
J. Software Engineering & Applications, 2010, 3, 1155-1162
doi:10.4236/jsea.2010.312135 Published Online December 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

Representations in Genetic Algorithm for the Job
Shop Scheduling Problem: A Computational Study

Tamer F. Abdelmaguid

Department of Mechanical Design and Production, Faculty of Engineering, Cairo University, Giza, Egypt
Email: tabdelmaguid@alumni.usc.edu

Received November 21st, 2010; revised November 29th, 2010; accepted December 12th, 2010.

ABSTRACT

Due to the NP-hardness of the job shop scheduling problem (JSP), many heuristic approaches have been proposed;
among them is the genetic algorithm (GA). In the literature, there are eight different GA representations for the JSP;
each one aims to provide subtle environment through which the GA’s reproduction and mutation operators would suc-
ceed in finding near optimal solutions in small computational time. This paper provides a computational study to com-
pare the performance of the GA under six different representations.

Keywords: Job Shop Scheduling, Genetic Algorithm, Mathematical Models, Genetic Representation

1. Introduction

Genetic algorithm (GA) is a random search optimization
technique that mimics the natural selection process [1].
Its approach is based on randomly generating a new set
(generation) of solutions from an existing one, so that
there is improvement in the quality of the solutions thr-
oughout generations. In the simple GA implementation
[2], this approach is conducted through three main oper-
ators that are repeatedly applied to a given generation of
solutions until a new child generation with a predeter-
mined population size is obtained: 1) random selection of
two solutions from the individuals in the parent genera-
tion, 2) reproduction of two new child solutions by mat-
ing the selected individuals. This mating process is con-
ducted by randomly exchanging specific elements in the
structures of the selected solutions in a manner similar to
the crossover operation of chromosomes in natural ge-
netics, and 3) mutation of some randomly selected ele-
ments in the structures of the resultant child solutions to
increase the capability of reaching further points in the
search space. Different variations to the simple GA ap-
proach, aiming to improve its search capabilities, can be
found in the literature. The GA has proven to be a com-
petitive random search technique for various types of
optimization problems [3].

In order to apply GA to a specific optimization prob-
lem, one has to decide first how to represent solutions of
the problem in a suitable structure that can be dealt with
through both the reproduction and the mutation operators.

Such a structure, referred to as the genotype, needs to be
easily interpretable to a feasible solution of the studied
problem. The selection of a suitable representation is usual-
ly accompanied with, and sometimes affected by, the de-
sign of suitable reproduction and mutation operators. In
combinatorial optimization problems, the selection of a
suitable GA representation is a challenging task. This
class of problems is characterized by discrete decision
variables that are usually interrelated through logical
relationships. As a result, different mathematical models
may exist for the same combinatorial optimization prob-
lem, leading to the existence of different possible GA
representations.

The job shop scheduling problem (JSP) is a well
known combinatorial optimization problem that arises
in low-volume production systems in which products are
made to order [4]. It is concerned with sequencing a set
of jobs on a set of technologically different machines;
each is capable of processing at most one job at a time.
Jobs follow dissimilar processing routes among the ma-
chines and a job cannot be processed on more than one
machine simultaneously. Furthermore, preemption is not
allowed and a job is permitted to have multiple visits to
any machine. The JSP with the objective of minimizing
the makespan is known to be NP-hard [5]. This complex-
ity even exists in the small case of three jobs and three
machines [6][6]. As a result, and due to its importance,
there is an ever-growing literature of heuristic approach-
es for that problem.

Representations in Genetic Algorithm for the Job Shop Scheduling Problem: A Computational Study

Copyright © 2010 SciRes. JSEA

1156

Among all combinatorial optimization problems, the
JSP is presumably the most frequently solved by GA us-
ing different GA representations. In their tutorial paper,
Cheng, Gen and Tsujimura [7] provide a literature survey
on the different GA representations used for the JSP.
However, there is a gap in the literature regarding the co-
mputational comparison of various representation schemes
as only minor experimental comparison is reported by
Gen and Cheng [3]. Anderson, Glass and Potts [8] report
a computational study conducted with different metaheu-
ristic approaches including four different GA implement-
ations. However, their study falls short in the consisten-
cy and coherence of the conducted experiments in terms
of the number of runs and the number of tested problems.
In this paper, six different representations are compared
experimentally to identify the most effective ones in terms
of solution quality and computational time requirement.

