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Abstract

A graph is said to be representable modulo n if its vertices can be labelled

with distinct integers between 0 and n − 1 inclusive such that two vertices are

adjacent if and only if their labels are relatively prime to n. The representation

number of graph G is the smallest n representing G. We review known results

and investigate representation numbers for several new classes. In particular,

we relate the representation number of the disjoint union of complete graphs

to the existence of complete families of mutually orthogonal Latin squares.

1 Introduction

For a finite graph G, with vertices {v1, ..., vr}, a representation of G modulo n is a set
{a1, .., ar} of distinct, nonnegative integers, 0 ≤ ai < n satisfying gcd(ai − aj, n) = 1
if and only if vi is adjacent to vj. The representation number , Rep(G), is the smallest
n such that G has a representation modulo n. It was shown by Erdős and Evans [1]
that any finite graph can be represented modulo some positive integer, and so the
representation number of a finite graph is well defined.

We will survey known results and techniques for determining representation num-
bers. The representation number of a graph is related to its product dimension as
defined by Nešetřil and Pultr [8]. Reviewing work on both of these problems we can
observe new results in each case. We will also obtain some new results on repre-
sentation numbers for certain graphs classes. These include complete multipartite
graphs and graphs whose complements are paths, cycles and stars along with isolated
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vertices. One of our main results illustrates the difficulty of determining represen-
tation numbers and product dimension by showing that the representation numbers
of disjoint unions of complete graphs are closely related to the existence of complete
families of mutually orthogonal Latin squares.

Note that throughout this paper we will use the symbol pi to denote the i-th prime;
and for a graph G we will use N(v) to denote the open neighbourhood of a vertex v of
G, and GC to denote the complement of G. In addition let G + H be the graph with
vertex set V (G)∪V (H) and edge set E(G)∪E(H), and let G∨H be the graph with
vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H) ∪ {(x, y), x ∈ V (G), y ∈ V (H)}.
In each case we assume that V (G) and V (H) are disjoint. The sum G + G · · ·+ G of
m copies of G will be written mG. For V (H) ⊆ V (G) and E(H) ⊆ E(G) let G − H
denote the graph on V (G) with E(G − H) = E(G) − E(H). We will almost always
have G a complete graph, with Km−H the graph whose complement is H along with
m− |V (H)| isolated vertices. We will use Pn and Cn to denote paths and cycles on n
vertices respectively and Ks1,s2,...,st

for the complete multipartite graph with t parts
having sizes s1, s2, . . . , st. For any undefined notation see West [11].

2 General Theory

In this section we will review results involving the numbers and sizes of primes in
the factorization of representation numbers. These tools will be used subsequently
in determining representations and representation numbers of graphs and classes of
graphs.

Of the many types of graph products, one is of particular interest to us: the
Kronecker Product , G ×K H of graphs G and H is the graph with vertex set {(u, v) : u
a vertex of G, v a vertex of H}, (u1, v1) being adjacent to (u2, v2) if and only if u1 is
adjacent to u2 in G and v1 is adjacent to v2 in H, where adjacency excludes equality.
Note that loops are disallowed. The Kronecker product is so named because the
adjacency matrix of G ×K H is the Kronecker product of the adjacency matrix
of G and the adjacency matrix of H. Other names for this product can be found
in literature; the tensor product, the categorical product, the cardinal product, or
simply the product as in Lovász, Nešetřil, and Pultr [6] and Nešetřil, and Pultr [8].

A graph G is reduced if no two vertices of G have the same open neighbourhood,
and a reduction of G is any reduced graph obtained from G by repeatedly identifying
pairs of vertices with common open neighbourhoods. As any two reductions of G
are isomorphic, we will use the phrase “the reduction of G” instead of “a reduction
of G”. For v a vertex of G we will define the reduction number, red(v), of v to be
|{u ∈ G : N(u) = N(v)}|, and the reduction number, red(G), of G to be max{red(v) :
v ∈ G}. We will say that G has a constant reduction number c if red(v) = c for all
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vertices v of G. A graph with constant reduction is uniquely determined, up to
isomorphism, by its reduction and its reduction number.

If we use Gn to denote the graph with representation {0, ..., n− 1} modulo n then
it is obvious that Rep(Gn) = n and that a graph H is representable modulo n if and
only if H is isomorphic to an induced subgraph of Gn.

Let us look at the structure of Gn. Assume that n = pk1

i1
· · · pkm

im
, where pi1 , ..., pim

are distinct primes. If in the representation of Gn a vertex v corresponds to an integer
a then we will assign coordinates to v as follows. The coordinates of v with respect
to the ordered set of primes pi1 , ..., pim are (v1, ..., vm), where vj ≡ a mod pij for
j = 1, ..., m, and vj ∈ {0, ..., pij − 1} for j = 1, ..., m. If u has coordinates (u1, ..., um)
and v has coordinates (v1, ..., vm) then u is adjacent to v if and only if uj 6= vj for
j = 1, ..., m. In this coordinate representation two vertices of Gn share the same
coordinates if and only if they share the same neighbourhood. Thus we know the
structure of Gn.

Lemma 2.1 If n = pk1

i1
· · · pkm

im
where pi1 , ..., pim are distinct primes, then Gn has

constant reduction number pk1−1
i1

· · · pkm−1
im

and reduction Kpi1
×K · · · ×K Kpim

.

