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Abstract. An /fL-semigroup is defined to be a topological semigroup with the

property that the Schützen berger group of each Jf -class is a Lie group. The following

problem is considered: Does a compact semigroup admit enough homomorphisms

into /fi-semigroups to separate points of S; or equivalently, is S isomorphic to a

strict projective limit of //¿.-semigroups ? An affirmative answer is given in the case

that S is an irreducible semigroup. If S is irreducible and separable, it is shown that

S admits enough homomorphisms into finite dimensional /fL-semigroups to separate

points of S.

Introduction. A semigroup analog of the theorem of Peter and Weyl is not in

existence at the present time. Indeed, such a theory for compact semigroups closely

paralleling that for compact groups is generally believed to be unfeasible. In this

paper an alternate approach is considered. The alternative is to replace groups of

nonsingular complex matrices by compact semigroups with the property that the

Schiitzenberger group of each ,^-class is a Lie group. Such semigroups are called

/zT-semigroups. The following question is considered : Given a compact semigroup

S, do there exist enough homomorphisms of S into //X-semigroups to separate

the points of 5? Furthermore, can these homomorphisms be chosen so as to

preserve the Jt-class structure of SI We follow the current trend and call a homo-

morphism from S into an TYL-semigroup T a representation of S by the HL-

semigroup T.

The main result of this paper is that every irreducible semigroup admits enough

^F-class separating representations by 7/L-semigroups to separate points in S.

Moreover, if S/Jf is separable, then each of the //L-semigroups may be chosen to

have finite dimension. §1 is devoted to preliminary results of a general nature.

§2 deals with irreducible semigroups.

For the most part we will use the terminology and notation of [7]. All semi-

groups, homomorphisms, and isomorphisms will be in the category of compact

semigroups and continuous homomorphisms. The authors are indebted to J. D.

Lawson, Michael W. Mislove, and Eleanor Bailey for their useful comments and

suggestions.
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328 J. H. CARRUTH AND C. E. CLARK [May

1. Representations by //L-semigroups. The definition and properties of the

Schiitzenberger group of an ^f-class of a semigroup S may be found in [1], [2], or

[7, §A.4]. The Schiitzenberger group of an ^f-class acts as a topological trans-

formation group on certain subsets of S and as a group of homomorphisms on

other subsets. The assumption that the Schiitzenberger group be a Lie group

should be valuable in investigating these actions.

Definition 1.1. A compact semigroup S is an HL-semigroup if the Schiitzen-

berger group of each Jf -class of S is a Lie group. If there exist enough representa-

tions of S by //L-semigroups to separate the points of S then S has a complete

system of representations.

Certainly, S is an //¿-semigroup if and only if S1 is an Z/L-semigroup. Since

each Schiitzenberger group of 5 is the homomorphic image of some closed sub-

group of S1 [7, A.4.7], it follows from standard results on Lie groups [11] that

(i) S is an //L-semigroup if and only if (ii) each maximal group of S is a Lie group

if and only if (iii) each closed subgroup of 5 is a Lie group. If px and p2 are closed

congruences on S and p = pxn p2, then Sjp is isomorphic to a subsemigroup of

Sjpx x Sjp2. Therefore, standard methods yield that a necessary and sufficient

condition for 5 to admit a complete system of representations is that 5 be the strict

projective limit of //¿-semigroups. It is clear that if S has a complete system

{tt¡ : S -»■ S)ieJ of representations we may assume if we like that each rti is a sur-

morphism and that the system is directed in the sense that given any i, j e J,

there exists k ej with k ^ i, j such that the following diagram may be completed :

Equivalently, if p¡ is the congruence on S induced by 7r¡, we may assume that the

congruences {pi}iej are directed by set inclusion.

1.2. We now assume that £ is a compact semigroup with a complete system of

representations fa : S -» S)ieJ with the property that nt is a surmorphism for each

i e J. Let /: S -> £ be a surmorphism onto a compact semigroup T. We would

like to determine if there is a complete system of representations for T. Let p¿, p

denote the closed congruences on S induced by iri,fi, respectively, and let at be the

smallest closed congruence on S which contains both p¡ and p. Let £í = 5/ctí and

tbf. £—^ £j be the natural homomorphism. Now define r(: T^- £¡ by

t¡(/(x)) = ^i(x),    where x e S.

