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REPRESENTATIONS OF NORMALIZER SUBGROUPS

OF MAXIMAL TORI OF THE CLASSICAL GROUP

OF TYPE C

By

Makoto Takahashi

Abstract. We study representations of the normalizer subgroup N

of a maximal torus of the classical group of type C, SpðnÞ. We

obtain a formula of the irreducible characters of N, and give the

branching rule from SpðnÞ to N.

1. Introduction

The research of representations and characters of SpðnÞ, the classical group of

type C, has been developed and we have the characterization of the irreducible

representations and formulae of the dimensions and characters (see [W]).

Restriction of an irreducible character of SpðnÞ to a maximal torus T is a

polynomial invariant under the action of the Weyl group of type C. The Weyl

group of a semisimple Lie group is obtained as the quotient of the normalizer

subgroup of a maximal torus by the maximal torus itself. When we research

representations of the semisimple Lie groups, it is important to decompose the

representation space into the weight spaces of the maximal torus. The weight

spaces are permuted by the action of the Weyl group. So, maximal tori and Weyl

groups play a crucial role to investigate the representations of the semisimple Lie

groups.

We consider the representations of the normalizer subgroup N of a maximal

torus of SpðnÞ. The group N has the properties of both the maximal torus and

the Weyl group. Indeed, N includes the maximal torus T that gives the weight

space decomposition and the Weyl group N=T permutes the weights. Each of the
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characters of SPðnÞ is determined by its restriction to a maximal torus T , since

any element of G is conjugate to an element of T . This restriction is a polynomial

function on T which is invariant under the action of the Weyl group W ¼ N=T .

So, the research of di¤erence between representations of N and representations of

the whole group SpðnÞ is an interesting subject. To compare the representations

of SpðnÞ and N, we consider the restriction of the representation of SpðnÞ to N

and give a combinatorial formula for the multiplicities of the irreducible rep-

resentations of N in the restriction of the irreducible representation of SpðnÞ to N.

The representation theory of N has been developed in the context of the zero-

weight representation and so many interesting results are obtained (see [AMT],

[Mat], [Na], [Ni], [MT]).

In this paper, we use the method given by Cli¤ord [C] to determine irre-

ducible characters of N. Each element of N is determined by w A N=T and t A T .

We write the corresponding element as nwt. Then, we obtain the character value

of nwt of irreducible representations of N.

In the remainder of this section, we summarize the contents of this paper.

In section 2, basic facts and notations are introduced to proceed the

arguments, and we have a criterion given by Cli¤ord of the irreducibility of

representations of N.

In section 3, we determine the character value at nwt of irreducible repre-

sentations of N.

In section 4, we write the value of elementary symmetric functions at

eigenvalues of nwt in terms of w and t. Then, the character value of an irreducible

representation of SpðnÞ at nwt is expressed by w and t.

In section 5, we obtain the branching rule between N and SpðnÞ. We use an

inner product on the space of characters of N given by normalized Haar measure

on N.

I would like to thank Prof. J. Matsuzawa who introduced me the subject of

this paper and gives me a lot of lectures. I would also like to thank Prof. K.

Koike and Prof. I. Terada for many important suggestions. I am grateful to Prof.

M. Miyamoto for all the help on my study.

2. The Irreducible Representations of N

In this paper, define the classical group of type C, SpðnÞ, as follows;

SpðnÞ :¼ fg A Uð2nÞ j tgJng ¼ Jng;

where Jn ¼
0 In

�In 0

� �
A GLð2n;RÞ and In is the identity matrix of degree n.
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We fix a maximal torus T of SpðnÞ as follows;

T :¼ fdiagðt1; t2; . . . ; tn; t1; t2; . . . ; tnÞ j ti ¼ e
ffiffiffiffiffi
�1

p
yi ; yi A Rg;

where ti is the complex conjugate of ti. Let N be the normalizer subgroup of T .

Then, the following sequence becomes exact;

1 ! T ! N ! W ! 1 ðexactÞ;

where W is the Weyl group of type C, which is isomorphic to the semi-direct

product Sn y ðZ2Þn.
For i > 0, let t�i :¼ ti. Then, the elements t of T are expressed as follows;

t ¼ diagðt1; t2; . . . ; tn; t�1; t�2; . . . ; t�nÞ:

The group W consists of the permutations s on the set

f1; 2; . . . ; n;�1;�2; . . . ;�ng;

which satisfy the condition sð�iÞ ¼ �sðiÞ. The group W can be regarded as a

subgroup of S2n. For w A W , we use the same symbol w for the permutation

matrix corresponding to w in Uð2nÞ. Then, the matrix is of type w ¼ A C

C A

� �
,

where the matrix w is a permutation matrix of size 2n� 2n, the size of block

matrices A and C is n� n, and the matrices A, C satisfy the conditions
tAAþ tCC ¼ In and tAC ¼ AtC ¼ 0.

Notation 2.1. For each w A W , w ¼ A C

C A

� �
, we set nw ¼ A C

�C A

� �
.

Then, nw A SpðnÞ, and we obtain

n�1
w tnw ¼ diagðtwð1Þ; twð2Þ; . . . ; twðnÞ; twð�1Þ; twð�2Þ; . . . ; twð�nÞÞ:

Remark 2.2. Let x1; x2; . . . ; xn be the generators of W as Coxeter group,

where xn corresponds to the long root. For xi ði ¼ 1; 2; . . . ; n� 1Þ, we have the

following expression;

nxi ¼
Ai 0

0 Ai

� �
;

where

Ai ¼

Ii�1

0 1

1 0

In�i�1

0
BBB@

1
CCCA;
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and

nxn ¼

In�1

0 1

In�1

�1 0

0
BBB@

1
CCCA:

In the matrices Ai and nxn , the entries which are not written are 0.

In fact, we can choose elements ~nnxi of N corresponding to xi as

~nnxi ¼
Bi 0

0 Bi

� �
;

where

Bi ¼

Ii�1

0 1

�1 0

In�i�1

0
BBB@

1
CCCA

for i ¼ 1; 2; . . . ; n� 1, and

~nnxn ¼ nxn :

In the matrix Bi, the entries which are not written are 0.

For each i, where i ¼ 1; 2; . . . ; n, elements nxi and ~nnxi of N di¤er by an element

of T ; n�1
xi
~nnxi A T. In [MT], ~nnxi ’s are used to proceed the argument (see [MT],

Remark 5.2).

Here, we consider the irreducibility of representations of N.

Theorem 2.3 (Cli¤ord [C]). Let ðr;VÞ be a finite dimensional continuous

representation of N. Then, we obtain the weight space decomposition of V with

respect to T as follows;

V ¼ Vm1 lVm2 l � � �lVmr ;

where mi : T ! C� is a continuous homomorphism, and

Vmi ¼ fv A V j Et A T ; rðtÞv ¼ miðtÞv ðmiðtÞ A C�Þg:

Fix a weight m. Then,

Vm ¼ fv A V j Et A T ; rðtÞv ¼ mðtÞv ðmðtÞ A C�Þg:
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Let Nm be the maximum subgroup of N that stabilizes the weight space Vm. Then,

the representation ðr;VÞ is irreducible if and only if the following two conditions

hold;

(a) ðrjNm
;VmÞ is an irreducible representation of Nm,

(b) V ¼ rðNÞVm. r

Weyl group W acts on the set of weights of the irreducible representation ðr;VÞ.
The weights are permuted under the action of W and form a W -orbit. For a

weight m, we can define a subgroup Nm of N as the stabilizer subgroup of m by

the action. Then, the stabilizer subgroup Nm is the maximum subgroup of N that

stabilizes the weight space Vm. In the set of weights, we introduce the dominance

order by which the following weight m becomes the highest weight;

mðtÞ ¼ t
p1
1 t

p2
2 � � � tpnn ; pi A Zb0; p1 b p2 b � � �b pn b 0: ð2:1Þ

For the highest weight m, we obtain the weight space Vm and the maximum

stabilizer subgroup Nm. Let Wm :¼ Nm=T . Then, we can parameterize the irre-

ducible representation r by the weight m and an irreducible representation j of

Wm in the context of [C].