The rest of this paper is organized as follows. First, we
illustrate the structure of the JSP and present the different
mathematical models that have been used in Section 2. In
Section 3, a classification and a literature review on the
GA representations used for the JSP is presented. The
different reproduction and mutation operators used for
the GA representations are presented in Section 4. In
Section 5, the experimental results are illustrated and
discussed, and finally the conclusion is provided in Section 6.

2. Problem Structure and Mathematical Models

Before discussing the available GA representations for
the JSP, it is imperative to illustrate the structure of the
problem and the different mathematical models that have
been used in the literature. We denote J as the set of jobs.
Each job consists of an ordered list of operations that
represents its processing route through a subset of ma-
chines in the shop. We denote  1,2I v  as the set
of all operations’ indexes. The operations’ indexes are
assigned such that for job k J , the subset of consecu-
t ive indexes  , 1, 2, ,k k k k kI I       in-
cludes the indexes of operations belonging to that job;
where in the set Ik, the operation with the lower index is
to be processed first. For operation i, the time needed to
finish its processing is pi which is assumed to be integer
without loss of generality, the job to which it belongs is
denoted jb (i), and its processing machine is mc (i).

The task of the scheduling process is to determine the
start time si for every operation i  I. There are two sets
of constraints in the JSP. The technological or prece-
dence constraints define the mandatory processing se-
quence of operations belonging to the same job. This set
of constraints is represented by the following inequalities.

1i i is s p   , 1 ki i I k J     (1)

The second set of constraints is in a disjunctive (ei-
ther-or) form, and it represents the condition that opera-

tions on the same machine must be processed in different
time intervals.

i j js s p  or j i is s p 

 i, j  I, where mc (i) = mc (j) and jb(i)  jb(j) (2)

Different objective functions have been dealt with in
the literature. In this paper, we concentrate on the objec-
tive of minimizing the maximum completion time or the
makespan. The makespan, denoted Cmax, is expressed as
follows.

Cmax =
 

 
:

max
k

i i
i k J

s p
 

 (3)

Different mathematical models have been proposed for
the JSP. The integer linear programming (ILP) models
use different forms of binary variables. Table 1 summa-
rizes the definitions of the binary variables used. Manne's
model has gained larger interest in the research commu-
nity due to its comparatively small number of variables
and constraints.

The precedence constraints (1) of the JSP can be
viewed as a series of consecutive operations for each job,
which is analogous to a series of consecutive activities as
found in project scheduling. This analogy motivated im-
porting network models that are used in the project
scheduling literature to the JSP. To represent the disjunc-
tive constraints (2), additional sets of arcs are required.
This is achieved in the literature by two models, the dis-
junctive graph model [9] and the permutation-induced
acyclic network (PIAN) model [10].

In the disjunctive graph model, a disjunctive arc is de-
fined between every pair of operations that share the
same machine. Each disjunctive arc is associated with a
binary decision variable similar to that of Manne’s model,
such that a selection on the value of that variable defines
the direction and the length of each disjunctive arc.

Based on the disjunctive graph model, very efficient
algorithmic techniques have been developed such as the
immediate selections [11] and the shifting bottleneck
heuristic [12]. Alternatively, in the PIAN model, permuta-
tions are used to represent the processing sequence of all
operations that share the same machine in a mannersimi-
lar to the idea given in Wagner’s model. These per-

Table 1. Binary variables used in the ILP models of the JSP.

Reference
Variable
notation

Definition

Bowman
[13] ,

m

i tx
= 1 if operation i is processed on machine

m in time unit t;
= 0 otherwise.

Wagner
[14] ,

m
i lx

= 1 if operation i takes the lth position in
the processing sequence on machine
m;

= 0 otherwise.

Manne [15] ,

m

i jx
= 1 if operation i is processed prior to

operation j on machine m;
= 0 otherwise.

Representations in Genetic Algorithm for the Job Shop Scheduling Problem: A Computational Study

Copyright © 2010 SciRes. JSEA

1157

mutations are treated as decision variables and interpreted
into directed arcs on the graph to provide a resolution for
the disjunctive constraints (2).

