TIPSTER queries
using such features.

In summary, our experiments evaluated the effects of
different subsets of features on the learning of intelligible
profiles. Qur experiments were conducted in the context
of a content-based profiling system for on-line
newspapers on the World Wide Web, the IDD News
Browser (Mani et al. 1995). In this system, which is in
use at MITRE, the user can set up and edit profiles, which
are periodically run against various collections built from
live Internet newspaper and USENET feeds, to generate
matches in the form of personalized newspapers. These
personalized newspapers provide multiple views of the
information space in terms of summary-level features.
When reading their personalized newspapers, users
provide positive or negative feedback to the system,
which are then used by a learner to induce new profiles.
These system-generated profiles can be used to make
recommendations to the user about new articles and
collections. The experiments reported here investigate the
effect of different representations on learning new
profiles.

Text Representation

As mentioned earlier, we used a hybrid representation
with three different sources of features. We now describe
these in turn.

The Subject Field Coder (SFC) (Liddy & Myaeng 1992)
(Liddy & Paik 1992) (from TextWise, Inc.) produces a
summary-level semantic representation of a text's
contents, based on a thesaurus of 124 subject categories.
Text summaries are represented by vectors in 124-
dimensional space, with each vector's projection along a
given dimension corresponding to the salience in the text
of that subject category. The overall vector is built up
from sentence-level vectors, which are constructed by
combining the evidence from local context (e.g.,
unambiguous words) with evidence from large-scale
statistics (e.g., pairwise correlations of subject categories).
An earlier version of the SFC, which used subject codes
from Longman’s Dictionary of Contemporary English
(LDOCE), was tested on 166 sentences from the Wall
Street Journal (1638 words). It gave the right category on
87% of the words (Liddy & Myaeng 1992).

The second extraction system we used was the IDD POL
Tagger (Mani et al 1993), (Mani & MacMillan 1995)
which classifies names in unrestricted newswire text in
terms of a hierarchy of different types of people (military
officers, corporate officers, etc.), organizations (drug
companies, government organizations, etc.), and places
(cities, countries, etc.), along with their attributes (e.g., a
person’s title, an organization’s business, a city’s country,
etc.) The tagger combines evidence from multiple



Features Description

x1.x5 Top 5 subject categories as computed by the SFC text classifier.

x6..x59 POL people tags as computed by the IDD POL tagger. For each person identified, the vector
contains the following string features: (name, gender, honorific, title, occupation, age). 9 people
(each with these subfields) are identified for each article.

x60..x104 POL organization tags as computed by the IDD POL tagger. For each organization identified, the
vector contains the following string features: (name, type, acronym, country, business). 9
organizations (each with these subfields) are identified for each article.

x105.x140 POL location tags as computed by the IDD POL tagger. For each location identified, the vector
contains the following string features: (name, type, country, state) 9 locations (each with these
subfields) are identified for each article.

x141.x141+n | The top n ranked tf.idf terms tl...tn are selected over all articles. For each article, position k in
t1...tn has the tf.idf weight of term tk in that article.

Figure 1. A description of the features used to represent text

knowledge sources, each of which uses patterns based on
lexical items, parts of speech, etc., to contribute evidence
towards a particular classification. In trials against hand-
tagged documents, the tagger was shown as having an
average precision-recall accuracy (the average of
precision and recall at a particular cutoff) of
approximately 85%, where precision is calculated as the
ratio of the Number of Correct Program Tags to the
Number of Program Tags and recall is the ratio of the
Number of Correct Program Tags to the Number of Hand
Tags.

The statistical features we used were generated by a term-
frequency inverse-document-frequency (tf.idf) calculation
(Salton & McGill 1983)(Sparck-Jones 1972), which is a
well-established technique in information retrieval. The
weight of term k in document i is represented as:

dwik =tfik * (loga(n)-log2(dfk) +1)

tf;x = frequency of term k in document i
dfy = number of documents in which term k occurs.
n = total number of documents in collection

Given these three sources of features, we developed a
hybrid document representation (Figure 1), described as

follows: Features describe subjects (x1..x5), people
(x6..x59), organizations (x60..x104) and locations
(x105..x140) present in each news article. The top n
statistical keywords are also included in the vector
describing the article (x141..x141+n), where n was varied
from 5 to 200. For convenience, x6..x140 are referred to
as POL features.

