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ABSTRACT 

Due to the NP-hardness of the job shop scheduling problem (JSP), many heuristic approaches have been proposed; 
among them is the genetic algorithm (GA). In the literature, there are eight different GA representations for the JSP; 
each one aims to provide subtle environment through which the GA’s reproduction and mutation operators would suc-
ceed in finding near optimal solutions in small computational time. This paper provides a computational study to com-
pare the performance of the GA under six different representations. 
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1. Introduction 

Genetic algorithm (GA) is a random search optimization 
technique that mimics the natural selection process [1]. 
Its approach is based on randomly generating a new set 
(generation) of solutions from an existing one, so that 
there is improvement in the quality of the solutions thr- 
oughout generations. In the simple GA implementation 
[2], this approach is conducted through three main oper-
ators that are repeatedly applied to a given generation of 
solutions until a new child generation with a predeter-
mined population size is obtained: 1) random selection of 
two solutions from the individuals in the parent genera-
tion, 2) reproduction of two new child solutions by mat-
ing the selected individuals. This mating process is con-
ducted by randomly exchanging specific elements in the 
structures of the selected solutions in a manner similar to 
the crossover operation of chromosomes in natural ge-
netics, and 3) mutation of some randomly selected ele-
ments in the structures of the resultant child solutions to 
increase the capability of reaching further points in the 
search space. Different variations to the simple GA ap-
proach, aiming to improve its search capabilities, can be 
found in the literature. The GA has proven to be a com-
petitive random search technique for various types of 
optimization problems [3]. 

In order to apply GA to a specific optimization prob-
lem, one has to decide first how to represent solutions of 
the problem in a suitable structure that can be dealt with 
through both the reproduction and the mutation operators. 

Such a structure, referred to as the genotype, needs to be 
easily interpretable to a feasible solution of the studied 
problem. The selection of a suitable representation is usual-
ly accompanied with, and sometimes affected by, the de-
sign of suitable reproduction and mutation operators. In 
combinatorial optimization problems, the selection of a 
suitable GA representation is a challenging task. This 
class of problems is characterized by discrete decision 
variables that are usually interrelated through logical 
relationships. As a result, different mathematical models 
may exist for the same combinatorial optimization prob-
lem, leading to the existence of different possible GA 
representations. 

The job shop scheduling problem (JSP) is a well 
known combinatorial optimization problem that arises 
in low-volume production systems in which products are 
made to order [4]. It is concerned with sequencing a set 
of jobs on a set of technologically different machines; 
each is capable of processing at most one job at a time. 
Jobs follow dissimilar processing routes among the ma-
chines and a job cannot be processed on more than one 
machine simultaneously. Furthermore, preemption is not 
allowed and a job is permitted to have multiple visits to 
any machine. The JSP with the objective of minimizing 
the makespan is known to be NP-hard [5]. This complex-
ity even exists in the small case of three jobs and three 
machines [6][6]. As a result, and due to its importance, 
there is an ever-growing literature of heuristic approach-
es for that problem.  
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Among all combinatorial optimization problems, the 
JSP is presumably the most frequently solved by GA us- 
ing different GA representations. In their tutorial paper, 
Cheng, Gen and Tsujimura [7] provide a literature survey 
on the different GA representations used for the JSP. 
However, there is a gap in the literature regarding the co- 
mputational comparison of various representation schemes 
as only minor experimental comparison is reported by 
Gen and Cheng [3]. Anderson, Glass and Potts [8] report 
a computational study conducted with different metaheu- 
ristic approaches including four different GA implement- 
ations. However, their study falls short in the consisten- 
cy and coherence of the conducted experiments in terms 
of the number of runs and the number of tested problems. 
In this paper, six different representations are compared 
experimentally to identify the most effective ones in terms 
of solution quality and computational time requirement. 

The rest of this paper is organized as follows. First, we 
illustrate the structure of the JSP and present the different 
mathematical models that have been used in Section 2. In 
Section 3, a classification and a literature review on the 
GA representations used for the JSP is presented. The 
different reproduction and mutation operators used for 
the GA representations are presented in Section 4. In 
Section 5, the experimental results are illustrated and 
discussed, and finally the conclusion is provided in Section 6. 