Proof. See Theorem 2.1 in Evans, Fricke, Maneri, McKee, and Perkel [4]. ✷

We next partially answer the question of embeddability of Gn in Gm.

Lemma 2.2 If n = pk1

i1
· · · pks

is
and m = pr1

j
1
· · · prt

jt
, where pi1 < · · · < pis and

pj
1
, . . . pjt

are sets of distinct primes, t ≥ s, pj
l
≥ pil for l = 1, . . . , s, pj

l
> pi

1

for l = s + 1, . . . , t, and pk1−1
i
1

· · · pks−1
is

≤ pr1−1
j
1

· · · prt−1
jt

, then Gn can be embedded in
Gm.

Proof. Lemma 2.1 leaves us to only consider the case in which both n and m are
square-free. In this case the map (c1, ..., cs) → (c1, ..., cs, c1, ..., c1) embeds Gn into
Gm. ✷

Note that Gn might be embeddable in Gm even if red(Gn) > red(Gm). We can
now state the following which is a stronger form of Lemma 2.4 in Evans, Fricke,
Maneri, McKee, and Perkel [4].

Theorem 2.3 (i) If a graph G is representable modulo pk1

i1
· · · pkm

im
, where pi1 < · · · <

pim are primes, then the reduction of G is representable modulo pi1 · · · pim.
(ii) If the reduction of a graph G is representable modulo pi1 · · · pim, where pi1 < · · · <
pim are primes, and pj1 , . . . , pjn

are distinct primes, n ≥ m, pjt
≥ pit for t = 1, ..., m,

pjt
≥ pi1 for t = m+1, ..., n, and the reduction number of G is at most pk1−1

j1
· · · pkn−1

jn

then G is representable modulo pk1

j1
· · · pkn

jn
.
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Another way of viewing this is that if Rep(G) = pk1

i1
pk2

i2
· · · pks

is
then G can be

embedded into an s dimensional array with dimensions pi1 × pi2 × · · · × pis with at

most Πs
j=1p

kj−1
ij

vertices per cell such that vertices in the same cell form an independent
set and such that vertices in different cells are non adjacent if and only if their cells
are contained in a subarray of smaller dimension. Viewing the array ‘geometrically’
non-adjacency occurs if the cells are in some ‘hyperplane’.

In the above we have viewed representation in two different ways. Given a graph
G and a representation {a1, ..., am} modulo n of G, we may also represent G by listing
the coordinates with respect to pi1 , ..., pit , where pi1 , ..., pit are the distinct prime divi-
sors of n. If we need to distinguish between the two different types of representation
we will refer to the first type as a numerical representation and the second type as
a coordinate representation, also called the cellular representation by Evans, Fricke,
Maneri, McKee, and Perkel [4]. These two types of representation are equivalent.
The conversion of a numerical representation to a coordinate representation has al-
ready been described. The conversion of a coordinate representation to a numerical
representation requires applying the Chinese remainder theorem.

Nešetřil and Pultr [8] define the dimension of a graph G to be the smallest integer
m for which G is isomorphic to an induced subgraph of Kn1

×K · · · ×K Knm
for some

integers n1, ..., nm. This is denoted pdim(G) in West [11] and we will use this notation
for dimension. As pdim(G) is defined for all graphs we obtain the following.

Theorem 2.4 Any graph can be represented modulo a product of some set of distinct
primes.

Proof. See Nešetřil and Pultr [8] and pages 376-378 in West [11]. ✷

Thus we may think of pdim(G) as the smallest number of prime factors we can have
in a representation of G modulo a product of distinct primes. A related representation
parameter is given by Silva [9]. The degree of a representation modulo n is defined
to be the number of prime divisors of n, counting multiplicities. The representation
degree, dr(G), of a graph is the smallest degree of any representation of G. Clearly
pdim(G) ≥ dr(G), and if G is reduced then pdim(G) = dr(G), and pdim(G) ≤ the
number of primes in the factorization of Rep(G).

In computing dr(G) we can use edge labellings of GC , the complement of G. An
edge colouring of a graph G is an assignment of colours to the edges of G so that
adjacent edges are coloured differently. The chromatic index of G, written χ′(G), is
the smallest number of colours needed for an edge colouring of G. A transitive edge
labelling of G is an assignment of colours to the edges of G so that adjacent edges
can be coloured the same only if they form two edges of a triangle, each of whose
edges is coloured the same. The transitive degree of G, written dt(G) is the smallest
number of colours needed for a transitive edge labelling of G. As an edge colouring
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is a transitive edge labelling, we see that dt(G) ≤ χ′(G). It is easily seen that if G is
triangle-free then dt(G) = χ′(G).

Let △(G) denote the maximum degree of a vertex of G.
We will make use of the following well-known results on chromatic indices.

Theorem 2.5 Let G be a graph. Then
(i) χ′(G) = △(G) or △(G) + 1.
(ii) If G is bipartite then χ′(G) = △(G)

Proof. See Vizing [10] for a) and Konig [5] for b). ✷

The next result describes the relationship between the dimension and representa-
tion degrees of graphs and edge labelling of their complements.

