Southampton

School of Electronics and Computer Science

REPRESENTATIONS OF PETRI NET INTERACTIONS

Pawel Sobocinski Wessex seminar, Bath, I 3/07/10

Paper available on my homepage

KLEENE'S THEOREM

• Classic result in theory of sequential computation with finite state

• Finite automata

- graphical representation
- semantics given globally

Regular expressions

- syntactic representation
- semantics given inductively
- Why do we teach this to undergraduates?

WHY IS KLEENE IMPORTANT?

- Much of Computer Science is about syntax
 - how to capture dynamic notions of computation by an efficient syntax?
 - programming languages
 - process calculi
 - specification logics
- Kleene's theorem is about capturing the essence of sequential computation with finite state (finite automata) with an efficient syntax (regular expressions)

WHAT ABOUT CONCURRENCY?

- Kleene's theorem is about capturing the essence of sequential computation with finite state (finite automata) with an efficient syntax (regular expressions)
- what is the essence of **concurrent computation** with finite state? (one answer: **finite Petri nets**)
 - intuitive and popular
 - non-compositional
- we have many syntaxes: process calculi of various sorts
 - intuitive and popular with process-calculists
 - compositional with SOS semantics

THE CONTRIBUTION

- people have tried to go from nets to calculi and vice-versa but with limited success
 - is the model "wrong" or is the syntax "wrong"?
- we show that the expressive power of an open variant of nets is the same as that of a process calculus
 - most well-known process calculi are based on a binary parallel composition || operator
 - process calculus in this talk has fundamentally different operations

PART I: GRAPHICAL STRUCTURE

Link graphs and Petri nets

LINK GRAPHS

- composition by synchronisation of links
- this category is equivalent to free compact closed category on a self-dual object (Abramsky, Calco `05)

CATEGORY OF LINK GRAPHS

- Composition explained
 - objects are (finite) ordinals
 - arrows are cospans of functions
 - composition is by pushout

FINITE NETS

- Definition
 - Finite set of places P
 - Finite set of transitions T
 - Functions °-, -° : T $\rightarrow 2^{P}$

SEMANTICS OF NETS

- trans t, $u \in T$ independent when $\circ t \cap \circ u = \emptyset$ and $t^{\circ} \cap u^{\circ} = \emptyset$
- Suppose X,Y ⊆ P
 - X \rightarrow Y if there exists a set U \subseteq T of mutually independent transitions such that °U \subseteq X, U° \subseteq Y and X \°U = Y \ U°

PETRI NETS

- (multi) link graphs plus
 - two kinds (marked/unmarked) of nodes
 - each with two ports (in/out)

PETRI NETS WITH BOUNDARIES

- Definition, net $N: k \rightarrow I$ (k, I finite ordinals)
 - finite set of places P
 - finite set of transitions T
 - functions °-, -° : T $\rightarrow 2^{P}$
 - functions $\cdot : T \rightarrow 2^k$, $\cdot : T \rightarrow 2^l$

COMPOSITION

- A synchronisation is a pair (U,V) where
 - UuV ≠ Ø
 - U● = ●
- The set of transitions of the composed net is the set of **minimal** synchronisations

is this universal in some sense?

TRANSITION SYSTEMS

- Possible signals are 0 (no signal) and 1 (signal)
- for k, $I \in \mathbb{N}$ a (k, l)-transition is a labelled transition of the form

$$P \xrightarrow[\vec{b}]{\vec{a}} Q, \quad \#(\vec{a}) = k, \ \#(\vec{b}) = l$$

- where each label is a vector of 0, Is
- a (k, l)-transition system is consists of (k, l)-transitions

