REPRESENTATIONS OF PETRI NET INTERACTIONS
 Pawel Sobocinski
 Wessex seminar, Bath, I 3/07/I0

Paper available on my homepage

KLEENE'S THEOREM

- Classic result in theory of sequential computation with finite state
- Finite automata
- graphical representation
- semantics given globally
- Regular expressions
- syntactic representation
- semantics given inductively
- Why do we teach this to undergraduates?

WHY IS KLEENE IMPORTANT?

- Much of Computer Science is about syntax
- how to capture dynamic notions of computation by an efficient syntax?
- programming languages
- process calculi
- specification logics
- Kleene's theorem is about capturing the essence of sequential computation with finite state (finite automata) with an efficient syntax (regular expressions)

WHAT ABOUT CONCURRENCY?

- Kleene's theorem is about capturing the essence of sequential computation with finite state (finite automata) with an efficient syntax (regular expressions)
- what is the essence of concurrent computation with finite state? (one answer: finite Petri nets)
- intuitive and popular
- non-compositional
- we have many syntaxes: process calculi of various sorts
- intuitive and popular with process-calculists
- compositional with SOS semantics

THE CONTRIBUTION

- people have tried to go from nets to calculi and vice-versa but with limited success
- is the model "wrong" or is the syntax "wrong'?
- we show that the expressive power of an open variant of nets is the same as that of a process calculus
- most well-known process calculi are based on a binary parallel composition || operator
- process calculus in this talk has fundamentally different operations

PART I: GRAPHICAL STRUCTURE

Link graphs and Petri nets

LINK GRAPHS

- composition by synchronisation of links
- this category is equivalent to free compact closed category on a self-dual object (Abramsky, Calco `05)

CATEGORY OF LINK GRAPHS

- Composition explained
- objects are (finite) ordinals
- arrows are cospans of functions
- composition is by pushout

FINITE NETS

- Definition
- Finite set of places P
- Finite set of transitions T
- Functions ${ }^{\circ}-,-{ }^{\circ}: T \rightarrow 2^{P}$

SEMANTICS OF NETS

- trans $\mathrm{t}, \mathrm{u} \in \mathrm{T}$ independent when ${ }^{\circ} \mathrm{t} \mathrm{n}^{\circ} \mathrm{u}=\varnothing$ and $\mathrm{t}^{\circ} \cap \mathrm{u}^{\circ}=\varnothing$
- Suppose $X, Y \subseteq P$
- $X \rightarrow Y$ if there exists a set $U \subseteq T$ of mutually independent transitions such that $\odot \subseteq \subseteq X, U^{\circ} \subseteq Y$ and $X \backslash \circ \cup Y \backslash \cup^{\circ}$

PETRI NETS

- (multi) link graphs plus
- two kinds (marked/unmarked) of nodes
- each with two ports (in/out)

PETRI NETS WITH BOUNDARIES

- Definition, net $N: k \rightarrow I(k, I$ finite ordinals)
- finite set of places P
- finite set of transitions T
- functions ${ }^{\circ}-,-0: T \rightarrow 2^{P}$
- functions ${ }^{\bullet}$ - $: T \rightarrow 2^{k}$, - : $T \rightarrow 2^{1}$

COMPOSITION

- A synchronisation is a pair (U, V) where
- UuV $\neq \varnothing$
- $U^{\bullet}=\bullet \vee$
- The set of transitions of the composed net is the set of minimal synchronisations

is this universal in some sense?

TRANSITION SYSTEMS

- Possible signals are 0 (no signal) and I (signal)
- for $k, l \in \mathbf{N}$ a (k, l)-transition is a labelled transition of the form

$$
P \underset{\vec{b}}{\stackrel{a}{a}} Q, \quad \#(\vec{a})=k, \#(\vec{b})=l
$$

- where each label is a vector of $0, I s$
- a (k, l)-transition system is consists of (k, l)-transitions

SEMANTICS OF BOUNDED NETS

$\cdot \mathrm{t}, \mathrm{u} \in \mathrm{T}$ independent when ${ }^{\circ} \mathrm{t} \cap{ }^{\mathrm{o}} \mathrm{u}=\varnothing, \mathrm{t}^{\circ} \cap \mathrm{u}^{\circ}=\varnothing \cdot \bullet \mathrm{t} \cap \cdot \mathrm{u}=\varnothing$, and $t^{\bullet} \cap u^{\bullet}=\varnothing$