Each element of W can be uniquely written in product of the following

elements;

ði1i2 � � � ik �i1�i2 � � � �ikÞ;

ði1i2 � � � ikÞð�i1�i2 � � � �ikÞ:

Namely, i and �i appear in one cycle element simultaneously or not. Define a

cycle element to be self-contained if i and �i appear in the expression, and to be

separated otherwise. For separated case, we have a pair of cycle elements. The

self-contained cycle elements have even length. For w A W , if w is decomposed

into cycle elements all of which are separated, then we call the element w to be

separated.

Let Wm :¼ Nm=T HW . Then, Wm is isomorphic to the direct product of Weyl

groups.

Definition 2.4. For the highest weight m, mðtÞ ¼ t
p1
1 t

p2
2 � � � tpnn , pi A Zb0,

p1 b p2 b � � �b pn b 0, define the number of pi’s which are equal to 0 to be n0,

and the number of distinct elements which are not equal to 0 in the set fp1; . . . ; png
to be q. We define the numbers n1; n2; . . . ; nq as follows;

5Representations of Normalizer Subgroups of Maximal Tori



p1 ¼ p2 ¼ � � � ¼ pn1

> pn1þ1 ¼ pn1þ2 ¼ � � � ¼ pn1þn2

> � � � > pn1þ���þnq�1þ1 ¼ pn1þ���þnq�1þ2 ¼ � � � ¼ pn1þ���þnq > 0: r

Definition 2.5. For 0a ia q, define the sets Ii, I 0i as follows;

Ii :¼ fn1 þ � � � þ ni�1 þ 1; n1 þ � � � þ ni�1 þ 2; . . . ; n1 þ � � � þ ni�1 þ nig

ði ¼ 1; 2; . . .Þ;

I0 :¼ fn1 þ � � � þ nq þ 1; n1 þ � � � þ nq þ 2; . . . ; n1 þ � � � þ nq þ n0g;

I 0i :¼ f�k j k A Iig: r

Definition 2.6. Define WðAni�1Þ to be the group which consists of all the

separated permutations s on the set Ii U I 0i with the conditions

sðIiÞH Ii; sðI 0i ÞH I 0i ;

and WðCn0Þ is the Weyl group of type C on the set I0 U I 00. r

Then, we have the following equation;

Wm ¼ WðAn1�1Þ �WðAn2�1Þ � � � � �WðAnq�1Þ �WðCn0Þ: ð2:2Þ

As in the notation 2.1, let nw ¼ A C

�C A

� �
, where w ¼ A C

C A

� �
. Then, each

element of N can be written as nwt uniquely for w A W , t A T , and we obtain the

following proposition.

Proposition 2.7. For the highest weight m, we define a map ~mm : Nm ! C� as

follows;

~mmðnwtÞ :¼ mðtÞ ðEt A TÞ: ð2:3Þ

Then, the map ~mm becomes a character of Nm and we have ~mmjT ¼ m.

Proof. It is clear that ~mm is a well-defined map. Immediately, we have

~mmjT ¼ m. We show that ~mm is a group homomorphism from Nm to C�.

For elements nwt; nw 0 t 0 A Nm, we have

ðnwtÞðnw 0 t 0Þ ¼ nwnw 0 ðn�1
w 0 tnw 0 Þt 0

¼ nww 0 ðn�1
ww 0nwnw 0 Þðn�1

w 0 tnw 0 Þt 0:
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Since n�1
ww 0nwnw 0 A T , we have

~mmððnwtÞðnw 0 t 0ÞÞ ¼ ~mmðnww 0 ðn�1
ww 0nwnw 0 Þðn�1

w 0 tnw 0 Þt 0Þ

¼ mððn�1
ww 0nwnw 0 Þðn�1

w 0 tnw 0 Þt 0Þ

¼ mðn�1
ww 0nwnw 0 Þmðn�1

w 0 tnw 0 Þmðt 0Þ:

Then, we have

~mmððnwtÞðnw 0 t 0ÞÞ ¼ mðn�1
ww 0nwnw 0 ÞmðtÞmðt 0Þ ð2:4Þ

from the condition nw 0 A Nm.

Here, we determine the value of mðn�1
ww 0nwnw 0 Þ. Let n 0

0 ¼ n1 þ � � � þ nq. Then,

the matrix n�1
ww 0nwnw 0 is expressed as follows;

n�1
ww 0nwnw 0 ¼

In 0
0

Dn0

In 0
0

Dn0

0
BBBB@

1
CCCCA;

where Dn0 is a diagonal matrix of size n0 � n0, and the entries of the matrix

n�1
ww 0nwnw 0 which are not written are 0.

Since pi ¼ 0 for i ¼ n 0
0 þ 1; n 0

0 þ 2; . . . ; n 0
0 þ n0, we have

mðn�1
ww 0nwnw 0 Þ ¼ 1:

Then, from (2.4), we have the following equations;

~mmððnwtÞðnw 0 t 0ÞÞ ¼ 1 � mðtÞmðt 0Þ

¼ ~mmðnwtÞ~mmðnw 0 t 0Þ: ð2:5Þ

The equation (2.5) shows that the map ~mm : Nm ! C� is a character of Nm. r

From the proposition 2.7, we obtain the fact that for any irreducible rep-

resentation m of T , we have a representation ~mm of Nm which satisfies ~mmjT ¼ m.

Next, we consider representations of Nm given by representations of Wm.

Definition 2.8. Let p : Nm ! Wm be the quotient map and j a representation

of Wm. Then, we define a representation ~jj of Nm as follows;

~jj :¼ j � p: ð2:6Þ
r
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Then, we have

~jjðnwtÞ ¼ jðwÞ: ð2:7Þ

Lemma 2.9 (Cli¤ord [C]). Let m be an irreducible representation of T. Then,

we have a stabilizer subgroup Nm and a group representation ~mm of Nm as (2.3). For

an irreducible representation j of Wm, we have a representation ~jj of Nm as (2.6).

Then, the representation ~mmn ~jj becomes an irreducible representation of Nm. r

From (2.3) and (2.7), we have

ð~mmn ~jjÞðnwtÞ ¼ mðtÞn jðwÞ: ð2:8Þ

Theorem 2.10 (Cli¤ord [C]). Let ðr;VÞ be an irreducible representation of N,

m the highest weight of ðr;VÞ. Define a representation j of Wm as follows;

jðwÞ :¼ rðnwÞ ðw A WmÞ: ð2:9Þ

Then, ðj;VmÞ is an irreducible representation of Wm and the following condition

holds;

for the representation tðm; jÞ of Nm defined as

tðm; jÞðnwtÞ :¼ ð~mmn ~jjÞðnwtÞ ¼ mðtÞn jðwÞ; ð2:10Þ

we have

rG tðm; jÞ "N
Nm
: ð2:11Þ

r

From the theorem 2.3, lemma 2.9 and theorem 2.10, we obtain the following

theorem.

