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ABSTRACT

Let -G be a fiﬁite group with BN-pair and Coxeter éysfem
(W, R). Let A be the generic ring corrésponding to (W, R) 1in the éensé
of Tits; defined oveg the>polynomia1 ring D = Q[ur; r ¢ R]. Let k be
any field of characteristic zero. For the homomorphism ¢ : D —> k
defined-by '¢(ur) =4q., 4q, the index parameters of G, the specialzed
'algébrg A¢ak -is isomgrphic to the Hecke algebrav'Hk(G, B) of G with
respect to a Borel subgroup B of G, while for the speciélizatiqn defined
by . ¢(ur) =1, rve Ry A¢,k is isomorphic to the group algebra -kW. As
..tbe Hecke algebra Hk(G, B) affords the induced representation lg,-‘the'

irreducible representations of G appearing in lg can be obtained from

_the representations of Hk(G’ B).

Wrere s -

In ﬁhis thesis; we obtain all the irreducible representatibns,.
defined over the quotient fieid of D, of the generic ring corresponding
to é Coxeter system of classical type. The @éthod employed involves a
generalization of Young's construction of the semi-normal matrix represen-~

tations of the symmetric group.

We also obtain an explicit formula for the generic degree of these
representations in terms of the hook lengths of Young diagrams. Thus the
degrees of all the irreducible constituents of lg ~are obtained for the
families of Chevalley gfoupé A'(q) B (q) A1 (42) Al .(q2) Dl(qz)

h 2 ’ 2 ? 2% ’ 29-1 ’ 2
and for Dg(q), % odd. Also, most of the degrees are obtained for

Dl(q), % even. L )
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INTRODUCTION

The_results in this thesis are concerned with the’ir:educible~~"
complex representations of a finite.group G with BN—peif and Weyl group .
W of classical type, which appear in the induced perﬁutation representae~f
‘tion lg _from a Borei subgroup B of G. Thése representations were:
constructed by Steinberg in [16] for GL(n, q), parametrized‘by'partitionv
" of n and he showed an elegant formula to hold for their degrees in tefmsu
of the hook lengths of a Young diagram.. Some special‘representations-of
the'generic ring of a Coxeter s?stem and the degrees of-tﬁe cefrespoﬁdinge'-'

irreducible constituents of 1§ were also obtained by Kilméyer‘(cf. [6]1)-..

In this thesis we constfuct explicitly all the irfeduciblei
representations of the generic ring corfesponding to-a‘COXeter system of
classical type, i.e; of type An’ Bn (n > 2) and Dn (n 2_4)” ﬁﬁich 
specialize to irfeducible representations of the Hecke algebra HC(G, B)
affbrding the induced representation lg . The method employed»involves a
generalization of Young's construction of the semi—norﬁal matrix fepresen—
tations of the symmetric group. This construcfion also enables ue to
compute the degrees of the irreducible constituents of lg_. In the case
that the Weyl group of _é is .of type Bﬁ,' we obtain a formule for the
degrees determined by ehe hook lengths of pairs of Yeeng diagrams comparable
to Steinberg's formula for GL(n, q). Iﬁdeed, Steinberg's formula is

. recovered as a special case.

Here is a survey of the contents of this thesis. Chapter 1



contains the necessary preliminaries about thé répr§senta£ion théoryﬂof‘the
syﬁmetric.group.. In Chapter 2 thé generic ringgcorfesponding to[a>C0xeteff
system is introduced. The irredﬁcible.representations of the generic ring
OT(Bn) of a Coxeter system.of.type Bn’ defined over the polynomial riqg‘
Q[x, y] are constructed in Séction 2;2. They are parametrized by pairs of
partitions (a), (B) with [al +.]B| = n and are rational representations,
i.e. they are definéd'over K= Q(x, y).. Tﬁe'representations of the-
generié rings-CH(An)» and (ﬂ(Dn), defined over Q[x], corresponding to
Coxetet systeﬁs of type An ‘and Dn are obtained in Section 2.3vas coro-
llaries by. considering appropfiate spe;ialized algebr;s of (M(Bn)...For théA
speéializatipn "x —> 1, the representation of CH(AH) obtained speciélize

to give the semi-normal matrix representations of the symmetric group.

Chapter 3 is concerned with' the degrees.of'the irreduéible’cdnsti— .
tuents of .lg . It is first shown in Section- 3.1 that the representatiohé»
obtained are of parabolic typ¢,~i.e. fhey_appear with multipiicity one in
.soﬁe permutatioﬁ representation . 1G ; where P 1is a parabolic subgroup qf
G. The generic degree dX of an irredﬁcible character ¥ of‘the generic:
algebra is introduced, such that the'degreé of thé-correéponding-irreducible
character of G 1is obtained by specializing dX . In Section 3.2 an inte-
'vresting ihducﬁibn formula is derivéd for dx, where 1y is gn irreducible
character of CN(Bn); This formula, and leﬁgthy coﬁputations,'enablés us to
proVe in Séction.3.4 an e#plicit formula for dX' as a rafional function iﬁ.
the indeterminates x and y; in terms of the hook lengths of pairs of
Young diagrams.-AThé generic degrees'of all the irreducible chéracters.of'

(n(An) and almost all the irreducible characters of (N(Dn) are obtained

- as corollary.



CHAPTER 1

PRELIMINARIES

-1.1.. PARTITIONS AND TABLEAUX

A pantLixcn of n is an ordered set of positlve numbers

(a):= (al,-..., ak) “such that

ak”,' a; > oy > e L -

k arbltrary Such a partitlon (o)  is said to have k. parnts and,its
Kengih,‘ Ia[; is -n.” Thus (4, 3 3 1) is a partition of 11. It may

also be written (4,_32, 1) and a s1m11ar notation will be used elsewhere.

B We'represeet- (a) by a Young diagndm, D(a), having al' SQuaresﬂx
in the fifst-row,\ dz squares in the second row and so on, the jth squares

Afrof'the rews makingvafEOIUmn. D(a) 1is said to have shape (a). Thus

”is'the_Yoﬁhg diagremAef shape‘(4,‘32, 1). The squere in the iFh row and
jth eolumﬁ of 'D(a) islseid tovheve coondinateék(i,j) endlis ealled tﬁe
3'(1,5);$quada; | . |

'Let fd; denoee the number of squares appearing in the 1th‘column

of- ﬁ(a)ﬂ The Young dlagram D(a'), 'obtained by.interchanging the rows and -



':eolumns of D(a), 1is called the cbnjugaie of D(a) and the partition

C (a") = (o, «ees a') of n is called the confugate of (o) .
: 1° s . Jug

The n. Lelterns 1, ;.., n: may be arranged in the squares of _D(a)j
~in n! .ways, Eacn such arrangement is called a tabﬂeaux of shape (a). A
btableaux is called a Atanda&d Iabﬁeaux if the letters in every row increase
from left to right and in every column from top to bottom. Thus.the tableaux

(ii) and (iii) are standard tableaux while (i) is not. The tableaux of

114 |5 11315 12 1}3

2 | 3 2 | 4 4|5

W an
‘Figurerl.

shape (a) with the n 1etters arranged in’consecutive order in the rows,
starting with the flrst square in the first row is called the canon&caﬂ
Iabﬂeaux of shape (a) The tableaux (iii) above is the canonical tableaux

of shape (3, 2).

The number,“fa; ef standard tableaux of shape (a). is determined
as follows (see [12], p.44). The (i;j)-square of D(a) determines -the
(1,3)-h00h consisting of the (i,j)-square along with the di—i squares to‘
the right in the-ith.row:and the ag—j squares below in the jth eolumn.

‘ A.Thus the length of the (i,j)-hook is
N (1.1.15*i'”.f B W A R YR

'Then



(1.1.2) ' £ = nt/ JTh,,
, - L
. i,j

A double partition of n is an ordered pair of parfitions
(u).= (@, B) with ]a[‘+ 8] = n. If (a) =’(al, ...,~as) and
(B) = (Bl;».,.,uét), we write the dquble partition (u) as
() = (gl,-x;.; ﬁs;;; %hefé .pi = s, 1<ic<s gnd uj = si where_ j > s,

j =s+i . We allow either (a) or . (8) to be a partition of n in the

ébove,mi.e. let (0) ‘denote the emply partition. For (a) a partition of

n, (tdi?M105) é&ﬁﬁf((O), (a)) " are distinct double partitions of n . We
.represedt (ﬁ) by an ordered éaif of Young diagrams D(u) = (D(a)? D(B)),
'callgd the Vduné diagram oﬁléhape (). D) is considered'tb have s+t
“rows; ﬁﬁefe the ith row bf D(d) is the ith row of D(n) aﬁd thevjth TOW ‘
of 'D(B) is the—as+jthvrow of D(u). The Young diagrams of shape

(@), (0)) and ((0), (B)) are taken to be (- D(Q))"and (D(a), -) .

- The sduares of D(w) ére identified by their coordinates in the diagrams
':D(a) and .D(B)._ Thus-thé‘square of D(p) which is iﬁ the ith row and -
jth ¢oiumn of D(a) (#esp.-D(B)) is called the (i,jﬁ—équane o4 D(a)
(reép. D(B)) and has coordinates (i,j) . Hence distinct squares of D(u)
‘can have the same coordinates (fqriinstancé, thé'first square in the first

"row of D(u) and the first square in the s+lSt row of D(p) both have

coordinates (1,1), where s 1is as above).

A tableaux of shape (u) = (a, B) 1is any arrangement of the
letters 1, ..., n in D(u). Thus a tableaux TH. is an ordered pair
”(Ta,,Te)_ where, for complementary subsets K and L ,ofv'{l, «+.y, n} with

IK|.=4lél’ IL].; |8], T% denotes any arrangement of the letters of K in



D(a) and TB denotes any arrangement of the letters of L in D(R). The

tableaux - ™ is a standarnd tabfeaux if the arrangement of the letters is .
g

" in increasing order in the rows and columns of both ™ and T . Thus

315 113
4 |12
7.

Figure_2.'

;f is a‘éfénaar& tab1eauk of.shapeA,((3,-23~1),'(4, 2, 1)). The cananicdﬂ
"7~4'; iqbﬁeauxvofv;haﬁe tuj, ié the tableaux where,thg letters.aré arranged

| :_éonsecutiveiy in tﬁe rowskbf‘“ﬁ(u),  starting with the first square.in'the
' first f&wvof _D(ﬁ).' The number, fp;' of standard tableaux of shaﬁe |

() = (q,jB)' is

@y s (;)fafs . k= o ,

where .

€O oy,
PR - We order thé standard tableaux of a given -shape as follows :

pra

v ’DEFINITION (l.l.4) Let T; . Tg- denote standand tableaux 04 shape ().

We say T; precedes Tg Af the Letters n, n-1, ..., n-r+l appear in the
same now in both tableaux but the Letten n-r appears in a Lower row in Ti

,  ,'ihan £n_ 12 ,';The enumeration ?5 ihe‘éiandand tableaux acéonding to thein



- ondening 48 called the fast Ectte); Aequence.

.AThﬁs invthérlast 1etterfsequence all tabléaﬁx which ﬁave the.lg;ter
' ”3_‘in thevlast rowzﬁrecede those which have n in‘the’sécond to the last row.
These latterAtableaux precede those which have n in the third to the last
row and so on. Those t;bleaux which have B_Iin:the same row are arranged
: >by the same scheme according to the position of the letter Eil and so on;
If is evident thaf the canonical.tabléaux is the fifst tableaux in this

ordering.

We give an example ofrthié'ordering. For the double partitibn :
(2, 1), (2)), there are 20 standard tableaux. Arranged éccording to the |

last letter sequence they are,

12 13 12 13 23 14 14 24 12 13
3. 2 4 4 4 2 -3 3 5 5
- 45 45 35 25 15 35 25 15 34 24
v23 14 247 34 15 25 25 35
5 5. 5 5 2 4
14 23 13 12 34 2% 14 23 13 12

“ &
=G

- . Figure 3.

‘Finally we define the notion of axial distance.

h ."D;EFINITION (1.1.5) For squanes A and B in a Vdun‘g-cLé_ag/zwn‘-D(u) with
-coondinates (i,3j) and (s,t) -»-i@pgotévdy, define the axuu& distance, p,
 fnom A 2o >B-..‘,to'be,_ | - - | '

b = (te) = (D)



: Axiaivdisténce has a simple éraphical intérpretation. Suppose. the
‘squares - A and B are in the same diagram of D(u) = (D(a), D(B)) .
- Starting from A, 'proceed‘by any rectangular route one square at a time
-:until B‘“is reached. Counting .+1 for eacﬁ step made uﬁ&ards or to the
.tight'énd -1 for eéch sfep made_downwards or to the left, the resultant
number of stéps»méde is the axial distance from A to B . For squares -
bélonging to &istinct diagrams,vaxial disfanée is the distance of any.
rectangular foute, counted as above, in the diagram obtained by superimpoéing

D(B) upon D(a) .
Finally_jJ

DEFINITION (1.1.6) The axial distance grom the Letten R to the Letten q
in a tableaux TV is the axial distance fnom the square of T 4in which p

'~.-.-appec‘vw to the square of TV in which gq- appem.

- .Thus in Figure 2 the axial distance from 4 to 13 is 3, the
~axial distance from 13 to 4 is =3, the axial distance from 6 to 3

.is -1 and the axial distance from 9 to 7 is 0 .-



' 1.2. THE SEMI-NORMAL REPRESENTATIONS OF THE SYMMETRIC GROUP

We briefly describe:the.irréducible semi—ﬁormal representations of

'yfhe symmetric grogp. Sn  on ﬁi letters. The conjugacy classes of Sn are . .

 parametrised byytﬁe partifions of' n.‘ In ([18]) Young constructed for each
paftition (a) ’bf n an irreauciﬁle representatidn. Ia]' of Sn. of degree
£ bf constructing.primitive idempotents, the '"natural idempotents",.in the -
group élgeﬁra QSn from the étandafd tableaux of shape (a) . The distincfive
feature of these representations is ‘that they are integral, i.e., matrix

' rebfesenﬁafions afforaed‘by~the-ﬁinimal_left ideals generated by these

idemptoeﬁté have éntrieé in 'Z‘._vInva'éubsequent paper ([20Dh Yéﬁng coné—

1

. tructed an equivalent form of these representations by means of the 'semi-

normal idempotents". While the corresponding matrix representations are»ﬁot
' iﬁtegral, YoUné éhowed an éiegant cdnstruction to hold for the matrices of |

- the ﬁrénépositions_ (i-1, i) 'by means bf.thé.étandard'tableaux.“For a
'Atableaux” ™  of shape (o) , iet (i—l,fi)Ta denote the -tableaux 6btained_
. by 1nterchanéing:tﬁe letters‘ i-1 and i in T . If ™ is.a‘standard |
tableaux an& thé'1et;e£s i:l ‘and i do not occur either in the same roﬁ |
'6f éolumnjof Ta,} then (i-1, i)Ta is again a standafd tableaux...foung'é
. fundameﬁtal_;hgprei giﬁing thé Semi—normalbform of thé représentations of
of' éﬁ caﬁ.now’;tated as fqllqws}_v | |

o
1

, ..’.','T‘E . £ = £%, be the wuzangemeyitoﬁ the
B Ata,ndand tabledux 0§ shape. (a)'. accofzdihg to the Last Letten AeQuQn_ce._ To

 THEOREM (1.2.1) Let T

) cqmﬂwc;t the £ x f matrix iepne)szn;téng (i-1, i) in the irnreducible

: 'nepﬁeéentaﬂoh ,[a]' of S, com&pond&hgrto ('d), - place


http://Ae.que.nce
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(1) 1 in the p,pth entrhy where Tg has i-1 and 1 _in the

- -3ame how,

C(id) -1 dn the p,p™ entwy where ~T; has i-1 and i 4in the
same column, |

(iii) zthe matrnix

-0 . p+l —— oW p

1-p o «— low q
~cobumn p  column g

h

. th th  _th. t . |
An the “p,p ", Psq , 4,P and. q,q entries where p < q,

TZ = (i-1, :~i)Tg cand 1/p is the axial distance (see (1.1.6))
from 140 izl dn TS, |

(iv) .zejw»s e,fae_whe)ie..