3. GA Representations

Cheng, Gen and Tsujimura [7] provide a survey on the
different GA representations used for the JSP. They clas-
sify them into two categories: direct and indirect. The
distinction between direct and indirect representations
depends on whether a solution is directly encoded into
the genotype or not. Alternatively, in this paper we clas-
sify the GA representations for the JSP into two main
categories: model-based and algorithm-based. Figure 1
illustrates this classification and lists the available repre-
sentations in the literature for each category.

In model-based representations, the structure of the
genotype is based on the definition of the decision va-
riables of a specific JSP mathematical model, and a ge-
notype can be directly interpreted to a feasible or infeasi-
ble solution. A special algorithm may be needed to con-
vert infeasible solutions into feasible ones. In mod-
el-based representations, optimal solutions are attainable.
The existing model-based representations use three types
of decision variables: 1) binary decision variables as
found in the disjunctive graph model and the ILP model
of Manne, 2) processing sequence decision variables as
described in the PIAN model, and 3) integer variables
representing the operations’ start or completion times. In
the binary GA representation, the disjunctive graph-
based representation [16] has a large chromosome size
and many infeasible solutions are encountered during the
GA run, which requires extra computational effort to fix
their infeasibilities. This GA representation is excluded
from the computational comparison in this paper.

In the processing sequence representations, there are
three different forms that are based on the processing
sequence decision variables as found in the PIAN model.
The operation-based (OB) representation [17] uses a sin-
gle string of genes, where each job is represented by a
number of genes equals the number of operations it con-
tains. Based on the order of the operations given in this
representation, each operation is assigned the earliest
start time permitted by considering the machine availa-

bility constraints to generate feasible schedule. In this
interpretation mechanism, the technological constraints
are easily satisfied.

The random keys (RK) representation [18] is very
similar to the operation-based one, except that each gene
is filled with a randomly generated number between 0
and 1. The random numbers in a given chromosome are
sorted out and the resulting order is used to replace these
numbers with an integer (the order). Each operation in
the studied problem is assigned an integer value so that
the resultant string of integers is equivalent to a string of
operations. This string is then interpreted into feasible
schedule using the same approach as in the operation-
based representation with correcting any violation of the
technological constraints.

The preference list-based (PL) representation, found in
[19] and [20], uses a string of operations for each ma-
chine instead of a single string for all the operations,
which makes it a direct representation of the processing
sequence decision variables of the PIAN model. Freq-
uently, violations of the technological constraints are
encountered, which requires additional computations to
fix it during the interpretation phase.

The completion time-based representation [21] uses a
string of integer values having a length that equals the
total number of operations. The integer value stored in a
gene represents the completion time, which equals
 i is p of its associated operation. This representation
requires extra computational effort to fix an expectedly
large number of infeasible representations. This repre-
sentation has been excluded from the computational
comparison in this paper.

In the algorithm-based representations, the genotype is
used to store guiding information to be used by an algo-
rithm to generate feasible schedules, and there is no
guarantee for obtaining optimal solutions. In the priority
rule-based (PR) representation [22], the chromosome is a
string of priority dispatching rules which are applied in
sequence to schedule operations within an active sche-
dule generator, namely Giffler and Thompson algorithm
[23]. Consequently, the chromosome length equals the total
number of operations in a given problem.

 GA representations for the JSP

Model-based

 Operation‐based (OB) [17]

 Random keys (RK) [18]

 Preference list‐based (PL) [19] [20]

Binary Processing sequence

 Disjunctive graph‐based (job
pair relation‐based)
representation [16]

Algorithm-based

 Priority rule‐based (PR) [22]

 Machine‐based (MB) [22]

 Job‐based (JB) [23]

Integer

 Completion time‐based [21]

Figure 1. Types of GA representations for the JSP.

Representations in Genetic Algorithm for the Job Shop Scheduling Problem: A Computational Study

Copyright © 2010 SciRes. JSEA

1158

In the machine-based (MB) representation [8], the
chromosome is a string of machines with a total length
equals the number of machines. The sequence of the
machines in the chromosome represents the order by
which a machine is treated as a bottleneck machine in the
shifting bottleneck algorithm [12]. In the job-based (JB)
representation [24], the chromosome is a string of jobs
with a total length equals the number of jobs. Using the
order of the jobs given in the chromosome, a simple al-
gorithm is used to schedule all the operations of the giv-
en job in sequence on all the machines at once. To sche-
dule an operation, this algorithm searches for an empty
time slot on the assigned machine without violating the
technological constraints.