Theorem 2.11 (Cli¤ord [C]). The irreducible representation ðr;VÞ of N is

parameterized uniquely by the highest weight m and an irreducible representation

j of Wm up to equivalence. Moreover, let ðr;VÞ, ðr 0;V 0Þ be irreducible repre-

sentations of N, m, m 0 the weights of them and j, j 0 irreducible representations of

Wm, Wm 0 respectively. Let rG tðm; jÞ "N
Nm
, r 0 G tðm 0; j 0Þ "N

Nm 0
. Then, ðr;VÞ and

ðr 0;V 0Þ are equivalent if and only if there exists an element w A W by which

m 0 ¼ w � m (in which case we have Wm ¼ Wm 0 ) and j 0 ¼ w � j hold, where

ðw � mÞðtÞ ¼ mðn�1
w tnwÞ, ðw � jÞðxÞ ¼ jðw�1xwÞ for t A T and x A Wm. r
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Notation 2.12. Let ðr;VÞ be an irreducible representation of N. From the

equation (2.11), we have

rG tðm; jÞ "N
Nm
:

Then, we write tðm; jÞ "N
Nm

as ym; tðm;jÞ;

rG ym; tðm;jÞ: ð2:12Þ

3. The Irreducible Characters of N

Each element of N can be written as nwt where nw is given in the notation 2.1

and t A T . Fix an element w A W and t A T . The system of representatives of

N=Nm GW=Wm forms a finite set. Let

R ¼ fw1;w2; . . .wbg ð3:1Þ

be one of the complete sets of representatives. For each wi A R, we have nwi
A N

as in the notation 2.1. Then,

V ¼ 0Vi; ð3:2Þ

where Vi ¼ rðnwi
ÞVm. Then, rðnwtÞ permutes the summands Vi. Hence, we have

tr rðnwtÞ ¼
X
i s:t:

rðnwtÞVi¼Vi

tr rðnwtÞjVi
: ð3:3Þ

For v A Vm, we obtain the following equations;

rðnwtÞrðnwi
Þv ¼ rðnwtnwi

Þv

¼ rðnwi
� n�1

wi
nwnwi

� n�1
wi
tnwi

Þv

¼ mðn�1
wi
tnwi

Þrðnwi
Þrðn�1

wi
nwnwi

Þv: ð3:4Þ

So, from (3.4), if n�1
wi
nwnwi

B Nm, then

rðnwtÞVi 0Vi

and the summand Vi gives no contribution to the value of tr rðnwtÞ.
Assume that for some g A R, the summand rðngÞVm is fixed by the action of

rðnwtÞ. Then, n�1
g nwng is an element of Nm. Here, we have

n�1
g nwng ¼ ng�1wgðn�1

g�1wgn
�1
g nwngÞ;

and n�1
g�1wg

n�1
g nwng is an element of T . So, we obtain g�1wg A Nm=T ¼ Wm.
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For each w, consider

Uw ¼ fu A W j u�1wu A Wmg: ð3:5Þ

For d; h A Uw which satisfy that d�1wd and h�1wh are in the same conjugacy class

of Wm, we have d A ZW ðwÞhWm, where ZW ðwÞ is the centralizer subgroup of w in

W .

Notation 3.1. Let fh1; h2; . . . ; hlg be the complete set of representatives of

the following quotient;

ZW ðwÞnUw=Wm:

Then, we have a decomposition of Uw into the equivalence classes;

Uw ¼ ZW ðwÞh1Wm t ZW ðwÞh2Wm t � � � t ZW ðwÞhlWm: ð3:6Þ

On the other hand, let

Uw
r :¼ ðZW ðwÞhrWmÞVR: ð3:7Þ

Then, from (3.6), we have

ZW ðwÞhrWm ¼
G

wi AU w
r

wiWm; ð3:8Þ

Uw ¼
Gl
r¼1

G
wi AU w

r

wiWm

 !
: ð3:9Þ

Theorem 3.2. Let ðr;VÞ be an irreducible representation of N, m the highest

weight of r, j the representation of Wm given in (2.9), x the character of j. Then,

we can write

rG ym; tðm;jÞ ¼ ð~mmn ~jjÞ "N
Nm

as in section 2, (2.10), (2.12). Let nwt be an element of N given by the notation 2.1,

and fh1; h2; . . . ; hlg be the set given in the notation 3.1. Then, the character value

determined by the element nwt on space V with representation r is written as

follows;

tr rðnwtÞ ¼
Xl

r¼1

xðh�1
r whrÞ

X
wi AU w

r

mðn�1
w�1
i
wwi

n�1
wi
nwnwi

Þtp1
wið1Þt

p2
wið2Þ � � � t

pn
wiðnÞ: ð3:10Þ
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Proof. From (2.10), (2.11), (3.3), (3.4), (3.8) and (3.9), we obtain the

following equations;

tr rðnwtÞ ¼
X
wi AR;

w�1
i wwi AWm

mðn�1
wi
tnwi

Þ tr rðn�1
wi
nwnwi

ÞjVm

¼
Xl

r¼1

X
wi AU w

r

mðn�1
wi
tnwi

Þ tr rðn�1
wi
nwnwi

ÞjVm

¼
Xl

r¼1

X
wi AU w

r

tr tðm; jÞðn�1
wi
nwnwi

Þmðn�1
wi
tnwi

Þ

¼
Xl

r¼1

X
wi AU w

r

tr tðm; jÞðnw�1
i
wwi

� n�1
w�1
i
wwi

n�1
wi
nwnwi

Þmðn�1
wi
tnwi

Þ

¼
Xl

r¼1

X
wi AU w

r

tr jðw�1
i wwiÞmðn�1

w�1
i
wwi

n�1
wi
nwnwi

Þmðn�1
wi
tnwi

Þ:

Let x be the character of the irreducible representation j of Wm. Then, we obtain

the following equation;

tr rðnwtÞ ¼
Xl

r¼1

X
wi AU w

r

xðw�1
i wwiÞmðn�1

w�1
i
wwi

n�1
wi
nwnwi

Þmðn�1
wi
tnwi

Þ: ð3:11Þ

On the other hand, we have

xðw�1
i wwiÞ ¼ xðh�1

r whrÞ; ð3:12Þ

mðn�1
wi
tnwi

Þ ¼ t
p1
wið1Þt

p2
wið2Þ � � � t

pn
wiðnÞ; ð3:13Þ

for the element wi A Uw
r . Then, from (3.11), (3.12) and (3.13), we obtain the

following equation;

tr rðnwtÞ ¼
Xl

r¼1

xðh�1
r whrÞ

X
wi AU w

r

mðn�1
w�1
i
wwi

n�1
wi
nwnwi

Þtp1
wið1Þt

p2
wið2Þ � � � t

pn
wiðnÞ;

which gives the same value as (3.10). r

Remark 3.3. For wi A Uw
r HZW ðwÞhrWm, we can write wi ¼ zri hrh

r
i , where

zri A ZW ðwÞ and hr
i A Wm. For each wi, fix zri and hr

i which satisfy wi ¼ zri hrh
r
i .

Then,
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fzri jwi ¼ zri hrh
r
i g ð3:14Þ

is the representatives of the following quotient set;

ZW ðwÞ=ðZW ðwÞV hrWmh
�1
r Þ: ð3:15Þ

4. The Value of Symmetric Functions at Eigenvalues of nwt

In this section, we express the value of elementary symmetric functions at the

eigenvalues of the element nwt in N.

As in the notation 2.1, let

nw ¼ A C

�C A

� �
; t ¼ s 0

0 s

� �
;

where t is a diagonal matrix of SpðnÞ. Then, the characteristic polynomial of nwt

is written as follows;

detðxI2n � nwtÞ ¼ det
xIn � As �Cs

Cs xIn � As

� �
:

Let ek be the k-th elementary symmetric function, and let ekðnwtÞ be the value

of the function ek at the eigenvalues of nwt. Then, we obtain the characteristic

polynomial as the polynomial of x with coe‰cients GekðnwtÞ;

detðxI2n � nwtÞ ¼ x2n � e1ðnwtÞx2n�1 þ e2ðnwtÞx2n�2 � � � � þ ð�1Þ2ne2nðnwtÞ:

Fix an element w in W . Let f w
k ðtÞ be the function on T whose value at t is given

as ekðnwtÞ. Here, we determine the form of the function f w
k ðtÞ on T .