2. Problem Structure and Mathematical Models 

Before discussing the available GA representations for 
the JSP, it is imperative to illustrate the structure of the 
problem and the different mathematical models that have 
been used in the literature. We denote J as the set of jobs. 
Each job consists of an ordered list of operations that 
represents its processing route through a subset of ma-
chines in the shop. We denote  1,2I v   as the set 
of all operations’ indexes. The operations’ indexes are 
assigned such that for job k J , the subset of consecu-
t ive  indexes   , 1, 2, ,k k k k kI I        in-
cludes the indexes of operations belonging to that job; 
where in the set Ik, the operation with the lower index is 
to be processed first. For operation i, the time needed to 
finish its processing is pi which is assumed to be integer 
without loss of generality, the job to which it belongs is 
denoted jb (i), and its processing machine is mc (i). 

The task of the scheduling process is to determine the 
start time si for every operation i   I. There are two sets 
of constraints in the JSP. The technological or prece-
dence constraints define the mandatory processing se-
quence of operations belonging to the same job. This set 
of constraints is represented by the following inequalities. 

1i i is s p    , 1 ki i I k J            (1) 

The second set of constraints is in a disjunctive (ei-
ther-or) form, and it represents the condition that opera-

tions on the same machine must be processed in different 
time intervals. 

i j js s p   or j i is s p   

 i, j   I, where mc (i) = mc (j) and jb(i)  jb(j)    (2) 

Different objective functions have been dealt with in 
the literature. In this paper, we concentrate on the objec-
tive of minimizing the maximum completion time or the 
makespan. The makespan, denoted Cmax, is expressed as 
follows. 

Cmax =
 

 
:

max
k

i i
i k J

s p
 

             (3) 

Different mathematical models have been proposed for 
the JSP. The integer linear programming (ILP) models 
use different forms of binary variables. Table 1 summa-
rizes the definitions of the binary variables used. Manne's 
model has gained larger interest in the research commu-
nity due to its comparatively small number of variables 
and constraints. 

The precedence constraints (1) of the JSP can be 
viewed as a series of consecutive operations for each job, 
which is analogous to a series of consecutive activities as 
found in project scheduling. This analogy motivated im-
porting network models that are used in the project 
scheduling literature to the JSP. To represent the disjunc-
tive constraints (2), additional sets of arcs are required. 
This is achieved in the literature by two models, the dis-
junctive graph model [9] and the permutation-induced 
acyclic network (PIAN) model [10]. 

In the disjunctive graph model, a disjunctive arc is de-
fined between every pair of operations that share the 
same machine. Each disjunctive arc is associated with a 
binary decision variable similar to that of Manne’s model, 
such that a selection on the value of that variable defines 
the direction and the length of each disjunctive arc.  

Based on the disjunctive graph model, very efficient 
algorithmic techniques have been developed such as the 
immediate selections [11] and the shifting bottleneck 
heuristic [12]. Alternatively, in the PIAN model, permuta-
tions are used to represent the processing sequence of all 
operations that share the same machine in a mannersimi-
lar to the idea given in Wagner’s model. These per- 

 
Table 1. Binary variables used in the ILP models of the JSP. 

Reference 
Variable 
notation

Definition 

Bowman 
[13] ,

m

i tx  
= 1 if operation i is processed on machine 

m in time unit t;  
=  0 otherwise. 

Wagner 
[14] ,

m
i lx  

= 1 if operation i takes the lth position in 
the processing sequence on machine 
m;  

= 0 otherwise. 

Manne [15] ,

m

i jx  
= 1 if operation i is processed prior to 

operation j on machine m;  
= 0 otherwise. 
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mutations are treated as decision variables and interpreted 
into directed arcs on the graph to provide a resolution for 
the disjunctive constraints (2). 

3. GA Representations 

Cheng, Gen and Tsujimura [7] provide a survey on the 
different GA representations used for the JSP. They clas-
sify them into two categories: direct and indirect. The 
distinction between direct and indirect representations 
depends on whether a solution is directly encoded into 
the genotype or not. Alternatively, in this paper we clas-
sify the GA representations for the JSP into two main 
categories: model-based and algorithm-based. Figure 1 
illustrates this classification and lists the available repre-
sentations in the literature for each category. 

In model-based representations, the structure of the 
genotype is based on the definition of the decision va-
riables of a specific JSP mathematical model, and a ge-
notype can be directly interpreted to a feasible or infeasi-
ble solution. A special algorithm may be needed to con-
vert infeasible solutions into feasible ones. In mod-
el-based representations, optimal solutions are attainable. 
The existing model-based representations use three types 
of decision variables: 1) binary decision variables as 
found in the disjunctive graph model and the ILP model 
of Manne, 2) processing sequence decision variables as 
described in the PIAN model, and 3) integer variables 
representing the operations’ start or completion times. In 
the binary GA representation, the disjunctive graph- 
based representation [16] has a large chromosome size 
and many infeasible solutions are encountered during the 
GA run, which requires extra computational effort to fix 
their infeasibilities. This GA representation is excluded 
from the computational comparison in this paper.  

