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If / and g are two nonsingular quadratic forms with
rational integral coefficients such that / represents g integrally
over every p-adic fields and also over the reals, then it is a well-
known classical result that the genus Gen (/) of / represents g.
This paper considers the question of how many spinor genera
in the genus of / will represent g, when / and g are integral
forms defined over some fixed domain of algebraic integers
and when dim (/) — dim (g) ̂  2.

Unless otherwise mentioned the following general assumptions
will be understood throughout this paper: F is an algebraic number
field with R as its ring of algebraic integers, V and W are finite
dimensional regular quadratic spaces over F with dimF—dimPF =
d Ξ> 2, L and K are respectively .β-lattiees on V and W, and S is
the set of all discrete spots on F. All unexplained notations and
terminologies are from [6]. Suppose now that Lp represents Kp for
every peS, then it is a well-known result that there is a lattice
L' in the genus of L that represents K, provided V represents W
(in fact, if W were a subspace of V, this U may be chosen so as
to contain K; see 102:5, [6]). We introduce the notations K+-
Gen(L), Spn (L), Spn+(L), Cls (L), Cls^ίL) to denote respectively that
K is representable by a member in the genus, spinor genus, proper
spinor genus, class, proper class of L. Thus, in this notation, Let
represents Kp locally everywhere at peS and W->-V is equivalent
to if-^-Gen(L), which is, of course, the same as representation by
Gen+ (L). We show here that if d ^ 3 then K ->- Gen (L) implies
K ^~ Spn+ (L) so that in the indefinite case for L every proper class
in the genus represents K. This fact must surely have been known
to the specialists although I have not seen it in print and choose to
record it here for completeness; its proof is quite standard and does
not employ any of the subtler or deeper aspects of the theory. On
the other hand, when d = 2, the theory is a good deal more intricate.
We show that here too in most cases K is representable by every
proper spinor genus in the genus of L; the exceptional cases will be
pointed out, and there one needs to know the precise results for the
local computations of the spinor norms of local integral rotations
on Lp] the known facts about these are found in [3] for nondyadic
p, in [1] for unramified dyadic p, and in [2] for arbitrary dyadic p
but with Lp modular. This study was motivated by Kneser's paper
[4], and the results as well as the method follow closely along his
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lines with some refinements necessitated by handling here also the
cases where L may not be totally indefinite. Indeed, it may be
definite.

Suppose for all spots on F we are given that Kp -*- Lp, then
surely FPKP -+- FPLP for every p. Hence, Hasse-Minkowski implies
W-+-V. Thus, we may as well assume at the outset that W is a
regular subspace of V, and K is a lattice in V. Write V = W _L U,
and δ the discriminant (in O'Meara's sense) of U. As in Example
102: 5, [6] if we let T = {p e S: Lp £ Kp), then T is a finite set. By
lattice theory, there is a lattice U on V such that

P f o r p e r

L p f o r p e Γ .

Here ŝ , e O( F,,), and the hypotheses permits us to choose sp so that
spLp 2 Kp. Clearly, sp can be assumed to be in O+(VP). Should d ^ 3,
then Θ(O+(UP)) = Fp

x by 91: 6, [6]. Therefore, we may find a rotation
tp on Z7P whose spinor norm θ(tp) — θ(sp). Extend tp trivially to a
rotation on Vp and composing it with s99 one sees that tpspLp still
contains Kp. Thus, we may further assume that our original sp

belongs to O\VP). This shows that U belongs to the proper spinor
genus of L. Thus, we have: if Lp represents Kp at every {finite
and infinite) spot p and if d — rk{L) — rk{K) ^ 3, then K is repre-
sented by every proper spinor genus in the genus of L; in particular,
if L is indefinite with respect to S, then K is representable by every
proper class in Gen (L).

REMARK. Specializing this statement to the case when L is inde-
finite, rk (K) — 1,F=Q, a theorem of Watson's [9] is recaptured.
Suppose we permit if to be a degenerate space, say the radical
Rad(l/P) has dimension r. Then, the same result prevails provided
we have: rk(L) — rk(K) = d i> 3 + r. To see this, note that one
can embed W in a nonsingular space W=H± Wan1 where Wan is the
anisotropic kernel of W, and H a hyperbolic space of dimension 2r.

From here onward we assume that d = 2. Clearly, the group
Jυ of split rotations (adeles) on U may be viewed as a subgroup of
Jv; similarly Pv, J'v, JL are defined in Chapter X, [6], as are the
following subgroups of the idele group JF of F: PF, PD, J£. We ask
the following two basic questions:

(A): // L represents K properly, is it true that for every φeJπ

we have K+- Spn+ (Φ(L))e!
(B): What is the group index [Jv: JUPVJVJL]!
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We shall see below that Question (A) has an affirmative answer
(Theorem 1); and Theorem 2 will show that this group index men-
tioned above is less or equal to two. This means that at least half
(if not all) of the proper spinor genera in the genus of L will represent
K, provided there is just one lattice in the genus that represents K.

