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1 Introduction and preliminaries

The aim of this paper is to derive formulas (see Theorem 3.1) expressing any polynomial in terms of the
degenerate Daehee polynomials (see (1.12)) with the help of umbral calculus and to illustrate our results
with some examples (see Chapter 6). This can be generalized to the higher-order degenerate Bernoulli
polynomials (see (1.13)). Indeed, we deduce formulas (see Theorems 4.1) for representing any polynomial in
terms of the higher-order degenerate Daehee polynomials again by using umbral calculus. Letting →λ 0,
we obtain formulas (see Remarks 3.2 and 4.2) for expressing any polynomial in terms of the Daehee
polynomials (see (1.10)) and of the higher-order Daehee polynomials (see (1.11)). These formulas are also
illustrated in Chapter 5. The contribution of this paper is the derivation of such formulas that, we think,
have many potential applications.
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Letting =x 0 and =x 1
2 in (1.2), respectively, give a slight variant of Miki’s identity and the Faber-

Pandharipande-Zagier (FPZ) identity. Here, it should be emphasized that the other proofs of Miki’s
(see [3–5]) and FPZ identities (see [6,7]) are quite involved, while our proofs of Miki’s and FPZ identities
follow from the simple formula in (1.1) involving only derivatives and integrals of the given polynomials.

Analogous formulas to (1.1) can be obtained for the representations by Euler, Frobenius-Euler, ordered
Bell and Genocchi polynomials. Many interesting identities have been derived by using these formulas
(see [1,8–14] and references therein). The list in the references is far from being exhaustive. However,
the interested reader can easily find more related papers in the literature. Also, we should mention here
that there are other ways of obtaining the same result as the one in (1.2). One of them is to use Fourier
series expansion of the function obtained by extending by periodicity 1 of the polynomial function restricted
to the interval [ )0, 1 (see [2,15,16]).

The outline of this paper is as follows. In Section 1, we recall some necessary facts that are needed
throughout this paper. In Section 2, we go over umbral calculus briefly. In Section 3, we derive formulas
expressing any polynomial in terms of the degenerate Daehee polynomials. In Section 4, we derive formulas
representing any polynomial in terms of the higher-order degenerate Daehee polynomials. In Section 5, we
illustrate our results with examples of representation by the Daehee polynomials. In Section 6, we illustrate
our results with examples of representation by the degenerate Daehee polynomials. Finally, we conclude
our paper in Section 7.
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More generally, for any nonnegative integer r, the Bernoulli polynomials ( )( )B xn
r of order r are given by
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The Euler polynomials ( )E xn are defined by
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The Genocchi polynomials ( )G xn are defined by
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For any nonzero real number λ, the degenerate exponentials are given by
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Here, we recall that the λ-falling factorials are given by

( ) ( ) ( ) ( ( ) ) ( )= = − ⋯ − − ≥x x x x λ x n λ n1, 1 , 1 .λ n λ0, , (1.8)

Especially, ( ) ( )=x xn n,1 are called the falling factorials and hence given by
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The compositional inverse of ( )e tλ is called the degenerate logarithm and given by
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Recall that the Daehee polynomials ( )D xn are given by
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When =x 0, ( )=D D 0n n are the Daehee numbers.

More generally, for any nonnegative integer r, the Daehee polynomials ( )( )D xn
r of order r are given by
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When =x 0, ( )( ) ( )
=D D 0n

r
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r are the Daehee numbers of order r.
The degenerate Daehee polynomials ( )D xn λ, are defined by
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which are degenerate versions of the Daehee polynomials in (1.10). For =x 0, ( )=D D 0n λ n λ, , are called
the degenerate Daehee numbers and introduced in [7] (see also [14]).