In the processing sequence representations, there are 
three different forms that are based on the processing 
sequence decision variables as found in the PIAN model. 
The operation-based (OB) representation [17] uses a sin-
gle string of genes, where each job is represented by a 
number of genes equals the number of operations it con-
tains. Based on the order of the operations given in this 
representation, each operation is assigned the earliest 
start time permitted by considering the machine availa-

bility constraints to generate feasible schedule. In this 
interpretation mechanism, the technological constraints 
are easily satisfied.  

The random keys (RK) representation [18] is very 
similar to the operation-based one, except that each gene 
is filled with a randomly generated number between 0 
and 1. The random numbers in a given chromosome are 
sorted out and the resulting order is used to replace these 
numbers with an integer (the order). Each operation in 
the studied problem is assigned an integer value so that 
the resultant string of integers is equivalent to a string of 
operations. This string is then interpreted into feasible 
schedule using the same approach as in the operation- 
based representation with correcting any violation of the 
technological constraints.  

The preference list-based (PL) representation, found in 
[19] and [20], uses a string of operations for each ma-
chine instead of a single string for all the operations, 
which makes it a direct representation of the processing 
sequence decision variables of the PIAN model. Freq- 
uently, violations of the technological constraints are 
encountered, which requires additional computations to 
fix it during the interpretation phase. 

The completion time-based representation [21] uses a 
string of integer values having a length that equals the 
total number of operations. The integer value stored in a 
gene represents the completion time, which equals 
 i is p  of its associated operation. This representation 
requires extra computational effort to fix an expectedly 
large number of infeasible representations. This repre-
sentation has been excluded from the computational 
comparison in this paper. 

In the algorithm-based representations, the genotype is 
used to store guiding information to be used by an algo-
rithm to generate feasible schedules, and there is no 
guarantee for obtaining optimal solutions. In the priority 
rule-based (PR) representation [22], the chromosome is a 
string of priority dispatching rules which are applied in 
sequence to schedule operations within an active sche-
dule generator, namely Giffler and Thompson algorithm 
[23]. Consequently, the chromosome length equals the total 
number of operations in a given problem. 

  GA representations for the JSP 

Model-based 

 Operation‐based (OB) [17] 

 Random keys (RK) [18] 

 Preference list‐based (PL) [19] [20] 

Binary Processing sequence 

 Disjunctive graph‐based (job 
pair relation‐based) 
representation [16] 

Algorithm-based 

 Priority rule‐based (PR) [22] 

 Machine‐based (MB)  [22] 

 Job‐based (JB) [23] 

 

Integer 

 Completion time‐based [21] 

 

 

Figure 1. Types of GA representations for the JSP. 



Representations in Genetic Algorithm for the Job Shop Scheduling Problem: A Computational Study 

Copyright © 2010 SciRes.                                                                                 JSEA 
 

1158

In the machine-based (MB) representation [8], the 
chromosome is a string of machines with a total length 
equals the number of machines. The sequence of the 
machines in the chromosome represents the order by 
which a machine is treated as a bottleneck machine in the 
shifting bottleneck algorithm [12]. In the job-based (JB) 
representation [24], the chromosome is a string of jobs 
with a total length equals the number of jobs. Using the 
order of the jobs given in the chromosome, a simple al-
gorithm is used to schedule all the operations of the giv-
en job in sequence on all the machines at once. To sche-
dule an operation, this algorithm searches for an empty 
time slot on the assigned machine without violating the 
technological constraints.  

4. Reproduction and Mutation Operators 

In GA, the reproduction operator can be seen as an ap-
proach for conducting neighborhood search; while, mu-
tation operator provides a mechanism to avoid being 
trapped in a local optima. The design of both operators is 
crucial for the success of GA. In the literature, the re-
production and mutation operators applied to the JSP are 
mainly adopted from the literature of applying GA to the 
traveling salesman problem (TSP). This adoption is mo-
tivated by the similarity between the GA representations 
used for the JSP and the permutation representation used 
to encode the sequence of visited cities [3]. 

Among the reproduction operators used in the JSP li-
terature are the partial-mapped crossover (PMX) [25], 
the order crossover (OX) [26] and the uniform or posi-
tion-based crossover [27]. For both PMX and OX, there 
are two versions, one in which there are a single cros-
sover point and another one in which there are two cros-
sover points. 

