REPRESENTATIONS OF PRIME RINGS

BY
R. E. JOHNSON

This paper is a continuation of the study of prime rings started in [2].
We recall that a prime ring is a ring having its zero ideal as a prime ideal.

A right (left) ideal I of a prime ring R is called prime if abC I implies that
aCI (bCI), a and b right (left) ideals of R with 6520 (a0). We denote by
B, (B1) the set of all prime right (left) ideals of R. For any subset 4 of R,
A7 (A% denotes the right (left) annihilator of 4; A7 (4Y) is a right (left)
annthilator ideal of R. The set of all right (left) annihilator ideals of R is
denoted by %, (A;).

For the prime rings R studied in [2], it was assumed that there existed a
mapping I—I* of the set of all right (left) ideals of R onto a subset R () of
B- (B1) having the following seven properties:

(P1) *DI (P2) I** = I*,
(P3) If ID I, then I* D I'*. (P4) 0* =0.
(P5) If INT =0, then I* N\ I'* = 0.

(P6) al* C (al)* (I*e C (Ia)*), a €ER.

(P7) R (R) is atomic.

That the above properties arise naturally may be seen by letting I*=p(I),
the least prime right (left) ideal of R containing I. Then properties (P1)—(P6)
are known to hold [2]. Thus (P1)—(P7) hold for any ring having minimal
prime right (left) ideals. In particular, these properties hold for a primitive
ring with minimal right ideals.

A subset & (&) of B, (B:) satisfying (P1)—(P7) will be called a right structure
(left structure) of R. A right (left) structure & (¥) of R may be made into a
lattice in the usual way. Thus for any I, I’ in & (2), define INI’ as the inter-
section of these ideals and I\UI’ as (I+1I')*. It follows from [2] that ® (®)
is a modular lattice under these operations. A consequence of [2, p. 803] is
that A,CR (A, Q). Since (I4+I")'=IJI')! by (P6), it is evident that
(IJIY=I'N\I"! for any I, I’ in R, and similarly for L.

It is assumed in this paper that the prime ring R has both a right and
a left structure. Some properties of structures, in addition to those given in
[2], are developed in the first section. Next, atoms of these structures are
used for dual representation spaces of R. It is shown that these structures in
R have isomorphic structures in their dual representation spaces. Finally, the
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given ring is shown to be an n-fold transitive ring of transformations on these
spaces in a certain restricted sense.

1. Right-left structure relations. We assume that the prime ring R has
both a right structure & and a left structure & Each of the results of this
section has a dual obtained by interchanging the roles of i and &

1.1 LemMA. If I is an atom of R and x is any nonzero element of I, then
(Rx)* s an atom of L.

To prove this, let L be any atom of ®. The primeness of R implies that
LNxR#0. Select xaELNxR, xa0; since L is an atom, (xa)! is a maximal
element of € by [2, 4.11]. Now IN(xa)” 0, and therefore I (xa)'. Thus
(x)¥=(xa)! and (Rx)* is an atom of & by [2, 4.11].

The ring union of all atoms of & is shown in [2, 4.2] to be an ideal of R.
The above lemma shows that this ideal is also the ring union of all atoms of L.

1.2 THEOREM. If I is an atom of R, then I' is a maximal element of L, while
if I 1is a maximal element of R for which I'5£0, then I' is an atom of &.

If I is an atom of R, then I'=(x)! for any nonzero x in I, and hence I'is
maximal in € by the proof of the above lemma.

On the other hand, if I is maximal in ® and I'#0, then (x)*=1I for any
nonzero % in I*. Thus (xR)* is an atom of & by [2, 4.11]. Since x is in (xR)*
[2, 1.2], we have by 1.1 that (Rx)* is an atom of £ for every nonzero x in I
If I' is not an atom of ¢, it must contain atoms L; and L, such that L;N\L,
=0 [2, 4.3]. Let x; be any nonzero element of L;. Since (x:)'L#0 due to the
primeness of R, there must exist a nonzero element x; in L, such that (x;)}
# (x5)%. Then R(x1+x:)Rx;70, ¢=1, 2, and therefore (R(x,4x2))* = (Rx1)*
= (Rx,)*. This contradicts the assumption that L;/\L;=0, and proves 1.2.

It is a corollary of 1.2 that the atoms of & (2) are contained in %, (%;).