To treat Question (A), suppose s: K-*- L is a proper representation
of K by L, choose any full lattice N on U (recall that V = W 1 U),
and set Kr = K _L N. If φ e Jυ is given, clearly, the lattice φ{K') is
just the lattice K j_ φ(N). If we select our N above to be the lattice
s-'iL) Π U, then s(K') = s(KlN) = s(K) ± s(8-ι(L) ΠU)QL + L = L.
Therefore, s also induces a proper representation of K' by L. Now,
rk(K') = rk(L). We have s'^L) 2 K' so that φs'\L) 2 Φ(Kf). Since
Jf

v contains the commutator subgroup of Jv, JV/PVJ'V is abelian. Hence,
φs'1 e φPv C φPvJ'v = PγJ'vΦ' This means there is a lattice in the
proper spinor genus of φ(L) that represents Φ(K'). But, φ is trivial
on i£ and therefore, we obtain:

THEOREM 1. If K-^ Cls+ (L), and d = rfc(L) - r£(iQ = 2,
iί->-Spn+ (Φ(L)) for every φeJσ, where FL = FKL U. In particu-
lar, if L is indefinite with respect to the defining set S of spots on
F, then φ(L) represents K properly for all such φ.

Put E = F(V-δ), where 8 = disc(ί7), and D = Θ(O+(V)). The
map from Jv into JF given by s = (sp)\->j = (jp) where jpeθ(sp)
induces a monomorphism φL: JV/PVJ'VJL >-> JF\PΏJL

F (which is an iso-
morphism when rk(L) ^ 3). As a preliminary step toward determining
the group index in Question (B), we have:

LEMMA. φL described above induces an isomorphism:

( * ) ΦL,K JV/JUPVJ'VJL » JF/PBNE/F(JE)JΪ .

Proof. If — δ is a square in F, then E = F, and the right hand
side in (*) is trivial. But then, U is a hyperbolic plane and Θ(O+(UP)) =
Ff. Hence, every split rotation on V may be composed with one U
so as to have the resulting element lying inside J'v, and this implies
the left hand side of (*) also is trivial. Therefore, we may suppose
that - δ is a nonsquare. If s e JUf then θ(sp) e θ(O+( Up)) = θ(O+((lf δ») =
Q«l, δ»Fp

x 2 = NE9/Fp(E$) for φ|t). Thus, the map which sends Jv

into JF mentioned above also sends Jv into NEίF{JE) so that the map
ΦLtK JvlJuPvJvJL—* JF/PDNE/F(JE)JF is well induced by φL. Since
rk(K) > 0, rfc(L) ^ 3 necessarily so that our φLjK must be surjective
as well by the above discussion. To see the kernel is precisely
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JπPvJ'vJL, consider seJv such that φL)K(s) = ΐ. This means that
θ(sp) = ajPiPF

x\ where a e D, j = £/,) eNE/F(JE), and i = (ip)ej£.
Write α = 0(/), / 6 0+(F), ip = 0(2^), ̂  e O+(LP). For each 5β|i>, the
local norm Nmp(E%) is either all of Fx or it is a subgroup Q«l, §»
of index two in Fx. Therefore, we can find a local rotation hp on Up

such that θ(hp) = jpF
x2. Thus, 0(8,) = θ{f)θ{hp)θ{Σp) which implies

that sp belongs to hpfΣp-O'{Vp), or equivalently, s belongs to JuPvJvJL,
proving the lemma.

This lemma translates the index computation in Question (B) to
an equivalent one in terms of ideles, which is usually more man-
ageable, and we now take up this calculation.

LEMMA. [JF: PDNE/F{JE)\ = 2 [FX:D].

Proof. Here D is characterized as the set of nonzero field ele-
ments from F that are positive at all real spots p for which the
quadratic space Vp is definite. See 101: 8, [6]. Let R denote the
set of such real spots on F. Note that if Card (R) = t, then Fx/D
is a vector space of dimension t over F2 It is well-known that
[JF: PFNE/F{JE)\ = 2; see 65: 21, [6]. Therefore, [JF: PDNE/F{JE)] =

2 [PFNE/F{JEY P»NE/F{JE)] - 2[PF: PF Π PDNE/F(JE)] = 2 [PF: PD] =

2-[Fx:D], Only the second last equality requires some explanations.
If x e Fx, and deD, then x/d belongs to NE/F(JE) implies, in particular,
that at each real spot p from R, x/d is a local norm at p. But Vp

is anisotropic so that — δ is a nonsquare at p. Hence, the local norms
at p consist of all the positive reals. This means x/d is positive at
p, and so x is positive at p. Therefore, xeD.

LEMMA. JF £ PDNE/F(JE) if and only if JF £ NE/F(JE).