Theorem 2.6 (i) If χ′(GC) ≥ 2 then pdim(G) ≤ χ′(GC), and when GC is triangle-
free this becomes an equality.
(ii) If dt(G

C) ≥ 2 then dr(G) ≤ dt(G
C), and when GC is triangle-free this becomes

an equality.

Proof. See Proposition 2.3 of Lovász, Nešetřil, and Pultr [6] for (i), and Corollaries
5 and 8 of Silva [9] for (ii). ✷

As, when GC is triangle-free, dt(G
C) = χ′(GC) the following is immediate.

Theorem 2.7 Suppose that GC is triangle-free, △(GC) ≥ 2. Then
(i) dr(G) = χ′(GC) = △(GC) or △(GC) + 1.
(ii) If GC is bipartite then dr(G) = △(GC).
Furthermore if G contains an induced subgraph with a triangle-free complement then
dr is at least the maximum degree in the triangle-free complement.

Proof. A proof of Theorem 2.7 (ii), not using chromatic indices, for the case in which
GC is acyclic, was given by Silva [9]: the stronger result is an observation of Evans
[2].

Theorem 2.8 (i) A graph is representable modulo some prime if and only if it is
complete.
(ii) A graph is representable modulo a product of some pair of distinct primes if and
only if it does not contain an induced subgraph isomorphic to K2 + 2K1, K3 + K1, or
the complement of a chordless cycle of length at least five.

Proof. Part (i) is trivial. For part (ii) there are two different proofs in the literature.
See Theorem 2.6 in Nešetřil and Pultr [8], or Theorem 4.1 in Evans, Fricke, Maneri,
McKee, and Perkel [4]. ✷
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Corollary 2.9 (i) A graph is representable modulo some power of a prime if and
only if it is a complete multipartite graph.
(ii) A graph is representable modulo a product of some pair of powers of distinct
primes if and only if its reduction does not contain an induced subgraph isomorphic
to K2 + 2K1, K3 + K1, or the complement of a chordless cycle of length at least five.

The next theorem extends the part of Theorem 2.8 involving an induced K3 +K1.
It is still unknown if there is a simple extension of the part involving induced K2+2K1

and chordless cycles. For a summary of some other problems involving representation
numbers see Evans [3].

Lemma 2.10 Let G be a graph that contains Km + K1 as an induced subgraph. If G
is representable modulo n, then n contains at least m distinct primes.

Proof. This is essentially proved Lovász, Nešetřil, and Pultr [6] we only need to
observe that the coordinates of the Km +K1 must be distinct. By relabelling we may
assume coordinates of the K1 vertex are all 0. Since no two of the Km vertices agree
on a coordinate each must agree somewhere with the K1 vertex, there must be at
least m coordinates. ✷

In Theorem 3.6 we will determine Rep(Km + K1).
All of our results so far have dealt with the number of prime divisors of represen-

tation numbers. The following result tells us about the possible sizes of these prime
factors.

Theorem 2.11 If G is representable modulo n and p is a prime divisor of n then
p ≥ χ(G). Thus, if G is reduced then Rep(G) ≥ pipi+1 · · · pi+m−1, where pi is the
smallest prime satisfying pi ≥ χ(G) and m = dr(G) = pdim(G).

Proof. See Theorem 1.2 in Evans, Fricke, Maneri, McKee, and Perkel [4] and Silva
[9] and use the fact observed above that pdim(G) = dr(G) for reduced graphs ✷

Corollary 2.12 If G contains a Km + K1 and pi is the smallest prime satisfying
pi ≥ χ(G) then Rep(G) ≥ pipi+1 · · · pi+m−1.

Proof. Apply Lemma 2.10. ✷

We also note the following trivial bound which follows because vertex labels are
distinct in a representation.

Lemma 2.13 If G is representable modulo n then G has at most n vertices.
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3 Stars, Paths and Cycles

In this section we explore representations of paths, cycles and graphs of the form
Km −Pn, Km −Cn and Km −K1,l (graphs whose complements are paths, cycles and
stars along with isolated vertices).

For most of our examples in this section we will have Rep(G) = pipi+1 · · · pi+m−1

where m = dr(G), meeting the bounds in Theorem 2.11 and Corollary 2.12. This
will not always be the case for reduced graphs. Consider Kn ×K K2. We have
dr(Kn × K2) = 2, but clearly, by Lemma 2.13, if n > 6 then Rep(Kn ×K K2) > 2 · 3.

We begin by stating some basic results on paths and cycles that are known or can
be found by combining known results.

Theorem 3.1 Rep(Pn) = 2 · 3 · · · p⌈log2(n−1)⌉.

Proof. The cases where n = 1 and n = 2 are trivial and are covered in Theorem 4.1.
It is easily checked that Rep(P3) = 6 with representation {0, 1, 2} and Rep(P4) = 6
with representation {0, 1, 2, 3}.

Lovász, Nešetřil, and Pultr [6] show for n ≥ 3 that pdim(Pn) = ⌈log2(n − 1)⌉.
(Note, in [6] Pn is a path on n + 1 vertices where here we use Pn for a path on n
vertices.) Hence, by Theorem 2.11, Rep(Pn) ≥ 2 · 3 · · · p⌈log2(n−1)⌉. To get equality, for
n ≥ 3, the product dimension representations given in [6] can easily be seen to be
coordinate representations modulo 2 · 3 · · · p⌈log2(n−1)⌉. Rep(Pn) ≤ 2 · 3 · · · p⌈log2(n−1)⌉

is also shown in Corollary 3.2 in Evans, Fricke, Maneri, McKee,and Perkel [4]. ✷

Theorem 3.2 Rep(C4) = 4, and if n ≥ 3, Rep(C2n) = 2 · 3 · · · · p⌈log2(n−1)⌉+1.