Definition 4.1. For each cycle element g ¼ ði1i2 � � � isÞ, define tðgÞ to be a

monomial ti1 ti2 � � � tis , and jgj to be the length of g. For a cycle element g ¼
ði1i2 � � � isÞ in the cycle expression of w, define a matrix ng ¼ ðcijÞ1ai; ja2n of size

2n� 2n to be as follows;

for nw ¼ ðnijÞ1ai; ja2n,

cij ¼
nij ði ¼ gð jÞ; j A fi1; . . . ; isgÞ
1 ði ¼ j; j B fi1; . . . ; isgÞ
0 otherwise:

8<
:

Then, define the value detðgÞ to be as follows;

detðgÞ ¼ detðngÞ: ð4:1Þ
r

12 Makoto Takahashi



Let the cycle expression of w be as follows;

w ¼ g1g2 � � � gj : ð4:2Þ

We set ki ¼ jgij and let zi;1; zi;2; . . . ; zi;ki be the roots of the equation

xki þ ð�1Þki detðgiÞtðgiÞ ¼ 0. Then, the eigenvalues of nwt are given as follows;

ðz1;1; z1;2; . . . ; z1;k1 ; . . . zj;kj Þ: ð4:3Þ

On the other hand, for x1 ¼ ðx1; x2; . . . ; xk1Þ; x2 ¼ ðxk1þ1; xk1þ2; . . . ; xk1þk2Þ; . . . ;
xj ¼ ðxk1þ���þkj�1þ1; . . . ; xk1þ���þkj Þ, where k1 þ k2 þ � � � þ kj ¼ n, we have

ekðx1; . . . ; xjÞ ¼
X

l1þ���þlj¼k

el1ðx1Þ � � � elj ðxjÞ: ð4:4Þ

By substituting the eigenvalues of nwt in ðx1; x2; . . . ; xnÞ of the equation (4.4), we

have the following equation;

ekðz1;1; . . . ; zj;kj Þ ¼
X

l1þ���þlj¼k

el1ðz1;1; . . . ; z1;k1Þ � � � elj ðzj;1; . . . ; zj;kj Þ; ð4:5Þ

and we have

eliðzi;1; . . . ; zi;kiÞ ¼
detðgiÞtðgiÞ ðli ¼ kiÞ
1 ðli ¼ 0Þ
0 otherwise:

8<
: ð4:6Þ

So, we have the following lemma.

Lemma 4.2. We can express the function value of f w
k ðtÞ at t as follows;

f w
k ðtÞ ¼

X
fgj1 ;...; gjl g

detðgj1Þtðgj1Þ detðgj2Þtðgj2Þ � � � detðgjl Þtðgjl Þ; ð4:7Þ

where gj1 ; . . . ; gjl run over distinct cycle elements appearing in the cycle expression

of w, and satisfy the condition

jgj1 j þ jgj2 j þ � � � þ jgjl j ¼ k; ð4:8Þ

and detðgjk Þ is the value defined in definition 4.1 corresponding to the cycle element

gjk . The set fgj1 ; . . . ; gjlg appears exactly once in the sum.

Proof. The value f w
k ðtÞ is obtained by substituting the eigenvalues of nwt to

the symmetric function ek. So, ekðz1;1; . . . ; zj;kj Þ, the left hand side of (4.5), is the

value f w
k ðtÞ. From (4.5) and (4.6), we obtain the equation (4.7). r
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Remark 4.3. In case g is self-contained, we obtain detðgÞ ¼ þ1. The reason

of this is explained as follows. Since the length of g is even as the element of S2n,

we obtain sgnðgÞ ¼ �1. Furthermore, in the matrix ng defined in definition 4.1,

there are odd number of ð�1Þ’s. So, we have detðgÞ ¼ ð�1Þ � ð�1Þ ¼ þ1. With the

condition tðgÞ ¼ 1, we obtain detðgÞtðgÞ ¼ 1.

Here, in case separated g1 and g2 are expressed as g1 ¼ ði1i2 � � � imÞ, g2 ¼
ð�i1�i2 � � � �imÞ respectively, we obtain

detðg1Þ ¼ detðg2Þ ¼ þ1 or �1

and tðg1Þ ¼ tðg2Þ, so we obtain tðg1Þ � tðg2Þ ¼ 1, detðg1Þ � detðg2Þ ¼ þ1.

5. The Branching Rule from SpðnÞ to N

In this section, we calculate the multiplicity of the irreducible representation

of N in the restriction of the irreducible representation of SpðnÞ to N.

Let r ¼ ym; tðm;jÞ as (2.12), where m is the highest weight of r given in (2.1),

Nm is the stabilizer of m, Wm ¼ Nm=T , R ¼ fw1;w2; . . . ;wbg is a complete system

of representatives of N=Nm GW=Wm and j is an irreducible representation of Wm

(see theorem 2.3, (2.2), (2.9), (3.1)).

Let dn be the normalized Haar measure on N with
Ð
N
dn ¼ 1. For characters

c, c 0 of N, define an inner product hc;c 0i as follows;

hc;c 0i ¼
ð
N

cc 0 dn ð5:1Þ

Then, the value is the same as the following integration value;

1

jW j
X
w AW

ð
T

cðnwtÞc 0ðnwtÞ dt; ð5:2Þ

where we define the measure dt on T as follows;

dt ¼ 1

ð2pÞn dy1 � � � dyn; ti ¼ e
ffiffiffiffiffi
�1

p
yi ; t�i ¼ e�

ffiffiffiffiffi
�1

p
yi : ð5:3Þ

Then, the irreducible characters of N form orthonormal basis under the inner

product (5.1).

Lemma 5.1. For the measure dt on T , we have the following equation;ð
T

ðta11 ta22 � � � tann Þðtb11 tb22 � � � tbnn Þ dt ¼ 1 ðai ¼ bi; i ¼ 1; 2; . . . ; nÞ
0 ðotherwiseÞ

�
ð5:4Þ

r
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Fix an element w A W . From (3.5), notation 3.1 and (3.7), we have Uw,

fh1; . . . ; hlg, Uw
r .

Let n0; n1; . . . ; nq be the numbers defined in the definition 2.4. For t A T , we

can write as follows;

mðn�1
wi
tnwi

Þ ¼ ðtwið1Þ � � � twiðn1ÞÞ
p 0
1 � � � ð� � � twiðn1þ���þnqÞÞ

p 0
q ð5:5Þ

where p 0
1; p

0
2; . . . ; p

0
q are all the distinct non-zero numbers in fp1; p2; . . . ; png,

mðtÞ ¼ t
p1
1 t

p2
2 � � � tpnn , with the condition p 0

1 > p 0
2 > � � � > p 0

q > 0.

