
REPRESENTATIONS OF PETRI
NET INTERACTIONS

Pawel Sobocinski
Wessex seminar, Bath,13/07/10

Paper available on my homepage

KLEENE’S THEOREM

• Classic result in theory of sequential computation with finite state

• Finite automata

• graphical representation

• semantics given globally

• Regular expressions

• syntactic representation

• semantics given inductively

• Why do we teach this to undergraduates?

WHY IS KLEENE IMPORTANT?

• Much of Computer Science is about syntax

• how to capture dynamic notions of computation by an
efficient syntax?

• programming languages

• process calculi

• specification logics

• Kleene’s theorem is about capturing the essence of
sequential computation with finite state (finite
automata) with an efficient syntax (regular expressions)

WHAT ABOUT
CONCURRENCY?

• Kleene’s theorem is about capturing the essence of
sequential computation with finite state (finite
automata) with an efficient syntax (regular expressions)

• what is the essence of concurrent computation with
finite state? (one answer: finite Petri nets)

• intuitive and popular

• non-compositional

• we have many syntaxes: process calculi of various sorts

• intuitive and popular with process-calculists

• compositional with SOS semantics

THE CONTRIBUTION

• people have tried to go from nets to calculi and vice-versa but
with limited success

• is the model “wrong” or is the syntax “wrong”?

• we show that the expressive power of an open variant of nets
is the same as that of a process calculus

• most well-known process calculi are based on a binary
parallel composition || operator

• process calculus in this talk has fundamentally different
operations

PART 1: GRAPHICAL
STRUCTURE

Link graphs and Petri nets

LINK GRAPHS

• composition by synchronisation of links

• this category is equivalent to free compact closed category on a
self-dual object (Abramsky, Calco `05)

=

CATEGORY OF LINK GRAPHS

• Composition explained

• objects are (finite) ordinals

• arrows are cospans of
functions

• composition is by pushout

FINITE NETS

• Definition

• Finite set of places P

• Finite set of transitions T

• Functions o-, -o : T → 2P

SEMANTICS OF NETS

• trans t, u ∈ T independent when ot ∩ ou = ∅ and to ∩ uo = ∅

• Suppose X, Y ⊆ P

• X → Y if there exists a set U ⊆ T of mutually independent
transitions such that oU ⊆ X, Uo ⊆ Y and X \ oU = Y \ Uo

PETRI NETS

• (multi) link graphs plus

• two kinds (marked/unmarked) of nodes

• each with two ports (in/out)

PETRI NETS WITH BOUNDARIES

• Definition, net N : k → l (k, l finite ordinals)

• finite set of places P

• finite set of transitions T

• functions o-, -o : T → 2P

• functions •- : T→ 2k , -• : T → 2l

COMPOSITION
• A synchronisation is a pair (U,V) where

• U⋃V ≠ ∅

• U⦁ = ⦁V

• The set of transitions of the composed net is the set of minimal synchronisations

α1

α2

α3

β1

α4 β2

{α2,α3},β1

{α1,α3},β1

α4,β2

=

is this universal in some sense?

TRANSITION SYSTEMS

• Possible signals are 0 (no signal) and 1 (signal)

• for k, l ∈ N a (k, l)-transition is a labelled transition of the form

• where each label is a vector of 0,1s

• a (k, l)-transition system is consists of (k, l)-transitions

P
!a
−→

!b

Q, #(!a) = k, #(!b) = l

SEMANTICS OF
BOUNDED NETS

• t, u∈T independent when ot ∩ ou =∅, to ∩ uo = ∅, ⦁t ∩ ⦁u = ∅,
and t⦁ ∩ u⦁ = ∅

• Suppose X, Y ⊆ P

• if there exists a set U ⊆ T of mutually independent

transitions such that oU ⊆ X, Uo ⊆ Y, X \ oU = Y \ Uo and

• ai =1 iff i ∈ ⦁u for some (necessarily unique) u ∈ U

• bi =1 iff i ∈ u⦁ for some (necessarily unique) u ∈ U

X
!a

−→
!b

Y

EXAMPLE (PARTIAL STATE SPACE)

10

00*

00

00*

00

01*

00

01*

00

11*

00

01*

10

00*

00

10*

expressive power = class of LTSs (up to bisimilarity) that
one can define

PART 2: SYNTACTIC
STRUCTURE

“PETRI CALCULUS”

P ::= P ; P | P ⊗ P | © | ©• | I | X | ∆ |⊥⊥⊥ | ∇ |⊤⊤⊤ | Λ | ↓↓↓ | V | ↑↑↑

• any well-formed process is the “Petri calculus” has a sort
and its semantics will be an LTS of -transitions (k, l)

(k, l)

Calculus of connectors + one-place buffer

true
concurrency!