4. Reproduction and Mutation Operators

In GA, the reproduction operator can be seen as an ap-
proach for conducting neighborhood search; while, mu-
tation operator provides a mechanism to avoid being
trapped in a local optima. The design of both operators is
crucial for the success of GA. In the literature, the re-
production and mutation operators applied to the JSP are
mainly adopted from the literature of applying GA to the
traveling salesman problem (TSP). This adoption is mo-
tivated by the similarity between the GA representations
used for the JSP and the permutation representation used
to encode the sequence of visited cities [3].

Among the reproduction operators used in the JSP li-
terature are the partial-mapped crossover (PMX) [25],
the order crossover (OX) [26] and the uniform or posi-
tion-based crossover [27]. For both PMX and OX, there
are two versions, one in which there are a single cros-
sover point and another one in which there are two cros-
sover points.

The mutation operators used for the JSP implement
different mechanisms to exchange the values assigned to
randomly selected genes in a given chromosome. Swap
mutation, also known as reciprocal exchange mutation,
simply exchanges the values assigned to two different
randomly selected genes. Inversion mutation, inverts the
order of the values assigned to the set of genes located
between two randomly selected positions in the chromo-
some. Insertion or shift mutation selects a gene randomly
and sets its value to another randomly selected gene,
while the values of the genes between these randomly
selected positions are shifted. The displacement mutation
is another version of shift mutation in which a substring
of genes, instead of a single gene, is moved to a random-
ly selected new location. Gen and Cheng [3] provide a
detailed description of the implementation of the repro-
duction and mutation operators used in this study.

5. Experimentation, Results and Analysis

The previously mentioned GA representations, except the

disjunctive graph-based and the completion time-based,
are considered in the current computational study. A spe-
cial computer program prepared in the C++ programming
language is used to benchmark the performance of a
simple GA implementation with elite preservation strat-
egy. All chromosomes are initialized in a totally random
fashion by selecting randomly the values assigned for
each gene in the chromosome. In the cases of OB, PL
and JB representations, a special attention has been made
to avoid operation or job repetitions in the same chro-
mosome.

All experiments are conducted with a total number of
generations of 300, a fixed population size of 40, a fixed
elite size of 5, a fixed mutation probability of 0.1 and
reproduction probability of 0.8. For the selection operator,
a tournament selector is used. In this selector, two can-
didate solutions are drawn randomly with a probability
proportional to their fitness values, and the one with the
highest fitness (lowest makespan) is selected.

For each GA representation, the reproduction and mu-
tation operators described in the previous section have
been programmed. Since studying the GA performance
when different reproduction and mutation operators are
used is outside the scope of this paper, we programmed
the GA to randomly select an operator from the available
list. All reproduction operators have the same probability
of being selected, and so the mutation operators.

The benchmark problems used in the experimentations
are selected 40 standard test problems reported in the
literature and made available through the OR-Library in
the World Wide Web [28]. All runs are conducted on a
personal computer with Intel Pentium Core 2 Duo pro-
cessor running with a clock speed of 2.67 GHz and RAM
of 512 Mega Bytes.

For each test problem and GA representation, five GA
runs are conducted. The best and average makespan val-
ues among the five runs are reported in Table 2. Based
on these results, the optimality gap, which is defined as
the difference between the best or average makespan
value and the lower bound divided by the latter and mul-
tiplied by 100, is evaluated for each test problem. Table
3 lists the average among all test problems for both the
best and average optimality gaps. From these results, it is
clear that the MB representation gives the best quality
solutions with a small optimality gap and it is relatively
robust with minor variability in the final makespan value
among the five runs. This is followed by the PR repre-
sentation. The OB representation comes in the third place
in terms of both the average and best optimality gaps;
however its variability in the final makespan value is
higher than that of MB and PR representations. The trend
of increasing variability is apparent for the remaining GA
representations, JB, RK and the worst PL.

Representations in Genetic Algorithm for the Job Shop Scheduling Problem: A Computational Study

Copyright © 2010 SciRes. JSEA

1159

Table 2. Best and average makespan values.