 The importance of the semi-normal form is that it providés an
. inductive construction of the irreducible representations of Sn and moreover

. is defined in terms of the generators and relations of 8-

'.‘Yogng's fundamental ﬁﬁeorem can be exﬁénded to yield represeﬁtations
gf;'Sﬁ 'éorrespénAing to dpuBle partitions . (u) = (a, B) of n . .If‘ (a)
‘is a partiﬁion of k and (B) is~a partition of & ‘Qitﬁ k+2 ='n, let
[d]-[B].'denpte the feprgsenfation‘ofb Sn iinducéd from the direct p?oduct
repregen;ationi [q].iy[B] ~of the subgroup vSk x 8, of"Sn . _The‘rgpresep— 
,:tatiog‘ [a]ftB} iélgailed‘the;outen pﬁoduct nepnebehtdtéon of. [a] and

[B]._ For a standard tableaux ™ = (Ta,‘TB) of shapé (ﬁ) = (a, B), 1if the
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: _ - L . ' v _ N
- letters i-1- and i do not occur either in the same row or column of T
or_fTB; v(i—l, i)Tp is again a standard tableaux. Arranging the standard -
tableaux of shape (p) according to the last letter sequence, we have

" (see_[iZ],-p.S&)

 THEOREM (1.2.2) To comstruet the Mainéceé pneéeniihg (i—l, i) 4n the
outen pﬁoduci nepresentation [al-[B] 04 Sn;._appzy the construction giueﬁ
' in Theorem (1.2.1) to the standard tableaux (1%, %) of shape (a, B),
'bé,tténg p=0. | in (iii) L§ the Lottons ' i-1 and i belong to distinet

- tableaux T, .

The hype&ociahednaﬂ gﬁodp an of_ordef 2™n1  is the grbup of

signed permutations on n._letteré. It,cén_bg feéarded-as acting on an
.orthonormal basis ei, cees @ of R by means of permutations and sign
"~ changes. ’Deﬁote the kth sign éhange,. e, —> e by =(k). The.;et of
:fanspoéiﬁions (i—l, i), i= 2, -+, n, and the first sign change, -(1),
. éeﬁeraté _Hﬁ . In  ([le) Youﬁg showed the cbnjugacy classes of Hn ‘té be
parametrised by déuble partifions. (W) = (o, B) of n‘ and constructed for .-
ieaghldouble_partition (n) an irreducible representation [u]'.of Hn of
degreéi fuzgﬁy:pgg§t:ucting priﬁitiﬁe idempotents in QHn analogous to the
"natﬁ¥al idémpotentﬁ' of §, -~ Young did not construct the analogous ofvthe
"semi-normal" idgmpdtentsvfor Hn {. It is impliéit in his work, however,
that a'”semi—ﬁormal form" can be constructed for. the representations [u]
using Theorem (1.2;2). In parficular, using thevmafrices for théltransposi—

tions (i—l, i) in the outer product representation [a]-[B8], we need only

construct a matrix for the first sign change - -(1) which satisfies the .


http://ph.eAenti.ng
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.-relations of Hﬁ" It can readily be shown (see corollary (2.2.15)), using
the inductive ordefing provided by ‘the last letter sequance on theﬁstandard

tableaux of shape (a, B),. that

THEogEﬂ (1.2.3) To éonéiﬂuci the matrices nepresenting (i-1, i) 4in the
‘Lnneduéibﬂe nepaeéenzuiioné [ul = [a, B] 0§ H, apply Theorem (1.2.2).
To construct the matnix nepresenting -(1) place
_ (1) 1 in the.p,pth entrny Lf the Letter 1 appears in the
zab © of = (1%, 7 |
| Zgaux. . 04 > (Tp Tp) , |
(11) -1 4n the p,p'™ entry if the Letter 1 appeans in the

o tabteaux' TB of T = (T4, T
. : p P P P

(i) zeros elsewhere .

’Thus, anélogous to Theorem (1.2.1), the irreducible-representations

~of Hn can be defined inductively and in terms of génerators.and relations.


http://isiie.ducA.blz
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'CHAPTER 2

REPRESENTATION OF THE GEMNERIC RING CORRESPONDING

TO A COXETER SYSTEM OF CLASSICAL TYPE

2.1. HECKE ALGEBRAS AND FINITE GROUPS WITH BN-PAIRS

Let B be a subgroup of a finite-group.‘G and let k be a field

.of characteristic zero. Set e = |B|” -1 Z b in the group algebra kG .
' : beB :

Then e affords the l—representation lB of B and the left kG-module _

kGe affords the 1nduced representation 1

DEFINITION (2.1.1) The Heche aﬂgebna Hk(G B) 48 the Auba&gebna 04 kG

gx.ven by e(kG)e .

' The"Hecke algebra acts on kGe by right multiplication and the
action defines an isomorphism between Hk(G’ B) -and the endomorphism‘algebra

NDkG(kGe) . The double coset sums Z X, geG, form a basis for
T xeBgB '

B (G, B) (see [14], Lemma 84).

In this thesis we will'be cOncerned with finite groups: G .with
BN-pairs of subgroups"(B, N) satisfying the axioms of f17]. Then
H=38 NN is a normai subgroup‘of N and the Weyf group W = N/H has a
presentatlon w1th a set of distinguisned involutionary generators R and:
defining relations
_ . r =1, reR,
(2.1.2) ‘

(s ..) . = (st ...)n . r, seR, r # s,
rs rs :
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~whe;e n_. is the order of rs in W and (xy'...)m denotes a product
of alternating x's and y's with m factors. The pair (W, R) is

‘called a Coketen 5y§t€m, The group G 1is said to be of type (W, R).

If w#1l eiW, we denéte ?y l(w) the least length & of all
expressions |
’(2;1.3)- L Q. -
: (2.;.3)  is.ga11ed‘a réduced exprgssion for ‘w in R if 2‘?v2(w)

o There is a bijection between the double cosets B\\G//B and the
-elements " w € W resulting in the Bruhat decomposition G = \J BwB .
o R o - ’ weW
The structuré’of\the Hecke‘algebfa Hk(G’ B) of a finite group with a

BN-pair with respect-to a Borel sﬁbgroup' B was shown in [9] and [11] to

be as fo11ow§.5
-iﬁEoREﬁA(2.1.4)._Hk(G, 3) haa_k-bgAZA ’{sw ;.w e W} whéne
sw';. e
. wuﬁ s_l. ihé identity der_nen/'t“. -M@&tﬂp@cadoh_@_dd&npﬂned by the {ormula

Sws'r = swr 3 r e R, 2(wr) >>2(W)s

S S q.S

wr S o wr.‘+ (ﬁr'l)sw > r EVR,‘“x(Wr) < (w) -

whene the “{qr s r e R} are the index parametess

(2.1.5) “ ' Coq = IB.t.(B N rBr) | ;
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For any neduced expression w = rl.;Qrz for w in R, w#1

Thus H, (G, B) .LA genenated by f{sr » T £ R} and has degining relations

o S = qrsl +,(qr_1)r » . re R,

(2.1.6) '
- (5,5,-+), = (55_..0_

rs rs

'Whene»,nrsv 45 as in (2.1.2).

‘ Let (W, R)' be a Coxeter system and let '{ur', r € R} be
indeterqihates oﬁer E, choéen éuch that u. = ug if and only if r  and
S are conjugate iﬁA W . Lgt -D Be the'polynomial ring D = k[ur': T e.R].
- Then there exisﬁs én associative.D-algebra C] with identity, free basis

 {aQ » WeW over D and multiplication determined by the formulas

- aa = ?wr s . T s.R,- weW, Lwr)> z(w) .

(2.:1.'7)

* | uwa + (ur—l)aW s TER, we W,'.Q(wr) < Q(W)?

[+
o -
]

(see [2], p.55). The D-algebra (R is called the generic ning corresponding
to the Coxeter system (W, R). Analogous to Theorem (2.1.4), the generic

" ring Q1 has a presentation with generators '{ar', r ¢ R} and relations

‘a = uri + (urfl)ar » T e R,

(2.1.8) |

4.‘(aras...}n = (a‘sar...)n T, r, seR, r# s
: TS o rs : :
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with n__ as in-(2.1.2).
. rs .

The Hecke algebra Hk(G’ B) ' can be com?ared with.thé group algebra-
kW as follows. Let L be any field of characteristié-zero and .¢ :D— 1L
- a homomorphism. Consider L  as_a Demodule by Setting |

d-x = ¢(dr, deD, rel.
Then the specialized algebra
2.1.9 ' ’ = -
( ) _ A = Leya
is an algebra over L  with basis {a =18 a:}', generatoiS‘ {a. ',vr.e R}
‘ _ T W W A T T
and defining relations obtained from (2.1.8) by applying ¢.. Thus.if v

¢ : D—> k 1is defined by ¢(ur) =4q., TeR, qr' the index parameters

(2.1.5), then
(2.1.10) C&(b,k = H_k(G’ B)
while 1if ¢0 : D f4> k 1is defined by ¢O(ur) ?‘1, for all vr € R, :then

(2.1.11) : a = kW .

8,k

We say the Coxeter system (W, R) is of classical type if ‘W is

of type An’ B, n>2 or Dn’ n 3_4 . In this chapter, we will determine

n
the irreducible representations of the generic ring correspondihg'to a Coxeter
system of classical type and by means of the appropriate specialized algebras

the irreducible representations of the Hecke algebras HR(G, B) of groups-

with BN-pair of classical type.
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2.2. THE-REPRESENTATIONS OF O\K(Bn)

If a Coxeter system (W, R) is of type Bn;- n> 2, W(Bn) is
isomorphic to the Hyperoctohedral group, the‘group of.signed permutations on
n-letters (see 1.2 ). 'Thué W(Bn) has a presentation with generators

R =‘{w1, cees wn} where w, = (i-1, i), i=2, ..., n, and w, = -(1),

the first sign change and relations

2

w,oo= ;l .
Vi1 T Wo¥iYoMp o
WoWL gV, i=2, ..., n=1;

W, L W.W,
i+1"iVi+1 °

g
3]
1l

vy = vy il >t

(see [4]). Furthermore the set of generators-- R is partitioned into 2 :'
sets under conjugation; namely, wi' is conjugate to Wj ‘for‘vi, j>2

while the negative one-cycle Wy is not conjugate to- any wj, jfz_Z .

For the Coxeter system (W(Bn), R) taken as above, we take the
generic ring Cﬂ(Bn) to be defined over the polynomial ring D = Q[x,vy],

X,.y 1indeterminates over Q . It has a presentation with generators

a =a, , w, £€R, and relatiohs
W i i .
Bl a 2 % yl +'(y—1)a

1 _ 1
Bé o | a 2 _ x1 + (x-1)a » .i = 2 n s
» i . i? 3 ey »
B3 aja,3a, = azalazg1 s
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B4 233413 T 331733354

B5 '. a,a, = a.,a, , | Ii—jl > 1.

We depart from the notationg]ﬁf,(Z.i) strictly for notational cbnvenience,
i.e., we switch from Q(ul, ué) to Q(x, y) ‘to.avoid carrying around

subscripts.
We now construct for each double partition '(u) = (a,'B) of n,

n > 2, a K-representation of. '.K(Bn) =K @D (Bn)’ K = Q(x, y). The

method involves the construction of £¥ x f¥ matrices over K for each of

K . ) . . . :
the generators a; of QA (Bn) in a manner analogous to the construction -

- of the matrices of the transpositions (i-1, i) for the outer product

representation [a]*[B] of s .

For any integer Lk, Ilet

Ak, y) = xy +1.
Denote by M(k, y) the 2 x 2 matrix

(x-1) o ARHL, )

1
2.2.1 M(k = ———
( ) (k, ¥) NCRED) | | |
o . k :

xA(k-1, y)  x y(x-1)
Then trace M(k, y) = (x-1) , det ¥(k, y) = -x , »so»thé characteristic
polynomial of M(k, y) gives |
(2.2.2) Mk, 9% = x4+ (x-DUCE, v,

I the 2 x 2 identity matrix.:

’
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For k > 1, let
’ k-1 i
Ak, 1) = ) x= .
' i=0

- Denote by M(k, 41), k > 2; the "2 x 2 matrix

o ACktL, -1)
(2.2.3) Mk, oD = ey | o
| - xA(k=1, 1) xk

As M(k, -1) is obtained from M(k, y) by setting y = -1, (2.2.1) shows

(2.2.4) Mk, =1)2 = xI + (x=1)M(k, -1)

Denote by D(z, w) the 2 x 2 diagonal matrix

. ‘ z 0
‘D(z, w) = [ J .
~0 w

._ Then

(2.2.5) D(z, -1)2 = 2T + (2-1)D(z, -1)

In what follows, we employ the definitions and notations of (1.1

. in regards to double partitions, standard tableaux, and axial distance.

DEFINITION (2.2.6) Let (n) = (o, B) be a double partition 0§ n and Let
™, ..., TE , £ =f" be the ordening of the standard tableaux 0§ shape  (u)
: acco)Ld,(.ng to the Last Letten sequence. Construct f x £ matnices MM(i),

i=1, ..., n, over X =0Q(x,y) as follows :

(1) Comstruct MM(1) by nlacing
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() y 4n the p,p™ entry if the Letter 1 appears in. T; of

u a B
T = (T T
o (p’_.p)’

(ii) -1 4n tne p,pth entry 4§ the Lotten 1 appears 4in Tg of _

™ = (1@
P P

]
; TP) ,

(1i1) zeros elsewhere .
(2) Comstruct W (1), 1=2, ..., n, by placing

(1) x 4n the p,pth entry L4 the Lettens 'é:l and i appear in '
the same now of T on T of ™ = (1%, ) ,
» P P P P’ 'p
(ii) -1 4in the p’,pth entry 4if the Lettens i-1 and 1 appear in.

g

the same column o4 Tg on T of T;;

(1ii) The matrix M(k, -1) in the p,p™", p,q"", ap™ and
q,qth entries corrnesponding to the tableaux T: “and T}i'
whore -

(a) p<agq, (i-1, i)fl‘; = T: and ﬂle Lettens i-1 and. i
appear eithen both ;Ln Tg on Ti 05.-1“; ,
(b) k 48 the axial distance 5/wm i to i~1 4in T: ;

. : ‘N i s, . th th . _th _
(iv) The matnix Mk, y) 4n the p,p, p,q , q,p  and.

q,q entries conresponding to the tableaux T; and T‘;

| whej_te _
() p<aq (-1, DT = T and ﬂ’LQ tettors i-1 and i
appear in different tabLeaux 0§ T; E N

(b)) "k 48 the axial distance grom i to i-1 4n T: ;

(v) zenos elsewhere.
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Let Vu denote the free Q-module generatéd by t

1> =+ e s
£ = £V corresponding to the standard tableaux Tu, cess T; of shape (u)
ordered according to the lésﬁ letter sequence. For any field L 6f'

A L : . L :
characteristic zero set. VIJ = Vu 8 L .. The corresponding basis elements

ti @1 of V§' will be denoted simply .by. t, . Set K = Q(x, y). Define
linear operators Zf, i=1, ..., n, on 'Vﬁ' such that the matrix of oz -

with respect to the basis {

e (PR
t» .y tf} of VI: is given by M (i) . |

THEOREM (2.2.7) Let K = Q(x, y) and Lot 0@ ) denote the gemeric ring
of the Coxetern system . (W(B), R) a5 beﬁone. Let (n) be'd double pmn

04 n, n > 2. Then the K-Linear map

o O\K(Bn)

> END (V)

defined by w“(ai)- = -zi“ 48 a nepresentation of O\K(Bn). | | T
PROOF : We need to show the relations (B1-B5) are satisfied with Zgw

in place of a;. We argue by induction on n . For n= 2 it is a case by

case verification. The double partitions ((2), 0)), 0, 2)),

((1)2, 0)) and ((0), (1)2) are clearly seen to yield the well known one-

dimensional representations of CHK(BZ) ([6], 10). For the double partition

| |
and . From (2.2.6) .