Let w0 ¼ w�1
i wwi A Wm. Then, from the definition 2.6, w0 is written in

product of elements of WðAnk�1Þ, k ¼ 1; . . . ; q, and WðCn0Þ;

w0 ¼ d1d2 � � � dqd0; ð5:6Þ

where

dk A WðAnk�1Þ ðk ¼ 1; . . . ; qÞ; d0 A WðCn0Þ:

For k ¼ 1; . . . ; q, let

dk ¼ dk;1d
0
k;1dk;2d

0
k;2 � � � dk; skd

0
k; sk

; ð5:7Þ

d0 ¼ d0;1 � � � d0; s0 ð5:8Þ

be the cycle expression of dk and d0 in W , where dk; l ’s are permutations on Ik and

d 0k; l ’s are permutations on I 0k respectively with tðdk;1Þ ¼ tðd 0k;1Þ. Then, we obtain

the cycle expression of w as follows;

w ¼ g1;1g
0
1;1 � � � g1; s1g

0
1; s1

g2;1g
0
2;1 � � � g0; s0 ; ð5:9Þ

where

gk; l ¼ widk; lw
�1
i ; g 0k; l ¼ wid

0
k; lw

�1
i : ð5:10Þ

Lemma 5.2. Let gk; l be given as (5.10). Then, we obtain the following

equation;

mðn�1
wi
tnwi

Þ ¼ ðtðg1;1Þ � � � tðg1; s1ÞÞ
p 0
1 � � � ðtðgq;1Þ � � � tðgq; sqÞÞ

p 0
q : ð5:11Þ

Proof. Let n 0
1 ¼ 0, n 0

k ¼ n1 þ � � � þ nk�1, k ¼ 2; 3; . . . ; q. Then, we have the

following equation;

tn 0
k
þ1tn 0

k
þ2 � � � tn 0

k
þnk ¼ tðdk;1Þ � � � tðdk; sk Þ: ð5:12Þ

Then, we obtain the following equation;

twiðn 0
k
þ1Þtwiðn 0

k
þ2Þ � � � twiðn 0

k
þnkÞ ¼ tðgk;1Þ � � � tðgk; sk Þ: ð5:13Þ
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From (5.5) and (5.13), we obtain the following equation;

mðn�1
wi
tnwi

Þ ¼ ðtðg1;1Þ � � � tðg1; s1ÞÞ
p 0
1 � � � ðtðgq;1Þ � � � tðgq; sqÞÞ

p 0
q ;

by which the result follows. r

Let c be the character of r. Then, from the theorem 3.2, (3.10), we have

cðnwtÞ ¼
Xl

r¼1

xðh�1
r whrÞ

X
wi AU w

r

mðn�1
w�1
i
wwi

n�1
wi
nwnwi

Þtp1
wið1Þt

p2
wið2Þ � � � t

pn
wiðnÞ: ð5:14Þ

Let wl be an irreducible character of SpðnÞ with l ¼ ðl1; l2; . . . ; lnÞ,
l1 b l2 b � � �b ln b 0, and ww

l ðtÞ the value of wl at the element nwt;

ww
l ðtÞ ¼ wlðnwtÞ: ð5:15Þ

Let c be the irreducible character of N. Then, the multiplicity of c in wl #N ,
hc; wl #Ni, is given as follows;

hc; wl #Ni ¼
ð
N

c � wl #N dn: ð5:16Þ

Here, we express the function wl by the elementary symmetric functions.

Theorem 5.3 (Koike-Terada [KT1]). Let wl be the irreducible character of

SpðnÞ. Then, we have

wl ¼ jeð tlÞ� � eð tlÞ��2ð1 lÞ; eð tlÞ�þð1 lÞ � eð tlÞ��3ð1 lÞ; . . . ; eð tlÞ�þðl�1Þð1 lÞ � eð tlÞ��ðlþ1Þð1 lÞj;
ð5:17Þ

where l ¼ l1 and for a partition l ¼ ðl1; l2; . . . ; lnÞ, we define

l� ¼ ðl1; l2 � 1; . . . ; ln � ðn� 1ÞÞ A Zn: r

Let tl ¼ ðl 0
1; l

0
2; . . . ; l

0
l Þ be the transposed partition of l with l ¼ l1. Expanding

the right hand side of (5.17), we obtain the following equation;

wl ¼
X

s ASl1

ðsgnðsÞÞ
X

JHf1;2;...;l1g
ð�1ÞjJjem1

em2
� � � eml1

; ð5:18Þ

where we define

mk ¼
l 0
sðkÞ � ðsðkÞ � 1Þ � ðk þ 1Þ ðk A JÞ

l 0
sðkÞ � ðsðkÞ � 1Þ þ ðk � 1Þ ðk B JÞ:

(
ð5:19Þ
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From the equation (4.3), we have the eigenvalues of nwt as follows;

z ¼ ðz1;1; z1;2; . . . ; z1;k1 ; . . . zj;kj Þ:

Proposition 5.4. The value wlðnwtÞ ¼ ww
l ðtÞ is expressed as follows;

ww
l ðtÞ ¼

X
s ASl1

ðsgnðsÞÞ
X

JHf1;2;...;l1g
ð�1ÞjJjf w

m1
ðtÞ f w

m2
ðtÞ � � � f w

ml1
ðtÞ; ð5:20Þ

where mk, k ¼ 1; 2; . . . ; l1 are given in (5.19).

Proof. Substituting z in the equation (5.17), from (5.18), (4.5), (4.6), we

obtain the following equations;

ww
l ðtÞ ¼

X
s ASl1

ðsgnðsÞÞ
X

JHf1;2;...;l1g
ð�1ÞjJjem1

ðzÞem2
ðzÞ � � � eml1

ðzÞ

¼
X

s ASl1

ðsgnðsÞÞ
X

JHf1;2;...;l1g
ð�1ÞjJjf w

m1
ðtÞ f w

m2
ðtÞ � � � f w

ml1
ðtÞ

which gives the equation (5.20). r

Fix an element u A Uw
r and JH f1; 2; . . . ; l1g. Then, we have mk, k ¼

1; 2; . . . ; l1 as in (5.19). Here, we determine the coe‰cient of the term mðu�1tuÞ in
the function value f w

m1
ðtÞ � � � f w

ml1
ðtÞ.

For V ¼ C2n, let Ek ¼ V5V5 � � �5V (k multiple of V ) be the k-th al-

ternative tensor space. Then, f w
m1
ðtÞ � � � f w

ml1
ðtÞ is the character value at nwt on the

representation space Em1 nEm2 n � � �nEml1 .

Let v1; v2; . . . ; vn; v�1; . . . ; v�n be the basis of V consisting of the weight

vectors of t. Then, we have the basis of Em1 nEm2 n � � �nEml1 as follows;

v
a1
1

1 5v
a1
2

2 5� � �5va
1
n

n 5v
a1�1

�1 5� � �5va
1
�n�n n � � �n v

a
l1
1

1 5� � �5va
l1
n

n 5v
a
l1
�1

�1 5� � �5va
l1
�n

�n ;

ð5:21Þ

where

ak
l A f0; 1g; k ¼ 1; . . . ; l1; l ¼ 1; . . . ; n;�1; . . . ;�n; ð5:22Þ

with

X
l

ak
l ¼ mk: ð5:23Þ
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The basis of Em1 n � � �nEml1 as (5.21) which give contribution to the character

value at nwt are eigenvectors of nw. So, we obtain the condition for v to be an

eigenvector of nw as follows;

for any cycle g ¼ ði1; i2; . . . ; isÞ which appears in the cycle expression of w, we

have

ak
i1
¼ ak

i2
¼ � � � ¼ ak

is
; k ¼ 1; 2; . . . ; l1: ð5:24Þ

Then, for self-contained g ¼ ði1; . . . ; is;�i1; . . . ;�isÞ, we have

ak
i1
¼ ak

�i1
¼ ak

i2
¼ ak

�i2
¼ � � � ¼ ak

is
¼ ak

�is
: ð5:25Þ

Lemma 5.5. Let v be an eigenvector of nwt in Em1 n � � �nEml1 that satisfies

(5.21), (5.22), (5.23), (5.24) with mk, k ¼ 1; 2; . . . ; l1 given in (5.19). For mðtÞ ¼
t
p1
1 t

p2
2 � � � tpnn , we define p�l ¼ �pl for l > 0. If the eigenvalue of v is expressed as

scalar multiple of the term mðu�1tuÞ, then we have the following condition;

for dl ¼
Pl1

k¼1 a
k
l , we have

dl � d�l ¼ pu�1ðlÞ; l ¼ 1; 2; . . . ; n: ð5:26Þ

Proof. Since mðu�1tuÞ ¼ t
p
u�1ð1Þ

1 � � � t
p
u�1ðnÞ

n , the power of tl in the eigenvalue

of the weight vector (5.21) is given as pu�1ðlÞ. There appear tdll and td�l

�l in the

eigenvalue and t�l ¼ t�1
l . Then, we have the following equation;

dl � d�l ¼ pu�1ðlÞ;

by which the equation (5.26) follows. r

Then, we obtain a matrix ðak
l Þ, k ¼ 1; 2; . . . ; l1, l ¼ 1; 2; . . . ; n;�1; . . . ;�n

which satisfies the conditions (5.22), (5.23), (5.24), (5.26).