Proof. It is easily checked that Rep(C4) = 4 with representation {0, 1, 2, 3}.
Lovász, Nešetřil, and Pultr [6] show that pdim(C2n) = ⌈log2(n − 1)⌉+1 for n ≥ 3.

Hence, by Theorem 2.11, Rep(C2n) ≥ 2 · 3 · · · p⌈log2(n−1)⌉+1, when n ≥ 3. To get
equality, for n ≥ 3, the product dimension representations given in [6] can easily
be seen to be coordinate representations modulo 2 · 3 · · · p⌈log2(n−1)⌉+1. Rep(C2n) ≤
pipi+1p · · ·⌈log2(n−1)⌉+1 when n ≥ 3 is also shown by Corollary 3.3 in Evans, Fricke,
Maneri, McKee, and Perkel [4]. ✷

Theorem 3.3 Rep(C5) = 3 · 5 · 7 = 105, Rep(C7) = 3 · 5 · 7 · 11 = 1155, and if n ≥ 4
and n is not a power of 2 then Rep(C2n+1) = 3 · 5 · · · p⌈log2 n⌉+1.

Proof. As noted in [4], it can be checked that Rep(C5) = 3 · 5 · 7 and Rep(C7) =
3 · 5 · 7 · 11.

Lovász, Nešetřil, and Pultr [6] show that pdim(C2n+1) ≥ ⌈log2 n⌉ + 1 for n ≥ 2.
Hence, by Theorem 2.11, Rep(C2n+1) ≥ 3·5 · · · p⌈log2 n⌉+1, when n ≥ 2. To get equality,
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for n ≥ 5, n not a power of 2, Theorem 3.2 in Evans, Fricke, Maneri, McKee, and
Perkel [4] shows that Rep(C2n+1) ≤ 3 · 5 · · · p⌈log2 n⌉+1. ✷

Note that the result of Evans, Fricke, Maneri, McKee, and Perkel [4] above shows
that when n is not a power of 2, pdim(C2n+1) = ⌈log2 n⌉ + 1. This had been left
as a question in remark 6.4 of Lovász, Nešetřil, and Pultr [6]. For the remaining
cases, C2n+1 where n is of the form n = 2s both the product dimension and the
representation number are unknown. However in [6], it is shown that for these cases
⌈log2 n⌉ + 1 ≤ pdim(C2n+1) ≤ ⌈log2 n⌉ + 2 and the upper bound holds for n of the
form 22t+1

.
Next we consider cases involving graphs whose complement is a star, path or cycle

along with isolated vertices. Here, addition of isolated vertices does not seem to cause
problems, but in the cases of paths and cycles from above and stars (considered in
Section 5) addition of isolated vertices seems to make the problem of determining the
representation number much more difficult.

The graph Km−P2 is not reduced and we will see in Section 5 that Rep(Km−P2) =
p2

s where ps is the smallest prime greater than or equal to m − 1.

Theorem 3.4 If m ≥ n ≥ 3, then Rep(Km − Pn) = pipi+1 where pi is the smallest
prime greater than or equal to m − n + ⌈n

2
⌉.

Proof. Note that GC is a path on n vertices union a set of m − n isolated vertices.
Km − Pn for n ≥ 3 contains a K2 + K1 and a clique of size m − n + ⌈n

2
⌉. So by

Corollary 2.12, pi ≥ m − n + ⌈n
2
⌉ and Rep(Km − Pn) ≥ pipi+1.

Next we show Km − Pn is representable modulo pipi+1. We give a coordinate
representation with respect to pi and pi+1 to the vertices of Km − Pn as follows. Let
v1, ..., vn be the vertices of the ‘removed path’. Assign coordinates (⌊ i−1

2
⌋, ⌈ i−1

2
⌉) to vi

for i = 1, .., n. The remaining m−n vertices of Km −Pn will be assigned coordinates
(i + ⌈n+1

2
⌉, i + ⌈n+1

2
⌉) for i = 0, ..., m − n. ✷

The graph Km−C3 is not reduced and we will see in Section 5 that Rep(K3−C3) =
2 · 3, that Rep(K4 − C3) = 23 and that for m ≥ 5, Rep(Km − C3) = p2

s where ps is
the smallest prime greater than or equal to m − 2.

Theorem 3.5 If m ≥ n ≥ 4, let pi be the smallest prime greater than or equal to
m − n + ⌈n

2
⌉. Then

(i) Rep(Km − Cn) = pipi+1 if n is even.
(ii) Rep(Km − Cn) = pipi+1pi+2 if n is odd.

Proof. Note that G is reduced and that GC is a cycle on n vertices union a set
of m − n isolated vertices. So GC is triangle free with χ′(GC) = 2 if n is even and
χ′(GC) = 3 if n is odd. Thus by Theorem 2.7, dr(G) = 2 if n is even and 3 if n is
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odd. Further χ(G) = m − n + ⌈n
2
⌉. Thus, by Corollary 2.12, Rep(G) ≥ pipi+1 if n is

even and Rep(G) ≥ pipi+1pi+2 if n is odd, where pi is the smallest prime satisfying
pi ≥ m − n + ⌈n

2
⌉.