More generally, for any nonnegative integer r, the degenerate Daehee polynomials ( )( )D xn λ
r
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⎛

⎝

( ) ⎞

⎠
( ) ( )( )

∑

+

+ =

!
=

∞t
t

t D x t
n

log 1 1 ,λ
r

x

n
n λ

r
n

0
, (1.13)

which are degenerate versions of the Daehe polynomials of order r in (1.11). We remark that ( ) ( )→D x D xn λ n, ,
and ( ) ( )( ) ( )
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We recall some notations and facts about forward differences. Let f be any complex-valued function
of the real variable x. Then, for any real number a, the forward difference Δa is given by

( ) ( ) ( )= + −f x f x a f xΔ .a (1.14)

If =a 1, then we let
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In general, the nth oder forward differences are given by
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Finally, we recall that the Stirling numbers of the second kind ( )S n k,2 can be given by means of
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2 Review of umbral calculus

Here, we will briefly go over very basic facts about umbral calculus. For more details on this, we recommend
the reader to refer to [3, 20, 22]. Let � be the field of complex numbers. Then, � denotes the algebra
of formal power series in t over �, given by
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and � �[ ]= x indicates the algebra of polynomials in x with coefficients in � .
Let �∗ be the vector space of all linear functionals on � . If ∣ ( )⟨ ⟩L p x denotes the action of the linear

functional L on the polynomial ( )p x , then the vector space operations on �∗ are defined by
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Let
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Then, by (2.1) and (2.3), we obtain
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Henceforth, � denotes both the algebra of formal power series in t and the vector space of all linear

functionals on � . � is called the umbral algebra and the umbral calculus is the study of umbral algebra.
For each nonnegative integer k, the differential operator tk on � is defined by
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It should be observed that, for any formal power series ( )f t and any polynomial ( )p x , we have
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Here, we note that an element ( )f t of � is a formal power series, a linear functional, and a differential
operator. Some notable differential operators are as follows:
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The order ( ( ))o f t of the power series ( )( )≠f t 0 is the smallest integer for which ak does not vanish.
If ( ( )) =o f t 0, then ( )f t is called an invertible series. If ( ( )) =o f t 1, then ( )f t is called a delta series.

For �( ) ( ) ∈f t g t, with ( ( )) =o f t 1 and ( ( )) =o g t 0, there exists a unique sequence ( )s xn (deg ( ) =s x nn )
of polynomials such that
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n n k, (2.8)

The sequence ( )s xn is said to be the Sheffer sequence for ( ( ) ( ))g t f t, , which is denoted by ( ) ( ( ) ( ))s x g t f t~ ,n .
We observe from (2.8) that
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It is well known that ( ) ( ( ) ( ))s x g t f t~ ,n if and only if
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for all �∈x , where ( )f t is the compositional inverse of ( )f t such that ( ( )) ( ( ))= =f f t f f t t.
Equations (2.12)–(2.14) are equivalent to the fact that ( )s xn is Sheffer for ( ( ) ( ))g t f t, , for some invertible

( )g t :

( ) ( ) ( ) ( )= ≥
−

f t s x ns x n, 0 ,n n 1 (2.12)

⎜ ⎟( ) ⎛

⎝

⎞

⎠
( ) ( )∑+ =

=

−
s x y n

j
s x p y ,n

j

n

j n j
0

(2.13)

with ( ) ( ) ( )=p x g t s xn n ,

( ) ( ( )) ( ) ∣∑=

!

⟨ ⟩

=

−s x
j

g f t f t x x1 .n
j

n
j n j

0

1 (2.14)
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3 Representations by degenerate Daehee polynomials

Our interest here is to derive formulas expressing any polynomial in terms of the degenerate Daehee
polynomials.

From (1.7), (1.9), and (1.11), we first observe that
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Letting =x 0 in (3.7), we finally obtain
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where ( )( )p λB x
λ denotes the umbral composition of ( )p x with ( )λ Bi i
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By making use of (1.17) and (3.10), an alternative expression of (3.10) is given by
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We obtain yet another expression from (1.18), (3.8), and (3.9), which is given by
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x
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(3.12)

where we need to note that ( )( )∫

+

p λ uB d
x

x u
λ

1
has degree n.
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Finally, from (3.10)–(3.12), and (3.8), we obtain the following theorem.