(L), :(.-1)) there are two standard tableaux, -
|

ofE

M((l)’ (1))(1) = D(y, ~1) and M((l); (1))(2) =.M(O, y).. ﬁirect computation

verifies the relation

M(O’ Y)D(Ya —.l)M(O’ Y)D(Y, _l) = D(Y, —1)TI(03 Y)D(y: —l)M(O’ Y) .
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Thus the relations (Bl—B3)- are satisfied with le and ZB in place of.

a; - and a, by the above computation, (2.2.2) and (2.2.5).

Now let (u) = (ﬁl, }..,_us) be a douﬁle partition of n .
- Deletion of the letter. n from a standard tableauxbéutomaticly.yields é
standard tableaux involving n-1 léﬁteré.’ In fact deletion of n from all
sﬁéndard:tableaux having n ‘at the end of the i} row will yield all standard

tableaux of shape (p,, ..., u.-1, ..., ﬁ ). Denoting this partition by
1 i s &

(ui—) and using the fact that all standard tableaux with n - im

the ith row precede all tableaux with n in the jth row for i > j when ..

ordered according to the last letter sequence, we have

(2.2.8) ' v VK Ly 9.0 v
s .

U (u (ul—)

and the corresponding matrix block form .

M(E) = M @+...4M T @), i<n

as by (2.2.6), 'Mu(i) depends only on the letters i-1 and i . It is
understbod that (ui-) is taken to equal zero if n éannot aﬁpear in the
ith row and the abqve summation; here and elsewhere, wili be takeﬁ ove£ E
'thoée (ui—) which are non—zerb. By the induction hypothesis_it thefefore

suffices to check the relations (Bl—BS, as they pertain to ZS .

The matrix Mu(n) from (2.2.6) is composed of the matrices
Mk, y) and M(k, -1) centred about the diagonal along with diagonal

entries x and -1. Thus the rélation

U2 _1yoH
(Zn) = xI + (% 1)z_n
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follows from (2.2.2), (2.2.4) and- (2.2.5) .

Let . Vi'- denote the subspace of Vﬁ with basis 'ti’J; cees
, ‘ s il .
tl’; s 'corresponding to the standard tableaux of shape (u) with the letter
51,3 |

n appeariﬁg in the ith row énd n-1 'appe;ring in the jth'row,bthe ordefing
of ﬁhe basis tékenvaccording to the lést ietter sequence. Then

_Vl:_ = 8 V.

L 1,5 '

fhe _summation taken over all'allpwable i, j such that n apﬁears in row
i and n-l1 appears in row j» and this decompositioﬁ is cénsistent with
the last letter sequence arrangement of the basis of Vﬁ ..vThus,'whenevér
n ana ~n-1 are in distinct rdws and colﬁmns, we have V.-L:: V., . as

1,] NERS

C}K(Bn_z)—modules for n appearing in row i, n-1 -appearing in.qu Js

where W(Bn-Z) = <Wis oeees LA

Suppose first that n and n-1 appear in distinct rows and columns,

in the tableaux corresponding to Vi i 3 n inrow i, n-1 in row j .
9 . .

Then n appears in row j and n-1 appears in row i in the tableaux

'cprresponding to Vj 5 s =1, «c., s s

and the map gred S
j.i 7 P P
gives an isomorphism V, . =V, ., as K(B )-modules, as the configuration
. i,j joi -V n=-2

of the first n-2 letters in the tableaux corresponding to t;’J .is -the

. =8, .
1,3 J»1

same as the configuration of the first n-2 letters in the tableaux corres-
L j.i . s M _ 5
ponding to tp . In particular the matrix of Zk , k=1, ..., n-2,

on V, ,®V, , is
i,] Js1
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where 'Ak is the matrix of ﬂu(ak) on. Vi 5 On thé other hand,  the ﬁatrix;
s .

of z¢ on Kt;’J @Kté”* is, by (2.2.6), M(%, y) or M(2, -1), &
n . . .

the axial distance from n to n-1l . Thus the matrix of ;,Zz%m_on

V., .8V, . is
1,] Jst
allI alZI
S. =
n
aZII aZZI
where '(aij) = g(l, y) or M(2, -1), I ﬂghe si,j x Si,j 1dept1ty mgtr;x-
Then Snsk = Sksn for k=1, e n-2 , and (B5) holds. The iny

other possibility is when n and n-1 appear in the same row or column of-

.+ But in this case the matrix of .Zh-

the tableaux corresponding to Vi
. ’

on Vi . 1is the scalar matrix xI or -I by (2.2.6) and thus commutes with -~
> . .
Zg on Vi j? k=1, ..., n-2. This proves (B5) for all cases.
’ i o

To check the relation (B4), we consider the restriction of Zﬁ;l
and ZE ‘to subspacés with basis '{ti} corresponding to all tableaux Tg
having a fixed arrangement of the first n-3 letters and all possible

rearrangements of the letters n-2, n-1 and n . . Let

denote the corresponding decomposition of VE » the ordering of the basis
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of each Vp taken with respect to the last letter sequence. Then each
V_ is invariant under Zﬁ_l and Zz and it suffices to check (B4) for
the various possible arrangements of the last. 3. letters in a case by

. case basis,

In what follows, _Mp(i), i=n or n-1, will denote the matrix

u
ofA Zi on Vp

Case 1 - the letters n-2,"n-1 and n in the same row or column.
Then Vp is one dimensional and . Mp(il) = Mb(.n—l) =X or -1 by (2.2.6).

‘Ihus.

Mp(n)Mp(n—l)Mp(n) = Mp(n—l)Mp(n)Mp(n-l)

" and (B4) is satisfied.

Case 2 - the letters n-2, n-1 and n in two adjacent rows and
two'adjacent columns of the same diagram. Then Vp is two-dimensional with
basis elements corresponding to tableaux where the configuration of the last

3 letters is

‘ 3 n-2 ’ n-1 : n-2|n-1 n-2|n
(a) ) . ’ : ' or (b) . - ’ -
" Jn-1] n n-2|{ n : n | n~1

zofdered'according to the last letter sequence. Then by (2.2.6),
M (n-1) = M(2, -1) and M (n) = D(x, -1) in (a)  and -Mp(n—l) = D(x, -1)
and MP(II) =.M(2, -1) in (b). Thus (B4) is satisfied in both cases by

- direct verification of the relation

,,,,,



26

M(2, ~1)D(x, -1)M(2, -1) = D(x, -1)M(2, -1)D(x, -1) .

Case 3 - the letters n-2, n-1, and n in two rows and three
columns or three rows and two columns.. Then . Vp is three dimensional with
basis elements corresponding to tableaux where the configuration of the last-

3 letters is omne of

;a) g r n-2 n—l.%‘.j 2 [ffxnfz 'ﬁ.},, ; _;I["T.ﬁ-l:-n _

n n-1" n-2
o 1 ' n-2 2 n-1 '3 .: n
b >
®) n-1 n ——J n-2 n-f-J ’ : n-2 n--l—’--l _
| 1 'nrz 2 2 3 nTl'-.. o

@ o, " "

' I— _ n[I_ ' n[;— -

1 n2 2 a1 3 n
(€)) - n—l"'J . : n-2 —J Y n-2 -J
: [ o l
n n . n-1

ordered according to the last letter sequence. If we set.

c bll b12 .
T B DR PR 5207 | P Pap -
421 %22 - €

we haﬁe; by case (2.2.6), in case (a), Mp(n-l) Sl, and ~Mé(i1) = 82 where
(aij) = M(dl, £), (bij) = M(dz, €), €=y or -1, gnd ¢ = x. Here d1

is the axial distance from n-1 to n-2  in 2 and d2 is the. axial
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distance from n to n-1 in 1 so that d2 = dl +1. In case. (b), -

Mp(n—l) = 82 and”;Mb({1)v= S1 with the same entries in Si as in case

(a).. The analysis of (c¢) and (d) is similar except that now c¢ = -1 in

Sl and SZ' Thus in all cases (B4) is satisfied by

LEMMA (2.2.9) Let S,, S, be as above and Lot (5ij) = M(a, y),
(bij) = M(bb, y) . Then {on

(i) ¢

x and b-1=a ,

-1 and b+l = a ,

(ii) ¢
we have 515251 = 325132 .

PROO? : Observe thaF slSZSl = SZSlSZ iff.

- Cbllfc S E L P LIPLIY R
@ . cagylc - ay) = b22312% >
(3) PijlagPyy ¥ iy - aPl = 0, i3,
@ 2330812055 * cagy = byy)] =0, 1f3,
(3 2Py T ayy) = clayay " P1aPan) -

For (1), |

cbyple = b1) = aybyobyy
. (2.2.10) (x-1) { Ma, Y [PAb, ¥) - ex=1)] - xA(b-1, y)A(b+, y)]

Ab, v)2a(a, v)
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Now for ¢

]
"

’

A, 9y - e(x-1) A (b+1, y)

]

]
|
—

w

and for ¢

2, y) - e(x-1) xA(b-1, y) .

I
I
Ll
..

Hence (2.2.10) equals zero for ¢ = x, b+l = a and for ¢

b-1 = a . The relation (2) is entirely similar.
For (3) and (4) we have

+ c(b

31P9 * ¢(byg = 2yy)

 Aa 5?;%%. =) ( be(x—l) +clA(a, y) - A(b, y)]]

and
aj9bgy +elay, = by

(x-1)
A(a, y)Aa(b, y)

{ xby(k-l) + c[x®yA (b, y) - xbyA(a, y)]] .

But for ¢ =%x, b-l1=a and c = -1, b+l =a ,

A(a, y) - &b, ¥) x*yA b, y) - L ya(a, y)

xby(l—x) .A

For (5), first note the useful factorization

1 xA(a-1, y)A(at+l, v) ._, xA(b-1, z)A(b+1, z) -
Aa, y)° A, 2)°
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| L2 |
- (x;l) 2_[ xay(xbz_+ 1)2>_ xbz(xay +_1)2 ] _
A(a, y) Aa(b, z) ' _ ' .

(x—l)z(xa+b§z —l)(xbz - x°y)

(2.2.11)

A(a, y)zA(b, Z)Z,p
Now
-l-a b,,(b - a,.)
c “11°22V22 11
2 b+l b .
‘ A(b, Y) A(as Y) : T
But
b+l b, b  a
[x" y-%xy] = xy-xy

for ¢ =x, b-1=a and for ¢ =-1, b+l = a . So for both ecases, (2.2.12)
equals
-b

212821 1221

using (2.2.11) with z = v .

Case 4 - the letters n-2, n-1 and n in three distinct rows
and three distinct columng. _Then Vp is»6?dimensional with basis elements

corresponding to tableaux where the configuration of the last 3 letters is

n-2 n-1 - ) n-2 : n-1 - n

wad o oad
N ] e

1 2 3 4 5

>

n

a1
- n—z—-J 6



ordered according to the last letter sequence. Let

( 311 a

a

12

a

21 22

‘Then if all rows are in the same diagram we have by (2.2.6), Mb( h—l).

and Mp( n) = 82 where{ (aij) = M(dl’ -1y, (bij) = M(dz, -1),

axial distance from

n-1

30

. c12‘ . . .
b11_ © Py E
. Cyo L .
: 1 %12
by, - by, -
: © % 222

]
wn

1
and
‘cij) = M(d3, -1). Here d; is the axial distance‘from n-1 to n-2 in A
1 , 4, is the axial distance from n-1 to n-2 in 3 and d; is the
to n=2 in 5 so that d, +d, =d ‘_and all

d, > 2 .
1——

3 2

If two rows are in one diagram and the third in the second diagram,

we assume, without loss of generality, the lowest box to be in the second

diagram. Superimposing the second.diagram upon the first again does not

alter the relation d, + d, = d
case Mb( n-1) = S1 and Mb( n) = S2 , Wwhere now (ai

(o) = M(dy, v) and (e, ) =

satisfied by

1

3

o except that now only d1 > 2.

J) = 1°?
M(d3, y). Thus for both cases (B4) is

In this

LEMMA (2.2.13) Let. 5, and S, be as above and fLet (aij)‘= M(s, w);

(le) = M(P, Y) ’
(i) w

(ii) =z

(iii) w

M(t, z) with s+t =p .

=z, §>2,
= W, t_>_29

S, t, P_>_2,

Then'éon




S S,S, .

[

we have S.5,5) = 5,55,
PROOF :  First, eithgr.(i) or (ii) ciearlyimply(iiij., Now -
5,5,5, = S,8,5, iff | |
(l)‘- ak;zrciiaii_+'bii(ajj - cii)}v.z. 0, .k # 2,.
(2) ck;z[ciiaii +bysleyy - %ii)j_'= N k‘*'l?
(3’ bealeanys 7 Caalyy T 2gbal 0. ki,
(4) 2;1%11 (34 = e = Bisles58ys - aijaii)-’
®) 24351 T P5s) T 5 ®agyn T A%
© cusbysles by " G - ees) -

and as these relations.afe symmetric in the (aij) and (cij)’

‘to prove the lemma for (i).

For (1), (2), and

Also set

A(s, -1) + x°A(t, ¥) - A(p, ¥)

xTyA(s, -1) - ACt, ¥) + AR, ¥)

(3), we observe that

(x-1)>

D

We then obtain

5(, NAlE, Vats, D

0

0

43

u. '

" lde

# 3

it

31

o, we

we

suffices
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¢173;1 1 bll(a22 f.cll)u = -DE; = 0,
. - ’ - _ P v =
G929 * Ppplagy -~ epp) *yDE, = 0,
11211 * P1yleyy - @) = DE, = 0,
C22322 ¥ Pppleyy ~ apy) = xyDE; = O,
mei b —a b = -xDE, = 0
€11%22 7 ©11°%22 T ¥2P1p T " DE; = 0,
Condys = €oobo . - a b, t DE, = O
22%11 7 ©22°11 T ®11°22 Rt | .

For (4) we have

z'azzczz(azz ~€99)

a;.c (a" - Cqq) =
b11 11 llv 11 11 b2

(x—l)z(xs+ty + 1)(xty + xs)

A(s, —1)2A(t, y)2

clzczij‘ ai2321
from (2.2.11), settiﬁg a=t, b=s, z =-1.
The relations (5) and (6) are_handled in én entirely similar'mannef;
This completes the proof of thellemma andsthe prpbf of the theorem.
THEOREM (2.2.14) Let K be as before. 'The_nepneéentatiqﬁ5~n“  05. CJK(Bn)
are Lureducible, }'ocwwue ZneQuLuaﬁewt and'a/w,,. p Lo isomonpadlsm, a complete

set of émeducible, inequivalent representations of O1°(8 ). In particulan

K 48 a splitting field fon O (8 )



33

PROOF : By ir_lduct.ion.on n . For the fepfeséntat;i_ons of (]K(BZ)_ it is
av matter of direct computation to check iffeciucibility and inequivalence.
Consideration of degrees shows a complete set of inequival'en.t re'prese‘nt-ations-‘
is obtained. For OIK(_Bn) we eﬁploy the decomposition (2.2.8) afforded
by the last letter.sequence‘and the position of the letter n in a stahda_rd
tableaux. ~Let (p) bea double parfitiqn of n . The ‘OIK(Bn)—médule v

u

is either irreducible or (2.2.8) is the decomposition of Vlﬁ into irredu-

cible inequivalent C[K(Bn') components, inequivalent because each of the -

‘double partitions _(ui—) of n-1 is distinct. But for each pair (ui-—-), .

e

(uj-), i#3, there exists a tableaux T; with n in row i, n-1 in

row j and (n-1, n)T.; = T: a tableaux with n in row j'a'nd n-1 in

row 1 . Thus the action of nu(an) does not decompose with respect to the

(ug-) ~ : .
Vv * » 1=1, ..., s+r . Hence VS is irreducible. Furthermorgthe'-

dbuble. partition (u) is complétely determined by the set of double parti-
tions (ui—), i=1, ..., str, of n-1 . Thus by the induction hypothesis

Vﬁ': Vﬁv as K(Bn)—modules implies () = (') . From ([19]),

2 (f“)2 = 2"qt s (u) -a double partition of n . Thus OlK(Bn) is
u : ‘

semisimple and as the m" - are defined over K, K 1is a splitting field for .