The mutation operators used for the JSP implement 
different mechanisms to exchange the values assigned to 
randomly selected genes in a given chromosome. Swap 
mutation, also known as reciprocal exchange mutation, 
simply exchanges the values assigned to two different 
randomly selected genes. Inversion mutation, inverts the 
order of the values assigned to the set of genes located 
between two randomly selected positions in the chromo-
some. Insertion or shift mutation selects a gene randomly 
and sets its value to another randomly selected gene, 
while the values of the genes between these randomly 
selected positions are shifted. The displacement mutation 
is another version of shift mutation in which a substring 
of genes, instead of a single gene, is moved to a random-
ly selected new location. Gen and Cheng [3] provide a 
detailed description of the implementation of the repro-
duction and mutation operators used in this study.  

5. Experimentation, Results and Analysis 

The previously mentioned GA representations, except the 

disjunctive graph-based and the completion time-based, 
are considered in the current computational study. A spe-
cial computer program prepared in the C++ programming 
language is used to benchmark the performance of a 
simple GA implementation with elite preservation strat-
egy. All chromosomes are initialized in a totally random 
fashion by selecting randomly the values assigned for 
each gene in the chromosome. In the cases of OB, PL 
and JB representations, a special attention has been made 
to avoid operation or job repetitions in the same chro-
mosome.  

All experiments are conducted with a total number of 
generations of 300, a fixed population size of 40, a fixed 
elite size of 5, a fixed mutation probability of 0.1 and 
reproduction probability of 0.8. For the selection operator, 
a tournament selector is used. In this selector, two can-
didate solutions are drawn randomly with a probability 
proportional to their fitness values, and the one with the 
highest fitness (lowest makespan) is selected.  

For each GA representation, the reproduction and mu-
tation operators described in the previous section have 
been programmed. Since studying the GA performance 
when different reproduction and mutation operators are 
used is outside the scope of this paper, we programmed 
the GA to randomly select an operator from the available 
list. All reproduction operators have the same probability 
of being selected, and so the mutation operators. 

The benchmark problems used in the experimentations 
are selected 40 standard test problems reported in the 
literature and made available through the OR-Library in 
the World Wide Web [28]. All runs are conducted on a 
personal computer with Intel Pentium Core 2 Duo pro-
cessor running with a clock speed of 2.67 GHz and RAM 
of 512 Mega Bytes.  

For each test problem and GA representation, five GA 
runs are conducted. The best and average makespan val-
ues among the five runs are reported in Table 2. Based 
on these results, the optimality gap, which is defined as 
the difference between the best or average makespan 
value and the lower bound divided by the latter and mul-
tiplied by 100, is evaluated for each test problem. Table 
3 lists the average among all test problems for both the 
best and average optimality gaps. From these results, it is 
clear that the MB representation gives the best quality 
solutions with a small optimality gap and it is relatively 
robust with minor variability in the final makespan value 
among the five runs. This is followed by the PR repre-
sentation. The OB representation comes in the third place 
in terms of both the average and best optimality gaps; 
however its variability in the final makespan value is 
higher than that of MB and PR representations. The trend 
of increasing variability is apparent for the remaining GA 
representations, JB, RK and the worst PL. 
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Table 2. Best and average makespan values. 

Prob. Size* 
No. of 

Operations 
Best known 
lower bound 

GA Representation** 

OB RK PL PR MB JB 

Best    Avg. Best    Avg. Best    Avg. Best    Avg. Best    Avg. Best    Avg. 

abz5 10 x 10 100 1234 (opt.) 1300 1332.2 1327 1373.4 1466 1512 1299 1311.2 1283 1284.8 1425 1443.8

abz6 10 x 10 100 943 (opt.) 1037 1058 1016 1055 1071 1140.2 996 1009.2 967 971.4 1056 1103.8

car1 5 x 11 55 7038 (opt.) 7635 7953.6 7815 8212.8 8675 9306.4 7162 7482.8 7038 7038 7038 7038 

car2 4 x 13 52 7166 (opt.) 7638 8014.6 8358 8648.6 8497 9159 7495 7601 7509 7509 7166 7208 

car3 5 x 12 60 7312 (opt.) 7973 8156.6 8249 8791.6 9197 10271.6 7543 7794 7543 7543 7312 7346.8

car4 4 x 14 56 8003 (opt.) 8206 8679.4 8894 9258.2 9299 9929.6 8415 8471.2 8423 8423 8003 8003 