Theorem 3.1. Let �( ) [ ]∈p x x , with ( ) =p x ndeg . Then, we have ( ) ( )= ∑
=

p x a D xk
n

k k λ0 , , where
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B
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where ( )
( )

=

−

−

g t λ e
e

1
1

t

λt , ( ) = −f t e 1t , and ( )( )p λB x
λ denotes the umbral composition of ( )p x with ( )λ Bi i

x
λ .

Remark 3.2. Let �( ) [ ]∈p x x , with ( ) =p x ndeg . Write ( ) ( )= ∑
=

p x a D xk
n

k k0 . As λ tends to 0, ( ) →

−g t e
t

1t
,

and ( )( )( ) →p λ p xB x
λ . Thus, we obtain the following result.
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4 Representations by higher-order degenerate Daehee
polynomials

Our interest here is to derive formulas expressing any polynomial in terms of the higher-order degenerate
Daehee polynomials.

With ( )
( ) ( )

= =

−

−

−

g t λf t
e

λ e
e1

1
1λt

t

λt , ( ) = −f t e 1t , from (1.11), we note that

( ) ( ( ) ( ))( )D x g t f t~ , ,n λ
r r
, (4.1)

( ) ( ( ))x f t~ 1, .n (4.2)

From (1.15), (2.7), (2.8), (2.12), (4.1), and (4.2), we note that

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )
= = − =

−
f t D x nD x e D x D x1 Δ ,n λ

r
n λ

r t
n λ

r
n λ

r
, 1, , , (4.3)

( )( ) ( )=
−

f t x n x ,n n 1 (4.4)

( ) ( ) ( )( )
=g t D x x .r

n λ
r

n, (4.5)
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Now, we assume that �( ) [ ]∈p x x has degree n, and write ( ) ( )( )
= ∑

=

p x a D xk
n

k k λ
r

0 , . Then, from
(4.5), we have
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k
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For ≥k 0, from (4.4), we obtain

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ∑= = − ⋯ − +
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−
f t g t p x f t a x l l l k a x1 1 .k r k
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n
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Letting =x 0 in (4.7), we finally obtain
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a
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This also follows from the observation ( ) ( ) ∣ ( )( )
⟨ ⟩ = !g t f t D x l δr k

l λ
r

l k, , .

Now, we want to find more explicit expressions for (4.8). As ( )
( ) ( )= ∑

−
=

∞
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e λ Bλt
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n
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t
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n
, we see from
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1λt . To proceed further, we let ( ) = ∑
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i
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0 .

From (2.7), (2.15), and (4.1), noting that ( ) =
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(4.9)

where ( )
( )( )p λB r x

λ denotes the umbral composition of ( )p x with ( )
( )λ Bi i

r x
λ , that is, it is given by ( )

( )( ) =p λB r x
λ

( )
( )∑

=

b λ Bi
n

i
i

i
r x

λ0 , and I denotes the linear integral operator given by ( ) ( )∫→

+

q x q x xd
x

x 1
.

We note from (4.5) and (4.9), in passing, that the following holds:
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From (2.7) and (4.9), we deduce
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By making use of (1.17) and (4.10), an alternative expression of (3.10) is given by
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We obtain yet another expression from (1.18), (4.8), and (4.9), which is given by
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where we need to observe that ( )
( )( )I p λBr r x

λ has degree n.
Finally, from (4.10)–(4.12) and (4.8), we obtain the following theorem.

Theorem 4.1. Let �( ) [ ]∈p x x , with ( ) =p x ndeg . Then, we have ( ) ( )( )
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where ( )
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−

−

g t λ e
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1
1
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λt , ( ) = −f t e 1t , ( )
( )( )p λB r x

λ indicates the umbral composition of ( )p x with ( )
( )λ Bi i

r x
λ ,

and I denotes the linear integral operator given by ( ) ( )∫→

+

q x q x xd
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x 1
.

We observe that ( ) ( )
( ) ( )( ) ( )∫=
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+

−I p λ I p λ xB B dr r x
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i r r x
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1 1 .

