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KLEENE'S THEOREM

» Classic result in theory of sequential computation with finite state
* Finite automata

* graphical representation

* semantics given globally
* Regular expressions

* syntactic representation

e semantics given inductively

* Why do we teach this to undergraduates?



WHY [S KLEENE IMPORTANT?

* Much of Computer Science Is about syntax

* how to capture dynamic notions of computation by an
efficient syntax’

* programming languages
e process calcull

» specification logics

* Kleene’s theorem Is about capturing the essence of
sequential computation with finite state (finite
automata) with an efficient syntax (regular expressions)



WHAIT ABOUT
CONCURRENCY?

- Kleene's theorem Is about capturing the essence of
sequential computation with finite state (finite

automata) with an efficient syntax (regular expressions)

* what Is the essence of concurrent computation with
finite state! (one answer: finite Petri nets)

* Inturtive and popular
* non-composlitiona
* we have many syntaxes: process calculi of various sorts
* Inturtive and popular with process-calculists

» composritional with SOS semantics




THE CONTRIBUTION

* people have tried to go from nets to calculi and vice-versa but
with limited success

* Is the model “wrong” or Is the syntax “wrong'?

» we show that the expressive power of an open variant of nets
s the same as that of a process calculus

* most well-known process calculi are based on a binary
barallel composition || operator

» process calculus In this talk has fundamentally different
operations



R | GRAPHICAE
STRUCTURE

Link graphs and Petri nets



LINK GRAPHS
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- composition by synchronisation of links

» this category Is equivalent to free compact closed category on a
self-dual object (Abramsky, Calco "05)



CATEGORY OF LINK GRAPHS

» Composition explained

* objects are (finite) ordinals

* Arrows are cospans of
functions

* composition Is by pushout
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SEMANTICS OF NETS
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PETRINETS

* (multr) link graphs plus
* two kinds (marked/unmarked) of nodes

* each with two ports (in/out)



PETRI NETS WITH BOUNDARIES

* Definition,net N : k = | (k, | finite ordinals)
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COMPOSITION

- A synchronisation is a pair (U,V) where
- UUV # @

* [he set of transitions of the composed net Is the set of minimal synchronisations
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{041, 043}, ﬁl
044,62

{042, 043}, 61

s this universal In some sense!



TRANSITION SYSTEMS

» Possible signals are O (no signal) and | (signal)

 fork, 1 € N a (k )-transition is a labelled transition of the form

—
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» where each label is a vector of O, s
* a (k )-transrtion system Is consists of (k, [)-transitions



SEMANTICS OF >, X
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EXAMPLE (PARTIAL STATE SPACE)

expressive power = class of LTSs (up to bisimilarity) that
one can define



PART 2: SYNTACTIC
STRUCTURE



e IRl CALCULGSS

P = P;P|IPaP|O|@|IIX|A[L|IVITIAIL|IV]T

» any well-formed process Is the "Petri calculus’ has a sort (k, )
and I1ts semantics will be an LTS of (k, [)-transitions



Calculus of connectors + one-place buffer
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BASIC PROPERTIES

» strong (~) and weak bisimulation (=) are congruences
» sequential composition Is associative up to ~ and up to =

» categories with objects natural number arrows terms up to ~
or =

» categories have tensor product induced by ® In the obvious
way

» all follow from “A non-interleaving calculus for multi-party synchronisation™ via
an encoding into the wire calculus, my controversial IFIP talk from '09



CIRCUIT DIAGRAMS



RELATIONAL FORMS
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B EEEnElainonal form: t =1ty ;ta 5 tx ;tv 5 it
* dually, left relation form: &} ; ta 5 tx 5 tv 5t

- Lemma: for any function f: k = 2! there exists a term in
right relational form such that:
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PAANELE

L 0° £Q0), f(1) =10}, f(2) =@, f(3) =1{1,2}

Term in right relational form
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FROM NETS TO SYNTAX

SRR . =) finite net, X marking

|7

\ /
> Vr | oo Jwpx [ A | A
/ \

&l

2



THEOREM
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FROM SYNTAX TO NETS

- Naive translation: each syntactic atom corresponds to a simple
HELES.
def def
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* [hen theorem should follow by induction....
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SOLUTION - NORMALISE
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THEOREM

* For each term t, there exists a net Nt such that t~Nk



CONCLUSION

B NIEEnE theorem for concurrency. :

* Petri nets with boundaries
» graphical model
- global semantics

Bl calculus

* real syntax (no structural congruence or other cheating)
* Inductive semantics
» Extensions to P/T nets with boundaries, other forms of nets?
* wires with buffers