Prob. Size*
No. of

Operations
Best known
lower bound

GA Representation**

OB RK PL PR MB JB

Best Avg. Best Avg. Best Avg. Best Avg. Best Avg. Best Avg.

abz5 10 x 10 100 1234 (opt.) 1300 1332.2 1327 1373.4 1466 1512 1299 1311.2 1283 1284.8 1425 1443.8

abz6 10 x 10 100 943 (opt.) 1037 1058 1016 1055 1071 1140.2 996 1009.2 967 971.4 1056 1103.8

car1 5 x 11 55 7038 (opt.) 7635 7953.6 7815 8212.8 8675 9306.4 7162 7482.8 7038 7038 7038 7038

car2 4 x 13 52 7166 (opt.) 7638 8014.6 8358 8648.6 8497 9159 7495 7601 7509 7509 7166 7208

car3 5 x 12 60 7312 (opt.) 7973 8156.6 8249 8791.6 9197 10271.6 7543 7794 7543 7543 7312 7346.8

car4 4 x 14 56 8003 (opt.) 8206 8679.4 8894 9258.2 9299 9929.6 8415 8471.2 8423 8423 8003 8003

car5 6 x 10 60 7702 (opt.) 7977 8169.4 8046 8508 9421 9999.6 7840 8018.6 7808 7808 7720 7747.4

car6 9 x 8 72 8313 (opt.) 8617 9277 9304 9884.4 10530 10999 9083 9257.2 8330 8330 8505 8591.4

car7 7 x 7 49 6558 (opt.) 6632 6969.2 7084 7430 7526 8305.2 6625 6750.4 6632 6638.6 6590 6600.6

car8 8 x 8 64 8264 (opt.) 8407 8766.4 9511 9827.2 10022 10635.6 8542 8762 8407 8442.8 8366 8366

la01 5 x 10 50 666 (opt.) 666 688.6 666 682 675 701 671 684.6 666 666 700 720.6

la02 5 x 10 50 655 (opt.) 676 698.8 686 719 715 754 675 692.2 684 684 718 731.2

la03 5 x 10 50 597 (opt.) 631 648 637 655 669 689.6 650 658.4 625 625 645 659.8

la04 5 x 10 50 590 (opt.) 607 629.6 614 623.8 633 695.6 629 667.2 590 590 675 694.4

la05 5 x 10 50 593 (opt.) 593 593 593 593 593 595.6 593 593 593 593 605 622

la06 5 x 15 75 926 (opt.) 926 926 926 934.8 926 931.8 926 937 926 926 941 966.2

la07 5 x 15 75 890 (opt.) 947 963.8 910 945.4 931 971.2 894 930 890 890 903 925.2

la08 5 x 15 75 863 (opt.) 863 881.6 863 886.6 895 922.8 866 877.2 863 863 905 940.4

la09 5 x 15 75 951 (opt.) 951 951 951 955.6 951 966.6 951 958 951 951 1009 1038.6

la10 5 x 15 75 958 (opt.) 958 958 958 958 958 967 958 958.2 958 958 987 1004.8

la11 5 x 20 100 1222 (opt.) 1222 1222 1222 1222 1242 1276.4 1222 1223.8 1222 1222 1264 1271.4

la12 5 x 20 100 1039 (opt.) 1039 1041.4 1039 1051.8 1088 1121.6 1039 1050 1039 1039 1069 1090.8

la13 5 x 20 100 1150 (opt.) 1150 1155.2 1150 1157.8 1189 1201.8 1150 1156.4 1150 1150 1213 1227.6

la14 5 x 20 100 1292 (opt.) 1292 1292 1292 1292 1292 1292 1292 1292 1292 1292 1300 1307.8

la15 5 x 20 100 1207 (opt.) 1274 1294.8 1303 1357.2 1390 1425.4 1274 1304.2 1207 1207 1294 1326.4

la16 10 x 10 100 945 (opt.) 1014 1036.2 1021 1069 1078 1167.4 1003 1034.6 994 996.4 1080 1120.8

la17 10 x 10 100 784 (opt.) 820 865.2 816 861 906 949.2 822 838.4 792 792.4 868 899.2

la18 10 x 10 100 848 (opt.) 933 948 928 961.4 977 1009.6 901 930.8 857 858.2 986 1011.6

la19 10 x 10 100 842 (opt.) 937 965.4 910 946.4 956 1004.4 892 919.2 869 871 980 1014