Remark 4.2. Let �( ) [ ]∈p x x , with ( ) =p x ndeg . Write ( ) ( )( )
= ∑
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p x a D xk
n

k k
r

0 . As λ tends to 0, ( ) →

−g t e
t

1t
,

and ( )( )
( )( ) →p λ p xB r x

λ . Thus, we obtain the following result.
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We note that ( )∣ ( )∫=
=

+

−I p x I p x xdr
x i i

i r1 1 .

5 Examples on representation by Daehee polynomials

Here, we illustrate our formulas in Remarks 3.2 and 4.2 with some examples.

(a) Let ( ) ( ) ( )= = ∑
=

p x B x a D xn k
n

k k0 . Then, as ( ) ( )+ − =
−B x B x nx1n n

n 1, ( )∫ =
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B u u xd
x

x
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n1
, from Remark

3.2, we have
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x
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k
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0
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2 (5.1)

which are well known.
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Thus, we obtain the following identity:
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Now, by making use of Remark 4.2, we obtain
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Thus, we have the following:
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(b) Here, we consider ( ) ( ) ( ) ( )
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where = + + ⋯+H 1n n
1
2

1 is the harmonic number and a slight modification of (5.4) gives the identity

in (1.2). Let ( ) ( )= ∑
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where we understand that the sum in (5.5) is zero for = −k n 1 or n. Thus, we obtain the following identity:
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(c) In [12], it is shown that the following identity holds for ≥n 2:
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where = + + ⋯+H 1n n
1
2

1 is the harmonic number.
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By proceeding similarly to (b), we see that
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Thus, (5.7) implies the next identity:
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(d) In [16], it is proved that the following identity is valid for ≥n 2:
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Again, by proceeding analogously to (b), we can show that
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m

n
n m

m l
m k

n
n m

2

2
0

2

,

2

2 (5.9)

Therefore, we obtain the following identity:

( )
( ) ( )

⎧

⎨
⎩

⎛
⎝

⎞
⎠

( )
⎫

⎬
⎭

( )∑ ∑ ∑

−

= −

−
=

−

−

=

−

=

−

−

k n k
G x G x

n
n
m

S m k G
n m

D x1 4 , .
k

n

k n k
k

n

m k

n
n m

k
1

1

0

2 2

2

(e) Nielsen [2,19] also represented products of two Euler polynomials in terms of Bernoulli polynomials
as follows:

( ) ( ) ⎛
⎝

⎞
⎠

( )
⎛
⎝

⎞
⎠

( )
( )

( )
∑ ∑= −

+ − +

−

+ − +

+ −

! !

+ + !
=

+ − +

=

+ − + +

+ +
E x E x m

r
E B x

m n r
n
s

E B x
m n s

m n
m n

E2
1

2
1

2 1
1

.m n
r

m

r
m n r

s

n

s
m n s n

m n
1

1

1

1 1
1 (5.10)

In the same way as (b), we can show that

( )
( )

⎛
⎝

⎞
⎠

( )

⎛
⎝

⎞
⎠

( )

∑

∑

= −

! !

+ + !

−

+ − +

+ − +

−

+ − +

+ − +

+

+ +

=

=

a m n
m n

E δ m
r

E
m n r

S m n r k

n
s

E
m n s

S m n s k

2 1
1

2
1

1,

2
1

1, .

k
n

m n k
r

m
r

s

n
s

1
1 ,0

1
2

1
2

(5.11)

Thus, we arrive at the next identity:

( ) ( ) ( )
( )

⎛
⎝

⎞
⎠

( ) ( )

⎛
⎝

⎞
⎠

( ) ( )

∑ ∑

∑ ∑

= −

! !

+ + !

−

+ − +

+ − +

−

+ − +

+ − +

+

+ +

=

+

=

=

+

=

E x E x m n
m n

E m
r

E
m n r

S m n r k D x

n
s

E
m n s

S m n s k D x

2 1
1

2
1

1,

2
1

1, .

m n
n

m n
k

m n

r

m
r

k

k

m n

s

n
s

k

1
1

1 1
2

1 1
2

6 Examples on representation by degenerate Daehee polynomials

Here, we illustrate our formulas in Theorems 3.1 and 4.1.