O\K(Bn) . This completes the proof.

It - is clear that the above represeﬁtations of the generic ring
yield rep.resentations of a wide variety of specialized; al»gebra_s Of. QK(BI;).'
Spé_cificl};; set -

n-1

x J] 5+ )Gy # DA+ ... + x5 e D= alx, y] -
1=0 | T T

P(Bh)
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COROLLARY (2.2.15) Llet L be .angyﬁx;dd o4 dha)zac/tej_wstéé zenro,
¢ : D—> L a homomorphism such that ¢(P(Bn)) #0. Let (u). be a double-

» pahtixxon of n and Let z; dénote:the Linearn operator on Vﬁ' obtained

¢ | | |
by Ihg substitution x —> $(x), y —> ¢(y) 4n the entry of MY(i). Then
Z;¢f 45 well defined and the L-Linear map 4

e L 1
oL ¢ ()id)’L(gn) > END (vu)

defined by ";,L(ai) = ZE A5 a nepneéeniaxion o4 Cﬂ¢,L(B ). The

¢ n _
hepresentations {n; L}v arne a complete set of {rveducible, inequivalent
hepresentations o4 o;d)’L(Bn).

PROOF : If ¢(P(Bn)) #0, (2.2.1) andA(2.2.3) showlﬁhé matﬁiées H(k, ¥y
and M(k, -1) are well defined under the substitution ix _ ¢(x), y —> ¢(y)"
for -n+l <k.<n-1 . It is clear ffom the definition that axial distance iﬁ
a Yoﬁng diagram cérrespbnding to a double partition of  n .cannot‘exceed n—lv
“in aﬁsoiute-value. Thus by (2.2.6), ZE | is weil defined for all i. As
¢WQL has a presentétion with geﬁerators i{ai¢} and relations obtained from
(Bl—BS) by applying ¢,. the proofs of Theorem (2.2.4) and (2.2.14) 'cairy

~over to this case.

Let A be a separable algebra over a field 'L and let L be an

algebraic closure of L. Define the numerical invariants of A to be the -

set of integers A{ni} such that AL is isomorphic to a direct sum of total.

matrix algebras

L —
A = .
ei)__Mf,i(L)
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Thus for ¢ defined as in Corollary (2.2§15) the algebras CNK(Bn) and .
O%)I‘ have the same numerical invariants. In particular Corollary (2.2.15)

b N .
gives the well known result (see [1]) that for G a finite group with BN-pair

with Coxeter system (W, R) of type Bn-’
By (6, B) = QW.

Indeed in ([1]) this is shown to be the case for all Coxeter system with '

the possiblebexception of (W, R) of type E7 .

Finally, we remark that,”for the specialization _¢o K D —> Q

defined by '¢o(x) = ¢ (y) =1, the representations {7" .} are the.

$,5Q

o]

(o]

‘irreducible representations of W(Bh) - given by Theorem.(1.2.3).
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2.3. THE REPRESENTATIONS OF O\K(_An) AND O‘lK(Dn) '

We now obtain the representations of the generic ring of a Coxeter

system of type An and Dn .

.If (W, R) 1is a Coxeter system of‘type An;l;. W(An_l) is
~ isomorphic to the symmétric groﬁp -Sn and we take fhe set R to be
Wy, «vey wn} where w, = (i-1, i), i=2, ..., n. We take the gemeric-
riﬁg 8] (An—i) to be defined over the polynomi;}Aripg- D = Q[x]. It has a -
presentation with generators a = a;, i=2, .;;,'h,. and relations.

, i
i
(B2, B4, BS5).

‘ 3 3. K | — i3
Set K = Q(x). The,repxesentatlonstof_ Cx”(An-l) = 61(An=l) eD,K.
are readily obtained from the results of the previous section. As the

matrices M(k, -1) are defined in Q(x), (2.2.6) shows the matrices

g 2@ ()

. can be
i .

’M(a’_(o))(i),_ i=2, ..., n, are &efined in Q(x)

regarded-as a linear operator on V?a, 0)) ° Thus

THEOREM (2.3.1) Llet o be a partition of n, n _>_2 and K = Q(x) .The :
K-Linear map 4 A |

a . K . K

oA ) — END(V(a’ _(0)))

defined by n°‘(a'i) = zi"" (0)), i=2,...,n, 48 a representation of
CIK(An—i) . The nepresentations {1} , are a complete set of {reducible,”

Lnequx;valén,t /Leme/senmﬂom-o{ O]K(An_l) .
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PROOF : Theorem (2.2.7) shows the. {1°} are representations of C]K(An_l)-
Irreducibility and inequivalence follows from Theorem (2.2.14) as the matrix

(a; (0)) ’ . . ‘
of <Zl on V(a, (1) is the_scalgr matrix vyI. AS»(sge [19D

z (fa)2 = n! , o a partition of n,
a

the '{wQ} are a complete set of inequivalent representations and are

" absolutely irreducible.

The representations-of the specialized algebras are handled
entirely analogous to Corollary (2.2.15). Set
n

P(A) = x § (L+ ... +x0)
" i=1 |

Then from the above and Corollary (2.2.15) we have

COROLLARY (2.3.2) let L be any field of characteristic zero,

$ : D=Q[x] —m L a homomonph,am.éuch that ¢(P(A)) #0 . Then fon  (a)

a pantition of n > 2, the‘ Linearn operatons -zi(z’ (O)), =2, «.., N,
are well defined and the L-Linear maps

] ‘. L

MLt O L(AL) — ENDWE 000

$,L ¢,L

degined by "g,L(aicb) = zig’ (0)) i a népne/senﬂ:a,téon.oﬁ °‘¢,L(‘_“n—1) .

The {1r$ L} are a complete set of Weduoﬂbﬁé, Anequivalent nepnaéen,ta/téom

o4 O(¢,L(An_1)
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Thus for ¢ as above, the algéﬁras C(K(A‘)A and @, _(A)
n $,L ' n

have the same numerical invariants. We remark that for the specialization -
x—> 1 the definitions of the matrices M(k, -1) shows the semi-

- mormal matrix representation of Sh  is obtained (see Theorem (1.2.1)).

If (W, R) 1is a Coxeter system of type Dn,' n > 4, W(Dn) can
be regarded as a subgroup of index 2 in W(Bn); W(Dn) écting on an
orthonormal basis of RnA by means of permutations and even sign changes. ‘A

set of distinguished generators for W(Dn) can be obtained from the set .

“1

= W, W,W

{wl, ooy W} of W(B ) ‘given in sectiop (2,1) by setting - ViV

and taking.the set R . to be {;i; wz; cees wn} (see.[4]D).

Let ¢ : Q[x, y] —> Q[x] be defined by ¢(y) = 1. Then the.
specialized ring G@,Q[x](Bn) has basis '{aw¢, w e_W(Bn)} with relations

obtained by applying. ¢ to (B1-B5). 1In particular (al¢)2_= 1. Set

a = a :
1¢ wlw2w1¢

As W wowy is reduced in (W(Bn)’ R) we have aWlw2W1¢ = al¢a2¢a1¢ by

(2.1.8) . Applying ¢ to (B1-B5) it is readily seen that

- 2 - '
) = -
B'1 al¢ = xl + (x l)ald) s
1 ~ - = e
B'2 al¢a3¢al¢. a3¢al¢a3¢v s
B'3 3#41,3 . )

“10%50 T %34%10



39

As any reduced expression of w # 1 ¢ W(Dn) in the‘generatdrs _
’{Gi, Wos eees wn} is a feduced expression for w in the generators
A{wl, ooy wn} of W(Bn), the relations (B'l-B'3) . show the subring of .

C%,Q[x](Bn) generated by {a1

5’ a2¢, oo ah¢} hgs free bas1s.
{aw¢ s W E W(Dn)} « As all the génerators A{wl, wz,,..., wn} ~are conjugate

a_} is isomorphic- to

Vin W(Dn), the subring generated by {al 26> *** 2ng

6> @

the generic ring of a Coxeter system of type Dn’ n > 4. Denote this

subring by (1(Dn).

'Thﬁs the representations'of O%,K(Bn) given by Corollary (2.2;15)1\
provide wus with feprésentations of . C%K(Dn). Young [19] showed #he -v |
vrestrigtions of the representations of W(Bn)' t§ W(bn)‘ cbfrespbndinghto a
double partition (a, B) of n reméin irreducible if '(a) # (B) and
decomposes into two irreducible compoheﬁts when (a) ='(B); ﬁe éhOW,that

this holds true in a '"generic'" sense.

Recall that a standard tableaux T for the double partition

(0 B) of n is an ordered pair T = (1%, TB). Then the tableaux

T®% = (TB

s Ta) is a standard tableaux of shapé B, q), called the conjugafte -
tabfeaux of T. Moreover the map T —> T* 'is a bijection from the standard -
tableaux of'shape (a; B) to the standard tableaux of shape (8, a). Take
(@) # (8). If T, e, Tys ooy T
of the standard tableaux of shape (a, B) according to the iast,lettef.

q Tf, f = fa’B, is the arrangement

sequence, order the tableaux of shape (8, o) according to the scheme;Ang
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precedes T; if Tp precedes _Tq in the last letter sequénce.. Call this

the_conjugdie ondering of the tableaux of shape (8, a).

Let I; denote the n x n matrix

0 ... 1
1% = : ...':
n .« . o
1 oo 0

LEMA (2.3.3) Let 13°P(a) denote the matrix of w3'f(a) with respect to

the basis {t;} of Vl; 8 ondened according to the Last Ee;tte/_'ar)seq'uence,

9 : - .
va € O\K‘(Dnﬂ). Then Iffq\iz’-s(a)life , f = fo"s, 45 the matrnix o4 ﬂi}a(a) with
nebpéct to the conjugate orderning of the basis {t;} bﬁ Vg»g,f' Thua the

nestnictions of the nepresentations ng’s_ and 'n:’a 0 o) are

equivalent.

13t Tq, ceey Tf be the érrangeﬁent of the-standa;d’

tableaux of shape (a, B) accordiné to the last letter sequence.  For_fixed N

sB
¢

PROOF»: " Let T

as the direct sum VK =& V_ “of 'Z?
B . a,B Psq -1

_is taken to have basis {tn} if

i, i=2, ..., n, write Vi

V.
- P»sP

i-1 and i appear in the same row or column of Tp and V q;'has basis
_ ,q

invariant subspaces where

'{tp,'tq} where (i-1, i)Tp = Tq, p < q in the last letter sequence. Let

VK\ =@ V* _ denote the corresponding decomposition of 'VK , ‘where
Bsa P»q Bsa 7

y* has basis '{t;; tg}. corresponding to T;, Tg , .and where the ordering
b ] . . . .

of t;, tg is taken with respect to the conjugate ordering. We need to show

) : ) )8
! on is M, . the matrix of z3’° on V*
id P»>q ’ 16 Psq

is I*MI*. This is a simple case by case wverification.

that if the matrix of Za’8 v
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1. If i-1 and i are in the same row or column of Tp , they are

likewise in T;' and the lemma is shown for this case.

2. If i-1 and i are in distinct rows and columns of the same

B

tableaux T> or T
P p

v B
£ T = (% T
) P ( p? p)

P < q. Then 'T; < Tg in the arrangement_accordingkte the last letter

, set T = (i1, DT ‘and take

' sequence while Tg <'T;'_in the conjugate ordering. "~ The axial distance, . k,

from i to i-1 is the same in both TP and T;. Thus from (2.2.6)

the matrix of 2z% B A is M(k, -1) -~ while the matrix of 282 on
i¢ Psq , ‘ ~ -1
V; q is I*M(k, -1)I* as is required. : ' -
s } . .
3. If i-1 and i are in distinct tableaux of TP-= (T;;.Tg) set

= (i-1, i)Tq and tgke p < q . Then vT; < Té in both the ordering
according to the last letter sequence and the conjugate.ordering.ellf k is

the axial distance from i to i-1 in Tp, -k is the axial distance from

i to izl dn TA. Let M(k, 1) demote the 2 x 2 matrix obtained from -

M(k, y) under the substitution y = 1. Then (2.2.6) shows the matrix of

“7%B on v is M(k, 1) while the matrix of z5:® on V* is M(-k, 1)
i¢ P»q e D 6. Pad (

Direct computation verifies the relation
(2.3.4) CIRM(k, 1)I* = M(-k, 1)

as is required.

7%s )

It remains to show the lemma for?HMa’BC; ) . As acts on

¢ i¢ 1¢
the basis V{ti} of VE 8 by scalar multiplication, the decomp051tion of
’ .

VE,B into 22$8 dinvariant subspaces as above is valid for Z;¢8 ;¢BZ§¢B QS
wall. It is furthermore clear from (2.2.6) that the action of Za 8 a BZa 8

16 2¢ 19



42

" differs from that of Zgée only on.the spaces va q where the letters 1
4

and 2 appear in distinct tableaux Qf- Tp = (Tg, Tg). In this case the
matrix of Z?’B on V . aﬁd on V* is D(1, -1) . Using

i¢ Psq P»>q .
(2.3.4) , a simple matrix calculation completes the proof for this case.

This completes the proof of the lemma.

We define the conjugate ordering of the standard tableaux

T = (1%, Tg) of shape (o, a) as follows. Set

.. a ) .Av' "‘ . ]
Ti = {T = (Tl, Tg) : n appears in Tg} » 1=1, 2.

All standard tableaux belonging to T2 precede those belénging to T1 in

the arrangement according to the last letter sequence. Rearrange the last

-% £%%  tableaux in the last letter.sequence, i.e. those in Tl’ as
. .. . * % i
follows; for Tl’ T2 in Ti, T1 precedgs ’TZ if | T2 precedes Il in

the last letter sequence arrangement of the tableaux in vTé_.

LEMMA (2.3.5) Let Mg’a(a) denote the me 04 ﬂg’a(a) on Via with

nespect to the conjugate ordening of the basis ‘{ti} 04 VI; u , ac c(K(Dn)
St _ '

f = ,fa:a

Then _ ' : -
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ﬁl(a) ,. 0

(2.3.6) RHPS@R, - . ‘
0 Mz(a)

PROOF : If (o, (ai*)) is a double,partition of n-1 contained_ih (o, a)
then so is ((ai-), a), (ai-) as in the proof of Theorem (2.2.7). Thus

we have the decomposition, in the conjugate ordering,

(2.3.7) K -y oV

a0 RO R O L R (CO NS I

® V),

» K : K ’ :
of Vﬁ,a as O\(Dn_l)-modules, Q\(Dn_l) generated by

. . K
{ 14’ YOIERER a(n—i)é} . Thus Lemma (2.3.3) shows that for a e O (Dn—l)’

'Mi’a(a)' is of the form .

(2.3.8)

which is easily seen to commute with. Rf .
Hence we need to show (2.3.6) only for MZ’a(an¢). If the letters
a
1’
50

of lemma (2.3.3) shows the matrix of Z§¢ on the subspaces with correspon-

Tg) £ TZ’ the proof

- 2

n-1 and n appear in the tableaux T of Tp'= (T

ding basi t , t*} o t , t, t*x, t*} if -1 T =T, - ‘ ’
g basis { 0 p} r { pr Lo & q} if (n-1, j) p.= Tq P £q,

is of the form (2.3.8) and the above'reasoning applies. If the letters
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n-1 and n  appear in distinct tableaux of Tp = (Tg; Tg); with T ¢ T2’

then (n-1, n)T =T e T, . Thus T* ¢ T. and we can choose T such
P q 1 q 2 ' P

that Tp < T: in the last letter sequence arrangement of the tableaux

belonging to Té . Then Tp < Tg < Tq < T; is the arrangement of the

tableaux according to the conjugate ordering. Taking the same ordering of

»Q

¢

. . . o ' ’ R
the corresponding basis, the matrix of Zn on the subspace with basis

{t_, t*, t , t*} is of the form
PP 9 9’ p

raj;,; - a
322 8.21
81 32 -
[ © %12 0 i

where '{aij} = M(k, 1), Mk, 1) defined as in lemma (2.3.3) and k the

- axial distance from i to i-1 in TP . A simple matrix calculation shows

-1

This completes the proof.

