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KLEENE’S THEOREM

• Classic result in theory of sequential computation with finite state

• Finite automata

• graphical representation

• semantics given globally

• Regular expressions

• syntactic representation

• semantics given inductively

• Why do we teach this to undergraduates?



WHY IS KLEENE IMPORTANT?

• Much of Computer Science is about syntax

• how to capture dynamic notions of computation by an 
efficient syntax?

• programming languages

• process calculi

• specification logics

• Kleene’s theorem is about capturing the essence of 
sequential computation with finite state (finite 
automata) with an efficient syntax (regular expressions)



WHAT ABOUT 
CONCURRENCY?

• Kleene’s theorem is about capturing the essence of 
sequential computation with finite state (finite 
automata) with an efficient syntax (regular expressions)

• what is the essence of concurrent computation with 
finite state?  (one answer: finite Petri nets)

• intuitive and popular

• non-compositional

• we have many syntaxes: process calculi of various sorts

• intuitive and popular with process-calculists

• compositional with SOS semantics



THE CONTRIBUTION

• people have tried to go from nets to calculi and vice-versa but 
with limited success

• is the model “wrong” or is the syntax “wrong”?

• we show that the expressive power of an open variant of nets 
is the same as that of a process calculus 

• most well-known process calculi are based on a binary 
parallel composition || operator

• process calculus in this talk has fundamentally different 
operations



PART 1: GRAPHICAL 
STRUCTURE

Link graphs and Petri nets



LINK GRAPHS

• composition by synchronisation of links

• this category is equivalent to free compact closed category on a 
self-dual object (Abramsky, Calco `05)

=



CATEGORY OF LINK GRAPHS

• Composition explained

• objects are (finite) ordinals

• arrows are cospans of 
functions

• composition is by pushout



FINITE NETS

• Definition

• Finite set of places P

• Finite set of transitions T

• Functions  o-, -o  :  T → 2P



SEMANTICS OF NETS

• trans t, u ∈ T independent when ot ∩ ou = ∅ and to ∩ uo = ∅

• Suppose X, Y ⊆ P

• X → Y if there exists a set U ⊆ T of mutually independent 
transitions such that oU ⊆ X, Uo ⊆ Y and X \ oU = Y \ Uo



PETRI NETS

• (multi) link graphs plus 

• two kinds (marked/unmarked) of nodes

• each with two ports (in/out)



PETRI NETS WITH BOUNDARIES

• Definition, net N : k → l (k, l finite ordinals)

• finite set of places P

• finite set of transitions T

• functions  o-, -o  :  T → 2P

• functions •- : T→ 2k  ,  -• : T → 2l



COMPOSITION
• A synchronisation is a pair (U,V) where

• U⋃V ≠ ∅

• U⦁ = ⦁V

• The set of transitions of the composed net is the set of minimal synchronisations

α1

α2

α3

β1

α4 β2

{α2,α3},β1

{α1,α3},β1

α4,β2

=

is this universal in some sense?



TRANSITION SYSTEMS

• Possible signals are 0 (no signal) and 1 (signal)

• for k, l ∈ N a (k, l)-transition is a labelled transition of the form

• where each label is a vector of 0,1s

• a (k, l)-transition system is consists of (k, l)-transitions

P
!a
−→

!b

Q, #(!a) = k, #(!b) = l



SEMANTICS OF 
BOUNDED NETS

• t, u∈T independent when ot ∩ ou =∅, to ∩ uo = ∅, ⦁t ∩ ⦁u = ∅, 
and t⦁ ∩ u⦁ = ∅ 

• Suppose X, Y ⊆ P

•              if there exists a set U ⊆ T of mutually independent 

transitions such that oU ⊆ X, Uo ⊆ Y, X \ oU = Y \ Uo and

• ai =1 iff  i ∈ ⦁u for some (necessarily unique) u ∈ U

• bi =1 iff  i ∈ u⦁ for some (necessarily unique) u ∈ U

X
!a

−→
!b

Y



EXAMPLE (PARTIAL STATE SPACE)

10

00*

00

00*

00

01*

00

01*

00

11*

00

01*

10

00*

00

10*

expressive power = class of  LTSs (up to bisimilarity) that 
one can define



PART 2: SYNTACTIC 
STRUCTURE



“PETRI CALCULUS”

P ::= P ; P | P ⊗ P | © | ©• | I | X | ∆ |⊥⊥⊥ | ∇ |⊤⊤⊤ | Λ | ↓↓↓ | V | ↑↑↑

• any well-formed process is the “Petri calculus” has a sort         
and its semantics will be an LTS of         -transitions (k, l)

(k, l)



Calculus of connectors + one-place buffer

true 
concurrency!