car5 6 x 10 60 7702 (opt.) 7977 8169.4 8046 8508 9421 9999.6 7840 8018.6 7808 7808 7720 7747.4

car6 9 x 8 72 8313 (opt.) 8617 9277 9304 9884.4 10530 10999 9083 9257.2 8330 8330 8505 8591.4

car7 7 x 7 49 6558 (opt.) 6632 6969.2 7084 7430 7526 8305.2 6625 6750.4 6632 6638.6 6590 6600.6

car8 8 x 8 64 8264 (opt.) 8407 8766.4 9511 9827.2 10022 10635.6 8542 8762 8407 8442.8 8366 8366 

la01 5 x 10 50 666 (opt.) 666 688.6 666 682 675 701 671 684.6 666 666 700 720.6 

la02 5 x 10 50 655 (opt.) 676 698.8 686 719 715 754 675 692.2 684 684 718 731.2 

la03 5 x 10 50 597 (opt.) 631 648 637 655 669 689.6 650 658.4 625 625 645 659.8 

la04 5 x 10 50 590 (opt.) 607 629.6 614 623.8 633 695.6 629 667.2 590 590 675 694.4 

la05 5 x 10 50 593 (opt.) 593 593 593 593 593 595.6 593 593 593 593 605 622 

la06 5 x 15 75 926 (opt.) 926 926 926 934.8 926 931.8 926 937 926 926 941 966.2 

la07 5 x 15 75 890 (opt.) 947 963.8 910 945.4 931 971.2 894 930 890 890 903 925.2 

la08 5 x 15 75 863 (opt.) 863 881.6 863 886.6 895 922.8 866 877.2 863 863 905 940.4 

la09 5 x 15 75 951 (opt.) 951 951 951 955.6 951 966.6 951 958 951 951 1009 1038.6

la10 5 x 15 75 958 (opt.) 958 958 958 958 958 967 958 958.2 958 958 987 1004.8

la11 5 x 20 100 1222 (opt.) 1222 1222 1222 1222 1242 1276.4 1222 1223.8 1222 1222 1264 1271.4

la12 5 x 20 100 1039 (opt.) 1039 1041.4 1039 1051.8 1088 1121.6 1039 1050 1039 1039 1069 1090.8

la13 5 x 20 100 1150 (opt.) 1150 1155.2 1150 1157.8 1189 1201.8 1150 1156.4 1150 1150 1213 1227.6

la14 5 x 20 100 1292 (opt.) 1292 1292 1292 1292 1292 1292 1292 1292 1292 1292 1300 1307.8

la15 5 x 20 100 1207 (opt.) 1274 1294.8 1303 1357.2 1390 1425.4 1274 1304.2 1207 1207 1294 1326.4

la16 10 x 10 100 945 (opt.) 1014 1036.2 1021 1069 1078 1167.4 1003 1034.6 994 996.4 1080 1120.8

la17 10 x 10 100 784 (opt.) 820 865.2 816 861 906 949.2 822 838.4 792 792.4 868 899.2 

la18 10 x 10 100 848 (opt.) 933 948 928 961.4 977 1009.6 901 930.8 857 858.2 986 1011.6

la19 10 x 10 100 842 (opt.) 937 965.4 910 946.4 956 1004.4 892 919.2 869 871 980 1014 

la20 10 x 10 100 902 (opt.) 989 1018 1035 1047.4 958 1086.2 944 969.4 941 941 980 1055.4

la21 10 x 15 150 1040 1224 1289.6 1230 1286.4 1353 1426.4 1189 1212.2 1105 1120 1285 1310.2

la22 10 x 15 150 927 (opt.) 1078 1135 1074 1160.8 1270 1305.2 1078 1098 963 973.4 1160 1185.8

la23 10 x 15 150 1032 (opt.) 1157 1215.6 1199 1251.6 1332 1348.8 1124 1154 1032 1032 1228 1289.6

la24 10 x 15 150 935 (opt.) 1084 1113.4 1147 1189 1178 1284.8 1059 1094.4 1000 1006 1179 1217.8

la25 10 x 15 150 977 (opt.) 1109 1216.6 1184 1219.2 1270 1357.4 1070 1112.6 1053 1059.4 1174 1213.8

orb1 10 x 10 100 1059 (opt.) 1216 1270.4 1253 1318 1321 1391.4 1106 1152.6 1128 1133.6 1165 1230.2

orb2 10 x 10 100 888 (opt.) 960 1008.4 1001 1030.4 1021 1088.6 939 966 911 911.4 1005 1045.4

orb3 10 x 10 100 1005 (opt.) 1197 1257.2 1200 1244.6 1302 1362.8 1120 1151 1074 1079.2 1176 1186.8

orb4 10 x 10 100 1005 (opt.) 1049 1110.2 1091 1163.4 1158 1252.4 1137 1158.8 1028 1040.6 1202 1234.2

orb5 10 x 10 100 887 (opt.) 1024 1073 1014 1076.8 1120 1178 986 1008.6 911 912.8 980 985.8 