It is clear that r¡ is a well-defined homomorphism onto £,. Finally define/: Si —> £¡

by

fifa(x)) = </>i(x),   where x e S,
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and note that/ is a well-defined homomorphism onto Tt. We now have the follow-

ing commutative diagram :

(i) J h^U
S—L-^T

Each maximal group H in TX is the homomorphic image under / of a closed

subgroup in Sx, namely any maximal group in the minimal ideal of fi~1(H), and

hence is a Lie group. Consequently, Tx is an //L-semigroup.

Proposition 1.3. Using the notation of 1.2, the collection {tx: T->T,} is a

complete system of representations for T if and only if(]j ox = p.

Proof. Suppose (\, ox = p, and for x, y e S suppose rt(f(x)) = t,(/( y)) for every

i e J. Then <j>x(x)=<¡>ly) for every i e J and hence (x, y) e (~)j ox = p. Then/(x) =f(y),

and since/is a surmorphism, it follows that the family {t,} separates points of T.

Now suppose that {t¡} is a complete system of representations for T and let

(x,y)ef)joi. Then rlf(x)) = t¡(/(y)) for every ieJ and it must follow that

f(x)=fiy), that is, (x, y) e p.

1.4. In the situation described in 1.2, it is not always the case that (\jox = p,

even if the /3,'s are assumed to be descending. This is demonstrated by the following

example due to Eleanor Bailey.

Let S denote the usual unit interval with multiplication defined by xy = min {x, y}.

It can be shown that any closed equivalence relation on S with connected equiva-

lence classes is a closed congruence. Let p be the closed congruence on 5 whose

classes are the closed intervals [1/3, 2/3], [1/9, 2/9], [7/9, 8/9], etc., (that is, those

intervals used in the construction of the ternary Cantor set), and singleton sets {x}

if x is not in one of these intervals. Let px be the closed congruence whose classes

are the closed intervals [0, 1/3], [2/3, 1], and singletons {x} if l/3<x<2/3. Let p2

be the closed congruence whose classes are [0, 1/9], [2/9, 1/3], [2/3, 7/9], [8/9, 1],

and singletons {x} if x is not in one of these intervals. In general, pi is the closed

congruence whose classes are the closed intervals which are the components of the

complement of the union of those intervals used in the z'th stage of the construction

of the ternary Cantor set and singletons {x} if x is not in this complement. Then the

collection {pt}¡°= ». is directed under =>, and H ft = A where A denotes the diagonal

of S x S. Hence, the family of natural maps fo : 5 -> S/px} is a complete system of

representations for S (of course, 5 is itself an //L-semigroup, but for the purposes

of this example, this is irrelevant). However, it is easy to see that the smallest

closed congruence ox containing px u p is Sx S for each i. Hence (\ ax = Sx S^p.

We observe that in the preceding example, the natural homomorphism

/: S -» S/p does not separate Aif-classes of S (which, in this case, are the points
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of S). It will be shown, in fact, that it is the lack of this ^f-class separating property

which makes the above counterexample possible.

Definition 1.5. Let S be a compact semigroup, /: S-> T a homomorphism,

and p the closed congruence on 5 induced by/ If p<^Jf, then/is said to be JF-class

separating.

If £ is a compact semigroup and /: S ->- £ is a homomorphism, then / can be

extended to a homomorphism from S1 to T1 by defining (if necessary)/(l) to be

the identity element of T1. Whenever necessary it will be assumed that this extension

has been made.

The symbol á will be used to denote the ^"-ordering on a semigroup S, that is

x^y if and only if x e yS1 n S1y. The semigroup 5 is totally ^-ordered if for

x, y e S, then either xSy or y^x. If S is a compact totally ^"-ordered semigroup

then it follows from Theorem A. 3.20 of [7] that Jf is a congruence.

Proposition 1.6. Let S be a compact totally Jf-ordered semigroup and let f be an

3f-class separating homomorphism from S onto T. Let n be a surmorphism from S

onto S' and let p and p„ denote the congruences on S induced by fand n, respectively.

Then

V = {(x, y) e S x S | to*), *iy)) e (*■ x n)P}

is the smallest closed congruence on S containing both p and p„.

Proof. It is easy to see that 'if is a closed, reflexive subset of Sx S satisfying

WA u A^^. We will first show that ^ is transitive and hence a closed congruence

on S.