Fix the space Em1 n � � �nEml1 with mk, k ¼ 1; 2; . . . ; l1 given by (5.19), and

let m be as in lemma 5.5. Then, for the fixed elements w A W and u A Uw
r , we

define M to be the set of all the matrices ðak
l Þ that satisfy the conditions (5.22),

(5.23), (5.24), (5.26). Then, we obtain the following proposition.

Proposition 5.6. Let the set X consist of all the weight vectors in the space

Em1 n � � �nEml1 given as (5.21) that become eigenvectors of nwt and the

eigenvalue is scalar multiple of the term mðu�1tuÞ. Then, there exists one-to-one

correspondence between the set M and the set X.
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Proof. For each vector v in X , v is written as (5.21) and we obtain one

and only one matrix ðak
l Þ which belongs to M. This correspondence is bijective.

Indeed, for each matrix ðak
l Þ A M, we have the vector v defined as

v ¼ v
a1
1

1 5� � �5va
1
�n�n n � � �n v

a
l1
1

1 5� � �5va
l1
�n

�n :

Then, from (5.22) and (5.23), the vector v is an element of the alternative tensor

space Em1 n � � �nEml1 . From (5.24), the vector v is an eigenvector of nwt.

Furthermore, from (5.26), the eigenvalue of the vector v is written as e � mðu�1tuÞ.
So, v is an element of X , and gives the matrix ðak

l Þ. Hence the correspondence is

one-to-one between M and X . r

As in (5.9), we have the cycle expression of w as follows;

w ¼ g1;1g
0
1;1 � � � g1; s1g

0
1; s1

g2;1g
0
2;1 � � � g0; s0 :

Definition 5.7. In the space Em1 n � � �nEml1 , let v A X. Then, we have

the matrix ðak
l Þ A M corresponding to v. For each i ¼ 0; 1; . . . ; q, define a matrix

Ai ¼ ða i
k; jÞ, where k ¼ 1; 2; . . . ; l1, j ¼ 1; 2; . . . ; si as follows;

for separated gi; j ¼ ðh1; h2; . . . ; hsÞ,

a i
k; j ¼ ak

h1
ð¼ ak

h2
¼ � � � ¼ ak

hs
Þ: ð5:27Þ

Similarly, define a matrix Bi ¼ ðb i
k; jÞ, where k ¼ 1; 2; . . . ; l1, j ¼ 1; 2; . . . ; si, as

follows;

for separated g 0i; j ¼ ð�h1;�h2; . . . ;�hsÞ,

b i
k; j ¼ ak

�h1
ð¼ ak

�h2
¼ � � � ¼ ak

�hs
Þ: ð5:28Þ

For self-contained g0; j ¼ ðh1; . . . ; hs;�h1; . . . ;�hsÞ, we use the same symbol g0; j to

express the cycle element and we define a0k; j ¼ ak
h1

and b0
k; j ¼ 0. r

Then, we obtain a pair of sequences of matrices

½ðA1;A2; . . . ;Aq;A0Þ; ðB1;B2; . . . ;Bq;B0Þ�; ð5:29Þ

which satisfies the following conditions;

a i
k; j; b

i
k; j A f0; 1g; i ¼ 1; . . . ; q; k ¼ 1; . . . ; l1; j ¼ 1; . . . ; si; ð5:30Þ

Xq
i¼0

Xsi
j¼1

a i
k; jjgi; jj þ b i

k; jjg 0i; jj ¼ mk: ð5:31Þ

19Representations of Normalizer Subgroups of Maximal Tori



Lemma 5.8. Notations are as in definition 5.7. Let i ¼ 0; 1; . . . ; q. For a pair

of separated cycle elements gi; j , g 0i; j, we define numbers di; j, d 0
i; j as follows;

di; j ¼
Xsi
k¼1

a i
k; j; d 0

i; j ¼
Xsi
k¼1

b i
k; j; j ¼ 1; . . . ; si: ð5:32Þ

Then, we have the following equation;

di; j � d 0
i; j ¼ p 0

i ; ð5:33Þ

where p 0
i ’s are as in (5.5) with p 0

0 ¼ 0. For self-contained g0; j, d
0
0; j ¼ 0 and d0; j has

no restriction.

Proof. Let gi; j ¼ ðh1; . . . ; hsÞ, g 0i; j ¼ ð�h1; . . . ;�hsÞ. Then, di; j ¼ dh1 ,

d 0
i; j ¼ d�h1 and we have

di; j � d 0
i; j ¼ dh1 � d 0

�h1
¼ pu�1ðh1Þ:

Since u�1ðh1Þ A Ii (see definition 2.5), we obtain the following equation;

di; j � d 0
i; j ¼ p 0

i :

For self-contained g0; j ¼ ðh1; h2; . . . ; hsÞ, we have b0
k; j ¼ 0 and d 0

0; j ¼ 0. Since

th1 th2 � � � ths ¼ 1, we have ðth1 th2 � � � thsÞ
d0; j ¼ 1 and the number d0; j gives no

contribution to the eigenvalue. Hence, the result follows. r

Definition 5.9. Notations are as in definition 5.7. Fix JH f1; 2; . . . ; l1g.
Then, we have a sequence ðm1;m2; . . . ;ml1Þ where mk’s are given in (5.19). Let n be

the sequence defined as ðm1;m2; . . . ;ml1Þ. Define

Matðw; u; n; mÞ

to be the set of the pair of sequences of matrices as (5.29) that satisfies (5.30),

(5.31), (5.33). r

Then, we have the following proposition.

Proposition 5.10. Notations are as in lemma 5.5, definition 5.7, definition

5.9. Then, there exists one-to-one correspondence between the set M and the set

Matðw; u; n; mÞ.
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Proof. Given the matrix ðak
l Þ A M, from the equation (5.27) and (5.28),

there exists a unique pair of sequences of matrices as (5.29). Then, this cor-

respondence is bijective. Indeed, for the pair

½ðA1;A2; . . . ;Aq;A0Þ; ðB1;B2; . . . ;Bq;B0Þ�;

set ak
l ¼ a i

k; j when gi; j ¼ ðh1; . . . ; hsÞ and l ¼ ht for a certain t ¼ 1; . . . ; s, or

ak
l ¼ b i

k; j when g 0i; j ¼ ð�h1; . . . ;�hsÞ and l ¼ �ht for a certain t ¼ 1; . . . ; s. Then,

from the conditions (5.30), (5.31), (5.33), the matrix ðak
l Þ, k ¼ 1; . . . ; l1, l ¼

1; . . . ;�n satisfies the conditions (5.22), (5.23), (5.24), (5.26). Hence, we have

ðak
l Þ A M, and the pair given as (5.29) by the ðak

l Þ coincides with the given pair

½ðA1;A2; . . . ;Aq;A0Þ; ðB1;B2; . . . ;Bq;B0Þ�:

Hence, the result follows. r

Proposition 5.11. Notations are as in proposition 5.6 and proposition 5.10.