(TkI)
©

1
−→
0 ©•

(TkO1)
©•

0
−→
1 ©

(TkO2)
©•

1
−→
1 ©•

(Id)
I

1
−→
1 I

a,b∈{0,1}

(Tw)
X

ab

−−→
ba

X

(∆)
∆

1
−→
11 ∆

(

∆

)
∆11

−−→
1

∆

(⊥⊥⊥)
⊥⊥⊥

1
−→ ⊥⊥⊥

(⊤⊤⊤)
⊤⊤⊤ −→

1 ⊤⊤⊤

(a∈{0,1})

(Λa)
Λ

1
−−→
(1−a)a

Λ

(a∈{0,1})

(Va)
V

(1−a)a

−−−−→
1 V

P
a

−→
c

Q R
c

−→
b

S

(Cut)
P ;R

a

−→
b

Q;S

P
a

−→
b

Q R
c

−→
d

S

(Ten)
P⊗R

ac

−−→
bd

Q⊗S

P :(k, l)

(Refl)

P
0k

−−→
0l

P



BASIC PROPERTIES

• strong (~) and weak bisimulation (≈) are congruences

• sequential composition is associative up to ~ and up to ≈

• categories with objects natural number arrows terms up to ~ 
or ≈

• categories have tensor product induced by     in the obvious 
way

• all follow from “A non-interleaving calculus for multi-party synchronisation” via 
an encoding into the wire calculus, my controversial IFIP talk from ’09

⊗



∇
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RELATIONAL FORMS

• Right relational form:

• dually, left relation form:

• Lemma: for any function f : k → 2l there exists a term in 
right relational form such that: 

θ ∈ {X,∆,∇,⊥⊥⊥,⊤⊤⊤,Λ,V,↓↓↓,↑↑↑}

Tθ ::= θ | I | Tθ ⊗ Tθ | Tθ ; Tθ.

t↓↓↓ ; tΛ ; tX ; t∇ ; t⊤⊤⊤

ρf

U
−→V ρf

⇔
U ⊆ k s. t. ∀u, v ∈ U. u $= v ⇒ f(u) ∩ f(v) = ∅ & V = f(U)

t = t⊥⊥⊥ ; t∆ ; tX ; tV ; t↑↑↑



EXAMPLE

f : 4→ 2
4 f(0), f(1) = {0}, f(2) = ∅, f(3) = {1, 2}

Term in right relational form



PART 3: A “KLEENE THEOREM”



FROM NETS TO SYNTAX

IT

wP,Xρ
−

◦ λ◦
−

dT eT

∆T∇T

λ•
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ρ
−
•

N : m → n = (P, T, ◦

−, −◦, •

−, −•) finite net,    markingX



THEOREM

(N,X)
α
−→

β
(N,Y ) TN,X

α
−→

β
TN,Y⇒

TN,X
α
−→

β
Q

⇒
∃Q. Q = TN,Y ∧ (N,X)

α
−→

β
(N,Y )



FROM SYNTAX TO NETS

• Naive translation: each syntactic atom corresponds to a simple 
net, eg.

• Then theorem should follow by induction....
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PROBLEMATIC 
COMPOSITIONS

=

≠



SOLUTION - NORMALISE
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THEOREM

• For each term t, there exists a net Nt such that t~Nt



CONCLUSION

• A “Kleene theorem for concurrency”: 

• Petri nets with boundaries

• graphical model

• global semantics

• “Petri calculus”

• real syntax (no structural congruence or other cheating)

• inductive semantics

• Extensions to P/T nets with boundaries, other forms of nets?

• wires with buffers