la20 10 x 10 100 902 (opt.) 989 1018 1035 1047.4 958 1086.2 944 969.4 941 941 980 1055.4

la21 10 x 15 150 1040 1224 1289.6 1230 1286.4 1353 1426.4 1189 1212.2 1105 1120 1285 1310.2

la22 10 x 15 150 927 (opt.) 1078 1135 1074 1160.8 1270 1305.2 1078 1098 963 973.4 1160 1185.8

la23 10 x 15 150 1032 (opt.) 1157 1215.6 1199 1251.6 1332 1348.8 1124 1154 1032 1032 1228 1289.6

la24 10 x 15 150 935 (opt.) 1084 1113.4 1147 1189 1178 1284.8 1059 1094.4 1000 1006 1179 1217.8

la25 10 x 15 150 977 (opt.) 1109 1216.6 1184 1219.2 1270 1357.4 1070 1112.6 1053 1059.4 1174 1213.8

orb1 10 x 10 100 1059 (opt.) 1216 1270.4 1253 1318 1321 1391.4 1106 1152.6 1128 1133.6 1165 1230.2

orb2 10 x 10 100 888 (opt.) 960 1008.4 1001 1030.4 1021 1088.6 939 966 911 911.4 1005 1045.4

orb3 10 x 10 100 1005 (opt.) 1197 1257.2 1200 1244.6 1302 1362.8 1120 1151 1074 1079.2 1176 1186.8

orb4 10 x 10 100 1005 (opt.) 1049 1110.2 1091 1163.4 1158 1252.4 1137 1158.8 1028 1040.6 1202 1234.2

orb5 10 x 10 100 887 (opt.) 1024 1073 1014 1076.8 1120 1178 986 1008.6 911 912.8 980 985.8

* The size of the problem is defined by the number of machines x the number of jobs; ** The acronyms used here for the GA representations are defined earlier
in Section 3 and Figure 1, (opt.) means that an optimal solution has been found and the value of the lower bound is the value of the minimum makespan for the
given problem.

Representations in Genetic Algorithm for the Job Shop Scheduling Problem: A Computational Study

Copyright © 2010 SciRes. JSEA

1160

The computational time in seconds is recorded for

each run. It is found that the main problem parameter
that directly affects the computational time in a given
problem is the number of operations. This is mainly attri-
buted to the decoding mechanism of the GA representa-
tion used which generally contains a main loop over all
the operations of a given problem. This fact is apparent
for all representations except MB which is also affected
by the number of machines in the decoding algorithm.
To illustrate that, all problems that have the same num-
ber of operations are sorted out, and the recorded com-
putational time is averaged among those problems. The
average computational time is plotted against the number
of operations for each GA representation as shown in
Figures 2 and 3. The results of OB, RK, PL and JB re-
presentations are separated in Figure 2 from those of PR
and MB representations for the sake of clarity.

It can be concluded from Figures 2 and 3 that the
computational time of the GA using OB, RK, PL, JB and
PR representations is a polynomial function of the numb-
er of operations where this relationship is almost linear
for the first four representations as shown in Figure 2. The
PR representation employs Giffler and Thompson’s algo-
rithm [23] to interpret the given list of priority rules into
an active schedule. This interpretation procedure requires
additional computational time in the decoding algorithm,
which also depends on the number of operations, result-
ing in an increasing rate of computational time with the
increase of the number of operations. For the MB repre-
sentation, the computational time is affected by another
factor, namely the number of machines, due to the de-
coding mechanism which employs the shifting bottle-
neck procedure [12]. This explains the unsteady rate of
increase/decrease in the computational time as related
only to the number of operations as showin Figure 3.

In order to provide a unified measure for comparing
the computational time requirements of the GA under the
studied six representations, the average computational
time in seconds of the five runs divided by the number of
operations in a given problem is calculated for all test
problems. Then, the average of this measure among all
test problems is evaluated for each GA representation,
and referred to as the average computational time per
operation. This measure is plotted in Figure 4 against
the average of the average optimality gap (or simply the
average optimality gap) given in Table 3.

From Figure 4, it can be concluded that, on average,
both RK and PL representations are dominated by the
other four representations, and accordingly they may not
be considered in the future unless more effective repro-
duction and mutation operations are devised. MB repre-
sentation provides the best average optimality gap, while
on the other side, job-based (JB) representation is the

Table 3. Averages of the best and average optimality gaps.