1.3 THEOREM. If I is an atom of R and I' is any element of U,, then I\JI’
also is in A,.

Since (I\JI')r=(I'MI'Y), what we wish to prove is that (I'N\I[’'Y)”
=JUI'. Clearly IVI'C(I'M\I'Yr, so that we need only prove that (I'\I'Y)"
CIVUI'. In view of [2, 4.3], this can be accomplished by showing that every
atom I, of ! contained in (I*\I'?)" is also contained in I\JI’.

So let us assume that I;C(I'M\I'Yr, I; an atom of R. If either I,=1 or
I,CI', nothing remains to be proved; henceforth we shall assume that
I;#I and I, &£ I’. Then necessarily T¢I’ and I'*CC 1Y Hence there exists an
atom L of {2, 4.3] such that LCI"t, LNI'=0. Since I' is maximal in € by 1.2,
evidently L\UI'=R. From the modularity of & we see that L\U(I!N\I'!) =1I"¢,
and therefore that L'\ (I'M\I'Y)r=1I'. Since L’ is a maximal element of & and
IGELr, clearly I\VL*=R. Hence it follows from (P5) that I)"\(I4L")#0,
and therefore that (I;+I)NL 0. Since also I,+IS(I'M\I'Y)r, it follows
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that (I;+I1)NI's£0. Thus NI +I')%0 and I,CI\JI'. This proves the
theorem.

1.4 CorOLLARY. If I, - - -, I, are atoms of R, then I,\J - - - UI, is in N,.

The corollary follows by mathematical induction.

2. R-modules. If M is a right (left) R-module and A4 is a subset of M,
we shall again use the notation 4* (4*) to denote the annihilator of 4 in R.
A right (left) R-module M is called prime if A7=0 (4'=0) for every nonzero
submodule 4 of M. A submodule M’ of M is called a prime submodule of M
if M— M’ is a prime module. If the ring R has a right (left) structure & (2),
then a right (left) R-module M is called admissible relative to R (R) if M is
prime and (x)"ER ((x)'EQ) for every xE M. For any I in R (), both I and
R —1T are examples of admissible right (left) R-modules.

Itisshown in [2, p. 804] that an admissible right R-module M has a struc-
ture much the same as R does. For any submodule N of M, define

N* = {x; 2 E M, [(N:2)]* = R}.

Here (NV:x) denotes the annihilator in R of the element x+ N in M — N. Then
the set M of all submodules N* of M is a structure of M in that it possesses
the properties analogous to (P1)-(P7). Naturally, similar remarks hold for
admissible left R-modules. '

Let us assume now that R is a ring with a right structure & and a left
structure &, and that N is a fixed atom of R. Select an atom M of { so that

M-N #0.

Such an M must exist, since the ring union S of all atoms of f is an ideal of
R [2, 4.2], and S- N340 due to the primeness of R. Let

K=MNN,

a nonzero subring of R. If we consider the rings K, M, and N as modules, it
is evident that K is an (N, M)-module, that M is an (R, K)-module, and
that N is an (K, R)-module. Clearly N- MCK.

2.1 LEMMA. For x in M and y in N, xy=0 if and only if x=0 or y=0.

If x50, then (x)" is an element of R and therefore either (x)"\N =0, in
which case the desired conclusion follows immediately, or N (x)*. In this
latter case evidently N'\M 0 and M CN?, which is contrary to the choice
of M. This proves 2.1.

An obvious corollary of this lemma is that K is an integral domain.

2.2 LEmMMA. The integral domain K possesses a quotient division ring D.

If x and y are nonzero elements of K, then (xN)*=(yN)*=N in view
of 2.1 and the fact that N is an atom. Thus x NNyN>0 by (P5), and
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hence xNNyNNM=0. However, xNNyNNMCK so that evidently xK
NyK 0. This proves that K has a right quotient division ring D. That D
also is the left quotient of K follows by duality.

2.3 LEMMA. If x and y are nonzero elements of N, then KxM\Ky=0 if and
only of (x)"=(y)".

If KxN\Ky0, then obviously (x)"=(y)". Conversely, if (x)"= ()", then
x and y are in (x)7}, an atom of ¥ Now Mx>0 and My#=0, and since both
Mx and My are contained in the atom (x)r, necessarily MxM\My==0 by
(P5). Since K is a right M-module, evidently KxMKy=0 as desired.