(TkI)
©

1
−→
0 ©•

(TkO1)
©•

0
−→
1 ©

(TkO2)
©•

1
−→
1 ©•

(Id)
I

1
−→
1 I

a,b∈{0,1}

(Tw)
X

ab

−−→
ba

X

(∆)
∆

1
−→
11 ∆

(

∆

)
∆11

−−→
1

∆

(⊥⊥⊥)
⊥⊥⊥

1
−→ ⊥⊥⊥

(⊤⊤⊤)
⊤⊤⊤ −→

1 ⊤⊤⊤

(a∈{0,1})

(Λa)
Λ

1
−−→
(1−a)a

Λ

(a∈{0,1})

(Va)
V

(1−a)a

−−−−→
1 V

P
a

−→
c

Q R
c

−→
b

S

(Cut)
P ;R

a

−→
b

Q;S

P
a

−→
b

Q R
c

−→
d

S

(Ten)
P⊗R

ac

−−→
bd

Q⊗S

P :(k, l)

(Refl)

P
0k

−−→
0l

P

BASIC PROPERTIES

• strong (~) and weak bisimulation (≈) are congruences

• sequential composition is associative up to ~ and up to ≈

• categories with objects natural number arrows terms up to ~
or ≈

• categories have tensor product induced by in the obvious
way

• all follow from “A non-interleaving calculus for multi-party synchronisation” via
an encoding into the wire calculus, my controversial IFIP talk from ’09

⊗

∇

CIRCUIT DIAGRAMS

Λ

↑↑↑↓↓↓

V

⊥ ⊤

∆

©

©•

XI

RELATIONAL FORMS

• Right relational form:

• dually, left relation form:

• Lemma: for any function f : k → 2l there exists a term in
right relational form such that:

θ ∈ {X,∆,∇,⊥⊥⊥,⊤⊤⊤,Λ,V,↓↓↓,↑↑↑}

Tθ ::= θ | I | Tθ ⊗ Tθ | Tθ ; Tθ.

t↓↓↓ ; tΛ ; tX ; t∇ ; t⊤⊤⊤

ρf

U
−→V ρf

⇔
U ⊆ k s. t. ∀u, v ∈ U. u $= v ⇒ f(u) ∩ f(v) = ∅ & V = f(U)

t = t⊥⊥⊥ ; t∆ ; tX ; tV ; t↑↑↑

EXAMPLE

f : 4→ 2
4 f(0), f(1) = {0}, f(2) = ∅, f(3) = {1, 2}

Term in right relational form

PART 3: A “KLEENE THEOREM”

FROM NETS TO SYNTAX

IT

wP,Xρ
−

◦ λ◦
−

dT eT

∆T∇T

λ•
−

ρ
−
•

N : m → n = (P, T, ◦

−, −◦, •

−, −•) finite net, markingX

THEOREM

(N,X)
α
−→

β
(N,Y) TN,X

α
−→

β
TN,Y⇒

TN,X
α
−→

β
Q

⇒
∃Q. Q = TN,Y ∧ (N,X)

α
−→

β
(N,Y)

FROM SYNTAX TO NETS

• Naive translation: each syntactic atom corresponds to a simple
net, eg.

• Then theorem should follow by induction....

!©"
def
= !©• "

def
=

!I"
def
= !X"

def
=

!∆"
def
= !

∆

"
def
=

!⊤⊤⊤"
def
= !⊥⊥⊥"

def
=

!Λ"
def
= !V"

def
=

!↑↑↑"
def
= !↓↓↓"

def
=

PROBLEMATIC
COMPOSITIONS

=

≠

SOLUTION - NORMALISE

!

!

!

!

!

!

!

THEOREM

• For each term t, there exists a net Nt such that t~Nt

CONCLUSION

• A “Kleene theorem for concurrency”:

• Petri nets with boundaries

• graphical model

• global semantics

• “Petri calculus”

• real syntax (no structural congruence or other cheating)

• inductive semantics

• Extensions to P/T nets with boundaries, other forms of nets?

• wires with buffers