* The size of the problem is defined by the number of machines x the number of jobs; ** The acronyms used here for the GA representations are defined earlier 
in Section 3 and Figure 1, (opt.) means that an optimal solution has been found and the value of the lower bound is the value of the minimum makespan for the 
given problem.    
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The computational time in seconds is recorded for 

each run. It is found that the main problem parameter 
that directly affects the computational time in a given 
problem is the number of operations. This is mainly attri- 
buted to the decoding mechanism of the GA representa-
tion used which generally contains a main loop over all 
the operations of a given problem. This fact is apparent 
for all representations except MB which is also affected 
by the number of machines in the decoding algorithm. 
To illustrate that, all problems that have the same num-
ber of operations are sorted out, and the recorded com-
putational time is averaged among those problems. The 
average computational time is plotted against the number 
of operations for each GA representation as shown in 
Figures 2 and 3. The results of OB, RK, PL and JB re-
presentations are separated in Figure 2 from those of PR 
and MB representations for the sake of clarity. 

It can be concluded from Figures 2 and 3 that the 
computational time of the GA using OB, RK, PL, JB and 
PR representations is a polynomial function of the numb- 
er of operations where this relationship is almost linear 
for the first four representations as shown in Figure 2. The 
PR representation employs Giffler and Thompson’s algo- 
rithm [23] to interpret the given list of priority rules into 
an active schedule. This interpretation procedure requires 
additional computational time in the decoding algorithm, 
which also depends on the number of operations, result- 
ing in an increasing rate of computational time with the 
increase of the number of operations. For the MB repre- 
sentation, the computational time is affected by another 
factor, namely the number of machines, due to the de- 
coding mechanism which employs the shifting bottle- 
neck procedure [12]. This explains the unsteady rate of 
increase/decrease in the computational time as related 
only to the number of operations as showin Figure 3. 

In order to provide a unified measure for comparing 
the computational time requirements of the GA under the 
studied six representations, the average computational 
time in seconds of the five runs divided by the number of 
operations in a given problem is calculated for all test 
problems. Then, the average of this measure among all 
test problems is evaluated for each GA representation, 
and referred to as the average computational time per 
operation. This measure is plotted in Figure 4 against 
the average of the average optimality gap (or simply the 
average optimality gap) given in Table 3. 

From Figure 4, it can be concluded that, on average, 
both RK and PL representations are dominated by the 
other four representations, and accordingly they may not 
be considered in the future unless more effective repro-
duction and mutation operations are devised. MB repre-
sentation provides the best average optimality gap, while 
on the other side, job-based (JB) representation is the 

Table 3. Averages of the best and average optimality gaps. 

GA Representation 
Average of Best 

Optimality Gap % 
Average of Avg. 

Optimality Gap %

OB 6.40 9.90 

RK 8.60 12.47 

PL 14.79 20.73 

PR 5.07 7.35 

MB 2.35 2.55 

JB 8.95 11.54 
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Figure 2. Computational time versus number of operations 
for OB, RK, PL and JB representations. 
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Figure 3. Computational time versus number of operations 
for PR and MB representations. 
 

 

Figure 4. Average computational time per operation versus 
average optimality gap. 
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fastest. The four representations: MB, PR, OB and JB 
represent the Pareto front from which a software design-
er may choose. 

6. Conclusions 

In this paper, six different GA representations for the job 
shop scheduling problem (JSP) are compared. The main 
two factors that are used in the comparison are the aver-
age optimality gap, and the average computational time 
in seconds divided by the number of operations of a giv-
en problem. A set of 40 standard JSP benchmark prob-
lems are solved using the GA under the studied six re-
presentations, and the averages of both measures are 
calculated. It is found that the machine-based representa-
tion is capable of achieving the lowest optimality gap of 
2.55% on average with a small variability among the 
conducted runs, but with the highest computational time. 
Both the random keys and preference-list representations 
are found to be incompetent compared to the other re-
presentations.  
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