(a) Let ( ) ( ) ( )= = ∑
=

p x B x a D xn k
n

k k λ0 , . Then, as ( ) ( )= ∑
=

−
B x B xn j

n n
j n j

j
0 , we have

⎜ ⎟
⎛

⎝
⎛
⎝

⎞
⎠

⎞

⎠

⎛

⎝

⎞

⎠

⎛

⎝
( ) ⎛

⎝
⎞
⎠

⎞

⎠
∫ ∑=

+

+

−

+

=

−

+

+ +
B λ u

λ
u n

j
B λ

j
B x

λ
B x

λ
B d 1

1
1 .

x

x

n
j

n

n j
j

j j

1

0

1
1 1 (6.1)

Thus, for ≤ ≤l n1 ,
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⎜ ⎟

⎜ ⎟
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⎝

⎞

⎠

⎛

⎝
⎛
⎝

⎞
⎠

⎞

⎠

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

⎛

⎝
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞

⎠

⎛

⎝

⎞

⎠
( ) ⎛

⎝
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞

⎠

∫ ∑

∑

=

+

−

=

+

−

+

=

−

−

=

−

− +

− − + − +

x
B λ u

λ
u n

j
B λ

x
B x

λ
B x

λ

n
j

B λ j B x
λ

B x
λ

Bd
d

d d
d

1

1 .

l

x

x

n
j

n

n j
j

l

j j

j l

n

n j
j l

l j l j l

1

0

1

1
1 1 1

(6.2)

Now, from Theorem 3.1, (6.1), and (6.2), we obtain

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛

⎝

⎞

⎠

⎛

⎝
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞

⎠
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⎝

⎞
⎠

⎛

⎝

⎞

⎠

⎛

⎝

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞

⎠

( ) ⎛

⎝

⎞

⎠
( ) ⎛

⎝
⎛
⎝

⎞
⎠

⎞

⎠

∑

∑ ∑

∑∑

=
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+

−

=

!

−

+

+

−

=

!
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=

+
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=
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−

+
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a
k

n
j

λ
j

B B x
λ

B x
λ

k
k
i

n
j

λ
j

B B i
λ

B i
λ

S l k
l

n
j

λ j B B
λ

B

1
1

Δ 1

1 1
1

1

, 1 1 ,

k
j

n j
n j

k
j j

x

i

k

j

n
k i

j
n j j j

l k

n

j l

n
j l

l n j j l j l

0

1
1 1

0

0 0

1
1 1

2
1

1 1 1

(6.3)

where we understand that ( ) =
−

+

j j1
1

1.

Hence, from (6.3), we obtain the following identity:

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

( )
⎧

⎨
⎩

⎛

⎝

⎞

⎠

⎛

⎝
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞

⎠

⎫

⎬
⎭
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⎧

⎨
⎩
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⎝

⎞
⎠

⎛

⎝

⎞

⎠

⎛

⎝

⎛
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⎞
⎠

⎛
⎝

⎞
⎠

⎞

⎠

⎫

⎬
⎭
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⎧

⎨
⎩
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⎝
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⎝
⎛
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⎞
⎠
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−
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+
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B x
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n
j

λ
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B B x
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λ
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k
k
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n
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λ
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B B i
λ
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λ
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l

n
j

λ j B B
λ
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1
1
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1

1

, 1 1 .

n
k

n

j

n j
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k
j j

x
k λ

k

n

i

n

j

n
k i

j
n j j j k λ

k

n

l k

n

j l

n
j l

l n j j l j l k λ

0 0

1
1 1

0
,

0 0 0

1
1 1 ,

0
2

1
1 1 1 ,

Next, we let ( ) ( ) ( )( )
= = ∑

=

p x B x a D xn k
n

k k λ
r

0 , . Then, we first observe that

⎜ ⎟ ⎜ ⎟
⎛

⎝
⎛
⎝

⎞
⎠

⎞

⎠

⎛

⎝

⎞
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⎝

⎞
⎠

( ) ⎛
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⎛
⎝

⎞
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⎝

⎞
⎠
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+

+

=
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−

+
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λ
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B λ B x