For equality in (i) We use the same labelling as in Theorem 3.4 with the exception
that the vertex vn is labelled (n−1

2
, 0) with respect to pi and pi+1. This gives us a

representation modulo pipi+1.
For equality in (ii) We need only show that G can be represented modulo pipi+1pi+2.

To do this we will assign coordinates, with respect to pi, pi+1, pi+2, to the vertices of
Km−Cn as follows. Let v1, ..., vn be the vertices of the ‘removed’ cycle. Assign coordi-
nates (⌊ i

2
⌋, ⌊ i+1

2
⌋−1, ⌊ i+2

2
⌋−1) to vi for i = 1, . . . , n−1, and coordinates (n−1

2
, 0, n−1

2
)

to vn. The remaining m− n vertices of Km −Cn will be assigned coordinates (j, j, j)
for j = n+1

2
, . . . , m− n+1

2
. It is routine to check that this is a coordinate representation

of G modulo pipi+1pi+2. ✷

Stars are complete bipartite graphs and considered in Section 5. Here we consider
complements of stars. If m = n + 1 in the following theorem we get Rep(Kn + K1) =
psps+1 · · · ps+n−1 where ps is the smallest prime greater than or equal to n, since
Km − K1,n = Km−n+1 ∨ (Kn + K1). In Theorem 5.2 we will look at Rep(Kn + tK1).

Theorem 3.6 If n ≤ m− 1 then Rep(Km −K1,n) = psps+1 · · · ps+n−1 where ps is the
smallest prime greater than or equal to m − 1.

Proof. Note that GC is star on n + 1 vertices union a set of m − n + 1 isolated
vertices. By Corollary 2.12, a clique of size m − 1 and an induced Kn + K1 imply
Rep(G) ≥ psps+1 · · · ps+n−1.

We will give a coordinate representation modulo psps+1 · · · ps+n−1. Let v1, . . . , vm−n−1

be the vertices not in the star in GC , vm−n be the root of the star, and vm−n+1, ..., vm

be the vertices in the star. Vertices vj, 1 ≤ j ≤ m−n will be labelled with the coordi-
nates (j−1, ..., j−1). Vertices vm−n+i, 1 ≤ i ≤ n will be labelled with the coordinates
as follows. For a fixed i, the first i − 1 coordinate entries equal m − n + i − 2, the
i-th coordinate entry is equal to m− n− 1, and the remaining coordinate entries are
equal to m − n + i − 1. The above yields a representation modulo psps+1 · · · ps+n−1.
✷

4 Complete Graphs

In this section we consider disjoint unions of complete graphs and the relationship
of their representation number to mutually orthogonal Latin squares. Complements
of disjoint unions of complete graphs are complete multipartite graphs and will be
considered in Section 5.

We begin by reviewing some easy results.
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Theorem 4.1 Rep(Km) is the smallest prime greater than or equal to m.

Proof. This is proved in Evans, Fricke, Maneri, McKee, and Perkel [4]. The lower
bound follows from Theorem 2.11 and {0, 1, 2, . . . , m− 1} is a representation modulo
this prime. ✷

The graph nK1 of isolated vertices is not reduced. As discussed in Section 5, it is
easy to see that Rep(nK1) = 2n.

The next result on matchings is easily obtained from product dimension results.

Theorem 4.2 Rep(nK2) = 2 · 3 · · · p⌈log2 n⌉+1.

Proof. Lovász, Nešetřil, and Pultr [6] show that pdim(nK2) = ⌈log2 n⌉ + 1. Hence
by Theorem 2.11, Rep(nK2) ≥ 2 · 3 · · · p⌈log2 n⌉+1. To get equality, we can easily get
a coordinate representation by taking a binary sequence and its complement for the
endpoints of each edge, making sure that the choices are distinct (see West [11, page
378]). ✷

Next suppose that G = nKm, where n,m ≥ 2. nKm is reduced and χ(nKm) =
m and nKm contains an induced Km + K1, so by Corollary 2.12, Rep(nKm) ≥
pipi+1 · · · pi+m−1, where pi is the smallest prime satisfying pi ≥ m. When we get
equality is related to the existence of orthogonal Latin squares.

Theorem 4.3 If n,m ≥ 2 then Rep(nKm) = pipi+1 · · · pi+m−1, where pi is the small-
est prime satisfying pi ≥ m, if and only if there exists a set of n−1 mutually orthogonal
Latin squares of order m.

Proof. We have already observed that Rep(nKm) ≥ pipi+1 · · · pi+m−1. So we need to
show equality.

Let L1, L2, . . . , Ln−1 be a set of mutually orthogonal Latin squares of order m
with entries 0, 1, . . . , m− 1 and rows and columns indexed by 1, 2, . . . , m. The row k
column j entry of Li will be denoted Li(k, j) Let the vertices of G = nKm be denoted
v(ij), i = 1, 2, . . . , n, j = 0, 1, . . . ,m − 1 with v(ij) adjacent to v(i′j′) if and only if
i = i′ and j 6= j′.

