## Representations and Invariants of the Classical Groups

ROE GOODMAN Rutgers University NOLAN R. WALLACH University of California at San Diego



## CONTENTS

| Pre | Preface |                                                                                              | xiii |
|-----|---------|----------------------------------------------------------------------------------------------|------|
| 1   | Clas    | ssical Groups as Linear Algebraic Groups                                                     | 1    |
|     | 1.1     | Linear Algebraic Groups                                                                      | 1    |
|     |         | 1. Definitions and Examples 2. Regular Functions                                             |      |
|     |         | 3. Representations 4. Connected Groups 5. Subgroups and                                      |      |
|     |         | Homomorphisms 6. Group Structures on Affine Varieties                                        |      |
|     | 1.2     | Lie Algebra of an Algebraic Group                                                            | 17   |
|     |         | 1. Left-Invariant Vector Fields 2. Lie Algebras of the Classical                             |      |
|     |         | Groups 3. Differential of a Representation 4. The Adjoint                                    |      |
|     |         | Representation                                                                               |      |
|     | 1.3     | Jordan Decomposition                                                                         | 34   |
|     |         | 1. Nilpotent and Unipotent Matrices 2. Semisimple                                            |      |
|     |         | One-Parameter Groups 3. Jordan–Chevalley Decomposition                                       |      |
|     | 1.4     | Real Forms of Classical Groups                                                               | 41   |
|     |         | 1. Algebraic Groups as Lie Groups 2. Real Forms                                              |      |
|     |         | 3. Compact Forms 4. Quaternionic Unitary Group                                               |      |
|     |         | 5. Quaternionic General Linear Group                                                         |      |
|     | 1.5     | Notes                                                                                        | 49   |
| 2   | Bas     | ic Structure of Classical Groups                                                             | 50   |
|     | 2.1     | Semisimple and Unipotent Elements                                                            | 50   |
|     |         | 1. Conjugacy of Maximal Tori 2. Unipotent Generators                                         | N.   |
|     | 2.2     | Irreducible Representations of $SL(2, \mathbb{C})$                                           | 62   |
|     |         | 1. Representations of $\mathfrak{sl}(2,\mathbb{C})$ 2. Representations of $SL(2,\mathbb{C})$ |      |
|     | 2.3     | The Adjoint Representation                                                                   | 67   |
|     |         | 1. Roots with respect to a Maximal Torus 2. Commutation                                      |      |
|     |         | Relations of Root Spaces 3. Structure of Classical Root                                      |      |
|     |         | Systems 4. Irreducibility of the Adjoint Representation                                      |      |
|     | 2.4     | Reductivity of Classical Groups                                                              | 84   |
|     |         | 1. Reductive Groups 2. Casimir Operator 3. Algebraic Proof                                   | ر    |
|     |         | of Complete Reducibility 4. The Unitarian Trick                                              |      |