Then, there exists one-to-one correspondence between the set X and the set

Matðw; u; n; mÞ.

Proof. From proposition 5.6 and proposition 5.10, the result follows. r

Definition 5.12. Notations are as in proposition 5.11. Define mðw; u; n; mÞ to

be the number of the elements in the set Matðw; u; n; mÞ. r

Here, we investigate the eigenvalue of v A X for nw.

Lemma 5.13. Let mk, k ¼ 1; 2; . . . ; l1 be given as in (5.19). For each v A X in

the space Em1 n � � �nEml1 , we have the following equation;

nwv ¼ ðdetðg1;1Þ detðg1;2Þ � � � detðg1; s1ÞÞ
p 0
1

� ðdetðg2;1Þ � � �Þ
p 0
2 � � � ð� � � detðgq; sqÞÞ

p 0
qv: ð5:34Þ

Proof. Let ngi; j , ng 0i; j be the matrices given as in definition 4.1 for gi; j and

g 0i; j. Then, we have the following equation;

nw ¼ ng1; 1ng 01; 1 � � � ng 01; s1ng2; 1 � � � ng0; s0 : ð5:35Þ

Then, for ngi; j and ng 0
i; j
, we have

ðngi; j ng 0i; j Þv ¼ ðdetðngi; j ÞÞ
di; j � ðdetðng 0

i; j
ÞÞd

0
i; j � v ð5:36Þ
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Using the facts detðngi; j Þ detðng 0i; j Þ ¼ 1, di; j � di; j ¼ p 0
i and the notation in defi-

nition 4.1, we have the following equation;

nwv ¼ ðdetðg1;1Þ detðg1;2Þ � � � detðg1; s1ÞÞ
p 0
1

� ðdetðg2;1Þ � � �Þ
p 0
2 � � � ð� � � detðgq; sqÞÞ

p 0
qv;

by which the result follows. r

Definition 5.14. Let mðtÞ ¼ tp1 � � � tpn and fix the element u A Uw
r . For the

fixed element w where

w ¼ g1;1g
0
1;1 � � � g1; s1g

0
1; s1

g2;1g
0
2;1 � � � g0; s0 ;

we define the number sgnðw; u; mÞ as follows;

sgnðw; u; mÞ ¼ ðdetðg1;1Þ detðg1;2Þ � � � detðg1; s1ÞÞ
p 0
1

� ðdetðg2;1Þ � � �Þ
p 0
2 � � � ð� � � detðgq; sqÞÞ

p 0
q : ð5:37Þ

r

Then we obtain the following equation;

nwv ¼ sgnðw; u; mÞv: ð5:38Þ

Proposition 5.15. Notations are as in definition 5.12 and definition 5.14. Let

n ¼ ðm1;m2; . . . ;ml1Þ be the sequence given in definition 5.9. Then, we have the

following equation;ð
T

mðu�1tuÞ � f w
m1
ðtÞ � � � f w

ml1
ðtÞ dt ¼ sgnðw; u; mÞ �mðw; u; n; mÞ ð5:39Þ

Proof. Since the number of eigenvectors v which gives eigenvalue

sgnðw; u; mÞmðu�1tuÞ

is given as mðw; u; n; mÞ, the coe‰cient of mðu�1tuÞ in the character value

f w
m1
ðtÞ � � � f w

ml1
ðtÞ is given as sgnðw; u; mÞmðw; u; n; mÞ. Hence, the result follows.

r

Example. Let w ¼ ð123Þð�1;�2;�3Þð456Þð�4;�5;�6Þ A W6. We calculate

the coe‰cient of the term tð123Þ ¼ t1t2t3 of the polynomial f w
6 ðtÞ f w

3 ðtÞ at nwt.

Here,
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f w
6 ðtÞ ¼ 2þ t1t2t3t4t5t6 þ t1t2t3t�4t�5t�6

þ t�1t�2t�3t4t5t6 þ t�1t�2t�3t�4t�5t�6

f w
3 ðtÞ ¼ t1t2t3 þ t�1t�2t�3 þ t4t5t6 þ t�4t�5t�6;

so we obtain the following equations;

f w
6 ðtÞ f w

3 ðtÞ ¼ 4t1t2t3 þ 4t�1t�2t�3 þ 4t4t5t6 þ 4t�4t�5t�6

þ ðt1t2t3Þ2t4t5t6 þ ðt1t2t3Þ2t�4t�5t�6

þ ðt�1t�2t�3Þ2t4t5t6 þ ðt�1t�2t�3Þ2t�4t�5t�6

þ t1t2t3ðt4t5t6Þ2 þ t�1t�2t�3ðt4t5t6Þ2

þ t1t2t3ðt�4t�5t�6Þ2 þ t�1t�2t�3ðt�4t�5t�6Þ2;

and we obtain the coe‰cient of the term t1t2t3 as 4.

Next, we consider the matrices. At first, we obtain the following table;

(123) ð�1�2�3Þ (456) ð�4�5�6Þ

f w
6 ðtÞ 1 1 0 0

f w
3 ðtÞ 1 0 0 0

In the ð1; 1Þ-entry of the table, we have the number 1. This means that we use

tð123Þ appearing in a monomial of f w
6 ðtÞ to construct a monomial tð123Þ in

f w
6 ðtÞ f w

3 ðtÞ. So, this table means we choose monomials tð123Þtð�1�2�3Þ in f w
6 ðtÞ

and tð123Þ in f w
3 ðtÞ to construct a monomial tð123Þ in f w

6 ðtÞ f w
3 ðtÞ.

From the table, we obtain the following matrix;

1 1 0 0

1 0 0 0

� �
:

In the same manner, we obtain the further three matrices;

1 0 1 0

0 0 0 1

� �
;

1 0 0 1

0 0 1 0

� �
;

0 0 1 1

1 0 0 0

� �
:

So, the number of matrices which satisfy the conditions is 4, which coincides with

the coe‰cient of t1t2t3 in the function value of f w
6 ðtÞ f w

3 ðtÞ at nwt. r

For u; ~uu A Uw
r , we compare mðw; u; n; mÞ with mðw; ~uu; n; mÞ. From remark 3.3,

we have u ¼ zruhrh
r
u, ~uu ¼ zr~uuhrh

r
~uu with zru; z

r
~uu A ZW ðwÞ, hr

u; h
r
~uu A Wm.
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Let

w ¼ g1;1g
0
1;1 � � � g1; s1g

0
1; s1

g2;1g
0
2;1 � � � g0; s0

be a cycle expression of w given by w0 as in (5.9), (5.10). Similarly, we write

w ¼ ~gg1;1~gg
0
1;1 � � � ~gg1; s1~gg

0
1; s1

~gg2;1~gg
0
2;1 � � � ~gg0; s0 ; ð5:40Þ

where

~ggi; j ¼ ~uu~ddi; j~uu
�1; ~gg 0i; j ¼ ~uu~dd 0i; j~uu

�1; ð5:41Þ

for

~ww0 ¼ ~uu�1w~uu

¼ ~dd1;1~dd
0
1;1 � � � ~dd1; ~ss1 ~dd 01; ~ss1 ~dd2;1~dd

0
2;1 � � � ~dd0; ~ss0 : ð5:42Þ

Then, there exists an element z A ZW ðwÞ by which the following conditions hold;

(1) ~uuðIiÞ ¼ zuðIiÞ, ~uuðI 0i Þ ¼ zuðI 0i Þ, where Ii, I
0
i are given in the definition 2.5.