‘Let
a,a' 1

where, for basis elements tp corresponding to tableaux Tp € T2, 17,0
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is * ‘ ig - t%}
has basis {tp + tp} and 2V§,a has basis »{tP .’tp} . By Lemma (2.3.5)
the K-linear maps

e o) — _END(.V.Ié,a)

. ' o,a . ' . .
where the matrix of in¢’ (aw) with respect to the above basis is

Mi(aw), "> W(Dn), are representations of CXK(Dn) E

THEOREM (2.3.9) For double paﬂixxxohé (¢, B), |a] < [B], (a) # (B), and

o,Q 0,0
T and 1" 1
a complete set of {rnreducible, inequivalent nephesentations o4 dK(Dn) .

(¢, ) of n >4, the representations i=1,2, arwe-

PROOF : By induction on n . For n =4, it is a matter cof direct
verification. For n > 4, the induction assumption and the proof of Lemma -

. ' _ v K . .
(2.3.5) shows dim Homm(VE’a) =2, O —_01 (Dn), Homa(Vi’a) generated

* = £&s0 0,0 a,a - . A
by If and If , £=1¢£ . Thus l“¢ and 2w¢ are irreducible
and inequivalent. The argument employed in Theorem (2.2.14) suffices for
the irreducibility and inequivalence of the {wg’a} . By (2.3.7)

. . K
2.3.10 AR o ®...0V , i=1, 2,
(2:3-10) Ya,0 5 Va0, (o) @)+ 171
-as O\K(Dn_l)-modules. Thus none of the nz’s are equivalent to- in:’a s

i =1, 2. Finally, consideration of degrees using the formula given in
Theorem (2.2.14) shows a complete set of inequivalent répresentations is
obtained, and the representations are absolutely irreducible. Thus K = Q(x)

is a splitting field for CXK(Dn) . This completes the proof.
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CHAPTER 3

DEGREES.OF THE IRREDUCIBLE CONSTITUENTS OF lg :

3.1." DEFINITIONS AND CHARACTERS OF PARABOLIC TYPE

In this chapter we glve some results on the 1rreduc1ble constituents
of the induced representatlon 1B of Borel.subgroup B of e finite group G
with BN-pair of classical type The following theorem is .Basic to the study

- of these representatlons

.THEOREM (3.1.1) ([S]) Let Q _denote the aﬂgebnaieeckoauné oﬂl'Q; Edcﬁ '
Aueducible Q-characten X 04 H—Q—(G, B) bi,é J(‘ihe.ne/(sr/‘z,_éc,téon o . Ha(c, B). |
04 a unique irreducible Q-characten c 05> G, asuch xhat (¢ ,_1§) > 0.

Moreovern every inreducible constituent 05 1B L5 obinLned in this way. The

degree of Z 44 given bg

‘ : -1
(3.1.2) deg Z = |6 : B deg x [Wgw(md w) x(Sw)x(§w)] ,

where §w i the basis element o4 H5<c, B) . comresponding to vl oand

ind w = ]B : B(\BWI' s weW, BY= w—le .
Let G be the generic ring of a Coxeter system (W, R) ' defined-
over D = Q[ur, r e R] as in (2.1) and let K be the qeotient field of D,
Ev the algebraic closure of K. It is clear from the relations (2.1.8)
(see e.g. [6], lemma 2.7 ) that there ex1sts a unlque homomorphism

v:d —> D such that \)(a) r € R.
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' DEFINITION (3.1.3) Let x be an ‘uveducible E-cha/me,tm'oﬁ c;K‘. Set

| -1
-1 . :
d = ( v(a )] deg x [ v(a ) "x(a)x(a )}
X WZW v WZW v oo

We call dX the generic degree associated with x .

| = . K
Let M be an irreducible K-matrix representation of ¢ .

Let Mij(a) bde‘note the i_,jth entry of M_(_a),‘ ac 01K>. Thus Mij is a
function from mK to K . The ring mK' is a symmetric algebra with
dual basis '{aw} and '{y(aw)—law} (see e.g. [8], Lema 5.1.). Then from
([7], Lemma 62.8) and Schur's lemma, we have

’ (3.1.4) (Mij’_MrS) = _wzw v(aw)-lei_:](aw)Mrs(aw) = CMGissjr s

where ¢ is the Kronecker delta and if x is the character of M,

(3.1.5) c, = (deg ™" I va)x(a)x@) -
weW ,

Now let ( be the generic ring of a Coxeter system (W, R) of

classical type and let G be a finite group with BN-pair of type (W, R).

Let '¢ : D—> Q be the homomorphism defined by ¢(ur) =q, reR

9. the index parameters (see (2.1.5)). Let P = ker f and let

o* DP —> Q Dbe the extension of ¢ to the ring of fractions DP s
regarded as a subring of K . Let x be an irreducible character of GIK;

The results of chapter 2 (see also [6], Proposition 7.1) show x(aw) € DP'
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for all w e W and the Q-linear map Xy : O% 6-——>'6' defined by
nap ,Q . .

‘ = ok
(3.1.6) : X4 (3gy) ¢*(x(a))
is an irreducible character of C& q.- The map x — X¢ is a bijection
,Q AT

between the irreducible characters of 0#’ and those of 0&-6 .
- P
As (O 6-3 Ha(G, B), we regard theispecialized'character x¢ as
s .
an irreducible character of Ha(G, B) and denote the corresponding irredu-

cible constituent of lg in the sense of Theorem (3.1.1) by EX'¢ .
. 9?5

PROPOSITION (3.1.7)  With the notations as above, we have

0%(d) = deg(z, )

PROOF : From ([6], lemma 5.9 ), [ z v(a )] = IG : BI and
weW v ‘

¢(v(aw)) = ind w . The statement now follows from (3.1.2) and (3.1.6) and

the definition of dX .

In particular if ¢ : D —> Q is defined by 4o =1 for all

Xs®

reR, CX¢ 6':'6W and (3.1.7) becomes deg(y) = deg(; )
o’* ' o

- We will evaluate dXA for the irreducible character ¥ of the
generic ring corresponding to a Coxeter svstem of classical type in the next

section. We conclude this section with the following.
4

Let JeR and let W;=<J>. J determines a parabolic

b = .
subgroup GJ BWJB
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DEFINITION (3.1.8) Llet ¢ be an ineducible characten o4 G such that

(z, 1§) >0. ¢ 4s said to be of parabolic type L4 (z, llg ) =1 for

: J
some J R .

From the above there is a natural bijective correspondence

between the irreducible a;characters z - of G and the

_—
E ¢ X9

Xs9 Xs¢

(o}

irreducible Q-characters of W. 1In ([6], Theorem 7.2) it is shown that

. G _ '
(3.1.9) (EX:‘b’ 1GJ) = (CX’¢O":L,WJ)

for all J € R. Thus to show the irreducible constituents of 1§ are of
parabolic type it is enough to show it for the irreducible charaéters of

the Weyl groups.

PROPOSITION (3.1.10) Every {rreducible characten x 04 w(Ar'l), W(Bn),

n>2, and WD), n > 4, i of parabolic type.

PROOF : let (a) be a partition'of.hg. Let R(a) denote the group of
row permutations of the canonical tableaux of shape (a). Then R(a)

coincides with WJ " for some J € R, R _the set of distinguished generators

for. W(An; = Sn given in (2.3). Order the partitions of n lexicographicly

7
and let xa denote the character of the irreducible representation of

W(An) corresponding to (a). From ([12], pp.40-41)

n _ . B ' '
(3.1.11) L = X F ) mogX m > 0 .

S
n

R(a)) = lf which is well known.

Thus (xa, 1
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For a double.partition (o, R) - of n, (a) = (al; .;., ar),_
B = (Bl, cees Bs)’. let .(a+B) denote the paftiticn.of n defined by
(at+B) - (a1+31, cees at+8t),> t = mak{r;s}‘. Let x[a]-[B] denote the -
character of the outer product repreéentation [a]-[B] of Sn (see (1.2.2)).

From ([12], Theorem 3.31),

[a]-[8] _ _otB u

" e p<o+B Pt Tars 20 0
Then by (3.1.11) -
‘ [a]-16] ,°n ake e
(3.1.12) (x s Ipeatg)) = & s x ) = 1.

"But by Theorem (2.2.15) the restriction of the irreducible répresentation

na’B of W(Bn) to Sn is the outer product repfesentation [a]-[B] .

¢

o
Thus, letting X?’B denote the character of ﬂg,B" we have
W(B ' S
X s SR(atB) X * “R(atB)’ T -

by (3.1.12) and Frobenius reciprocity. As R(o+B) is a parabolic subgroup

of W(Bn), the Xa,S are of parabolic type.

The representations of W(Dn), n > 4, are handled similarly.' If
(o) f.(g), Xa,B remains irreducible when restricted to W(Dn) by

As Sn is a subgroup of W(Dn),

) . S .
- (X[Ct]'[B] 1 n - = 1

W(D. )
0,8 n :
? lR(a+B))' - > R(a+s))

(x
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If (a) = (B) the situation is only slightly more complicated. - Set

J' ='{w2, cees wn—l} < R, the distinguishéd generators of W(Dn)} Then

WJ, = Sn—l . Let _ixa,a -denote the character of i“a,a R ‘i = 1; 2.
' o
From (2.3.7)
(3.1.13) Rl P N e P L T B
J! '

where (aj—) "are the partitions of n-1 contained in

(o) =.(al, cees ar).. Now
(@ + (a,7) > (@ + (a_y=) > ooe > (@) + (o)

in the lexicographic order so

(L lW(Dn) NP 1sn_l | )
iX 2 TR((a)+(apm)) i* o Is 17 TRU@)+(apm))

]

= ) @y i,

by (3.1.12), (3.1.13) and Frobenius reciprocity. Hence ' 41X

are of parabolic type.

‘This completes the proof.
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3.2, AN INDUCTION FORMULA

Let u =_(ul, cevy us) be a double partition of n and let Xu

denote the character of the representation " of '(]k(Bn) . Set-

(3.2.1) AR € Nl MR R TSP M E
. wsW(Bn)

We show that the inductive construction of the representations ﬂu yields
an inductive formula for Cu, which will provide the means to determine

: , : : . PR u
the generic degree associated with X e

Qét (W(Bn)’ R) be as in Section 2.2 . Take J < R . to be

. n-1
. the subset Jn—l = { Wis eees W } and let WJn“1 = <Jnflf . Then
W = WB__.). Let MM(a ) denote the matrix of w"(a ). From the proof
In-1 n-1 v . W

of Theorem (2.2.7) we have the decomposition

(3.2.2) MY (a ) =’M(us—) (a) + + M(ul_)(a ) wewW
.2, . W e ), VL

where the sum is taken over those (ut—) which dre non-zero. Let gt and

ft denote the position, in the arrangement according to the last letter

sequence, of the first and last tableaux of shape (u) respectively, which

upon deletion of n yield standard tableaux of shape (ut-) . Then for

ags by g fa <f., g 5-br‘5;fr’ (3.2.2) implies
. _ y i |
(3.2-3) . Ma b (aw) ‘— -0 . for t :,.l r, WwW.c WJ .
t* r . n“l

énd



.53

" (ut-) ,
(3.2.4) ' M (@) = M ° (@), wewW .
LIS AW Jn-1
Since [W(B )| = 2™!, |WB) :W_ | =2n. From ([2], p.37),
n n Jn—l .

there exists a set ({ X I k=1, ..., 2n } of coset tepresentation of
the left WJn_l—coser of W(Bn) such that -l(ka) ='£(gk) + 2(w) ,

w e WJ » k=1, ..., 2n. The '{xk} are the unique elements of minimal
n-1 .

length in the left cosets kkWJ . We will determine these elements
. n-~-1 '

explicitly for our choice of - R and Jn_1 in the next section.

DEFINITION (3.2.5) With the notation as above, Let

¢
(u =) 2n "t _
E ' o= ] va ™ @ ot @) .
k=1 j=g_ 'k I e et F
We now prove
(=) (u =)
THEOREM (3.2.6) ¢ = ¢ Vg t

PROOF : Choose p such that g8, <P <f . Let o x :k=1, ..., 2n}

be the set of left WJ —-coset repfesentatives of minimal length as above.
n-1

By (3.1.4) and (3.1.5),

u u u . -l b
o= oo L) = v@a )M @t (5
1,p* "p, 1 weN(B ) W 1,p "w' p, 1w’
2n :
-1 —].tu v M A o~
= z : v(a, ) v(a ) ™, (a_ a )M .(aa_ )
k=1 waJ R N v TLp g W, 1

n-1
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2n .
o wgwj Vo) et [Z Mul’l 5 ’P(a“)}
“n-1
H u 2
[21 LI (axk)]
2n £ 1o S
(3.2.7) = ¥ I v )7 Ml’i(axk)M%,l(axk) x

k=1 i,3=1 k

weW.,'
Jn—l

[ 3 v(aw)—lMgL,P(aw)M:"j(aw) ]

The second step follows from the fact that by the choice of the {xk}

l(ka) = R(xk) + 2(w) . By (3.2.3)

u H o e =
Z v(aw)Mi,p(aw)Mb,j(aw) 0

for either i or j hot lying between 8¢ and ft » while by (3.2.4)

and (3.1.4)

_ m.=) (u-) (e, =)
I vy ™hd o sEp =0 E o Py =g ot
weu 1,p W P, ] i,p P>] 1j
3
n-1
(o)
for 8¢ < 1i,j f-ft » as mw - is an absolutely irreducible representation

of O1K(Bn_1) by theorem (2.2.14). Combining the above formulae with
(3.2.7) gives
(u.-) 2n Tt (=) (u ;)
’ t t

¢t = c t 3y ) 1M” @ )=c "k
k=1 jzg» L3¢ Xk 3’ . .

which is the required result.
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While the above theorem provides the induction step for a variety
of factorizations of Cu, no such factorization lends itself to an
explicit formula for C" without tedious calculation. To obtain a formula

for c¥ by induction using Theorem'(3.2.6) requires the evaluation of

(1) : '
E for some row t . The most convenient choice is the first allowable
row from which the last square can be deteted. Let c¢ denote the index of
this row. Then in the Young diagram of shape (u) ='(o, 8), the row c
is a row of the Young diagram of shape (a) if (a) # (0).. Moreover, the

standard tableéux of shape (u) which upon deletion of n yield standard

tableaux of shape (uc—) occur last in the ordering éccording to the last

(nw =)

‘letter sequence.- We defer the -evaluation of E °©- ~until the next section.
We close this section with a deduction which will prove valuable in the

calculations to .come.

PROPOSITION (3.2.8) Let (W(B), R) be a5 before and Lot w be any element
of W(B ) which can be expressed a5 a product of distinct generatons chosen

grom R 4An dncreasing ondern, Li.e. w = wil...wik , wij eER, =1, ..., k

and 1) <y <. <d . For the matnix nepresentation MY of mK(Bn) ,

u = (a, B8) a double partition of n ,

u = U
(3.2.9) Mc,d(aw). - z Mc,s(ai

o (e, ). M (e, )
Syt ena,u 1 s.t i u,d iy

k

and there 45 at most one non-zero term in the above summation. In particular

'u ‘ . . ( . . - - = ’
Mc,d(aw) #0 L4 and only L4 Lieée exists a w e W(Bn), W wjlfi.sz ,

where §y < ees <3, and ‘{jl, cees 3gh c'{il, cees 4,1, on w=1,

s

such that E'ng = Tg .
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PROOF : As the {w,} j=1, ..., k are distinct, a = a, ...a, and
_ i ‘ , W i i
] - : 1
(3.2.9) is just the definition of matrix multiﬁliCation.( Furthermore the
second statement in the proposition follows immediately from the first since: -
by definition (2.2.6) and theorem (2.2.7), a matrix entry M; j(ak) #0,.
. b -
for k=2, ..., n, if and only if i = j or wkTE .= T? while .
M? j(él) # 0 if and only if i = j . Thus a product of matrix entries
’ ; : .
of the form

H i} u A .
M (a. )M . (a. )...M (a. ), i, < i, < ... <.
cycy 1y cl,c2 i, ; ck—l’d i 1 2 » Tk .

is non-zero if and only if there exists a we W, w=w, ...w, with

3T
Jp < eee < g {igs ey 3.} <:'{il,vf7., ik}V  or w=1 such that .

w_lTE = Tg . Hence to complete the pfoof of the proposition we must show
there is at most one non-zero term in the summation (3.2.9). We do this by -
induction on k . It is certainly true for k = 1. Assume true for k - 1.