Generalization Hierarchy

The hierarchy came to us from TextWise Inc.’s thesaurus.
The SFC subject vectors describing individual articles use
terms from the lowest level (terminals) of the hierarchy,
which initially consisted of 124 categories. Although this
thesaurus covers a fairly wide set of subjects-as required
in our newswire application-it only has three levels, and
as such does not have a great deal of depth. We extended
the set of terminal categories under medicine, to include
another 16 lowest level categories. In Figure 2, we show a
fragment of the extended hierarchy under sci+tech
(scientific and technical).

Learning Method

Our representational decisions suggested some constraints
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Figure 2. A fragment of the generalization hierarchy used in the experiments
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on the learning method. We wanted to use learning
methods which performed inductive generalization, where
the SFC generalization hierarchy could be exploited.
Also, we required a learning algorithm whose learnt rules
could be made easily intelligible to users. We decided to
try both AQ15¢ (Wnek, Bloedorn, & Michalski 1994) and
C4.5-Rules (Quinlan, 1992) because they meet these
requirements (the generalization hierarchy is made
available to C4.5 by extending the attribute set), are well-
known in the field and are readily available.

AQI15c is based on the A9 algorithm for generating
disjunctive normal form (DNF) expressions with internal

disjunction from examples. In the A9 algorithm rule
covers are generated by iteratively generating stars from
randomly selected seeds. A star is a set of most general
alternative rules that cover that example, but do not cover
any negative examples. A single 'best' rule is selected
from this star based on the user's preference criterion (e.g.
maximal coverage of new examples, minimal number of
references, minimal cost, etc.). The positive examples
covered by the best rule are removed from consideration
and the process is repeated until all examples are covered.

C4.5-Rules, which is part of the C4.5 system of programs,
generates rules based on decision trees learned by C4.5.
In C4.5 a decision tree is built by repeatedly splitting the
set of given examples into smaller sets based on the
values of the selected attribute. An attribute is selected
based on its ability to maximize an expected information
gain ratio. In our experiments we found the pruned
decision rules produced the most accurate predictions.

Another advantage of experimenting with these two
learning methods is that we get to see if the representation

we have developed for this problem is truly providing

useful information, or if it is just well-matched to the bias
of the selected learning algorithm. The learning
preference in AQ15c is controlled by the preference
criteria, which by default, is to learn simple rules. The
preference for C4.5 is to select attributes which maximize
the information gain ratio. This can sometimes lead to
different hypotheses. Because of its ability to learn rules
with internal disjunction AQ15¢ can easily learn rules
which are conjunctions of many internal disjunctions.
This type of concept is not easily represented in decision

trees and thus not likely to be found by C4.5-Rules. We
thought this may give an advantage to AQ15¢c in this
domain, but based on our experimental results described
below, it appears our representation is well suited to either
learning bias.

Experimental Design

The goal of these experiments was to evaluate the
influence of different sets of features on profile learning.
In particular, we wanted to test the hypothesis that
semantic features used for generalization were useful in
profile learning. Each of the experiments involved
selecting a source of documents, vectorizing them,
selecting a profile, partitioning the source documents into
documents relevant to the profile (positive examples) and
irrelevant to the profile (negative examples), and then
running a training and testing procedure. The training
involved induction of a new profile based on feedback
from the pre-classified training examples. The induced
profile was then tested against each of the test examples.
One procedure used 10 runs in each of which the
examples were split into 70% training and 30% test
(70/30-split). Another procedure used a 10-fold cross-
validation, where the test examples in each of the 10 runs

were disjoint (10-fold-cross).

The metrics we used to measure learning on the USMED
and T122 problems include both predictive accuracy and
precision and recall. These metrics are defined as shown
in Figure 3. Precision and recall are standard metrics in
the IR community, and predictive accuracy is standard in
the ML community. Predictive accuracy is a reasonable
metric when the user's objective function assigns the same
cost to false positives and false negatives. When the
numbers of false positives, true positives, false negatives,
and true negatives are about equal, predictive accuracy
tends to agree with precision and recall, but when false
negatives predominate there can be large disagreements.

Our first experiment exploited the availability of users of
the IDD News Browser. A user with a “real” information
need was asked to set up an initial profile. The articles
matching his profile were then presented in his
personalized newspaper. The user then offered positive

Metric Definition

Predictive Accuracy: # examples classified correctly / total number of test examples.

Precision: # positive examples classified correctly / # examples classified positive,
during testing

Recall: # positive examples classified correctly / # known positive, during testing |

Precision Learning Curve: Graph of average precision vs. % of examples used in training

Recall Leamning Curve: Graph of average recall vs. % of examples used in training

Averaged Precision (Recall): Average of Precision (Recall) over all test runs.