|      | Contents                                                                                                                                                                                                                                                                                    |     |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2.5  | Weyl Group and Weight Lattice<br>1. Weyl Group 2. Root Reflections 3. Weight Lattice                                                                                                                                                                                                        | 92  |
| 2.6  | 4. Fundamental Weights and Dominant Weights<br>Notes                                                                                                                                                                                                                                        | 109 |
| Alg  | ebras and Representations                                                                                                                                                                                                                                                                   | 111 |
| 3.1  | Representations of Associative Algebras<br>1. Definitions and Examples 2. Schur's Lemma 3. Burnside's<br>Theorem 4. Complete Reducibility                                                                                                                                                   | 111 |
| 3.2  | Simple Associative Algebras<br>1. Wedderburn's Theorem 2. Representations of End(V)                                                                                                                                                                                                         | 128 |
| 3.3  | Commutants and Characters<br>1. Representations of Semisimple Algebras 2. Double<br>Commutant Theorem 3. Characters                                                                                                                                                                         | 133 |
| 3.4  | Group Algebras of Finite Groups<br>1. Structure of Group Algebras 2. Schur Orthogonality<br>Relations 3. Fourier Inversion Formula 4. The Algebra of<br>Central Functions                                                                                                                   | 147 |
| 3.5  | Representations of Finite Groups<br>1. Induced Representations 2. Characters of Induced<br>Representations 3. Standard Representation of $\mathfrak{S}_n$<br>4. Representations of $\mathfrak{S}_k$ on Tensors                                                                              | 155 |
| 3.6  | Notes                                                                                                                                                                                                                                                                                       | 167 |
| Poly | ynomial and Tensor Invariants                                                                                                                                                                                                                                                               | 168 |
| -    | Polynomial Invariants                                                                                                                                                                                                                                                                       | 169 |
| 4.2  | 1. The Ring of Invariants 2. Invariant Polynomials for $\mathfrak{S}_n$<br>Invariants for Classical Groups<br>1. First Fundamental Theorem 2. Proof of a Basic Case                                                                                                                         | 180 |
|      | 3. Invariant Polynomials as Tensors                                                                                                                                                                                                                                                         | 100 |
| 4.3  | Tensor Invariants<br>1. Tensor Invariants for $GL(V)$ 2. Tensor Invariants for $O(V)$<br>and $Sp(V)$                                                                                                                                                                                        | 190 |
| 4.4  | Polynomial FFT for Classical Groups<br>1. Proof of Polynomial FFT for $GL(V)$ 2. Proof of Polynomial<br>FFT for $O(V)$ and $Sp(V)$                                                                                                                                                          | 198 |
| 4.5  | Some Applications of the FFT<br>1. Skew Duality for Classical Groups 2. General Duality<br>Theorem 3. A Duality Theorem for Weyl Algebras<br>4. $GL(n) - GL(k)$ Howe Duality 5. $O(n) - \mathfrak{sp}(k)$ Howe Duality<br>6. $Sp(n) - \mathfrak{so}(2k)$ Howe Duality 7. Capelli Identities | 200 |
| 4.6  | Notes                                                                                                                                                                                                                                                                                       | 226 |

vi

3

4

|                  | Contents                                                            | vii                  |
|------------------|---------------------------------------------------------------------|----------------------|
| Hig              | nest Weight Theory                                                  | 228                  |
| 5.1              | Irreducible Representations of Classical Groups                     | 228                  |
|                  | 1. Extreme Vectors and Highest Weights 2. Commuting                 |                      |
|                  | Algebra and n-Invariant Vectors 3. Fundamental                      |                      |
|                  | Representations 4. Cartan Product 5. Weights of Irreducible         |                      |
|                  | Representations 6. Lowest Weights and Dual Representations          |                      |
|                  | 7. Symplectic and Orthogonal Representations                        |                      |
| 5.2              | Some Applications                                                   | 248                  |
|                  | 1. Irreducible Representations of $GL(V)$ 2. Irreducible            |                      |
|                  | Representations of $O(V)$ 3. Spherical Harmonics                    |                      |
|                  | 4. $GL(k) - GL(n)$ Duality 5. Decomposition of $S(S^2(V))$          |                      |
|                  | under GL(V) 6. Decomposition of $S(\bigwedge^2(V))$ under GL(V)     |                      |
|                  | 7. Second Fundamental Theorems                                      |                      |
| 5.3              | Notes                                                               | 268                  |
|                  |                                                                     |                      |
| Spin             | iors                                                                | 269                  |
| 6.1              | Clifford Algebras                                                   | 269                  |
|                  | 1. Construction of $Cliff(V)$ 2. Spaces of Spinors 3. Structure     |                      |
|                  | of Cliff(V)                                                         |                      |
| 6.2 <sup>-</sup> | Spin Representations of Orthogonal Lie Algebras                     | 279                  |
|                  | 1. Embedding $\mathfrak{so}(V)$ in Cliff(V) 2. Spin Representations |                      |
| 6.3              | Spin Groups                                                         | 284                  |
|                  | 1. Action of $O(V)$ on $Cliff(V)$ 2. Algebraically Simply           |                      |
|                  | Connected Groups                                                    |                      |
| 6.4              | Real Forms of $\text{Spin}(n, \mathbb{C})$                          | 291                  |
|                  | 1. Real Forms of Vector Spaces and Algebras 2. Real Forms of        |                      |
|                  | Clifford Algebras 3. Real Forms of $Pin(n)$ and $Spin(n)$           |                      |
| 6.5              | Notes                                                               | 294                  |
|                  |                                                                     |                      |
| Coh              | omology and Characters                                              | 296                  |
| 7.1              | Character and Dimension Formulas                                    | 296                  |
|                  | 1. Weyl Character Formula 2. Weyl Dimension Formula                 |                      |
|                  | 3. Commutant Character Formulas                                     |                      |
| 7.2              | Lie Algebra Cohomology                                              | ы <mark>.</mark> 309 |
|                  | 1. Cochain Complex 2. Cohomology Spaces 3. Cohomology               |                      |
|                  | Exact Sequences 4. The Koszul Complex 5. Cohomology of              |                      |
|                  | Enveloping Algebras                                                 |                      |
| 7.3              | Algebraic Approach to Weyl Character Formula                        | 324                  |
|                  | 1. Casimir Identity on Cohomology 2. Weyl Group and Sets of         |                      |
|                  | Positive Roots 3. Expansion of an Invariant 4. Kostant's            |                      |
|                  | Lemma 5. Kostant's Theorem 6. Algebraic Proof of Weyl               |                      |
|                  | Character Formula                                                   |                      |