We shall consider K as having the trivial left and right structures, namely
the structures consisting of the set (0, K). In view of 2.2, which guarantees
that (P5) holds, it is evident that these structures satisfy (P1)-(P7).

Now N, as an admissible (K, R)-module, has a left structure induced by
K and a right structure induced by R. It is clear that for any K-submodule
A of N, the closure A* of 4 is defined as follows:

A* = {z;x EN,x=0o0r Kx N 4 = 0}.

If ;N denotes the set of all closed K-submodules of N, then N is a left struc-
ture of N. Since N is an atom of R, the right structure of N induced by R
is the trivial one.

In an analogous way, of course, M has left and right structures induced by
R and K respectively. The left structure is trivial; the right structure of M
induced by K will be denoted by M.

The following results, although frequently just stated for R, have the
obvious duals relative to .

Any A of N is actually a left N-module. For if €N and ¢ €4 with xa #0,
then (xa)”= (a)" since both of these right ideals are maximal elements of R
by [2, 4.11], and K(xa)"\Ka>0 by 2.3. Thus K(xa) A4 #0 and xa €4 since
A*=A4.

If L is in € and kx is a nonzero element of LNN, k€K and xEN, then
(Rx)*N\L >0 and, since (Rx)* is an atom of £ by 1.1, evidently (Rx)*CL.
Thus x is in LNN and we have proved that LNN is in N. Furthermore, if
L is an atom of €, then LN N is an atom of N. This is so since for any non-
zero elements x and y of LNN, (x)"=(y)"=L", and hence Kx"\Ky>0 by 2.3.

On the other hand, if 4 is an atom of N, then KxMNKy0 for any nonzero
x, yEA. Hence Ar*=(x)"'=L, an atom of & and A =LNN.

The above remarks constitute part of the proof of the following theorem.,

2.4 THEOREM. The K-submodule A of N is in N if and only if A=LNN
for some L in L.

To complete the proof of this theorem, let A4 be any nonzero element of N
and let L =(RA4)*&. We shall prove that 4 =LNN. If L;CL, L; an atom of
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¢, then LyNRA 0 so that N-(LiNRA)##0 and Ly NRA #0. Since NRA
CNACA, we have proved that LiNA4 0. Now Li/\N is an atom of N
and therefore LNNCA. It follows that LNNCA, and the proof of the
theorem is completed.

2.5 THEOREM. The lattices {2; S, U, N} and {N; S, U, N} are iso-
mor phic under the correspondence L—~LNN. Dually, the lattices {ER; c,U, N }
and {sm; c, U, ﬂ} are 1somorphic under the correspondence I—IMNM.

It is sufficient to prove that the mapping L—>LNAN of & onto N is a 1-1
order-preserving mapping in order to prove that these lattices are iso-
morphic. Clearly the mapping is order-preserving. In order to show that it
is a 1-1 mapping, we need only note that if LiEL,, L;EY¢, then there exists
an atom L of  such that LCL;, LNL;=0 by [2, 4.3]. Hence LNNEL,NN
and therefore LNNEL,NN. This proves 2.5.

In case R is a primitive ring with nonzero socle .S, and NV and M are
simple conjugate right and left R-modules respectively with common cen-
tralizer D, this theorem yields the well known isomorphism existing between
the lattice of left (right) ideals of S and the lattice of D-submodules of
N (M). This application to primitive rings is obtained by letting % (%) be the
set of all prime right (left) ideals of R.

If AGR, say A =LNN for LEY, then obviously 472D L". Since, however,
A7ec and A7'DA, evidently LC A" and A"CL". Thus A7=Lr. If, in par-
ticular, LEY;, then A =A4"NN. Let us denote by N; (M,) the set of all
K-submodules of N (M) that are annihilators of right (left) ideals of R.
Then N, = {A  AEN, A=LNN for some LEY; } , and similarly for IN,.

In view of the isomorphism existing between £ and 0, Theorem 1.3 has
the following counterpart in N.

2.6 THEOREM. If A is an atom of N and B is any element of Ny, then A\JB
also is in Ni.

A corollary of this theorem is as follows (1.4):

2.7 COROLLARY. If Ay, - -+, A, are atoms of N, then 4,\J - - - \UA, 1s
m %z.

For a primitive ring R, analogues of Theorem 2.6 and its corollary can
be found in a recent paper by Artin [1, pp. 68, 69]. His results are more gen-
eral than ours in that his ring R is not assumed to have minimal right ideals.
Of course, they are also less general in that they are restricted to apply to
primitive rather than prime rings.