Let (x, y), iy, z) e <€. Then there exist elements (x', y'), iy", z) e p such that

(tt(x), niy)) = irrix'), *(/))     and     (TTÍJO, rriz)) = to/'), A?'))-

Since S is totally ^f-ordered, we may assume that y' e S1/', so there exists an

element w e S1 such that y' = wy". Since/is ^-class separating and iy",z')e p,

then iy", z') e^f, and z'=y"u for some u e S1. Then

(2) 7r(,VZ') = <WfU) = Ay'U) = n(y>iU)

= tr(y>(u) = rrifu) = itiz') = niz).

Also, iy", z) e p implies that

iwy", wz') = iy', wz') e p.

But (x', /) e p and so the transitivity of p gives (x', wz') e p. This together with (2)

gives

(*(*), A?)) = tox'), 7TÍWZ')),

and (x', wz') e p. Therefore (x, z)e%¡ which establishes the transitivity of <€.

Now let (x, y) e %!. We will show that (x, y) e o where o denotes the smallest

closed congruence on S containing p and p„. Let (x', y') e p such that

tox), niy)) = tox'), niy')).
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Then (x, x'), (y, y') e pn; and (x', y') e p, so (x, x'), (y, y'), and (x', y') are all in a.

It follows from the symmetry and transitivity of o that (x, y) e o.

Lemma 1.7. Let S be a compact totally JF-ordered semigroup and let /: S —> F

be an 3#'-class separating surmorphism. Then if S has a complete system of (M'-class

separating) representations, T also has a complete system of (Jt°-class separating)

representations.

Proof. We will use the notation of 1.2, assume that the p('s are descending,

and show that (\ax = p. The theorem will then follow by Proposition 1.3. Let

i ej and, as in Proposition 1.6, define a subset <€i of Sx S as follows:

% = iix, y) | W4 rrly)) e (w, x nXp)}.

Then, according to Proposition 1.6, 1oi = oi for each i. We now proceed to show

that H ai = ft Let (x, v)en<7¡=n^¡- Then for each i e J, (nx(x), nly)) e (nx x 7r()(/»),

so that the set

At = {(z, w)ep\ (nix), nly)) = (irt(z), nt(w))}

is nonempty. It is also easy to show that A¡ is closed, and that if Pic/>„ then

Ax<^Aj. Then, since {pjie/ is directed under ^>, it follows that {A,}^ is a descending

family of nonempty compact subsets of p, and therefore His/ A^D- Let

(z, w) e H ^i- Then (x, z) e P| ft and (y, i»)ef| px, but (~) px = As ; consequently

(x, y) = (z, w) e p. This concludes the proof of the first part of the theorem.

Suppose now that each of the representations tt¡ (i e J), is ^T-class separating.

To show that each t(: T^-Tt (see diagram (1)) is JF-class separating, suppose

rlf(x)) = rlf(y)). Then (x, y) e ox, and so there exists (x', y') e p such that

(nix), nly)) = (nix'), nly')).

Since both nx and/are Jt-class separating, each of (x, x'), (x1, y'), and (y\ y) are

in JÍ?. Hence (x, y) e Jt, and so fi(x) and fi(y) are in the same Ji?-class of T. This

concludes the proof.

Definition 1.8. Let S be a compact semigroup and/: S—>- Fa homomorphism.

We will say that/is a G-homomorphism if t e T and/-1(r) nondegenerate imply

the ^f-class of t in T is a group.

If/is a G-homomorphism, then/is one-to-one on the set 5-/_1(^) where Iß

is the union of the subgroups of T.

Lemma 1.9. Let S be a compact totally 3#'-ordered semigroup and fi: S—>T a

surmorphism such that fis a G-homomorphism. If S has a complete system of Jf-class

separating representations then so does T.

Proof. We will again use the notation of 1.2, assume that the p('s are descending,

and show that (\ ox = p. The reader will find it useful to refer to diagram (1) in
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1.2. Let iej. Since tt¡ is ^-class separating, we may apply Proposition 1.6 and

conclude that

^ = {(x,y)\(fi(x),fiiy))eifixf)iPi)}.

Let (x,y) e t7¡. Then there are elements x', /£5 such that (x',y') e p¡ and

(f(x),f(y)) = (fi(x'),f(y')). We consider two cases.