Figure 3. Metrics used to measure learning performance
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Learning | Learning | Predictive Accuracy Average Precision/ Average Recall

Method Problem |TFIDF [POL |[SFC [ALL |[TFIDF |POL | SFC | ALL

AQ15¢ USMED 0.58 [048 1078 ]0.55 ]0.51/1.00 |0.45/0.45 §0.78/0.73 |0.52/0.34
T122 | 0.39 059 059 lo0.76 |0.36/0.88 | 0.43/0.66 |[0.500.33 ]0.79/ 0.48

C4.5-Rules | USMED [[0.39 |lo74 ]0.79 ]o0.76 [0.07/0.30 | 0.89/0.60 ] 0.97/0.60 |0.90/0.60
T122 ||é64 floes |o0.68 1076 }0.00.0 0.64./0.22 1 0.58 /0.55 | 0.70/0.67

Table 1. Predictive Accuracy, Average Precision, and Average Recall of learned profiles for a given feature set
(averaged over 10 runs). (Best profiles generated are in boldface, outlined in thick lines. Worst profiles generated

are in italics, outlined in double lines.)

and negative feedback on these articles. The set of
positive and negative examples were then reviewed
independently by the authors to check if they agreed in
terms of relevance judgments, but no corrections needed
to be made. In order to ensure that a relevant
generalization hierarchy would be available for the
learner, we extended the broad-subject thesaurus of the
SFC to include several nodes under medicine. This
involved adding in terms for medicine into the thesaurus.
The details of the test are:

Source: Colorado Springs Gazette Telegraph (Oct.
through Nov. 1994) Profile: "Medicine in the US"
(USMED) Relevance Assessment: users, machine aided
Size of collection: 442 Positive Examples: 18 Negative
Examples: 20 Validation: *“70/30-split”

Our next experiment exploited the availability of a
standard test collection, the TREC-92 collection. The
same generalization hierarchy used in the previous
experiment was used here too. The idea was to study the
effect that these changes in the hierarchy would effect
learning of the other topics. The details of the test are:

Source: Wall Street Journal (1987-92), Profile: “RDT&E
of New Cancer Fighting Drugs” (T122) Relevance
Assessment: provided by TREC, Size of collection: 203,
Positive s. 73, Negative Examples: 130,
Validation; “10-fold cross”

Experimental Results

In our first set of experiments we applied AQ15¢ and
C4.5-Rules to the USMED and T122 datasets. Here
AQI15c has the hierarchy available to it in the form of
hierarchical domain definitions for attributes x1 through
x5. C4.5 has a hierarchy available to it through an
extended attribute set. In this extension, based on a
pointer from Quinlan (Quinlan, 1995), we extended the
attribute set to include attributes which describe nodes
higher up on the generalization hierarchy. A total of
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eighteen additional attributes were added (six for each
non-null subject attribute) which provided the values of
the subject attributes at each of the six levels higher in the
tree from the leaf node. Because the tree was unbalanced
some of the additional attributes took dummy values for
some examples.

Predictive Accuracy

The predictive accuracy results (Table 1) show that the
most predictively accurate profiles generated (boldface,
outlined in thick lines) come from either the SFC or ALL
feature sets, and the poorest profiles (italics, outlined in
double lines) come from the POL or the TFIDF featureset.
The TFIDF scores are shown for n=5; there was no
appreciable difference for n=200. All differences between
the best and worst predictive accuracies are significant to
the 90% level and were calculated using a student t-test.

From this we can infer that, for topics such as these,
profile learning using summary-level features (POL or
SFC) alone can sometimes be more accurate in terms of
predictive accuracy than using term-level features
(TF.IDF) alone. In particular, having a generalization
hierarchy available and relevant (tuned to the topic) is
useful, as witnessed by the superior performance of the
SFC in the USMED. Also, as shown above, the use of a
combination of all the features (ALL) was significantly
better for the T122 problem. This was true of C4.5-Rules
and AQI15¢ which performed best with the ALL
featureset. Our general conclusion is that these results

reveal that the hybrid representation can be useful in
profile learning.

Precision and Recall

The precision and recall results (Table 1) correspond
fairly well with the predictive accuracy results. The best
results (calculated as the sum of precision and recall)
occur for the same feature sets as was found for predictive
accuracy. The poorest profiles, however, were quite
varied, with all of the featuresets except POL giving the



worst result at some point. The USMED SFC result shows
in a rather dramatic way how the presence of a relevant
generalization hierarchy was able to improve
performance. To the extent that such comparisons are
possible, it is worth noting that our scores for T122 can
be compared with scores on T122 reported in the
literature: [Schutze, Hull & Pedersen 1995, p. 235] report
Non-Interpolated Average (NIA) Precision for T122 of
0.524 (using a non-linear neural net) and 0.493 (using a
linear neural net). However, average precision is a
different metric from NIA-Precision, and we did not
compute the latter.