Proof. This is the type of result that is typically bewildering
and yet at the same time powerfully evident of the beauty and
depth of the arithmetic of global fields. For the proof, clearly it
suffices to prove the "only if" part. Lp is unimodular almost every-
where. So, let T be the set of discrete spots p on F for which
Θ(O+(LP)) is not contained in (NE/F(JE))P. So, T is a finite set. If T
is not empty, there must be an xp e Θ(O+(LP)) not lying in NEίβ/F9(E^)
for ?fi\p. This means xp is not represented by the binary quadratic
space <1, δ) over Fp. Consider the idele i = (ip) where i, = xp at
q = p9 and % = 1 elsewhere. Surely, j belongs to JF. Hence, by
hypotheses, there exists deD such that djeNE/F(JE). This means
d is a local norm at all the spots q Φ p. Hence, by Hubert Reciprocity
Law, d is also a local norm at p. On the other hand, dxp is a local
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norm at p. So, we arrive at a contradictory conclusion that x9 is
a local norm after all. Therefore, T must be empty and JFQNE/F(JE).

THEOREM 2. [JF: PDNE/F(JE)J%] ^ 2.

Proof. If D = Fx (i.e. when L is totally indefinite with respect
to S), then already [JF: PFNE/F{JE)) = 2 in which case the index is
two if and only if JF is contained in NE/F{JE) by lemma. So, we
may assume that D Φ Fx.

Let R = {pίf — pt} be the set of all real spots on F for which
VH is anisotropic, and let et (1 ^ i ^ £) be the idele which has —1
as its component at pt and 1 elsewhere. Clearly, all these β/s belong
to JF but not to NE/F{JE), and therefore, also not to PDNElF(JE) by
Lemma. Define the chain of subgroups of PDNE/F(JE)JF by: Go =
PDNE/F(JE), GJ = IF(Pj)Gj^ for 1 ^ i ^ έ, where Î Cfo) denotes the
group of ideles which have all the components different from fo the
value 1. Thus, we have an increasing tower:

PnNE/F{JE) = Go ̂  ^ G, .

We assert that all the inclusions are strict. If not, we shall have
at some j , IF{pβ) £ G ^ = J^fc) IF(\>J-I)PDNE/I(JE). The idele βy

surely belongs to IF(pj) and this means for some deD and 279
IF(PI) ' IΛPs-i)NE/F(JE) one has e3-= (d)η. But, at all the spots
outside of R, ηp = ώ"1 which implies that cΓ1, hence also d, is a local
norm. Inside of R the element d is positive at each p and so is also
a local norm. Thus, ώ is itself a global norm. Therefore, we conclude
that βy belongs to /*>(&) IF{Pΐ-dNE/F{JE). On the other hand, at
Ps, e3- is negative whereas every element from l^ft) IF(pj-ι)NE/F(JE)
has positive component at p3-. This contradiction proves our assertion.

Since for each j(l <̂  j ^ t) we have [G> G^.J = 2, we obtain:

2* = [Gf: Go] <: [ P ^ ^ / F ( Λ ) J

- [Λ: P»NE/F(JE)] -S- [Λ:

This proves the theorem.

COROLLARY. If DΦ FX (i.e., V is not totally indefinite with
respect to S), then it is not possible for JF Q PDNE/F(JE). In par-
ticular, JF = PFNE/F(JE)JF, and [JF: PDNE/F(JE)JF] = 2 if and only
if PF£ PDNE/F{JE)JL

F.

Suppose D = Fx. Then, [JF: PDNE/F(JE)J%] = 2 if and only if
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JF £ NE,F{JE) by Lemma. In particular, if p is any real spot on F,
then p splits in E and δ < 0. Hence, δ is a totally negative element.

P

Moreover, at each discrete spot we must have Θ(O+(LP)) £ Nmp(E%)
for φ|ί>; equivalents, 0(O+(LP)) S Q«l, δ» over Fp. Note that if £
does not divide the volume Vol (L) of L, then Lp is unimodular.
Hence, as rk{L) ^ 3 here, 0(O+(L,)) = UpFf unless £ is dyadic and
the norm generator has odd order parity with respect to the weight
generator for Lp. See [2]. In the exceptional cases, the spinor norm
group is all of Fp. By the local theory of quadratic forms, we see
that ord^δ) must be even; modulo squares in FPf — δ is a unit of
quadratic defect 4tRp. Hence E$/Fp must be quadratic unramified.
If p is an exceptional dyadic prime, then — δeFp\ Therefore, the
only ramified primes for E/F must also divide Vol (L). In particular,
if L is unimodular, E/F must itself be quadratic unramified. Of
course, there are number fields F for which every finite (let alone
only quadratic) extension is ramified.

Finally, we point out here that the local lattice representation
theory is completely determined when: (i) p nondyadic, (ii) p unramified
dyadic, and (iii) p arbitrary dyadic but Lp modular. For (i) and (ii),
see [7]; for (iii), see [8], Also, see [5] for p arbitrary dyadic but
rk(Lp) = 2.
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