Case (1). (x, y) = ix', y'). Then (x, y) e pt. We restrict our attention now to

Case (2). (x, y)¥=(x',y'); suppose x#x'. Then/_1(/(x)) is nondegenerate and

since / is a G-homomorphism, the 3k? -class //(/(x)) of fix) is a group. Since

(x', y')ep¡  and  pi(=3Ji?,  then  (x', y')e3k? and  it  may  be  shown  easily  that

(f(x'),f(y'))eJt; so Hifix)) = H(Jiy)). Let B=f~\Hifix)).
Then £ is a compact subsemigroup of S. Since S is totally 3k?-ordered, it is known

that the minimal ideal A/(£) of £ is a closed subgroup of B, (in fact, A/(£) is an

3k?-class of S). Let M= A/(£) and let e denote the identity of M. Now ^¡(Af) is a

closed subgroup of S( with identity ^¡(e). Let

£(«■) = ker(/|A/),    and    £,(e) = ker(irt|Ai).

Since M is an ideal of B, eB^M. So, since/(x)=/(x'); we have Jex) =/(ex')

and consequently (ex)(ex') ~x e £(e). Similarly, (ej>')(ey) ~ * e £(e). But 7r,(x')

= 77¡(j'), so we have iex')iey') ~1 e £¡(e). We conclude then that

iex^ey)-1 = (e*)(exT W(*/)_ WX«?)-* e £(e)£((e)£(e).

But £(e), £¡(e) are normal subgroups of M, so

(exXey)-1 e Kje)K(e).

Reviewing the results of the preceding we have that for (x, y) e oh then either

(x, y) e pt (Case (1)), or there exists an idempotent e e S and closed normal sub-

groups Kiie) and £(e) of //(e) such that (ex)(ey)-1 e £¡(<?)£(e), (Case (2)). (Note

that e is independent of i e J.) Let (x, y)e f~) o{. If (x, _y) e p¡ for every / e J, then

x=j, and clearly (x, y) e p. If (x, y) $ p} for some j e J, then for Pic p;, (x, y) $ p¡,

and so, since (x, y) e (~) ct¡, we must have that Case (2) holds for all i such that

Pi^Pj. There is no loss of generality then in assuming that Case (2) holds for all

i e J. It is easy to show that {£¡(e)}¡£/ is a descending family of closed normal

subgroups of Hie) ( = A/), and that C]ieJ £¡(e) = {e}. Hence we conclude that

iexXey)-1 e Kie),   or   fiex) = fiiey).

But fiex) =fie)fix) =/(x), since fie) is the identity of //(/(x)), and similarly

fiey)=fiiy). It follows that (x, y) e p and therefore H CTt = P-

It now follows that the family of homomorphisms {r{: T^-T) constructed in

1.2 is a complete system of representations for £. It remains to be shown that each

t¡ is ^f-class separating. Let / e / and suppose t¡(/) = r^s). Let x, y e S such that
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t=f(x) and s=f(y). Then (x, y) e ax and according to Proposition 1.6, there exists

(x', y') e p¡ such that

if ix), /(/)) = (fix),fiy)) = (t,s).

But Pit=Jif, so H(x') = H(y') and hence H(t) = H(f(x')) = H(f(y')) = H(s). This

concludes the proof.

Lemma 1.10. Let S be a compact totally Jt'-ordered semigroup and let fi: S —> T

be a homomorphism. Then there exists a compact semigroup R and homomorphisms

h: S -> R,g: R-> Tsuch that (i) h is Af-class separating; (ii) g is a G-homomorphism ;

and (iii) f=gh.

Proof. As previously observed, Jf is a congruence on S. Let p be the closed

congruence on S induced by/ and let R = S\(p n Jf) with h: S-> R the natural

map. Define g: R -> T by gf/Lv)) =fi(x). It is clear that g is a well-defined homo-

morphism. That (i) and (iii) of the theorem are satisfied is obvious. We must show

that g is a G-homomorphism.

Suppose that g(h(x))=g(h(y)) where x, y e S and h(x)^h(y); then fi(x)=fi(y).

Since S is totally 3f-ordered, either x-¿y or j¿x. Without loss of generality we

assume y^x. Let zlf z2 e S1 such that y = xzx = z2x. Then since f(x) =f(y), f(yzx)

=f(xzx) =f(y), and therefore if n is any positive integer, f(yzx) =f(y)- There is an

idempotent e in S such that e is a cluster point of the sequence {z"}, and hence

f(ye)=f(y). Then

(3) /(*) = fiiy) = fiiye) = fi(y)fi(e) = f(x)fi(e).