The coordinate representation (v1(ij), v2(ij), . . . , vm(ij)) of v(ij) is specified as
follows. The coordinate representation of v(1j) is (j − 1, j − 1, . . . , j − 1). That is,
vk(1j) = j − 1 for j = 1, 2, . . . , m and k = 1, 2, . . . , m. The coordinate representation
of v(2j) is equal to the jth column of L1. That is, vk(2j) = L1(k, j) for j = 1, 2, . . . , m
and k = 1, 2, . . . , m. For i = 3, 4 . . . , n and j = 1, 2, . . . , m and k = 1, 2, . . . , m we
have vk(ij) = L1(k, x) where Li−1(k, x) = j − 1. So, to determine the coordinate
representation of v(ij) for i ≥ 3, find the locations of the entry j − 1 in the (i −
1)st Latin square, ‘superimposing’ these locations on the first Latin square gives a
transversal. Read these entries from top to bottom.
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Using elementary properties of orthogonal Latin squares it is straightforward to
check that this is a representation. For completeness we include the details.
- v(1j) is adjacent to v(1j′) for j 6= j′ since (j − 1, j − 1, . . . , j − 1) and (j′ − 1, j′ −
1, . . . , j′ − 1) disagree everywhere.
- v(2j) is adjacent to v(2j′) for j 6= j′ since the entries of a row of a Latin square are
distinct. Hence two columns disagree on each coordinate.
- v(ij) is adjacent to v(ij′) for i = 3, 4, . . . , n and j 6= j′ since the locations of the
entries j − 1 and the entries j′ − 1 in Li−1 are disjoint and since the rows of L1 have
distinct entries.
- v(1j) is not adjacent to v(2j′) since the coordinates for v(2j′) form a permutation
of 0, 1, . . . , m − 1 as they correspond to a column of L2 and v(1j) has representation
(j − 1, j − 1, . . . j − 1) where j ∈ {0, 1, . . . , m − 1}.
- v(1j) is not adjacent to v(ij′) for i = 3, 4, . . . , n since the coordinates of v(ij′) form
a permutation of 0, 1, . . . ,m − 1 as they correspond to a transversal in L1 (it is a
transversal since L1 and Li−1 are orthogonal) and v(1j) has representation (j−1, j−
1, . . . j − 1) where j ∈ {0, 1, . . . , m − 1}. Thus the two agree on one coordinate.
- v(2j) is not adjacent to v(ij′) for i = 3, 4, . . . , n since the coordinates of v(ij′) are
from a transversal of L1 and the coordinates of v(2j) are from a column of L1 and
each transversal in L1 intersects each column. Thus the two agree on one coordinate.
- v(ij) is not adjacent to v(i′j′) for i, i′ ∈ {3, 4, . . . , n} with i 6= i′. Since Li−1 and Li′−1

are orthogonal, the positions of the entries j−1 in Li−1 and j′−1 in Li′−1 agree in one
location and hence the corresponding transversals in L1 intersect. That is, for some
k and x, Li−1(k, x) = j − 1 and Li′−1(k, x) = j′ − 1, then vk(ij) = vk(i

′j′) = L1(k, x).
For the converse, assume Rep(nKm) = pipi+1 · · · pi+m−1 and we have a coordinate

representation of nKm meeting this bound. For each k = 1, 2, . . . ,m we may relabel
the entries vk(ij) without changing the representation number. Also for each k, the
entries vk(11), vk(12), . . . , vk(1m) must be distinct since v(11), v(12), . . . , v(1m) is a
clique. Thus after relabeling we may assume that vk(1j) = j − 1. That is, the
coordinate representation of v(1j) is (j − 1, j − 1, . . . , j − 1). Then, since each v(ij)
for i = 2, 3, . . . , n, j = 0, 1, . . . , m− 1 is not adjacent to all of v(11), v(12), . . . , v(1m),
the coordinate representation of v(ij) must be a permutation of {0, 1, . . . , m − 1} in
order for all to agree on at least on coordinate with each of v(11), v(12), . . . , v(1m).
Also, the permutations for v(ij) and v(ij′) must disagree on all coordinates and those
for v(ij) and v(i′j′) must agree on exactly one coordinate because of the adjacencies
in nKm. Then it is straightforward to check that the process described above to get a
representation from Latin squares can be reversed to form orthogonal Latin squares.
✷

For those graphs nKm that do not satisfy the conditions of Theorem 4.3 we con-
jecture the following.
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Conjecture 1 If n,m ≥ 2 then Rep(nKm) = pipi+1···pi+t−1, where pi is the smallest
prime satisfying pi ≥ t, and t is the smallest integer, t ≥ m, for which there exists a
set of n − 1 mutually orthogonal Latin squares of order t.

Our result on representation numbers of disjoint unions of complete graphs can
be used to get an analogue for product dimension.

Corollary 4.4 If n ≤ m, pdim(nKm) = m if and only if there exist n − 1 mutually
orthogonal Latin squares of order n.

Proof. From the theorem we need to show that pdim(nKm) = m if and only if
Rep(nKm) = pipi+1 · · · pi+m−1 where pi is the smallest prime satisfying pi ≥ m. We
will show the more general result that for non-empty G such that Km +G is reduced,
pdim(Km + G) = m if and only if Rep(Km + G) = pipi+1 · · · pi+m−1 where pi is the
smallest prime satisfying pi ≥ m.