5

6

7

|    | 7.4  | <ul><li>Analytic Approach to Weyl Character Formula</li><li>1. Semisimple Conjugacy Classes 2. Maximal Compact Torus</li><li>3. Weyl Integral Formula 4. Fourier Expansions of Skew</li></ul> | 337 |
|----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    |      | Functions 5. Analytic Proof of Weyl Character Formula                                                                                                                                         |     |
|    | 7.5  | Notes                                                                                                                                                                                         | 347 |
| 8  | Brai | nching Laws                                                                                                                                                                                   | 349 |
|    | 8.1  | Branching for Classical Groups                                                                                                                                                                | 349 |
|    |      | 1. Statement of Branching Laws 2. Branching Patterns and Weight Multiplicities                                                                                                                |     |
|    | 8.2  | Branching Laws from Weyl Character Formula                                                                                                                                                    | 356 |
|    |      | 1. Partition Functions 2. Kostant Multiplicity Formulas                                                                                                                                       |     |
|    | 8.3  | Proofs of Classical Branching Laws                                                                                                                                                            | 359 |
|    |      | 1. Restriction from $GL(n)$ to $GL(n-1)$ 2. Restriction from                                                                                                                                  |     |
|    |      | Spin $(2n + 1)$ to Spin $(2n)$ 3. Restriction from Spin $(2n)$ to                                                                                                                             |     |
|    |      | Spin $(2n - 1)$ 4. Restriction from Sp $(n)$ to Sp $(n - 1)$                                                                                                                                  |     |
|    | 8.4  | Notes                                                                                                                                                                                         | 370 |
| 9  | Tens | for Representations of GL(V)                                                                                                                                                                  | 372 |
|    | 9.1  | Schur Duality                                                                                                                                                                                 | 372 |
|    |      | 1. Duality between $GL(n)$ and $\mathfrak{S}_k$ 2. Characters of $\mathfrak{S}_k$<br>3. Frobenius Formula                                                                                     |     |
|    | 9.2  | Dual Reductive Pairs                                                                                                                                                                          | 384 |
|    |      | 1. Seesaw Pairs 2. Reciprocity Laws 3. Schur Duality and $GL(k)$ - $GL(n)$ Duality                                                                                                            |     |
|    | 9.3  | Young Symmetrizers and Weyl Modules                                                                                                                                                           | 392 |
|    |      | 1. Tableaux and Symmetrizers 2. Weyl Modules 3. Standard                                                                                                                                      |     |
|    |      | Tableaux         4. Projections onto Isotypic Components                                                                                                                                      |     |
|    | 9.4  | Notes                                                                                                                                                                                         | 404 |
| 10 | Tens | sor Representations of $O(V)$ and $Sp(V)$                                                                                                                                                     | 406 |
|    | 10.1 | Commuting Algebras on Tensor Spaces                                                                                                                                                           | 406 |
|    |      | 1. Centralizer Algebra 2. Generators and Relations                                                                                                                                            |     |
|    | 10.2 | Decomposition of Harmonic Tensors                                                                                                                                                             | 416 |
|    |      | 1. Harmonic Tensors 2. Harmonic Extreme Tensors                                                                                                                                               |     |
|    |      | 3. Decomposition of Harmonics for Sp(V) 4. Decomposition                                                                                                                                      |     |
|    |      | of Harmonics for $O(2l + 1)$ 5. Decomposition of Harmonics for $O(2l)$                                                                                                                        |     |
|    | 10.3 | Decomposition of Tensor Spaces                                                                                                                                                                | 433 |
|    |      | 1. Partially Harmonic Tensors 2. Proof of Partial Harmonic                                                                                                                                    | .20 |
|    |      | Decomposition 3. Decomposition in the Stable Range                                                                                                                                            |     |