Now either e^x or x^e. But if x e S1e, then xe = x and it follows from the fact

that J4? is a congruence that

xH(e) <= H(x).

It is known that zxe e H(e) so that

ye = xzxe e xH(e) <= H(x).

But since y = z2x, then

_ye = z2xe = z2x = y,

and we conclude that y e H(x). But then, since fi(x) =f(y), we would have that

(x, y)epC\^C, so that h(x) = h(y) contrary to our assumption. It follows that

x $ S1e and so we must have e^x; hence f(e) ûf(x).

Now,/(e) úfi(x) implies F/(e)c Tfi(x) which in turn implies T1fi(e)'= Tfi(x)fi(e).

The reverse inclusipn, T1fi(x)fi(e)cT1f(e) is obvious and hence, by Theorem A.3.20

of [7], (f(e),f(x)fi(e))eJf. Finally, by (3), fi(x)f(e)=f(x) and it follows that

(f(e), f(x)) e ffl. Therefore, H(f(x)) is a group and g is a G-homomorphism.

Theorem 1.11. Let S be a compact totally M'-ordered semigroup and letfi: S —>■ F

be a surmorphism. If S has a complete system of Jf-class separating representations,

then so does T.
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Proof. The proof follows easily from Lemmas 1.7, 1.9, and 1.10, and the fact

that a homomorphic image of a totally ^f-ordered semigroup is totally Jf-ordered.

Theorem 1.12. Let S be a compact semigroup with the property that 3k? is a con-

gruence, let G be a compact group, and let fi: S —> G be a homomorphism such that

f restricted to any 3k?-class of S is an injection. Then S has a complete system of

3k?-class separating representations to : S -> S)ieJ with the property that for each i,

S¡ is a subsemigroup of Sj3k? x Gtfor some compact Lie group G¡.

Proof. Let (a¡ : G -»■ G¡}le/ be a complete system of representations for G where

each fJj is a Lie group. For /e J, define ot<=SxS by

°i = {(*, y) I (*, y) e * and af/(x) = afiiy)}.

It is easy to see that tr( is a closed congruence on S. Let Si = Sjoi and wt: S-*- St be

the natural homomorphism. Now let x, ye S with x+y. If (x, y) $3k?, then -t¡(x)

T^Ttiiy) for all i e J. Suppose then that (x, y) e 3k?. Then since/is one-to-one on the

^-classes of S,/(x)#/(>>), and there exists iej such that afiix)#afiiy). Hence

7r¡(x) ̂  ir^y) and therefore the system of homomorphisms to}ie/ separates points

of S. It is also clear from the definition of 7r¡ that nt is ^-class separating. We now

show that each £¡ is an //£-semigroup. Let H be a closed subgroup of Si, and

define/: //-> G( by

/toW) = <hf(x),       (x e S, 7r¡(x) e H).

Suppose that for 7r¡(x), 7r,(_y) e H, we have /^(x) =fitrrJiy). Since tt,(x) and tr^y)

are in the same 3k?-class of S¡ and 7j-j is ̂ f-class separating, it follows that (x, y) e 3k?.

But also afiix) = afiiy), and so ix,y)eoi; hence 7ri(x) = 7rj(>'). It follows that/ is

an injection, and since G4 is a Lie group, so is //. Hence, S¡ is an //¿-semigroup.

Since 3k? is a congruence, S/^ is a semigroup. Let <f>: S-> S/^í61 be the natural

map. Define g, : S¡ -> S/^T x G¡ by

(4) ftto(x)) = (¿(x), afiix))       (x e S).

Then g( is a well-defined homomorphism. Suppose that gito(x))=g¡to(j>)). Then

(£(x) = 4>iy), so that (x, y) e 3k?. But afiix) = a¡fiy) implies that (x, y) e ou so

77i(x)=7ri(>>). Hence g¡ is an injection, and the proof is complete.

Corollary 1.13. Let everything be as in 1.12, and suppose that Sj3k? is finite

dimensional. Then each of the HL-semigroups S¡ QeJ) is finite dimensional.

Proof. Since each of the compact Lie groups in question may be considered as a

group of matrices over the complex numbers, it is finite dimensional relative to

either inductive or cohomological dimension. The result follows from [10] for

inductive dimension and from [6] for cohomological dimension.