(2) For each pair of cycle elements ~ggi 0; j 0 and ~gg 0i 0; j 0 , there exists a unique pair

of cycle elements gi; j and g 0i; j which satisfies ~ggi 0; j 0 ¼ zgi; jz
�1 and ~gg 0i 0; j 0 ¼ zg 0i; jz

�1.

Furthermore, we have i 0 ¼ i, j~ggi 0; j 0 j ¼ jgi; jj, j~gg 0i 0; j 0 j ¼ jg 0i; jj.
(3) For each i ¼ 0; 1; . . . ; q, we have si ¼ ~ssi.

(4) The set fg1;1; g 01;1; . . . ; g0; s0g coincides with the set f~gg1;1; ~gg 01;1; . . . ; ~gg0; s0g.

Proposition 5.16. Let u; ~uu A Uw
r . Then, we have the following equation;

mðw; u; n; mÞ ¼ mðw; ~uu; n; mÞ: ð5:43Þ

Proof. We compare the set Matðw; u; n; mÞ with the set Matðw; ~uu; n; mÞ.
For each pair of sequences of matrices

½ðA1;A2; . . . ;Aq;A0Þ; ðB1;B2; . . . ;Bq;B0Þ�;

we obtain a unique pair of sequences of matrices

½ð ~AA1; ~AA2; . . . ; ~AAq; ~AA0Þ; ð ~BB1; ~BB2; . . . ; ~BBq; ~BB0Þ� ð5:44Þ

defined as follows;

for i 0 ¼ 0; 1; . . . ; q,

~AAi 0 ¼ ð~aa i 0

k; j 0 Þ; ð5:45Þ

~aa i 0

k; j 0 ¼ a i 0

k; j; ð5:46Þ
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and

~BBi 0 ¼ ð ~bb i 0

k; j 0 Þ; ð5:47Þ

~bb i 0

k; j 0 ¼ b i 0

k; j ; ð5:48Þ

for ~ggi 0; j 0 ¼ zgi 0; jz
�1, k ¼ 1; . . . ; l1, j 0 ¼ 1; . . . ; si 0 .

Then, the pair (5.44) satisfies the following conditions;

(1) ~aa i 0

k; j 0 ;
~bb i 0

k; j 0 A f0; 1g, for i 0 ¼ 0; 1; . . . ; q, k ¼ 1; . . . ; l1, j 0 ¼ 1; . . . ; si 0 .

(2) Since we have j~ggi 0; j 0 j ¼ jgi; jj, j~gg 0i 0; j 0 j ¼ jg 0i; jj, we obtain the following

equation;

Xq
i 0¼0

Xsi 0
j 0¼1

~aa i 0

k; j 0 j~ggi 0; j 0 j þ ~bb i 0

k; j 0 j~gg 0i 0; j 0 j

¼
Xq
i 0¼0

Xsi 0
j¼1

a i 0

k; jjgi 0; jj þ b i 0

k; jjg 0i 0; jj

¼ mk:

(3) For ~ddi 0; j 0 and ~dd 0
i 0; j 0 given as

~ddi 0; j 0 ¼
Xl1
k¼1

~aa i 0

k; j 0 ;
~dd 0
i 0; j 0 ¼

Xl1
k¼1

b i 0

k; j 0 ; j 0 ¼ 1; . . . ; si 0 ;

we have the following equation;

~ddi 0; j 0 � ~dd 0
i 0; j 0 ¼ p 0

i 0 :

From the conditions (1), (2), (3), the pair (5.44) belongs to the set

Matðw; ~uu; n; mÞ. This correspondence is bijective. So, the result follows. r

Definition 5.17. For U w
r , we have hr given in notation 3.1. Then, we define

mðw; hr; n; mÞ as follows;

mðw; hr; n; mÞ ¼ mðw;wi; n; mÞ ð5:49Þ

for an element wi A Uw
r . r

Then, we obtain the following equation;ð
T

mðn�1
wi
tnwi

Þ f w
m1
ðtÞ � � � f w

ml1
ðtÞ dt ¼ sgnðw;wi; mÞmðw; hr; n; mÞ: ð5:50Þ
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Proposition 5.18. Let the notations be as in (5.15), theorem 5.3, proposition

5.4, definition 5.14, proposition 5.15 definition 5.17, (5.50). Then, we have the

following equation;ð
T

mðn�1
wi
tnwi

Þww
l ðtÞ dt ¼ sgnðw;wi; mÞ

X
s ASl1

ðsgnðsÞÞ
X
J

ð�1ÞjJjmðw; hr; n; mÞ;
ð5:51Þ

where J’s are given as JH f1; 2; . . . ; l1g and for each J, n is given in definition 5.9.

Proof. From (5.20), (5.50), we obtain the following equations;ð
T

mðn�1
wi
tnwi

Þww
l ðtÞ dt

¼
ð
T

mðn�1
wi
tnwi

Þ
X

s ASl1

ðsgnðsÞÞ
X
J

ð�1ÞjJjf w
m1
ðtÞ f w

m2
ðtÞ � � � f w

ml1
ðtÞ dt

¼
X

s ASl1

ðsgnðsÞÞ
X
J

ð�1ÞjJj
ð
T

mðn�1
wi
tnwi

Þ f w
m1
ðtÞ f w

m2
ðtÞ � � � f w

ml1
ðtÞ dt

¼ sgnðw;wi; mÞ
X

s ASl1

ðsgnðsÞÞ
X
J

ð�1ÞjJjmðw; hr; n; mÞ;

which is equal to the right hand side of (5.51). r

From (5.14), we have the following equation;

cðnwtÞ ¼
Xl

r¼1

xðh�1
r whrÞ

X
wi AU w

r

mðn�1
w�1
i
wwi

n�1
wi
nwnwi

Þmðn�1
wi
tnwi

Þ; ð5:52Þ

where x is given as in theorem 3.2.

Theorem 5.19. Under the situation of the proposition 5.18 and (5.52), we

obtain the multiplicity of c in wl #N , hc; wl #Ni, as follows;

hc; wl #N i ¼ 1

jW j
X
w

Xl

r¼1

xðh�1
r whrÞ

�
X

wi AU w
r

mðn�1
w�1
i
wwi

n�1
wi
nwnwi

Þ sgnðw;wi; mÞ

�
X

s ASl1

ðsgnðsÞÞ
X
J

ð�1ÞjJjmðw; hr; n; mÞ: ð5:53Þ
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Proof. We obtain the following equations;

hc; wl #Ni ¼ 1

jW j
X
w

ð
T

cðnwtÞww
l ðtÞ dt

¼ 1

jW j
X
w

ð
T

Xl

r¼1

xðh�1
r whrÞ

X
wi AU w

r

mðn�1
w�1
i
wwi

n�1
wi
nwnwi

Þ

� mðn�1
wi
tnwi

Þ � ww
l ðtÞ dt

¼ 1

jW j
X
w

Xl

r¼1

xðh�1
r whrÞ

X
wi AU w

r

mðn�1
w�1
i
wwi

n�1
wi
nwnwi

Þ

�
ð
T

mðn�1
wi
tnwi

Þ � ww
l ðtÞ dt

¼ 1

jW j
X
w

Xl

r¼1

xðh�1
r whrÞ

X
wi AU w

r

mðn�1
w�1
i
wwi

n�1
wi
nwnwi

Þ

�
X

s ASl1

ðsgnðsÞÞ
X
J

ð�1ÞjJj sgnðw;wi; mÞmðw; hr; n; mÞ

¼ 1

W

X
w

Xl

r¼1

xðh�1
r whrÞ

�
X

wi AU w
r

mðn�1
w�1
i
wwi

n�1
wi
nwnwi

Þ sgnðw;wi; mÞ

�
X

s ASl1

ðsgnðsÞÞ
X
J

ð�1ÞjJjmðw; hr; n; mÞ;

by which (5.53) holds. r
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