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REPRESENTATIONS  OF LOCALLY  CONVEX   »-ALGEBRAS

JAMES   D.   POWELL

Abstract. Conditions for a functional to be admissible on a

locally convex ""-algebra are defined. Let F be an admissible posi-

tive Hermitian functional on a commutative locally convex

*-algebra; then it is shown that there exists a representation of A

into a Hubert space. Sufficient conditions for a functional F to be

represen table are also given.

1. By a locally convex algebra A we shall mean an algebra A, over

the complex numbers C, which has associated with it a Hausdorff topology

t such that multiplication is separately continuous. A will be called a

locally convex *-algebraif A has a continuous involution. Ifx is an element

of A such that x*=x then x will be called Hermitian.

An element x of A is said to be bounded if for some nonzero complex

number X, the set {(Xx)":n e N} is bounded. The set of bounded elements

of A will be denoted by A0. Let Bx denote the collection of all closed,

convex, circled sets B that are also bounded and idempotent. If F g Bx,

then /1(F) will denote the subalgebra of A generated by B, i.e., AiB) =

{Xx:X g C, x e B}, and the equation

||jc||,,= inf{X>0:xeXB}

defines a norm which makes AiB) a normed algebra. A will be called

pseudo-complete if each AiB) is a Banach algebra. For each x g A, the

radius of boundedness of x, ßix), is defined by ß(x) = inf{X>0:{(x/X)n:

n g N} is bounded} with oo = inf0. (For properties of ß see [1].)

Let A be a locally convex *-algebra, and let F be a linear functional

on A. If F(x*) = (F(x))~ for all x in A, F will be called Hermitian. If

F(x*x)^.Q for all x in A, then F will be called a positive functional.

2. Admissible functionals. Before defining admissible functionals con-

sider the following:

Lemma 1. Let A be a pseudo-complete locally convex *-algebra and

let x0 be any element of A such that ß(x0)< 1. Then there exists an element
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y0 of A, such that 2y0—yl=x0. In addition if x0 is Hermitian, y0 will also

be Hermitian.

Proof.    Consider the function / defined in terms of the binomial

series as follows :

1/2)/«~lQ-2r.
/is defined and 2f(z)—[f(z)]2=z for all |z|<l. Now consider the vector

valued function 2«=i Cn)(—x0)n. We show that this series converges.

Let e>0. Since ß(x0)<l there exists [1] a F g Bx such that x0 e A(B) and

||x0||iJ<l. Since / converges for |z|^l there exists an n0 such that for

p,q>n*

ï("2)(-*.r
n=„\ n I

<e.
B

Since A(B) is complete we have that the vector valued series converges to

an element j0 of A(B) such that 2y0—yl=x0.

Using this lemma one can prove the following theorem.

Theorem 2. Let A be a pseudo-complete locally convex *-algebra

and let F be any positive functional on A, then \F(x*hx)\Sß(h)F(x*x) for

x in A and h Hermitian.

Let F be a positive functional on A and define LF={x g A:F(y*x)=0

for all y in A}. Then LF is a left ideal and we define XF=A\LF. We denote

x+LF by x, i.e., x=x + LF.

Definition. Positive functionals F which satisfy the following con-

ditions will be called admissible:

(1) sup{F(x*a*ax)/F(x*x):x g A}< oo for all a g A0, and

(2) for each x g A there is an x0 g A0 such that x=x0.

The following two corollaries follow from Theorem 2.

Corollary 2.1. If A is a pseudo-complete locally convex *-algebra

such that A = A0, then any positive functional is admissible.

Corollary 2.2. If A is a Banach *-algebra, all positive functionals

are admissible.

We now construct an example of an admissible functional on an algebra

where A^Aa.

Let X be a locally compact Hausdorff space, and let A be the algebra of

all continuous complex valued functions on X. Let A have the topology

of uniform convergence on compact subsets of X. Consider the functional

F.A-^-C given by F(f)=f(x0) where x0 is a fixed element of X. Since A
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is pseudo-complete, the first condition is satisfied. To show that the second

condition of admissibility is satisfied let/g A. Letg(x)=/(x0)forallx El

Then geA0 and g=f+LF.

3. Representations. Let A be an algebra over the complex numbers

and X a vector space over C. A representation of A is a homomorphism

of A into L*(X), the algebra of all linear transformations of X into

itself. Before proving the next theorem consider:

Lemma 3. Let A be a locally convex *-algebra and let F be an admissible

positive functional on A. If a and b are elements of A, then (a+b)0 =

(â0+bu).

Theorem 4. Let F be an admissible positive Hermitian functional on the

commutative locally convex *-algebra A. Then there exists a representation

a-^-Ta of A on a Hubert space H such that (Ta)*=Ta,for all a e A0.

Proof. Since A is commutative LF is a two-sided ideal and hence

XF=A\LF is an algebra. Let x=x+LF and define a scalar product in

XF by (x, y)=F(y*x), x,y£ A. The completion of XF with respect to

the inner product will be called H, and H is a Hubert space.

Let x0 be a fixed element of XF (since F is admissible we may assume

that x0 e A0). Let z e H and assume that zn—>z with zn g Xf. Then

\\x0zn - x0zj2 = F((zn - z,„)*x*x0(z„ - zj) S M \\zn - zm\\2,

where M>0, since F is admissible. Thus {x0zn} is a Cauchy sequence

with respect to the inner product norm, and hence the sequence con-

verges to an element y of H. Similarly, we can show that if wn-*z with

respect to the inner product norm, then {.v0vv„} converges to p. We thus

define xaz=y.