- By the rules of matrix multiplication,

! - u u v o
(3.2.10) Mc,d(aw) Z Mc,s(aw')Ms,d(aik) . W W ey .

By the induction hypothesis it is enough to show at most one term in

(3.2.10) is non-zero. . Consider the positioh of the letters ik and ik—l

in Td“ .

(i) 1If they belong either to the same row or column of the

tableaux of shape (a) or the tableaux of shape (B) of Ts . Mg d(ai )£ 0
. , S, k A

‘if and only if s =d . Thus
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B T M
Mealas) = Ac,d(aw')Md,d(aik)

and the proposition is proved for this case.

(ii) If the letters i and 1 do not belong to the same row

s k-1

or column of either the tableaux T® or the tableaux TP of TH = (1%, ), set

d or e and

U = Ll LY H . Y '
Te wide . Then § # d, ds’d(aik) # 0 if and only if s

(a V)Mu

c,e’ w e,d(a‘ ) .

n _ M TR
M oalay) = Mc,d(aw!)Ma,d(aik) + M i

Suppose ME d(aw,) # 0 . By the inductive hypothesis and the first part of
H
the proposition,  there exists a weW expressible as a product of distinet

} such that ETEl =TH

generators chosen from the set '{wi s cees W, . 4

1 k-1

As il < ... < ik,_ the letter ik is left fixed under the action of w on

Tg', i.e. ik occupies the same position in the standard tableaux Tg

and -Ts . Therefore by the choice of d, the letter ik occupies different

positions in the standard tableaux Tg and Tg . But then there cannot

exist a we W expressible as a product of generators taken from

W, s eeey W, } such that wTF =T | i.e. M (a_y) = 0 . Thus
i Y c e e - e,elw
u Oy = o (a Y
MCsd(ail...aik) dc,s(ail...aik—l)MS’d(aik)

where s = e or d , depending on the position of the letter ik' in Tg .

This completes the proof.
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The above proposition is a distinctive property of the shape of
the matrices Mu(ai) in that it clearly depends only on the position of the
zero entries. Furthermore if w e W(Bn) is as in the statement of the '

proposition, the proposition is clearly valid for w—l as well. Finally,

!

for the diagonal entries Mﬁ c(aw) » the proposition is valid for any w
’ ) .

~

expressible as a product of distinct generators, not necessarily on

increasing (or decreasing) product (see [13], pp 43=44).



59

_ (uc—)
3.3. THE EVALUATION OF E

(u )

Our aim in this section is an expression for E . in terms of
the polynomials A(m, y) and A(m, -1). Throughout, u = (a, B) will.
denote a double partition of n,w with the partition (a) having s, - parts

(@) = (a4, ..., a_ ) and the partition (B) having s

1 Sy _ > B
(Bl, ey Bs ). As before (uc—) denotes the non-zero double partition
of n-1 obtained from (u) by deletion of a square from the end of row ¢

parts

(8)

of the Young diagram D(u), i.e. the first allowable row.

We first determine explicitly the elements {xk} of minimal length

J 1

in the left W
. : n-1

~cosets of (W(Bn), R), R and Jn— defined as in the

previous section. We introduce some more notation. For any set of consecu-
tive integers 1 < k, k+l, ..., £ <n, set w(k, &) ='wkwk+l...w2 so that
w(k, k) =W . For ease of notation we also define w(k+l, k) =1 .
Furthermore, set ‘w(k) = w(2, k)_lwlw(Z, k), k=1, ..., n . Thus

w(l) = Wy o w(k) is the'kth sign’ change j(k) of W(Bn) .

LEMMA (3.3.1) The set

S =3{1} - {w(k, n) : k=2, ..., n} :{w(k)w(k+l, n) : k=1, ..., n}

Jn—l

A5 The unique set of elements of minimal Length in the Left W. -cosets
o4 w(Bn) |

‘PROOF : W(Bn) acts on a fixed orthonormal basis ‘{el, ..;, en} of R

as all permutations and sign changes. For the given choice of R, the set

of fundamental roots of W(Bn) is
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{el, €y = €15 €3 = €y e ey~ En—l}
and the set of positive roots is
'{ei, ej.- €4 €5 +ey | 1<1, j<n, j>1i}

see ([2]). For an element x = w(k, n), x—l is'the n -k + 2 e¢ycle
(n n-1 ... k-1), working from right to left. Hence x—1 sends the posi-

tive roots €, - ¢ 3>k -1 o the ne ti e €, , = €
t j k=1° 3 -1, ¢t gative roots -1 n?

j=%k, «.., n . By the choice of Jn—l" these roots remain negative under

.the action of W - W(B
LT J n-

l). ThuS“l(w'x—l) Z_Q(X_l) for.allv
n-1 .

Jn—l

roots under w (see [2] or [14], appendix). Therefore x is of minimal

w'eW » as L(w) equals the number of positive roots sent to negativé

length in the left WJ —-coset XWJ . A similar argument shows
n-1 . n-1

l(w'x-l) z_z(gi})%‘qur“ux‘= wk)wk+l, n), k= 1; ...y n and for all

w' e WJ . As (x) # 4(x') for any x, x' e S, the elements‘of S

n-1 . S »
must belong to distinct cosets. As IW(Bn) 2 W, | = 2n and |S| = 2n ,
. . : n-1
S must be a set of coset representatives for the left WJ . -cosets of
n-1

W(Bn). This completes the proof.

Let aw(2, K) = a(2, k) and aw(k).=

expressions for w(2, k) and w(k)  as a product of genérators from R is’

a(k) in Cﬂ(Bn).‘ As- the - -

reduced
_ a(2, k) = ay. ey

(3.3.2) e :

a(k) = (ak...az)al(az...ak)
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In order to state the next proposition concerning the matrices Mu(a(k))
, th . o . ,
corresponding to the k~ sign change of W(Bn) we need some notations. Let

p i=2, ..., n denote the axial distance from i-1 to i in the

i,p’
standard tableaux Tg . Let
i

pp ) = .jZZ=SPj,p‘+ l)f ot

I
[\
-
N
=]

and define pp(l) =0 for all indices p =1, ..., £ .

PROPOSITION (3.3.3) The matrix- M“(a(k)), k=1/7.., n _'LA a diagonal

matrix with the p,pth enthy equal to zx © , where z =y  Af the Letten

k appeans: in the tableaux T* of Th = (1%, ™)y  and 'z =-1 Lﬂ k

appears in the tablfeaux =~ TP o4 Tg .

PROOF : The proof is by induction on ‘k . For k =1 the statement ofv
the proposition is just the definition of Mu(al). Now assume Mu(a(k—l))

is diagdnal. By (3.3.2)
¥ (a) = (@M (ale 1IN ()

Write VE as the direct sum Vﬁ =6 Vp q of 3y invariant subspaces,
S . s o

where Vp q ‘has basis -{tp, tq} if (}c—-l,_k)Tp = Tq » P<q, and V

b p’p
has basis '{tp} if the letters k-1 and k appear either in the same row
or column of the same tableaux. With this ordering of the basis,;'Mu(a(k))
has the corresponding block form M"(a(k)) = + M; q(a(k))

Thus the usual case by case argument on the configuration of the letter

k—i ‘and k will suffice.
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l. k-1 and k in the same row or column of the.same'of Tp .

If k-1 and k are in the same row, pk b = 1. Therefore
B . 3 - . .

_ - _ n _ o ,
pp(k) = pp(k 1) + 2. As Mb,p<ak) x by theore@‘(Z.Z.?)

oo (e=D)42
= zx P = zx © .

: - p_(k-1)
M;’p(a(k))' = x[zx P }x

If k-1 and k are in the same column, -1'. Therefore

) pk,p - )
'pp(k) = pp(k-l). As Mﬁ;é(ak) = -1 by theorem KZ.Z;?)

¢ p_(k-1) , p_(k) ':
M; p(a(k)) = (—1)[zx P }(—1) = zx P .

2. k-1 and k in distinct rows and columns of _T; .

Set Ty = (k—l,'k)T;j and take p < q. The deletion of all
letters i_k -1 in T; andv.T: yield the same tableaux of k-2

letters. Therefore pp(k—Z) = pq(k—Z). Let

denote the configuration of the letters k-2, k-1 and k in Tg', with

€1s> €, the respective axial distances. With this notation we have,

pp(k—l) = pp(k—2) + sl.+ 1
Qp(k) = »pp(k—Z) +_€1 +e, +2
pq(k—l) = pq(k—Z) tepte,+1

pqgk) = pq(k—Z) + €9 { 2.;
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Therefore if k-1 and k belong to the same tableaux of o,

. | ) p (k-Dte sl e
Mp’q(ak) = M(ez, -1) and Mp’q(a(k—l)) = zx D(1, x 7) by
theorem (2.2.7) and the induction hypothesis. Direct computation verifies

the relation

€ €

M(e,, -1)D(1, x Z)M(sé, -15 = xD(x 2, 1) .
Therefore
‘ p (k-2)+e.4+2 ¢ o
¥ o(amk) = zx P Vo2, '
P»,q ‘ ) : : ’
p_(k) p (k)
=" D(zx s ZX q )

. ~ . R ’ - u _ H = -
;f k-1 and k belong to dlstlnct.tableaux of TP R I%’qgak) ,M( ezf.y)

by theorem (2.2.7) . As we have taken p < q with respect to the last
letter sequence, k-1 appears in the tableaux corresponding to (a) 'of

T; . Thus by the induction hypothesis

o (k=2)+e,+1 €
W (ak-1) = x P Lo, x5 .

Direct computation verifies the relation
| €2 &
M(_€29 y)D(y, —x )M(—€23 y) = xD(-x 7, y) .

Therefore

| o (k=2)+e,+2 & o (&) o (k)
M; 2®) = x P nex %y =D P, yx @

This completes the proof of the proposition.
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, . w-)
‘We use this proposition to affect a reduction of E ¢
Pairiﬁg the WJ -coset representations a(k)a(k+l, n) and a(k+l, n)
n-1

of W(Bn) (1emma (3.3.1)) we ha?e

H ‘ H '

Ml,i(a(k+l’ n)) + Ml,i(a(k)a(k+l’ n)) N

(3.3.4) = [1 + M;’l(a(k))}M;’i(a(kfl,_n)) , i= 1,“..., £,

as Mu(a(k)) is diagonél_by proposition (3.3.3)

Furthermore for letters k-1 and k both appearing in the same
row of the canonical tableaux Ti of shape (p) (see section 1.1),

W, = (k-1, k), k=1, ..., n, is a row permutatioﬁ of the canonical

tableaux. As any row permutation w - can be written as a prodﬁct of such

transpositions

(3:3.5) . M;,i(aw) i Mz’l(aw) =0, i#1,

and

'(3.3.>6). . M‘ll’l(aw)_ = @) = x

be theorem (2.2.7) , w a row‘permutation 6f T; . Let ros i=1, ..., s,

' ' ' . (th ' :
s =5 + Sg» denote the last letter in the i row of the canonical = .

tableaux Ti , 1l.e.
i
r, = Z a. if i<s ,
i =1 j a
Sa k-
r, = 'Z aj + )2 Bj if i=s, + k
j=1 j=1 -
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Set.
(3.3.7) R, = J [1'+ v(a() (a(k))z]v(a(k+l,Ar;))f1 <
i 1,1 i
' k=r, ,+1 . . :
i1 | -
: u ) 2
~Ml,1(a(k+1’ ri)) .
_ ' (u c-')
Combining (3.3.5) and (3.3.6) with the definitions of Ri and E . and

using the explicit coset representations given by lemma (3.4.1) we have:

A (1) s B . |
(3.3.8) E = 1 Ryv(alrgdl, )7 My (a(rg+, w) -

i=1 . o j=gc

W (GO
j,l(a(ri b n)
e S N -1 o
Set A(m; y ~) = 1+x™y = . Then

PROPOSITION (3.3.9), For -1 <i<s denote R, by R . For
| i -

s +1<i<s +s,,denote R, by R, where i=s +3] . Then--

o a B i B.
. J
Rq = A(ai—21+l, y)A(ai,_-l) s
i .
P ~1
RB{. = A(Bi—21+l, y )A(Bi,.—l)
i
PROOF : First let 1 <1i 5~sa . The axial distance from ri to ri+l is

—a, while for k and kt+l in the same row of T . " the axial distance.

from k to k+l1 is 1. Therefore

i-1 i-1 - i-1 .
oy (r; 1) = L o+ D = jzl (2(a;-1) + (1-0)) = 521 (a;-D).
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‘ i-1 - ,
where m =._z a, and k=20, ..., a; .
j=1 . -

Also  v(a(r;_;+1+k)) = g2 (@)

Therefore
-1 u 2
v(a(r; [ +46) lMl’l(a(ri_l+1+k))

[yx2(m+k)]—ly2x2[mf(i—l)+2k] - _yx—2(1—1)+2k

| for k =0, e a; .
_ _ ai—k.
Furthermore v(a(ri_l+l+k, ri)) =x and
: | 2(r,-r, .-k) 2(a,-k)
u 2 i "i-1 _ i
Ml’l(a(ri_l+l+k, ri)) = x . = x

for k=1, ..., a; by (3.3.6), as we have defined a(m+l, m) =1 . Thus
(3.3.7) implies k

di' U ok
z 1+ yx—2(1_1)+2(k—l))x i
k=1

o
]

%5 apwk o tk-2i
z x4 yx ' )

k=1

ai—2i+l , a.~-1
(1 +yx A+ ...+ x )

8(a 2141, y)A(a,, -1)

We now turn to the second part of the‘proposition. Obgserve first
that the axial distance from rs td rS +l' in the canonical tableaux T;
a o )

is by definition (1.1.6) the axial distance from the last square in the

diagram (a) to the first square in the first row of (o). Therefore the



67

path traversed from the letter 1 to the letter r_+l is a closed paths

_ a
r +1
s
: _ a :
in terms of axial distance. As a result z pj 1= 0 and l
r +1
s
a -
pl(rs +1) = .Z pj,l +1-= Ial.. For 1>s set 2 =i-s, «." Then
o j=2 : , -
: ol 5
P(ry_;#1) = Jaf + Pt 1 -
1Yi-1 Ker +2 k,1
s
a
2-1 - o
= + .- 1. SR
lal + ) 8- 1
J-
| PR
Also v(a(r, ,+1+k)) = —xz(nﬁk)- where m= o] + ] B, and k=0, ..., 8,.
i-1 j=l ] : L

Therefore

v(a(ri_l+1+k))M;’l(a(ri;1+1+k)) [yx2(m+k)]-lxz[m—(g-1)+2k] .

y—lx—2(2-1)+2k .
The argument used in the first part of the proposition can now be used to:

give

. X -1
R = A(Bi‘21+ls‘y )A(Bi’ -1)
This completes the proof.
We now start evaluation of the sum

U . .

f . .
u u e ——

Y Ml’j(a(ri+l, n))Mj’l(a(ri+l, n))

I,
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(u ;).

in the expression for E ¢ -given by (3.3.8).