3. Transitivity of R over N. As usual, the elements x1, - - -, x, of N are
called K-linearly independent if and only if kux1+ - - - +ka.x, =0 implies all
k;=0, B;€K. An alternate lattice-theoretic definition is given by the follow-
ing lemma.
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3.1 LEMMA. The elements x,, - - -, x, of N are K-linearly independent if
and only if
(xi)r 2 n (xi)'v j = 11 R (A
te=1,15%]

To prove this lemma, note first that all 4= (x)"""\N = (Kx.)* are atoms
of N (assuming, of course, that x;50). If b1+ - - - +k.x,=0 with k;=0,
then

and, since 47= (x,)",

@2 N ()"

t=1,ip 5

Conversely, if the above inclusion relation holds for some j, then

4; < U 4,

i=1,i%]

Kx,- f\ Z Kx.-;éo.

t=1,177
Thus the elements x4, + + -, %, are K-linearly dependent, and 3.1 follows.

3.2 LEMMA. Let I be any right ideal of R and K' be any left N-submodule of
K. Then for any x and y in N such that xI#0 and K'y#0, also xINK'y#0,

To prove this lemma, let £ be any nonzero element of K’. Then, by the
primeness of N, xaky >0 for some @ in I. Now x(aky) = (xak)y where akyETl
and xakEK’, and therefore the lemma is proved.

We now are in a position to prove the main result of our paper, namely
that R acts almost as an #-fold transitive ring of K-linear transformations on
N for any integer »# not exceeding the K-dimension of N. To be more precise,
we shall prove the following theorem.

3.3 TRANSITIVITY THEOREM. If x1, - + « , X, 15 any set of n K-linearly inde-
pendent elements of N and if y1, - - -, ¥a 15 any set of n elements of N, then
there exist an element a of R and a nonsero element k of K such that

xi¢ = Ry, i=1---,m
To aid in the proof of this theorem, let

Ij = N (2"

feml,ipt j
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In view of 3.1, evidently I;I (x;) for any j. Hence, by 3.2, there exist ele-
ments ¢;EI; and k;EK, k;>0, such that x;a;=Fk;y;50 for all j such that
9;70. If y;=0, select a;=0. Now for all y;0, k;y,;K is a right ideal of K,
and N; kjy;K 50 by 2.2. Select k€N; kyy;K, k#0; k=Fkyjc; for each j such
that y;#0. Then x;(aic;y;) =ky; and if we let a=ac;y1+ - - + +@nCayn, evi-
dently x;a =ky; as desired.

We give now an example of a prime ring of the type considered in this
paper. Denote by I the ring of integers and by I the ring of all 2XX2 matrices
over I. We use the notation E;; for the matrix with 1 in its (¢, j) position and
zeros elsewhere. Now denote by R the set of all matrices of I, having all even
or all odd integers for components. It is easily established that R is a prime
ring.

The right ideal N=2IE;+2IE,, is a minimal prime right ideal and the
left ideal M =2IE;;+2IE, is a minimal prime left ideal. Clearly K = MNN
=2IE; is an integral domain. The sets of prime right and left ideals of R
form right and left structures of R.

As an illustration of the transitivity theorem, let x1=2Ey, x:=4F;;,,
y1=0, and y;=2Ey;. Then for a=2E;; and k=4E;; we have xa=*ky, and
%20 =ky;. We note that there is no ¢ in R such that xa =y, and x.a =7y,.

In the case of a primitive ring R, the minimal right ideals are all iso-
morphic as right R-modules. That such is not the case in general for a prime
ring follows from this example. To show this, let N’=[I(Euy+Ez)
+I(E12+Ex») JNR. It is not too difficult to show that N’ is a minimal prime
right ideal of R. If N and N’ were isomorphic, then we would have 2aEy
—¢(En+Ey), 20E12—d(E2+ Eg) for some integers a, b, ¢, d in order for the
annihilators of corresponding elements of N and N’ to be the same. But then
¢ and d would have to be even integers, and nothing in N would correspond
to the matrices in N’ having odd integers for elements.
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