GA Representation
Average of Best

Optimality Gap %
Average of Avg.

Optimality Gap %

OB 6.40 9.90

RK 8.60 12.47

PL 14.79 20.73

PR 5.07 7.35

MB 2.35 2.55

JB 8.95 11.54

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200

A
ve
ra
ge

 c
o
m
p
u
ta
ti
o
n
al
 t
im

e
(S
e
co
n
d
s)

No. of operations

OB

RK

PL

JB

Figure 2. Computational time versus number of operations
for OB, RK, PL and JB representations.

0

500

1000

1500

2000

2500

3000

0 50 100 150 200

A
ve
ra
ge

 c
o
m
p
u
ta
ti
o
n
al
 t
im

e
(S
e
co
n
d
s)

No. of operations

PR

MB

Figure 3. Computational time versus number of operations
for PR and MB representations.

Figure 4. Average computational time per operation versus
average optimality gap.

Representations in Genetic Algorithm for the Job Shop Scheduling Problem: A Computational Study

Copyright © 2010 SciRes. JSEA

1161

fastest. The four representations: MB, PR, OB and JB
represent the Pareto front from which a software design-
er may choose.

6. Conclusions

In this paper, six different GA representations for the job
shop scheduling problem (JSP) are compared. The main
two factors that are used in the comparison are the aver-
age optimality gap, and the average computational time
in seconds divided by the number of operations of a giv-
en problem. A set of 40 standard JSP benchmark prob-
lems are solved using the GA under the studied six re-
presentations, and the averages of both measures are
calculated. It is found that the machine-based representa-
tion is capable of achieving the lowest optimality gap of
2.55% on average with a small variability among the
conducted runs, but with the highest computational time.
Both the random keys and preference-list representations
are found to be incompetent compared to the other re-
presentations.

7. Acknowledgements

The author would like to thank an anonymous referee for
his/her comments which helped to improve the presenta-
tion of the results in this paper.

REFERENCES

[1] J. Holland, “Adaptation in Natural and Artificial Sys-
tems,” University of Michigan Press, Ann Arbor, 1975.

[2] D. E. Goldberg, “Genetic Algorithms in Search, Optimi-
zation and Machine Learning,” Addison-Wesley, New
York, 1989.

[3] M. Gen and R. Cheng, “Genetic Algorithms and Engi-
neering Design,” Wiley, New York, 1997.

[4] M. Pinedo, “Scheduling-Theory, Algorithms, and Analy-
sis,” Prentice-Hall, New Jersey, 2002.

[5] M. R. Garey, D. S. Johnson and R. Sethi, “The Complex-
ity of Flow Shop and Job-Shop Scheduling,” Mathematics
of Operations Research, Vol. 1, No. 2, 1976, pp. 117-129.
doi:10.1287/moor.1.2.117

[6] Y. N. Sotskov and N. V. Shakhlevich, “NP-Hardness of
Shop Scheduling Problems with Three Jobs,” Discrete
Applied Mathematics, Vol. 59, No. 3, 1995, pp. 237-266.
doi:10.1016/0166-218X(93)E0169-Y

[7] R. Cheng, M. Gen and Y. Tsujimura, “A Tutorial Survey
of Job-Shop Scheduling Problems Using Genetic Algo-
rithms-I. Representation,” Computers and Industrial En-
gineering, Vol. 30, No. 4, 1996, pp. 983-997. doi:10.1016
/0360-8352(96)00047-2

[8] E. J. Anderson, C. A. Glass and C. N. Potts, “Local
Search in Combinatorial Optimization,” Princeton Uni-
versity Press, Princeton, 2003.

[9] B. Roy and B. Sussmann, “Les Problemes d’ Ordon-

nancement Avec Constraints Disjonctives,” SEMA, Note
D.S., Paris, 1964.