PROPOSITION (3.3.10) Llet ¢ be as above. Then

(L M‘i,j(a(k, n_)) = 0 forn k> r-c+1 and é_oa'a,u’, j._>_ g, -

(1) j(a(ré+1,'n)) =0 fonall j>g whike

it

o
—~
)

o]

+

’-l
o

Mﬁ o (a(r +1, n))

., . e,
’Se _ i=1 i-1’71i

where T‘eJl =T , the canonical tableaux 0f shape (vu), and

1
o

™ =w T, is>1.
ei rc+1 e -1 -

- : £ o o

(iid) M (a(k, n)) = [ z M (a(k r ))] (a(r +1, n)) for

: i,] 121 1,i 8, ¢ .
i £ andv k < r, .
£ | -1 , £¥ | | -
(iv) Z Mu (a(r +1, T )) = TT [ z Mu (a(r +l, T, l))} gor k< ..
j=1 .oisk =1 7 o | -

PROOF : (i) and (ii). For j,z_gc,_ the letter n occupies the last

square in row c¢ by definition of_.(pc—). Suppose Mu (a(k n)) #0,

3 2 8. "By proposition (3.2.8) there exists a w ¢ W such that

[l

Tg s W expressible as a product of distinct generators chosen from

'{wk, ciey wn} . It follows that w fixes all letters f_k—l in Ti .

wT

=T

Hence if k > rcfl s the letter rc' occupies the same position in the

tableaux T" and T? , 1i.e. the last square in row c¢ . This is

1
impossible. Therefore M (a(k n)) =0 for k > rc+l_ which proves (i);
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On the other hand, if k= r 41, wT‘i = T‘Jf implies w = w'w

r +1°
c

since the letter r_  must be moved under the action of w. Therefore

r +1 1is in the last square of row ¢ in w ™= . Similarly, as
¢ _ . . rc+l ey

V.41 ‘does not occur in the expression of w' as a product of distinguished
c ' ' - '

generators, w' = w"wr 4+ because the letter r +l must be moved under the

action of w' . Therefore rc+2 is in the last square of row c¢ in

11___TIJ

w_ T . Continuation of this argument allows us to conclude
rc+2 ey e, :

) YoM (a)

u . gt - :
(a ™ (a
rc+l eyse, rc+2 | en—k’gc n

cesa ) = M
c ;c+1 n l,el

o
Mi,g (a

’

‘ " TR ) ey
whgre v +iTe. = Te". This proves (ii).
c “i-1 i :

(iii) and (iv). Let Tz Vdenote-a_sténdard tableaux obtained from

1

amounts to a rearrangement of the above letters among the first j rows of

s by any rearrangement of the letters 1, ..., fi;’ for j < c.. This

(u). Because the first j rows, (j < c¢) are of equalblength, any such
arrangment of 1, ..., fi"in the first j rows must have .fi in the last

box of row j . Thus the position of the letters Tiseees I is the same

in wI' and wTV R
e 1

elements from R is made up entirely of the generators Wes i= rj+1, ceey D

for any w whose reduced expression as a product of. .

It follows that
H - H
- Me,i(a(rj+l’ k)) Ml,i(a(rj+l’ k))
for j <c and k z_rj+1 .

Therefore
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| Ml,i(a(rj+l’ rc))_ ’S(a(rj+l, rj+1)) X

HE

o (alr 1, rj+2)).. MP (a(r Lt 1))

= S’tg.‘.. M;’s(a(rj'*'l, rj+1)) X

(a(r +1, T +2)) (a(r o1 +1, r ))
' c-1 £ -
=TT 2 M{ @i+, 7340)

i=j k=1

by the above argument and the ordering of the last letter sequence. For

the same reason

£H . .
z Mg’j(a(k,Vrc))Mg’i(a(rc+1, n))

e (a(k, m)

j=1

£ _ : .
[ ¥ M“ (a(k r ))] (a(r 41, n)) .
j=1 8 ¢

This proves (iii) and (iv).

- Using this proposition and prop031tlon (3.2. 8) it is straight

(u -)
- forward from (3.3.8) that E °© can be written as
- c _ o, £ '
E S = § Roua(r+l, st T M (ate 4l oM L (GGATD))

. i i . 1,3 i j,1 i

i=]1 J=g
c

= 0Dy

where
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| - &
C -1 C"‘l f Ll . )
D = R, .+, ’ AL, r, ’
1 izl lv(a(rl ‘rc)) jII-[kzl‘Ml’k(a(rJ+ er+l)) )
GG, o))
.D2 = v(a(rc+l, n))_lMg;gc(a(rc+l; n))Mgé,l(af;:;E:‘;>) .

Consider a part of the Young diagram of shape (a, B) :consisting5

of the last box in the pth row and the entire qth row, p<gq . Let T:
' ' : o

be a standard tableaux with 't+l letters 2, 41, ..., 2+t distributed in

L <—— row g
2+1 Tt ————J ———— rowW ¢q
t boxes
. . . . oo H s ’
increasing order in this part. Set Te, W2+i"°wz+1Te s 1 1, ..., t..
: i o »
Then Wi is a row permutation of Tz for j # i-1 or 1, as the

3j
letters: 2+i-1 and &+i have either not been moved from row q or have

been returned to row q . Hence

M (

= u . =.>
ej,k ag+i) Mk,ej(az+i) , 0

for k #Jej and j # i-1 or i , by theorem (2.2.4) . Therefore

iy
f : .

P i S
YoM (a(etl, s+t))ME (a(e+l, L+D))
j=l eo’J J’eo ’

e

= 17 e (ap,;)]

t 2
i=1 0’ o
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- t-1 k : ' |
2
+ Y TT o (a,, M ) TT' [ 35
k=1 j=1 °5-10¢5 M gyt ekt Sk ek R
(3.3.12) + .IT Mo, e, G+ e (i)
: i=1 Ti-1’7i _ -1

by propésitién (3.2;8). Labei these three terms ‘A, B, and  C respeg-i
tiveiy. As the entries of Mu(ai) 'depend only on the position of the-
letteré i:l' aﬁd’.i in a sfandard tableaux, the above computation is
independent of the letter £ and depends only on tﬁe rows p and q .

Hence set

RAPEE v(a(@+l, +e) T +B) = xf@a+3B)
H . ’
(3.3. 13)
: -1 -t
f = v(a(e+l, 2+t)) °C = x C .
P»q - S
We now rewrite (3.3.11) as follows .
: . -1, L :
Let dj be‘such that W(rc+l’ rj) T1 = de. Then dj = erj_rc

where the ei's are defined as in (ii) of proposition (3.3.10). ' The broof

of (3.3.10(i1)) shows the letters 'fif'r,+1,

ves T, occur in the last
i+t :
square of row c¢ and in the j+1 st row of Td in increasing order, i.e.

in a configuration as described above. Hence (3.3.10(ii)) . and proposition

(3.2.8) show

o L
v(a(rc+1, n)) - 1,e (a(rc+l, n))Mg ,l(a(;c+l, n))

Cc [od
ST%- -1 e u Yk €
= v(a(r.+1, r,, .)) M (a_ )M (a_ ,.)
j=c j+1 i=r -r +1 9§ l,e r +i ei,el 1 T +i

.:4?

(3.3.14)
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Similarly, for j < ¢ the letter fif r.+1, ceer T appear in the last

| i+l
square of row j and in the j+1 st row of Ti . Noting that fp q =0
. ' ]

for rows p and q of equal length and both belonging to the same tableaux .

of Ti the computation (3.3.12) shows
fu . _
-1 i _— T
vt ry)) LMy (G T g RGegH, T)
(3.3.15) =F

3,3+

for j < c . Substition of (3.3.14) and (3.3.15) into (3.3.11) now gives

I e
(3.3.16) E = R, || F. . +-R-] SR S
o =i J,3+1 Climet1 o1

PROPOSITION (3.3.17) Let m be the axial distance from the §inst square Ln
Zhe qth now fo the Last squane in the pth now and assume row p As a now

0f the tabfeaux T* and now q 48 a now of the tableaux T8 of

T, = (Ta; ™). Let t be the Length of the 'qth now. Then
o ‘

A. (mt+1 ) Y)A (m—t, X)_

(1) f =

P9 - A(m’ Y)A(m—t+1, y) 4
2 . ’
(ii) F _ x-1)7a(t, -1) ‘

P»q xA(m, y)A(m-t+l, y)

PROOF : We use the notations of (3.3;13).

(1) Because the letter & appears in the last box in row p and

%41 in the. first box of row g , the axial distance from &+l to £ in

¥ is m and the axial distance from #+i to &+i-1 in Tz . is
o ' o - i-1

m-i+l, i =1, ..., t . Therefore



74

M e CHTL (agyy) = i, Y)A(m-lzz’ n
i-1°%1 121 0 [A(meitl, y)]

- by theorem (2.2.4) . Thus (3.3.11) implies

c - -'h‘—xA(m-i, DA@-1+2, 5)
| i=1  [A(m-itl, y)1°

xA(mtl, y)A(n-t, y)
A(m, y)A(m~t+l, y)

As fp q =X ¢, we have the required result.
H4 ) .
(ii) We have
H x-1 .
M (2,,.) = —F——F > 1=1, vee, t ,
e _19% .1 241 A(m=i+l, y) ,
by theorem (2.2.7) and as Vi is a row permutation of »Tz for i > j+i1,
| | 4 Y |
M (a,,.) =x for i > j+l, by theorem (2.2.4) . Hence (3.3.11) implies
e.,e, f+i ) ' ,
373
.\ o X2(t-—l)(x_l‘)2
2 L4
(A(m, y)]

Furthermore, using. (i) and (3.3.11)

2(t-1-k)

til [-%T XA (m-i, y)A(m-i+2, vy) }(x—l)zx
k=1 =1 [a(@-i+1, y)]° (4ot 12

€l K (el piacesi, v) | e 218

oy A(m, y)A(mk+l, y) 8k, )12

[Xt-l(x_l)zA(erl, ot -1k
h A(m’ Y) k=1 A(m'"‘{'*'l: Y)A(m_k Y)
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An easy induction argument, using the fact that

Ak, ~DA@k-1, y) + Alm, ) = AGH, -1)a(ak, y)-
shows

t-1 gtk o ACt-1, -1)

kel A(m-k+1, y)A(m-k, y) A(m, y)A(m-t+l, y) °
Therefore |

2L a1, DA, y)
[6(m, 3)1%(-t+1, ¥)

-

Finally, the above computations give

Aap o EaeD? el a1, SDae, y)
' 2 X + A(m~t+l, y)
[A(m, y)] >
t-1 2 : '
X (x-1) Alm, v)A{t, =1)
2 A(m~t+1

[8(m, )] (m-t+l, ¥)

=D 2ace, -1)

A(m, y)A(m-t+l, y)
As F = x_t[A + B], we have the required result: -

Psq

COROLLARY (3.3.18) Let p and q be rows belonging to the same. fabLeaux

04 Tz- . With the same notations as in proposition (3.3.17) we have

o]
N _ A(mHl, -DA(m-t, -1)
@ 4 T A, -Da(m-t+1, -1)
(ii) F ace, -1)

P»q  xA(m, -1)A(m-t+1, -1)
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1§, furthermore, p = q-1 and the rows q and q-1 have the same Length;.

-1
X

then F_ | =
q-1,q

PROOF : If the rows p and q belong to the same tableaux of Tz , the
. . : B . .o

matrices M(k, y) are replaced by the matrices M(k, =1) in proposition- -

(3.3.17) by theorem (2.2.7) . The matrices 'M(k, ~1) are obtained from

M(k, y) by setting y = -1, whence the first statement. For the second

statement we have m =t and A(l, -1) =1 .
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3.4. GENERIC DEGREES

Recall from (1.1) that (a)' = (ai, ey a;,) denotes the partition
: o

conjugate to the partition (o) = (al, sees O )
a

DEFINITION (3.4.1) Let (o, B) be a double partition with cornesponding

ondened‘pain 04§ Young diagnamb (D(a), D(B)). Fon the (i,j)-square of

D(a), 4set
o _ _ v s
hi,j =. (ai i)+ (aj i) +1,
g . = (a; -3+ @®!-1) +1
’l,J i j 3

where 65 =0 forn 3 >s For the (i,j)-square o{ D(B), 4set

B'

B - ) _ s | L ‘ )
g4 = Bi-DF@j-D+1,

where ol =0 for j >s , . We call 1% . [(resp. n .} the hook RLength
3 o i,] 1,3
5 )

04 the (i,j)-square of D(o) (resp. D(B)). We call gg 3 (resp. g ;

the split hook Length of the (i,j)-square o D(a) (resp. D(B)) .
From (1.1.1), h$ ; (hg j) ‘is the length of the (i,j)-hook of
. o Lo o )
D(a) (D(B)). As the last square in the ith row of D(a) has coordinates
(i, ai) while the last square in the jth column of D(a) has coordinates
equals the axial distance from the (ag,j)f

square to the (i,ai)—square plus one in D(a). hg

(aj, j), (1.1.5) shows hg‘j

has the same
-3

interpretation for the diagram D(B). The split hook lengths have a
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corresponding ipterpretation. Namel?, gz’j is the axial distanée from the
square in the jth cqlumn of D(B),V fﬁe (B;,j)—square, to the laét square in -
the ith row of D(a); the (i;ai)—square, plus one.‘ Si@ilgrly gi,j equals
lthe axiai distance from tﬁe end §f the jth column of 'D(a)4 to the end of

the ith row of D(B), plus‘one.‘

PROPOSITION (3.4.2) (i) For the double patition (a, (0))

((a ™), (0))

o

E = Ao -c, y)H“ ,
whenre
e~1 A(hj,a" -1 0Lc_1 A(hg .y ~1)
Ha' = ﬂ- < ﬂ- Z’J re
: j=1 xA(h, -1, -1) j=1 A(h® ,-1, -1)
>0, - Cs] S
Furnthermone
-1 :
- = >
A(ocC c, y) A(gc’a > V)

=1 Mg 41, V)

(i1) Foxr the double pantition - ((0), B)

(@, 6

= A, y O,

where HY is degined as.in (1) the partition (B) neplacing the partition
(a). Funthermone

B

B -1 |
g 2 V) T <2

' - l-c -1
a8y v = ox T ac-g? :
[od J=l XA(-gc j+1) Y)

3

(iii) Fon the doubfe partition (a, B), (a) # (Q), (B) # (0),
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Let row d be the now of D(B) such that the acth | column of D(B) ends

An now d 4§ a < By - 16‘31<v°‘

» " set d = 0. . Then ™~
(@), @) (), (0)
E ¢ =58 € G .
whenre .
| | A(gc,a > Y) “c"l‘A(g“ L 4 A(-gj’a > ¥)
= c C,] ’ c
M YCRTREY Tll_ AgY -1, ¥) 'H'A(—B s,y
c 1= gc,j s Y J= gj,a s ¥y

Cc

1 is undenstood that the Last product in the definition of G 4is taken to
be equal to 1 4if d =0 . | |

(u =) '
PROOF : We will show the expression for e © .given by (3.3.16) has the

desired form for each of the cases mentioned. Direct coﬁputations are all

that is required.

(i) For the double partition (a, (0)), the row c¢ 1is a row of

D(a) and a; =a, for i= 1, ..., c. Then by Proposition (3.3.9) and

Corollary (3.3.18)

c-1 c~1
LRy TPy g ¥R
i=1 i=1

' c
= Aag, -1) .2

A(a -2i+1, y)xl“c
“ e,
i=1 :

(3.4.) xl—CA(uc, ~-Da(e, —l)A(ac—c,-y)

Let m, denote the axial distance from the first square in row i to the

last square in row ¢, 1 > c. - Then mi%l = mi+1 and using Corollary (3.3.18)
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o "o Almg+l, -Da(mgag, -1)
TT £ - 1 1 1
i=c+1 Cy1 i=c+l A(mi, —l)A(mi-ai"l'l, -1)
s ' _
Aoty D o Ay p-ay . D)
A(mc+l, -1) iz otl A(mi+1—ai, -1)
sét o =0 for j.» Sy ‘and rewrite the above as
s . . _ s a ~' -
T% . A(mc+1 G 41 1) T%_ i, A(mi+l k+1l, -1)
i=ctl ©F Bmyrs D jactl kea, 41 Almyyq ks D)

i+l

where the second product is taken equal to 1 for all i such that

o =q,. If a, <o,, O,-d equals the number of columns of D(a)

i+l i i+l i i i+l
which end in row 1 while if g T a;, 0O column ends in rowA i . Then
for i > ¢ such that @i Sy we have by (3.4.1) and (1.1.5)
. ' _ Lo
L k+1-= a, + (;—c) k+1-= hc,k s ai+l+1 <k < a; -
Thus
o a. a
i A(mi+l—k+1,_—l) _ i A(hc,k’ 1)
1 Am, .-k, -1y ! o 3 -1y
k—ai+l+l T k—ai+l+l A(hc,k 1, -1
. . ' = . . a =
Furthermore, by the choice of the row cf B4 T 0, >0 .and hc,ac‘ 1
so that
Mm . —a ., -1) ol a@® , -1
ctl “etl’ N 1 c,k’?
_ " ala, -1) ! ' a . )
A(mc+1, vl) c _ k_ac+l+l‘A(hc,k 1, -1)

The above computations show
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(3,4.4) L N S "———_-—' ) ’;__,‘. .
. i=c+1 St Blag, -1 g A(hz -1, -1)
) ’

-Finally, ¢ =nh o S° that -

(3.4.5) X A(c, -1) = x%Am®
- - (@), @)
(3.4.3) - (3.4.5) combine to give the desired expre351on for E .