Learning Curves

An examination of the leaming curves also revealed some
interesting results. Normally one expects a learning curve
to show a steady increase in performance as the
percentage of training examples increases. However,
except for the learning curve for the SFC dataset shown in
Figure 4', the learning curves for profiles learned by
AQ15c¢ in the USMED problem are very unstable?. The
presence of a generalization hierarchy while learning
results in profiles which are predictively accurate and
more stable than profiles learned from other featuresets.
This suggests that the generalization hierarchy is
providing a deeper understanding of the needs of the user
and is more robust to the particular set of training
examples currently used. Stability of learned profile
performance is extremely important in achieving user
trust in the automatically generated profiles.

Intelligibility of learnt profiles

A system which discovers generalizations about a user’s
interests can use these generalizations to suggest new
articles. However, as mentioned earlier, in many
practical situations, a human may need to validate or edit
the system’s learnt profiles. Intelligibility to humans then
becomes an important issue. The following profile
induced by AQ illustrates the intelligibility property. It
shows a generalization (see Figure 2) from terminal
vector categories contagious and genetic present in the
training examples to medical.sci (i.e., medical science),

'Note that Figure 4 shows a graph of average precision
and average recall versus the percentage of examples used
in training. This is not to be confused with the typical
precision/recall curves found in the information retrieval
literature (e.g., (Harman 94, p. AS-A13)), which might,
for example, measure precision and recall at different
cutoffs.

%For reasons of space, the entire set of learning curves
(Precision, Recall, and Predictive Accuracy learning
curves for each of AQ15¢ and C4.5 on T122 and
USMED, for each of POL, ALL, TF.IDF, and SFC) are
not shown here.
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and from the terminal category abortion up to
medical.policy (medical policy).

IF subjectl = nature or physical science &

subject2 = nature or medical science or medical policy
or human body
THEN article is of interest

0
10 20 30 40 50 60 70 80 90

Figure 4. Precision (dotted line) and Recall (dark line)
Learning Curve. (AQ15c using SFC features on the
USMED dataset)

Although intelligibility is hard to pin down, there are
various coarse measures of rule intelligibility that one can
use. For one thing, one might assume that users prefer
more concise rules. We examined profile length,
measured as the number of terms on the left hand side of a
learnt rule. Here we observed that using ALL the features
led to more complex profiles over time, whereas using
only subsets of features other than POL leveled off pretty
quickly at profiles with well under 10 terms. The SFC
profiles, which exploited generalization, were typically
short and succinct. The tf.idf profiles were also quite
short, but given their low overall performance they would
not be useful.

Effect of Generalization Hierarchy

In our next set of experiments we tried to isolate the
effects of the generalization hierarchy on the C4.5
learning algorithm by evaluating the performance of
profiles learned from C4.5 with the hierarchical
information (in the form of the extended attribute set)
against C4.5 without the hierarchy (with the original
x1..x5 attributes, but without the additional 18 attributes).



Learning Generalization hierarchy Predictive Average Precision/
Accuracy Average Recall
Problem attributes present ? SFC ALL SFC ALL
USMED No 0.46 0.76 0.47/0.23 | 0.89/0.67
Yes 0.79 0.76 0.97/0.60 ] 0.90/0.60
T122 No 0.68 0.73 0.58/0.55 | 0.64/0.74
Yes 0.68 0.76 0.58/0.55 |0.70/ 0.67

Table 2. The effect of generalization hierarchy attributes on predictive accuracy, precision and recall
performance for C4.5-learned rules. Significant changes are boxed in thick lines, with the significant effect

of generalization shown in boldface.

We found that the extension improved the performance
significantly (99% confidence) for the USMED dataset
and SFC feature set: predictive accuracy improved from

0.46 to 0.79 while precision/recall improved from

0.47/0.23 to 0.97/0.60. However, it did little to improve
the performance for the other problem sets. These results
are detailed in Table 2. With these additional attributes
the best USMED results for both AQ and C4.5 was wi

erated i s, and wi e ba d

knowledge of a generalization hierarchy. The best results
for the T122 problem were obtained when all the
generated features were available. This reinforces (with
evidence from two learning algorithms) that our earlier
conclusion that the hybrid representation is useful in
profile learning, and that having a generalization
hierarchy available and relevant (tuned to the topic) is
useful.