|    | Contents                                                                                                                     | ix  |
|----|------------------------------------------------------------------------------------------------------------------------------|-----|
|    | <ul><li>10.4 Invariant Theory and Knot Polynomials</li><li>1. The Braid Relations 2. Orthogonal Invariants and the</li></ul> | 446 |
|    | Yang–Baxter Equation 3. The Braid Group 4. The Jones<br>Polynomial                                                           |     |
|    | 10.5 Notes                                                                                                                   | 461 |
| 11 | Algebraic Groups and Homogeneous Spaces                                                                                      | 464 |
|    | 11.1 Structure of Algebraic Groups                                                                                           | 465 |
|    | 1. Quotient Groups 2. Commutative Algebraic Groups                                                                           |     |
|    | 3. Solvable and Semisimple Lie Algebras 4. Levi                                                                              |     |
|    | Decomposition of Lie Algebras 5. Unipotent Radical                                                                           |     |
|    | 6. Connected Algebraic Groups and Lie Groups                                                                                 | 481 |
|    | <ul><li>11.2 Homogeneous Spaces</li><li>1. G-Spaces and Orbits 2. Flag Manifolds 3. Involutions and</li></ul>                | 401 |
|    | 1. G-Spaces and Orbits 2. Flag Manifolds 3. Involutions and Symmetric Spaces 4. Involutions of Classical Groups              |     |
|    | 5. Classical Symmetric Spaces                                                                                                |     |
|    | 11.3 Borel Subgroups                                                                                                         | 499 |
|    | 1: Solvable Groups 2. Lie–Kolchin Theorem 3. Structure of                                                                    | 177 |
|    | Connected Solvable Groups 4. Conjugacy of Borel Subgroups                                                                    |     |
|    | 5. Centralizer of a Torus                                                                                                    |     |
|    | 11.4 Further Properties of Real Forms                                                                                        | 506 |
|    | 1. Groups with a Compact Real Form 2. Polar Decomposition                                                                    |     |
|    | by a Compact Form                                                                                                            |     |
|    | 11.5 Gauss Decomposition                                                                                                     | 512 |
|    | 1. Gauss Decomposition of $GL(n, \mathbb{C})$ 2. Gauss Decomposition                                                         |     |
|    | of an Algebraic Group 3. Gauss Decomposition for Real Forms                                                                  |     |
|    | 11.6 Notes                                                                                                                   | 517 |
| 12 | Representations on Spaces of Regular Functions                                                                               | 518 |
|    | 12.1 Some General Results                                                                                                    | 518 |
|    | 1. Isotypic Decomposition of $Aff(X)$ 2. Decomposition of                                                                    |     |
|    | Aff $(G)$ 3. Frobenius Reciprocity 4. Models for Irreducible                                                                 |     |
|    | Representations on Function Spaces                                                                                           |     |
|    | 12.2 Multiplicity-Free Spaces                                                                                                | 526 |
|    | 1. Multiplicity and <i>B</i> -Orbits 2. B-Eigenfunctions for Linear                                                          |     |
|    | Actions 3. Branching from $GL(n)$ to $GL(n-1)$                                                                               |     |
|    | 12.3 Regular Functions on Symmetric Spaces                                                                                   | 534 |
|    | 1. Iwasawa Decomposition for Symmetric Spaces 2. Examples                                                                    |     |
|    | of Iwasawa Decompositions 3. Spherical Representations                                                                       | 557 |
|    | 12.4 Separation of Variables for Isotropy Representations                                                                    | 553 |
|    | 1. A Theorem of Kostant and Rallis 2. Some Theorems of                                                                       |     |
|    | Chevalley 3. Classical Examples 4. Some Results from                                                                         |     |