- t, u∈T independent when °t ∩ °u =Ø, t° ∩ u° = Ø, •t ∩ •u = Ø, and t• ∩ u• = Ø
- Suppose $X,Y \subseteq P$
 - $X \xrightarrow{a}{b} Y$ if there exists a set $U \subseteq T$ of mutually independent transitions such that ${}^{\circ}U \subseteq X, U^{\circ} \subseteq Y, X \setminus {}^{\circ}U = Y \setminus U^{\circ}$ and
 - $a_i = I$ iff $i \in \bullet u$ for some (necessarily unique) $u \in U$
 - $b_i = I$ iff $i \in u^{\bullet}$ for some (necessarily unique) $u \in U$

EXAMPLE (PARTIAL STATE SPACE)

expressive power = class of LTSs (up to bisimilarity) that one can define

PART 2: SYNTACTIC STRUCTURE

"PETRI CALCULUS"

$P ::= P; P \mid P \otimes P \mid \bigcirc \mid \bullet \mid \mathsf{I} \mid \mathsf{X} \mid \Delta \mid \bot \mid \nabla \mid \mathsf{T} \mid \mathsf{A} \mid \downarrow \mid \mathsf{V} \mid \uparrow$

• any well-formed process is the "Petri calculus" has a sort (k, l) and its semantics will be an LTS of (k, l)-transitions

Calculus of connectors + one-place buffer

BASIC PROPERTIES

- strong (~) and weak bisimulation (\approx) are congruences
- sequential composition is associative up to \sim and up to \approx
- categories with objects natural number arrows terms up to ~ or ≈
- categories have tensor product induced by \otimes in the obvious way
- all follow from "A non-interleaving calculus for multi-party synchronisation" via an encoding into the wire calculus, my controversial IFIP talk from '09

CIRCUIT DIAGRAMS

RELATIONAL FORMS

 $\theta \in \{\mathsf{X}, \Delta, \nabla, \bot, \mathsf{T}, \Lambda, \mathsf{V}, \downarrow, \uparrow\}$ $T_{\theta} ::= \theta \mid I \mid T_{\theta} \otimes T_{\theta} \mid T_{\theta} ; T_{\theta}.$

- Right relational form: $t = t_{\perp}$; t_{Δ} ; t_{X} ; t_{V} ; t_{\uparrow}
 - dually, left relation form: t_{\downarrow} ; t_{Λ} ; t_{X} ; t_{∇} ; t_{T}
- Lemma: for any function $f: k \rightarrow 2^{I}$ there exists a term in right relational form such that:

$$\rho_f \xrightarrow{U} \rho_f$$

$$\Leftrightarrow$$

 $U \subseteq \underline{k}$ s. t. $\forall u, v \in U$. $u \neq v \Rightarrow f(u) \cap f(v) = \emptyset \& V = f(U)$

EXAMPLE

$f: 4 \to 2^4$ $f(0), f(1) = \{0\}, f(2) = \emptyset, f(3) = \{1, 2\}$

Term in right relational form

PART 3: A "KLEENETHEOREM"

FROM NETS TO SYNTAX

 $N: m \to n = (P, T, \circ -, -\circ, \bullet -, -\bullet)$ finite net, X marking

THEOREM

$(N,X) \xrightarrow{\alpha} (N,Y) \Rightarrow T_{N,X} \xrightarrow{\alpha} T_{N,Y}$

 $\begin{array}{cccc} T_{N,X} & \xrightarrow{\alpha}{\beta} & Q \\ & \Rightarrow \\ & \exists Q. \ Q = T_{N,Y} & \wedge & (N,X) & \xrightarrow{\alpha}{\beta} & (N,Y) \end{array}$

FROM SYNTAX TO NETS

 Naive translation: each syntactic atom corresponds to a simple net, eg.

• Then theorem should follow by induction....

PROBLEMATIC COMPOSITIONS

SOLUTION - NORMALISE

THEOREM

• For each term t, there exists a net N_t such that $t \sim N_t$

CONCLUSION

• A ''Kleene theorem for concurrency'':

- Petri nets with boundaries
 - graphical model
 - global semantics
- "Petri calculus"
 - real syntax (no structural congruence or other cheating)
 - inductive semantics
- Extensions to P/T nets with boundaries, other forms of nets?
 - wires with buffers