We now define the mapping a^-T„ of A into H by

T,.x = âax,        x G H,

where ä0=ä. Then T„ g L*(H) and this relationship defines a representa-

tion.

Consider the restriction of the representation to A0. Let a e A0. Since

Fis admissible we have

||F(l(x)||2 = F(x*a*ax) < M||x||2,       x g Xf,

for some AF>0. Hence F„ is a continuous function on XF and thus F„ can

be uniquely extended to a continuous function F„ on H. However if

x g H—XF, let {xn}*=i be a subset of XF such that x,—>x. Then

faix) = Hm f(1(.v„) = lim Ta(xn) = lim ax„ = ax = Ta(x),
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by the definition of multiplication of elements of H by elements of XF.

Thus fa=Ta and Ta is a continuous function on H for a e A0.

Since Ta is continuous, we can show that (Ta)* = Ta. by showing that

(Ta)*ix) = Ta.ix) for all x g Xf. Let x and y be elements of XF, then

(Tax,y) = Fiy*ax) = ix,(a~~*)y) = ix,Ta.y).

Thus for a e A we have T*=Ta..

Definition. A representation a-*Ta of A on X is called a *-represen-

tation provided (Fa)* exists and is equal to Ta. for every a e A.

Corollary 4.1. IfA0 is also an algebra (e.g., if the product of bounded

sets of A is bounded) then the restriction of the above representation to

A0is a *-representation ofA 0 on H.

Let A'be a vector space over the complex numbers. Let F be a subalgebra

of the algebra of all linear operators on the linear space X. Let z be a

fixed vector in X and let Xz={Tiz): Te K}. Then Xz is an invariant sub-

space of X with respect to F. If there is an element z of a normed space X

such that XZ = X, then Fis said to be topologically cyclic and z is called a

topologically cyclic vector. A representation x—>-Tx of A on X is said to

be topologically cyclic if, when K={Tx:x g A}, there is a z in X such that

XZ=X.

With these definitions we state the following corollary to Theorem 4.

Corollary 4.2. Let Abe a commutative locally convex *-algebra with

identity. Let F be an admissible positive Hermitian functional on A ; then

the representation obtained above is topologically cyclic with a cyclic vector

h0 such that F(x)=(FA, h), x g A.

Proof. Let h0=l = l+LF. Then by definition Txh0=x0, so that the

set {Txh0:x g A}=Xf and hence is dense in H. Thus h0 is a topologically

cyclic vector. Now let x e A, then there exists x0 g A such that x=x0.

Thus

F(l*(x-xo)) = F(x-x0) = 0   or   F(x) = F(x0).

Therefore iTxh0, h0) = ixh0, //0)=F(x0)=F(x) for all x e A.

4. Représentai/le functionals. Let F be functional on the locally

convex *-algebra A and let a~^Ta be a representation of A on a Hubert

space H such that the restriction of the representation to A0 is a *-repre-

sentation of A0 on H. Then Fis said to be represented by a->Fa provided

there exists a topologically cyclic vector //0 g H such that F(x) = (Txh0, h0)

for all x e A.
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Definition. Let x-^Tx be a representation of A on H. Let M=

{h G H: Tji=0 for all x g A}. If M={0}, we say that the representation

is essential.

The following lemma is found in Rickart [4].

Lemma 5. If the representation x^>-Tx is essential, then each of the

subspaces Hh={Txh:x g A} is cyclic with h as a cyclic vector.

Theorem 6. Let F be a Hermitian functional on the pseudo-complete

commutative locally convex *-algebra A. Then in order for F to be represent-

able, it is sufficient that
(1) for each x e A, there is an x0 in A0 such that x=x0, and

(2) \Fix)\2SpFix*x), xeA,

where p is a positive real constant independent of X.

Proof. Assume that F satisfies the conditions and denote by Ax the

pseudo-complete locally convex *-algebra obtained by adjoining the

identity element to A. Extend the functional F to Ax by the definition,

Fix + a.)=Fix)+pen for x g A and a a scalar. Then F is a positive func-

tional on Ax and Theorem 2 guarantees that the first condition of admis-

sibility is satisfied on Ax. To show that the second condition is satisfied,

let x+a.eAx. Then by hypothesis there exists x0 g A0 such that x0=x.

Consider x0+a. We show that (x0-f a)- = (x+a)0—.

\F[(y + ß)*((x0 + a) - (x + a))]|2 = \F[iy + ß)*ix0 - x)]\2

= \Fiy*ix-X!>)) + Fißix0-x))\2

= \0 + ßFix0 - x)\2

S \ß\2F[(x0 - x)*ix0 - x)] = 0

since x0=x, and (x—x0) g A.

Hence by Corollary 4.2 there exists a representation x^-Tx of Ax on

H defined by Tu+a)x=ia+ct.)0~x and such that F(a+a) = (Fa+a/z0, h0)

for some h0 g H. Now let

N = {heH: T„h = 0 for all a e A}.

Consider the restriction of a-^-Ta to the space N1, where

N-1- = {h G H: (//, n) = 0 for all n G N}.

The restriction of the representation is essential.

Let h0=h'0+h'¿ where h'0 g Nl and h'¿ e N. Then for all a e A we have

that

Fia) = iTah0, K) = iTaK, h0) = iK, T*iK + K))

= (K, T*h'0) = iTaK, K).
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Thus if we let H0={Tah'0:a e A} and apply Lemma 5 we have that F

is representable.

Corollary 6.1.    If A has an identity element then every positive func-

tional which implies condition (1) is representable.
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