Corollary 1.14. Let everything be as in 1.12 and assume moreover that G is

abelian. Then there are enough 3f-class separating representations into the HL-
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semigroup S\#FxR\Z to separate points (where R\Z denotes the circle group of

complex numbers having modulus 1).

Proof. This follows immediately from [11, §37] and Theorem 1.12.

2. Irreducible semigroups.

Definition 2.1. A compact connected semigroup S with an identity element 1 is

irreducible if S contains no proper compact connected semigroup which contains

1 and meets the minimal ideal of S.

The concept of irreducible semigroups was formulated by Hunter and Rothman

in [9], and important results were obtained by Hunter and Rothman in [9] and by

Hunter in [8] using the assumption that the semigroups were either normal or

abelian. It was later proved by Hofmann and Mostert, [7], that an irreducible

semigroup must be abelian. It was also in [7] that the structure theory of irreducible

semigroups was brought to its present, rather advanced state. Irreducible semi-

groups play a central role in the study of compact connected semigroups with an

identity.

For the remainder of this section, S will denote an irreducible semigroup. We

have already noted that S is abelian. It is also known that S is totally #f-ordered;

in fact, it was shown in [9] (under the assumption that S is normal), and by different

methods in [7, p. 143], that S/Ai? is an /-semigroup. In addition, we will need the

following result:

2.2. If X is a compact totally ordered semilattice then there is an irreducible

semigroup Irr (X) with the following properties:

(i) If e is the idempotent of M {Irr (X)) and g is the Clifford-Miller endomorphism

defined on Irr (X) by g(x) = ex, then g restricted to any Jif-class of Irr (X) is an

injection into the compact abelian group M(Irr (X)).

(ii) If S is any irreducible semigroup with the property that the set of idempotents

E(S) of S is isomorphic to X, then there exists a homomorphism from Irr (A1) onto S.

Part (ii) of this result is stated on p. 143 of [7] but the proof given there is in-

correct. However, Michael W. Mislove has discovered proofs for both parts and

they will be submitted for publication in the near future.

Lemma 2.3. If X is a compact totally ordered semilattice then Irr (X) has a

complete system of Atf'-class separating representations

{nt: Irr (X) -> Irr (X)¡Jt x R¡Z}ie].

The space Irr (A^/Jf x R\Z has codimension two and hence there are enough two-

dimensional 3^-class separating representations of Irr (X) to separate points.

Proof. The first part follows from Theorem 1.12, Corollary 1.14 and 2.2(i).

The second part follows from [6, Theorem 6.5].
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Theorem 2.4. Every irreducible semigroup S has a complete system of &'-class

separating representations {Tj: S-+St}ieJ. Moreover, if S\3tf is separable, then

each Sx may be chosen to have finite inductive dimension^).

Proof. According to Lemma 2.3, if X=E(S), there is a complete system of

■3^-class separating representations for Irr (X). Hence, by 2.2(ii) and Theorem 1.12,

S has a complete system of ^T-class separating representations. If S/Aif is separable,

then it follows from Lemma 2.3, Theorem 1 of [3] and standard results in dimension

theory [10] that each S¡ may be chosen to have finite inductive dimension.

Corollary 2.5. Any irreducible semigroup S is the strict projective limit of HL-

semigroups. If S\2tf is separable, then each of the HL-semigroups may be chosen to

have finite inductive dimension.

Corollary 2.6. Every cylindrical semigroup [7, B.2] has a complete system of

J^-class separating representations.

Proof. It is obvious that S x G is totally ^"-ordered if X is the universal compact

solenoidal semigroup and G is a compact group. According to Theorem 2.4, 2

admits a complete system of ^f-class separating representations and it follows

easily that S x G does also. The result now follows from Theorem 1.11.

3. Remarks. The previous section classified cylindrical semigroups and

irreducible semigroups among those semigroups which have a complete system of

representations by //L-semigroups. A natural question presents itself: what other

compact semigroups have a complete system of representations by //L-semigroups ?

Also, it may seem desirable to require that these representations be ^f-class

separating. It is rather easy to show, for example, that a compact completely

simple semigroup has a complete system of ^f-class separating representations.

Other likely candidates, for which the techniques of this paper may be applicable,

are (abelian) hormi, [7, §B-5], and (abelian) Clifford semigroups.
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