By Corollary 2.12 and the analogue for dimension (proposition 3.4 in Lovász,
Nešetřil, and Pultr [6]), pdim(nKm) ≥ m and Rep(nKm) ≥ pipi+1 · · · pi+m−1. Given
either a representation for dimension or a coordinate modular representation with m
coordinates, we may relabel the entries within each coordinate and thus may assume
that the representations of the vertices of Km are (0, 0, . . . , 0), (1, 1, . . . , 1), · · · , (m −
1,m − 1, . . . , m − 1). Then since every vertex in G is non-adjacent to all of the
vertices of Km it must agree with each of these vertices on at least one and hence
exactly one coordinate. So the coordinate representations of the other vertices are
permutations of {0, 1, 2, . . . , m−1} and thus a modular coordinate representation is a
dimension representation and vice versa. We use pi ≥ m to ensure that the dimension
representation is a modular representation and we use Km +G reduced to ensure that
the representations are distinct and thus the modular representation is a dimension
representation. ✷

5 Representation Numbers of Non-Reduced Graphs

In this section we examine representations of some non-reduced graphs. In particular
we look at complete multipartite graphs and complete graphs union isolated vertices.
We no longer have the close connection to product dimension that we had for the
reduced graphs of the previous sections. If G is a complete multipartite graph then
pdim(G) = 2, but even for stars determining the representation number is compli-
cated.

Theorem 5.1 Rep(mK1) = 2m.
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Proof. This proof is from Evans, Fricke, Maneri, McKee, and Perkel [4].
{0, 2, 4, ..., 2(m − 1)} is a representation modulo 2m. A representation modulo some
integer less than 2m would imply that two labels would differ by 1 (by the pigeonhole
principle), and thus those vertices would be adjacent, a contradiction. ✷

Theorem 5.2 If t ≤ (m − 1)! then Rep(Km + tK1) = psps+1 · · · ps+m−1 where ps is
the smallest prime greater than or equal to m.

Proof. This is essentially shown in proposition 3.6 of Lovász, Nešetřil, and Pultr
[6]. By Corollary 2.12 Rep(Km + tK1) ≥ psps+1 · · · ps+m−1. We will give a coordi-
nate representation. Let v1, ..., vm be the vertices of Km, and vm+1, ..., vm+t be the
remaining vertices. Assign coordinates (j − 1, ..., j − 1) to vj for 1 ≤ j ≤ m, and
(0, s1, s2, ..., sm−1) to vj for m + 1 ≤ j ≤ m + t where each string {s1, s2, ..., sm−1} is
a different permutation of the numbers 1, .., m − 1. ✷

We now see how the addition of even a single isolated vertex can make determining
the representation number complicated.

Corollary 5.3 There exist graphs G where Rep(G + K1) = Rep(G) and where
Rep(G + K1) − Rep(G) is arbitrarily large.

Proof. The first part is trivial since Theorem 5.2 implies Rep(Km+K1) = Rep(Km+
(m − 1)!K1).

For the second part, by Theorem 4.1, Rep(Km) = ps where ps is the smallest prime
greater than or equal to m. By Theorem 5.2, Rep(Km + K1) = psps+1 · · · ps+m−1.
Hence we can make the difference Rep(G + K1) − Rep(G) for G = Km, arbitrarily
large by simply choosing m large enough. ✷

In Theorem 5.2 t = (m− 1)! is best possible in that Rep(Km + tK1) > Rep(Km +
(m−1)!K1) for t > (m−1)!. This follows from proposition 3.6 of Lovász, Nešetřil, and
Pultr [6], stating that pdim(Km+tK1) = m+1. The observation is that as in the proof
of Theorem 5.2 the vertices of the tK1 must be a permutation of {0, 1, . . . , m − 1}
and each of these permutations viewed as a coordinate representation must share
a coordinate. It is easy to see that there are at most (m − 1)! such ‘intersecting’
permutations.

While the product dimension of Km +tK1 is m+1 for all t > (m−1)! determining
the representation number for such graphs is not straightforward. By ‘reversing’ the
process of reduction we can get some partial results, which depend in part on the
distribution of particular primes.

Corollary 5.4 Let ps be the smallest prime greater than or equal to m. Then Rep(Km+
tK1) = p2

sps+1 · · · ps+m−1 for (m − 1)! + 1 ≤ t ≤ ps(m − 1)!. Furthermore, if
ps+i−1(m − 1)! + 1 ≤ t ≤ ps+i(m − 1)! and ps+m−1 < p2

s then Rep(Km + tK1) =
psps+1 · · · p

2
s+i · · · ps+m−1.

13



Proof. As noted above, Rep(Km + tK1) > psps+1 · · · ps+m−1.
Using the same coordinate representation from the proof of Theorem 5.2 we can

represent Km + tK1 modulo psps+1 · · · p
2
s+i · · · ps+m−1 for t ≤ ps+i(m − 1)! by placing

ps+i vertices in each cell (i.e., allowing ps+i vertices to have the same coordinates) as
in the comments after Theorem 2.3.