| Contents |
|----------|
|----------|

|   |                          | Algebraic Geometry 5. Proof of the Kostant–Rallis Theorem                      |                   |
|---|--------------------------|--------------------------------------------------------------------------------|-------------------|
|   |                          | 6. Some Remarks on the Proof                                                   |                   |
|   | 12.5                     | Notes                                                                          | 576               |
| A | Alge                     | ebraic Geometry                                                                | - 579             |
|   | A.1                      | Affine Algebraic Sets                                                          | 579               |
|   |                          | 1. Basic Properties 2. Zariski Topology 3. Products of Affine                  |                   |
|   |                          | Sets 4. Principal Open Sets 5. Irreducible Components                          |                   |
|   |                          | 6. Transcendence Degree and Dimension                                          |                   |
|   | A.2                      | Maps of Algebraic Sets                                                         | 591               |
|   |                          | 1. Rational Maps 2. Extensions of Homomorphisms 3. Image                       |                   |
|   |                          | of a Dominant Map 4. Factorization of a Regular Map                            |                   |
|   | A.3                      | Tangent Spaces                                                                 | 597               |
|   |                          | 1. Tangent Space and Differentials of Maps 2. Vector Fields                    |                   |
|   |                          | 3. Dimension 4. Differential Criterion for Dominance                           |                   |
|   | A.4                      | Projective and Quasiprojective Sets                                            | 604               |
|   |                          | 1. Basic Definitions 2. Products of Projective Sets 3. Regular                 |                   |
|   | ,                        | Functions and Maps                                                             |                   |
| B | Line                     | ear and Multilinear Algebra                                                    | 612               |
|   |                          | Jordan Decomposition                                                           | 612               |
|   |                          | 1. Primary Projections 2. Additive Jordan Decomposition                        |                   |
|   |                          | 3. Multiplicative Jordan Decomposition                                         |                   |
|   | B.2                      | Multilinear Algebra                                                            | 615               |
|   |                          | 1. Bilinear Forms 2. Tensor Products 3. Symmetric Tensors                      |                   |
|   |                          | 4. Alternating Tensors 5. Determinants and Gauss                               |                   |
|   |                          | Decomposition 6. Pfaffians and Skew-Symmetric Matrices                         |                   |
|   |                          | 7. Irreducibility of Determinants and Pfaffians                                |                   |
| С | Ass                      | ociative Algebras and Lie Algebras                                             | 632               |
|   |                          | Some Associative Algebras                                                      | 632               |
|   |                          | 1. Filtered and Graded Algebras 2. Tensor Algebra                              |                   |
|   |                          | 3. Symmetric Algebra 4. Exterior Algebra                                       | . *               |
|   | C.2                      | Universal Enveloping Algebras                                                  | 639               |
|   |                          | 1. Lie Algebras 2. Universal Cyclic Module                                     |                   |
|   |                          | 3. Poincaré–Birkhoff–Witt Theorem 4. Adjoint Representation                    |                   |
|   |                          | of Enveloping Algebra                                                          |                   |
| D | Manifolds and Lie Groups |                                                                                |                   |
|   |                          | $C^{\infty}$ Manifolds                                                         | <b>648</b><br>648 |
|   |                          | 1. Basic Definitions 2. Tangent Space 3. Differential Forms<br>and Integration |                   |

х

| Contents                                                                                                                                     | xi           |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| D.2 Lie Groups                                                                                                                               | <b>660</b> e |
| <ol> <li>Basic Definitions</li> <li>Lie Algebra of a Lie Group</li> <li>Homogeneous Spaces</li> <li>Integration on Lie Groups and</li> </ol> |              |
| Homogeneous Spaces 4. Integration on Lie Groups and<br>Homogeneous Spaces                                                                    |              |
|                                                                                                                                              |              |
| Bibliography                                                                                                                                 |              |
| Index                                                                                                                                        | 679          |

•

. า

•