[10] T. F. Abdelmaguid, “Permutation-Induced Acyclic Net-
works for the Job Shop Scheduling Problem,” Applied
Mathematical Modeling, Vol. 33, No. 3, 2009, pp. 1560-1572.
doi:10.1016/j.apm.2008.02.004

[11] J. Carlier and E. Pinson, “An Algorithm for Solving the
Job-Shop Problem,” Management Science, Vol. 35, No. 2,
1989, pp. 164-176. doi:10.1287/mnsc.35.2.164

[12] J. Adams, E. Balas and D. Zawack, “The Shifting Bottle-
neck Procedure for Job Shop Scheduling,” Management
Science, Vol. 34, No. 3, 1988, pp. 391-401. doi:10.128
7/mnsc.34.3.391

[13] H. Bowman, “The Schedule-Sequencing Problem,” Op-
erations Research, Vol. 7, No. 5, 1959, pp. 621-624. doi:
10.1287/opre.7.5.621

[14] H. M. Wagner, “An Integer Linear-Programming Model
for Machine Scheduling,” Naval Research Logistics
Quarterly, Vol. 6, No. 2, 1959, pp. 131-140. doi:10.1002
/nav.3800060205

[15] A. S. Manne, “On the Job-Shop Scheduling Problem,”
Operations Research, Vol. 8, No. 2, 1960, pp. 219-223.
doi:10.1287/opre.8.2.219

[16] H. Tamaki and Y. Nishikawa, “A Paralleled Genetic Al-
gorithm Based on a Neighborhood Model and its Appli-
cation to the Jobshop Scheduling,” Proceedings Of the 2nd
International Conference on Parallel Problem Solving from
Nature, Amsterdam, 28-30 September 1992, pp. 579-588.

[17] M. Gen, Y. Tsujimura and E. Kubota, “Solving Job-Shop
Scheduling Problems by Genetic Algorithm,” Proceed-
ings of the IEEE International Conference on Systems,
Man and Cybernetics, San Antonio, 2-5 October 1994, pp.
1577-1582.

[18] J. Bean, “Genetic Algorithms and Random Keys for Se-
quencing and Optimization,” ORSA Journal of Compu-
ting, Vol. 6, No. 2, 1994, pp. 154-160.

[19] L. Davis, “Job Shop Scheduling with Genetic Algo-
rithm,” Proceedings Of the 1st International Conference
on Genetic Algorithms, Pittsburgh, 24-26 July 1985, pp.
136-140.

[20] F. D. Groce, R. Tadei and G. Volta, “A Genetic Algo-
rithm for the Job Shop Problem,” Computers and Opera-
tions Research, Vol. 22, No. 1, 1995, pp. 15-24. doi:10.
1016/0305-0548(93)E0015-L

[21] T. Yamada and R. Nakano, “A Genetic Algorithm Ap-
plicable to Large-Scale Job-Shop Problems,” Proceed-
ings of the 2nd International Conference on Parallel
Problem Solving from Nature, Amsterdam, 28-30 Sep-
tember 1992, pp. 283-292.

[22] U. Dorndorf and E. Pesch, “Evolution Based Learning in
a Job Shop Scheduling Environment,” Computers and
Operations Research, Vol. 22, No. 1, 1995, pp. 25-40.
doi:10.1016/0305-0548(93)E0016-M

[23] B. Giffler and G. L. Thompson, “Algorithms for Solving
Production Scheduling Problems,” Operations Research,
Vol. 8, No. 4, 1960, pp. 487-503.

Representations in Genetic Algorithm for the Job Shop Scheduling Problem: A Computational Study

Copyright © 2010 SciRes. JSEA

1162

[24] C. W. Holsapple, V. S. Jacob, R. Pakath and J. S. Zaveri,
“Genetics-Based Hybrid Scheduler for Generating Static
Schedules in Flexible Manufacturing Contexts,” IEEE
Trans. Systems, Man, and Cybernetics, Vol. 23, No. 4,
1993, pp. 953-971. doi:10.1109/21.247881

[25] D. Goldberg and R. Lingle, “Alleles, Loci and the Trav-
eling Salesman Problem,” Proceedings of the 1st Interna-
tional Conference on Genetic Algorithms and Their Ap-
plications, Los Angeles, 1985, pp. 154-159.

[26] L. Davis, “Applying Adaptive Algorithms to Epistatic
Domains,” Proceedings of the 9th International Joint
Conference on Artificial Intelligence, 1985, pp. 162-164.

[27] G. Syswerda, “Uniform Crossover in Genetic Algo-
rithms,” Proceedings of the 3rd International Conference
on Genetic Algorithms, San Mateo, 1989, pp. 2-9.

[28] J. E. Beasley, “Job Shop Scheduling,” 2008. http://people.
brunel. ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html.