- Suppose $X, Y \subseteq P$
- $X \underset{\vec{b}}{\vec{a}} Y$ if there exists a set $U \subseteq T$ of mutually independent transitions such that $\cup \cup \subseteq X, \cup^{\circ} \subseteq Y, X \backslash \cup \cup=Y \backslash \cup^{\circ}$ and
- $a_{i}=1$ iff $i \in \bullet u$ for some (necessarily unique) $u \in U$
- $b_{i}=\mid$ iff $i \in u^{\bullet}$ for some (necessarily unique) $u \in U$

EXAMPLE (PARTIAL STATE SPACE)

expressive power $=$ class of LTSs (up to bisimilarity) that one can define

PART 2: SYNTACTIC STRUCTURE

"PETRI CALCULUS"

$$
P::=P ; P|P \otimes P| \bigcirc|\odot| \mathrm{I}|\mathrm{X}| \Delta|\perp| \nabla|\mathrm{T}| \wedge|\downarrow| \mathrm{V} \mid \uparrow
$$

- any well-formed process is the "Petri calculus" has a sort (k, l) and its semantics will be an LTS of (k, l)-transitions

Calculus of connectors + one-place buffer

$$
\begin{aligned}
& \text { (~) } \\
& \text { concurrency! }
\end{aligned}
$$

BASIC PROPERTIES

- strong (\sim) and weak bisimulation (\approx) are congruences
- sequential composition is associative up to ~ and up to \approx
- categories with objects natural number arrows terms up to ~ or \approx
- categories have tensor product induced by \otimes in the obvious way
- all follow from "A non-interleaving calculus for multi-party synchronisation" via an encoding into the wire calculus, my controversial IFIP talk from '09

CIRCUIT DIAGRAMS

RELATIONAL FORMS

$$
\begin{gathered}
\theta \in\{\mathrm{X}, \Delta, \nabla, \perp, \mathrm{~T}, \wedge, \mathrm{~V}, \downarrow, \uparrow\} \\
T_{\theta}::=\theta|I| T_{\theta} \otimes T_{\theta} \mid T_{\theta} ; T_{\theta} .
\end{gathered}
$$

- Right relational form: $t=t_{\perp} ; t_{\Delta} ; t_{\mathrm{x}} ; t_{\mathrm{v}} ; t_{\uparrow}$
- dually, left relation form: $t_{\downarrow} ; t_{\Lambda} ; t_{\mathrm{x}} ; t_{\nabla} ; t_{\mathrm{T}}$
- Lemma: for any function $\mathrm{f}: \mathrm{k} \rightarrow 2^{\prime}$ there exists a term in right relational form such that:

$$
\begin{gathered}
\rho_{f} \xrightarrow[V]{\xrightarrow[V]{\longrightarrow}} \rho_{f} \\
\Leftrightarrow
\end{gathered}
$$

$$
U \subseteq \underline{k} \text { s. t. } \forall u, v \in U . u \neq v \Rightarrow f(u) \cap f(v)=\varnothing \& V=f(U)
$$

EXAMPLE

$$
f: 4 \rightarrow 2^{4} \quad f(0), f(1)=\{0\}, f(2)=\varnothing, f(3)=\{1,2\}
$$

Term in right relational form

PART 3: A "KLEENE THEOREM"

FROM NETSTO SYNTAX

$N: m \rightarrow n=\left(P, T,{ }^{\circ}-,-^{\circ}, \bullet-, \bullet^{\bullet}\right)$ finite net, X marking

THEOREM

$$
(N, X) \underset{\beta}{\underset{\beta}{\alpha}}(N, Y) \quad \Rightarrow \quad T_{N, X} \xrightarrow[\beta]{\underset{\beta}{\alpha}} T_{N, Y}
$$

$$
T_{N, X} \underset{\underset{\beta}{\beta}}{\stackrel{\alpha}{\longrightarrow}} Q
$$

$$
\Longrightarrow
$$

$$
\exists Q \cdot Q=T_{N, Y} \wedge(N, X) \underset{\beta}{\underset{\beta}{\beta}}(N, Y)
$$

FROM SYNTAXTO NETS

- Naive translation: each syntactic atom corresponds to a simple net, eg.

$\llbracket \downarrow \rrbracket \stackrel{\text { def }}{=} \bullet$
- Then theorem should follow by induction....

> PROBLEMATIC COMPOSITIONS

SOLUTION - NORMALISE

THEOREM

- For each term t, there exists a net N_{t} such that $t \sim N_{t}$

CONCLUSION

- A "Kleene theorem for concurrency":
- Petri nets with boundaries
- graphical model
- global semantics
- "Petri calculus"
- real syntax (no structural congruence or other cheating)
- inductive semantics
- Extensions to P/T nets with boundaries, other forms of nets?
- wires with buffers