As the second partition is the empty partition (O); e.-c =g q and-
/ ,1

a  _ a +1

gc,j = gc,j+l s j=1, ..., c-1, so that the expression for é(acfc, y).

given in the statement of (i) is just a telescopic product. - -

(i1) The proof of (ii) is entirely similar to (i) and will be
omitted. Simply replace (o) with (B) and note thét by Proposition (3.3.9)°

..y must be replaced with yfl in (3.4.3). Also Bc—c = gi 1 So° that
. b4
-1, m, -1 - _ _B
bR,y D) = Gx) M@, y) ., m=-g o

(iii) In this case the row ¢ is a row of D(a).. Thus

-employing (3.3.16)'

((a)s (8)) c—1" i Vo S
: T b JIT- j,pa T ]ill;l fe i 111;+1 fc’i
((ag), () °8
% | iII-+l fe,1
a

It suffices to show
°g

(3.4.6) I fog = C-
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Let m i=1, ..., s, denote the axial distance from the first box in -
the iFh row of D(B) to the lést box in.row- ¢ of D(x). Then

='m + 1 and as in (i)

41
Sa+SB S A(ms +1, y) Sg A(m,-B., 3)
T £ . = B - '
i=sa+i st CAm, YY) oy Amy By Y)
.Let Bj =0 for j > éB and let 'd be as in the statement of the theorem.

Rewrite the above as

A(m,,.-d +1, y) d A(m.-B., ¥)
(3.4.7) [ drl_c 2 )

A(m, y) j=1 8(myy By YD

Blmgpa ot ¥) yogin A4y 7Bss )

Label the two bracketed expressions in (3.4.7) A and B respectively.

By (3.4.1) and (1.1.5),.

. !
md+l T % +1 = (ac_ac) + (d—c) +1 = -gc,ac
and
m =B, = o ¥ (i-¢) =1 - By
=‘-[(B -0 ).+ (c-i) + 11 = -gs =
i“c L i,uc_
Therefdre
r (g y) -A(-gS f)
. ) c,ac’ _?_r i,ac’
A = .
blag=e, ¥) 4 A(—gS +1, vy)

i,o
e
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As B <a. s and as for B

a+1 ik < Bi—l s

i+l
m ~k=o + (i-c) = k= a
i+l - % Bkt ?

computations identical to those employed in (i) show-

c .5 Y)
C,1
B = Il = .

C,i—l’ y)

The above expressions for A and B and (3.4.7) show (3.4.6) as required.

This completes the proof of (iii) and the proposition. -

We can now obtain an elegant formula for

¢ = (deg XM T va) e Gy -
weW(Bn) :

For the double partition (p) = (a, B) set

. l—aj : N
Hi,j = X A(hi,j’ _1) b
1-8 :
B _ k| B -
Hi,j be A(hi, 1,
(3.4.8)
o - o
Gi,J A(gi’J, ) »
8 m, -1 - B8
Gi,j = (YX) A(m, Y) > m= = gi,j
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THEOREM (3.4.9) Foa the inreducible charactern x"  of an(Bn),
(u) = (a, B) a double partition of n'z_ 2, '

c“. = 5% c* . | | g o8 .
(i,9)e) T3 T3 (q,pe@) T3t

s

'PRObF ¢ By induction omn 'n_i_z} The statement of the tﬁeorem readily be
checked for-the‘representationnéf (NK(BZ) ’given by Theorem (2.2.7).' Let

n > 2. - The Young diagram D(uc—) 'is obtained from the Young diagram D(u)
by deleting the last square from row c¢ . Thus the hook lengths of the
squares of _D(ué—) 'differ from the hook lengths of thé squares. of D(p) -
only for éQdares in the cth row and E; or E; column depending on
whether the réw ¢ 1is . a row of the diagram D(a) or the diagram D(B) of
D(u) = (D(a), D(B)). Indeed, the hook lengths pf these squares of D(uc—)
are one less than thekcorresponding squares of ‘D(u). Similarlyithévsplit_‘
: hook.igngths of the squares of D(ﬁc_), differ from the split hook lengths of
the squares of D(u) only in the ’cth row and, if ¢ is a row of D(a) and
E; # 0, in the E; column of D(B).‘ Again the spiit hook leﬁgths of these
squares of D(uc—)‘ are one less than the corresponding squares of D(u) .

E(“c")_ is

Thus, from the computations of Proposition (3.4.2) we have that

of the form

u ‘ U
E(uc—) . Gi i . Hs,t
Coeh L) 6 (g we)

1,3 s,t

where A = a or B, depending on whether the row c is a row of D(a) or

D(B), and where (i,j)  and (s,t) .run over the appropriate squares of
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D(uc—), mentioned above, for which the hook lengths and split hook lengths "
differ from those of D(u). As -CM = C(PC-)E(UC_) by Theorem {3.2.6) .

this completes the induction and the proof of the theorem.

We can now give an explicit expression for the generic degree‘

dX (3.1.3), of the irreducible characters ¥ of (]K(Bn). Let 'PB (x, v)
. ‘ ' n .

be the Poincare polynomial of. aKYBn)‘;

(3.4.10) P, (%, ) = ) v(a) .
P wewe)) Y

From ([10]),

— . .
PB (x, v) = 2 QL+xy)Q+ ... +%x) .
n A i=0 _ Lo
COROLLARY (3.4.11) For the inreducible character x! 'oﬁ ' qK(Bﬁ)’ ,
W = (a, B, |
_ : ¢ o B B
d = P (%, ) T &8 .6 T =H .6

K n @e@ PIHT  pe@ BT

PROOF : This follows from the definition of d " (3.1.3), (3.4.10) and
, X ,
Theorem (3.4.9).
- The generic degrees of the representation of CnK(An) and

‘cfi(Dn) are readily oBtained from Theorem (3.4.9) .as well. In particular

COROLLARY (3.4.12) Let ¢ : D = Q[x, y] —> Q(x) be the ho:ﬁomammm

defined by ¢(y) = 0 . let (d) be a pa)z,té/téon 04 n and Let x° ) and
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MCHRC) . 7 veducible chanactens 0f mK(Aﬁ—l) and C“(K(Br;)
cornrnesponding to (a) and (a, (0)). Let ¢* : D, —> Q(x) be the
extension of ¢ Lo the fu’yig 04 4ractions, P = ker ¢ . Then |

and

'dx<a, (0)) ?DP M@_x‘“’ (0))’ fdxa .

PROOF : For w e W(Bn), define ll(w) to be the number of times w

1
occurs in a reduced expression for w in R, and set QZ(W) = i(w) - ll(w).
Then
: ll(w) lz(w)
y(aw) =y x 7, a e G{(Bn) .

We first show
' L, (w) o L ,
(3.4.13 Dy oy T DGy o, e ue).

Let M(a) denote the matrix of ﬂ(a’ (0))(a) with respect to}the basis

'{tl’ ceey tf} of V%u, 0)) ° ace mK(Bn). By (2.2f6),> M(al)v=‘y1- and

thus commutes with M(ai), i=2, ..., n. Hence for we W(Bn)

' 2wy
M(a) = (M(ap)) = Ma)
where
- w w o
a = 2 ca , c e Qfx] .

From (2.2.6), X(a; (0))(5w) e Qx) €D D considered és a éubring of

P? P

K = Q(x, y). Thus we have Shown4(3.4.13).: The rest of the proof is now

clear. As ll(w) = El(w—l), we have
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¢*(C(a’ (0))) = z ‘v(aw).—lxa(aw)xa(aw)' = Ca .
: weW(An_l) ' A
Similafiy
o ( v(a )) = v " ov(a)
' sz(Bn) v WZW(An-l) | v

and the statement of the corollary follows.

Thus by the above corollary and Theorem (3.4.9) we have, for (a)

a partition of n ,

' _ 81
(3.4.14) | d =P, (x/'ﬂ.- HY
: ‘ X n-1 i,]
where
L i
P, () = Jla+ +x)
n-1 i=0

COROLLARY (3.4.15) 'Le,tv ¢ : D=Q[x, y] — Q(x) be the homomornphism defined
by 6(y) = 1. Let (w) = (o, B) be a double pantition of n with
(@) # (8) and Let x* and ¢" be the imeducible characterns of “(8.)
and (;(K(D ) come/.;pondéng o () . Then ¢*(d ) =d , where

n , xH PH
¢$* : Dy —> Q(x) A8 the extensdion of ¢  Zo the ning of fractions . D, ,
P = ker ¢

PROOF : From Theorem (2.3.9), ¢“- is the restriction to (mK(Dn) of the
irreducible character XU of {1 (B), K =0Q(x), where
' (b ¢3K n ' .

xz(aw ) = ¢*(XH(aw)) . Thus by the definition of generic degree, to prove

the corollary it is sufficient to prove
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(3.4.16) ) v(a )7t u(

) L,
() W e X G =2 T v (ag,) X¢(aw¢)X¢(aw¢)

‘ WEW(D )

for () as in the statement of the corollary. For. any w:e W(Bn) " and

corresponding basis element é“¢ € G%,Q(X)(Bn), we haye awq)aw'l¢ = aww1¢,
as (a, ¢)2 ='1l. Thus, using the orthogonality relations (3.1.4) and the
l .
coset decomposition W(Bn) W(D )y u W(D )w , we have
$*(C) WZW(B ) 9(aw¢)x¢(aw¢)x¢(aw¢)
_ . , n
e lMA
= 3 I ova, ) M M G
wew(s ) =1 "¢ e
| Jar . | |
4.17) = BBV Y
(3.4.17) WZZ:W(D ) i-z-l \)(aw¢) [ 11(aw¢) 1l(aw¢) M
n
u w,ooo
Mll(aw¢ wl¢)M (a l¢ w¢)]

where Mu(aw ) is the matrix of 'Wg(aw) with respect to the last letter

sequence arrangement of the basis {t,, ..., t.} of VK . Then HMu(a )
1 f U wl¢

is a diagonal matrix with entries +.1 by (2.3.9) - so

H ' M - M
M (a wo Wl¢) 11( w ¢ w¢) - Mll(aw¢)M11(aw¢)

Then (3.4.17) becomes

]
N

o*(C )

-1 I
v(ag) M G O G

il
N
<
—~
[0)]

_l u .
) ¢( wcr))x(:)( W¢)
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as the restriction of 'm  to (]K(Dn) is an absolutely irreducible

u

_ ¢

representation of (nK(Dn). This proves (3.4.16) and completes the proof.
We conclude with an example. We calculate the generic degree of

the neflection nepresentation of the generic algebra of classical type, a

. computation also given in ([6]) (as a polynomiél in one variable). The

double partition (u) = ((n-1), (1)) yields the reflection fepresentation

of ClK(Bn).

‘ [ - - - = l J n—l» squares

U

(D(n-1), D(1))

We have

: n-3 -, n=2 o '
(-1, (1)) _ v + 1y TT a+ xy) 'IT L+ .o +x0) .

i=-1 Ci=1
Thus
n-1 n-2 o
d _ PB (x, yv/ M- y(l + ... + x_l Y1 +x Ty)
xu n : 1+x7y)

Setting y = 1 in the above we have by (3.4.15) the generic degree of the

reflection representation of CXK(Dn) .

The  partition (a) = (n-1, 1) "of =n yields the reflection

representation of CTK(An_l).
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- - "'[ J n-1 squaies

D(n-1, 1)

The generic degree of the representation of OIK(Bn) corresponding: to the: -

double partition (o, (0)) = ((n;l, i), (0)) is

a‘ . _ x(1 + xn-ly)(l +.... + x )

Setting y = 0 in the above we have by (3.4.12) the generic degree of the

reflection.representation of (XK(An_l ).

Finally we remark that from (3.1}7) the above'corollariés give
the degrees of the irreducible constituents Qf lg for G a finite grpup‘
with ‘BN—pair with Coxeter system of classical type by suBstitution of the
index parameters in the formula for the generic degree. 1In particular,
these computations apﬁly to»the families of.Chevalley groups Algq)}, Bg(g),

1 2 1 2 1, 2 ;
Dz(q), AZQ(q')’ AZQ—l(q ), pl(q ) . The degrees of these char;cters for

the families of type Az(q) were already known (see [16]).



10.

11.

12.

13.

91

BIBLIOGRAPHY

~ Benson, C.T. and Curtis, C.W., On the Degrees and Rationality of Certain

Characters of Finite Chevalley Groups, Transactlon of the Amerlcan
Mathematlcal Society, 165 (1972), 251-273.

'Bourbakl, N., Groupes et Algébres de Lie, Chap. 4 5, 6 -Paris, Hermann,

1968.

s, Algébre Commutatiﬁe, Chap. 5, 6, Paris, Hermann, 1964.

Carter, R.W., Conjugacy Classes in the Weyl Group, Compositio
Mathematica, 25 (1972), 1-59. ‘ :

Curtis, C.W. and Fossum, T.V., On Centralizef Rings and Characters of:
Representations of Finite Groups, Mathematische Zeitschrift, 104
(1968), 402-406. ‘ '

Curtis, C.W., Iwahori, N. and KllmOYer, R., Hecke Algebras and
Characters of Parabollc Type of Finite Groups with (B, V)—palrs,
Institut des Hautes Etudes Sc1ent1f1ques, Publlcatlons
Mathématiques, 40 (1971), 81-116. '

Curtis, C.W. and Reiner, I., Representation Theory of Finite Groups and
Associative Algebras, New York, John Wlley and Sons (Interscience),
1962.

Green, J.A., On the Steinberg Characters of Finite Chevalley Groups,
Mathematlscﬁe Zectschrlft 117 (1970), 272-288..

Iwaghori, N., On the Structure of the Hecke Ring of a Chevalley Groups over
a Finite Field, Journal of the Faculty of Sc1ences, Tokyo
University, 10(2) (1964), 215-236.

MacDbnald, I.G., - The Poincaré Series of a_Coxetér_Group; Mathematische
Annalen, 199 (1972), 161-174. : :

Matsumoto, H., Générateurs et Relations des Groupes de Weyl Générallsés,
Comptes Rendus, L' Académlc Des Sciences Parls, 258 (1969),
3419-3422, : :

Robinson, G. de B., Representation Theory of the 4ymmetfic'Group,='
“Toronto, University of Toronto Press, 1961.- :

Rutherford D.E., - Substltutlonal Analy31s Edlnburgh Edinburgh

University Press, 1948.



14.

16.

17.

18.

19.

20.

92

ﬁSteinberg, R., Lectures on Chevalley Groups,. Lecture Notes, Yale:-

Unlver51ty, New Haven, Conn:, 1967.

’ ', Varlatlons on a Theorem of Chevalley, Pac1f1c Journal -
of Mathematlcs, 9 - (1959), 875-891. '

» -A Geometric Approach to the Representatlons of the Full

Linear Group over a Galois Field, Transactions of the American -
Mathematical Soc1ety 41 (1951), 279-282. :

Tits, J., Algebraic and Abstraet Simple Groups,; Annals of Mathematics, -
80 (1969), 313-329. ' :

Young, A., On Quantitative_Subétitutional Analysis IV, Proeeedings of
the London Mathematical Society, 31(2) (1930),-253-272.

, On Quantitative Substitutional Analysis V, Proceedlngs of
the London Mathematical Society, 31(2) (1930), 273-288.

, -On Quantitative Substitutional’Analy31s VI, Proceedings of .
the London Mathematical Society, 34(2)- (1932),~196—230" :