λ
n
j

r
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λ
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n
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j

j
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j
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i

r
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r
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0 0 0
(6.4)

So, for l with + ≥j r l, we obtain

⎜ ⎟

⎜ ⎟
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⎝
⎛
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λ
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r
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λ
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n
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r
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λ
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1 d
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l
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n
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r
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l
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r
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r
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r
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(6.5)

Thus, from Theorem 4.1, (6.4), and (6.5), we have
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n
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n
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n

j

n

i

r
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j r

r
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k
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r

x
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r
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n
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r
r i
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r
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r
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r

0 0 0 0
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0
2

max 0, 0
,

(b) Let ( ) ( ) ( )
( )

= ∑
=

−

−
−

p x B x B xk
n

k n k k n k1
1 1 , for ≥n 2. As we stated earlier, it was shown in [12] that

( ) ⎛
⎝

⎞
⎠

( ) ( )∑=

−

+

=

−

− −
p x

n n m
n
m

B B x
n

H B x2 1 2 ,
m

n

n m m n n
0

2

1 (6.6)

where = + + ⋯+H 1n n
1
2

1 is the Harmonic number.
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Write ( ) ( )= ∑
=

p x a D xk
n

k k0 . Then, from Theorem 4.1 and (6.6), we have

⎜ ⎟

⎜ ⎟
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⎨
⎩
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a
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n
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m
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B
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l
n
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B
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k
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m
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n
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j l

n
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2
1
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1
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(6.7)

Thus, from (6.7), we obtain

⎜ ⎟
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k

n
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n
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m l

n
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l j l j l

n
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n
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n
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1

1
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2
1

1 1 1

1 2
1
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where we understand that the triple sum in the parentheses is zero for = −k n 1 or =k n, and ( ) =
−

+

j j1
1

1.

(c) Let ( ) ( ) ( )
( )

= ∑
=

−

−
−

p x E x E xk
n

k n k k n k1
1 1 , for ≥n 2. Then, as we saw earlier, it was proved in [12] that
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1
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Write ( ) ( )= ∑
=

−p x a D xk
n

k k λ0
2

, . Then, from Theorem 4.1 and (6.8), we can show that
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where we understand that ( ) =
−

+

j j1
1

1.
Hence, from (6.9), we have
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(d) Here, we consider ( ) ( ) ( )
( )

= ∑
=

−

−
−

p x G x G xk
n

k n k k n k1
1 1 , for ≥n 2. As we mentioned earlier, it was shown

in [16] that
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Write ( ) ( )= ∑
=

−p x a D xk
n
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2

, . Then, from Theorem 4.1 and (6.10), we obtain that
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where we understand that ( ) =
−

+

j j1
1

1.
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Thus, from (6.11), we obtain
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(e) As we mentioned earlier, it was shown (see [17,18]) that, for positive integers m and n, with
+ ≥m n 2, we have
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Then, from Theorem 4.1 and (6.12), we can show that
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Thus, form (6.13), we obtain
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7 Conclusion

In this paper, we were interested in representing any polynomial in terms of the degenerate Daehee
polynomials and of the higher-order degenerate Daehee polynomials. We were able to derive formulas
for such representations with the help of umbral calculus. We showed that, by letting λ tends to zero, they
give formulas for representations by the Daehee polynomials and by the higher-order Daehee polynomials.
Further, we illustrated the formulas with some examples.

As we mentioned in Section 1, both Faber-Pandharipande-Zagier (FPZ) identity and a variant of Miki’s
identity follow from the one identity (see (1.2)) that can be derived from the formula (see (1.1)) involving
only derivatives and integrals of the given polynomial, while all the other proofs are quite involved. We
recall here that the FPZ identity was a conjectural relation between Hodge integrals in Gromov-Witten’s
theory. It should be stressed that our method is very useful and powerful, even though it is elementary.

It is one of our future research projects to continue to find formulas representing polynomials in terms
of some specific special polynomials and to apply those in discovering some interesting identities.
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