It remains to show that there is no representation modulo a smaller number n
in each case. By Lemma 2.10 and Theorem 2.11 n must have at least m distinct
primes all of which are greater than or equal to ps. So the next smallest possibility is
p2

sps+1 · · · ps+m−1 and thus the result holds when t ≤ ps(m − 1)!. For representation
modulo psps+1 · · · p

2
s+i · · · ps+m−1 when i ≥ 1, the only smaller possible values of n

are psps+1 · · · p
2
s+j · · · ps+m−1 with j < i, using the condition ps+m−1 < p2

s to eliminate
possibilities like p3

sps+1 · · · ps+m−1.
In these cases there can be at most ps+j vertices with each coordinate represen-

tation and as noted before the proof each coordinate representation is a permutation
of {0, 1, . . . , m − 1}. So, if t ≥ ps+i(m − 1)! + 1 > ps+j(m − 1)!, we would have more
than (m − 1)! permutations for which each pair agrees on some coordinate, which is
impossible. ✷

In the previous proof we had several isolated vertices using the same coordinate
representation. We could also do this for the vertices of the clique. For example,
the graph H + ps+i(m − 1)!K1 where H is the complete multipartite graph with m
parts of size ps+i can be represented modulo psps+1 · · · p

2
s+i · · · ps+m−1 as it can be

reduced to Km + (m − 1)!K1 by identifying independent sets of size ps+i with the
same neighbourhood.

We have referred several times in the previous sections to graphs that are complete
multipartite graphs. Complements of disjoint unions of complete graphs are complete
multipartite graphs, as well as the special cases Km − P2 and Km − C3. Each of
these last two fits into a special type of complete multipartite graphs, Km − Kn =
Km−n ∨ nK1 which have n parts of size 1 and one part of size m − n. Even for this
case it seems difficult to determine the representation number.

Recall Corollary 2.9(i) which says that G is representable modulo a prime power if
and only if it is a complete multipartite graph. However, as we shall see, the smallest
n representing such a graph will not always be a prime power. We begin with a
general result on multipartite graphs.

Theorem 5.5 The complete multipartite graph Ks1,s2,...,sm
is representable modulo

Πd
i=1p

ki

i if and only if pi ≥ m for i = 1, 2, . . . , d and if for C = Πd
i=1p

ki−1
i there exist

yij, i = 1, 2, . . . ,m, j = 1, 2, . . . , d such that C
d∑

j=1

yij ≥ si for i = 1, 2, . . . , m and

m∑

i=1

yij ≤ pj for j = 1, 2, . . . , d.
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Proof. This follows almost immediately from the view of the coordinate representa-
tion in the paragraph following Theorem 2.3. Each coordinate represents at most C
vertices and the coordinates representing the independent vertices in a part can be
assumed to form a subarray. The number of vertices representable in the subarray

must be at least the size of the part, hence the condition C
d∑

j=1

yij ≥ si and the sub-

arrays must be ‘disjoint’ in the sense that they do not share a coordinate, hence the

condition
m∑

i=1

yij ≤ pj. That the pi ≥ m follows from Theorem 2.11. ✷

It is not difficult to see that in the previous theorem we make assume some yij = 1
for each i. That is, the cells for the vertices in each part can be taken to lie in some
lower dimensional subarray.

An easy corollary follows.

Corollary 5.6 Let ps be the smallest prime greater than or equal to m. If G is a
complete multipartite graph with m parts each of size at most ps, then Rep(G) = p2

s.

This gives the representation number for graphs mentioned in the previous section:
Rep(Km − P2) = p2

s where ps is the smallest prime greater than or equal to m − 1
since Km − P2 is a complete multipartite graph with one part of size two and m − 2
parts of size one. For m ≥ 4, Rep(Km − C3) = p2

s where ps is the smallest prime
greater than or equal to m − 2; and Rep(K3 − C3) = 2 · 3, Rep(K4 − C3) = 23 since
Km −C3 is a complete multipartite graph with one part of size three and m− 3 parts
of size one.

We note the multipartite classes must be kept small. If the cardinality of a class
is strictly greater than ps then Rep(G) will not equal p2

s.
Even for the case of stars, a general result depends on the distribution of primes.

We immediately get the following Corollary, which is noted in [4].

Corollary 5.7 Rep(K1,m) ≤ min{2⌈log2 m⌉+1, 2p} where p is the smallest prime greater
than or equal to m + 1.

The comment in [4] also includes the term 3⌈log3 m⌉+1. However, using the fact that
for m ≥ 25 there exists a prime between m and 6m/5 [7], we see that there always
exists a prime p ≥ m + 1 such that 2p ≤ 3⌈log3 m⌉+1. So the representation number
of K1,m will never be a power of 3. Similar conclusions can be reached for complete
multipartite graphs of the form Km − Kn where every part except one has size one
if the ‘large’ part is large enough. For complete bipartite graphs that are not stars
such terms can be the minimum as Rep(K9,9) = 33.

Both of the other terms in the corollary can occur as the minimum. It is easy to
check that Rep(K1,4) = 23 and that Rep(K1,5) = 2 · 7.
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It may be possible that Rep(K1,m) will not be one of the forms mentioned in the
corollary. For example, if there exist primes p and q such that there is no prime and
no power of 2 between (p−1)(q−1) and pq then K1,(p−1)(q−1) is representable modulo
2pq and its representation number will either be 2pq or some term involving even
more primes.

References
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