Comparison with word-level Relevance Feedback
Learning

Although our previous experiments had shown that
machine learning methods learning from a hybrid
document representation resulted in profiles which were
predictively accurate and intelligible, they did not reveal
if the traditional relevance feedback approach may not
work just as well. In order to compare our results with a
traditional relevance feedback method we applied a
modified Rocchio algorithm to the two information
retrieval tasks (USMED and T122) described earlier.

The modified Rocchio algorithm is a standard relevance
feedback learning algorithm which searches for the best
set of weights to associate with individual terms (e.g. tf-

idf features or keywords) in a retrieval query. In these
experiments individual articles are represented as vectors
of 30,000 tf-idf features. Our Rocchio method is based on
the procedure described in (Buckley, Salton, & Allan
1994). As before, the training involved induction of a
new profile based on feedback from the pre-classified
training examples, as follows. To mimic the effect of a
user’s initial selection of relevant documents matching
her query, an initial profile was set to the average of all
the vectors for the (ground-truth) relevant training
documents for a topic. This average was converted from
a tf.idf measure to a tf measure by dividing each tf.idf
value by the idf. The profile was then reweighted using
the modified Rocchio formula below. This formula
transforms the weight of a profile term k from p-old to p-
new as follows (Buckley, Salton, & Allan 1994):

r s
p-newg=(o. * p-old) + (E- * 2 dwik ) - (ls * Ddwik )
i=1 i=1

r = number of relevant documents

s= number of non-relevant documents (all non-relevant
documents)

dwijk = tf weight of term k in document i

o =8 B =16 y=4 (tuning parameters)

During testing, the test documents were compared against
the new profile using the following cosine similarity
metric for calculating the degree of match between a
profile j (with the tf weights converted back to tf.idf
weights) and a test document i (with tf.idf weights)
(Salton & McGill 1983):

Learning Predictive Accuracy Average Precision/ Average Recall
Method USMED T122 USMED | T122
Rocchio 0.49 0.51 0.52/0.53 0.39/0.27
Best AQ15¢ (SFC) 0.78 0.76 0.78/0.73 0.79//0.48
Best C4.5 (ALL) 0.76 0.73 0.90/0.60 0.64/0.74

Table 3 Comparing Predictive Accuracy, Average Precision/ Average Recall for tf.idf terms
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t
Y (dwik *qwik)

. k=1
CIJ - t t
Z dwik 2+ z qukz
k=1 k=1

t = total number of terms in collection
dwjk = tf.idf weight of term k in document i, as before

qwijk = tf.idf weight of term k in profile j

The cutoff for relevance was varied between 0 and 1,
generating data points for a recall-precision curve. A best
cutoff (which maximizes the sum of precision and recall)
was chosen for each run. The results in Table 3 show that
the machine learning methods represented by the best
runs from AQI15c and C4.5 outperform the tf-idf based
Rocchio method on both the T122 and USMED problems
in terms of both predictive accuracy and predictive
precision and recall. This performance difference may be
due to an inability of the weighted term representation to
accurate capture either the USMED or T122 profiles, or it
may be due to the way term weights are learned. Further
experiments will be necessary to pinpoint the cause for
this performance difference.

Conclusion

These results demonstrate that a relevant generalization
hierarchy together with a hybrid feature representation is
effective for accurate profile learning. Where the
hierarchy was available and relevant, the SFC features
tended to outperform the others, in terms of predictive
accuracy, precision and recall, and stability of learning.
Other features and combinations thereof showed different
learning performance for different topics, further
emphasizing the usefulness of the hybrid representation.
These results also confirm the suspicion that tuning a
thesaurus to a particular domain will generally yield better
learning performance. In this connection, the work of
[Evans et al. 91a), [Evans et al. 91b] on thesaurus
discovery and [Hearst and Schutze 93] on thesaurus
tuning is highly relevant. In the latter work, thesaural
categories extracted automatically from Wordnet [Miller
et al 90] were extended with terms from a corpus. We can
imagine a similar technique being used to augment the
thesaurus used by the SFC.

Having assessed the basic performance of the profile
learning capability, our next step will be to track the
performance of the learner over time, where users of the
IDD News Browser (information specialists in the
MITRE Library) will have the option of correcting the
induced profiles used to recommend new articles. For this
to work, we will have to decide whether and how
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forgetting should take place. We also hope to allow the
user to extend the representation space by defining new
features, based, for example, on patterns seen in the
learned rules, or user knowledge. We expect to touch on a
number of specific user interface issues in the course of
this work.
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