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This paper is a continuation of the study of prime rings started in [2].

We recall that a prime ring is a ring having its zero ideal as a prime ideal.

A right (left) ideal 7 of a prime ring R is called prime if ctb Ç7 implies that

aÇ7 (bÇ7), « and b right (left) ideals of R with b^O (ct^O). We denote by

^3r (^Jj) the set of all prime right (left) ideals of R. For any subset A of R,

Ar iAl) denotes the right (left) annihilator of A; A' iAl) is a right (left)

annihilator ideal of 7?. The set of all right (left) annihilator ideals of R is

denoted by «r (Si).

For the prime rings R studied in [2], it was assumed that there existed a

mapping 7^7* of the set of all right (left) ideals of R onto a subset 9Î (8) of

<$r ityî) having the following seven properties:

(PI) 7* 2 7. (P2)

(P3) If 7 2 I', then 7* D I'*. (P4)

(P5) If 7 H 7' = 0, then 7* H 7'* = 0.

(P6) al* g (<,/)*        (7*a Q (/a)*),    a G i?.

(P7) di (8) is atomic.

That the above properties arise naturally may be seen by letting I* = pil),

the least prime right (left) ideal of R containing 7. Then properties (P1)-(P6)

are known to hold [2]. Thus (P1)-(P7) hold for any ring having minimal

prime right (left) ideals. In particular, these properties hold for a primitive

ring with minimal right ideals.

A subset 9Î (8) of % ityi) satisfying (P1)-(P7) will be called a right structure

ifeft structure) of R. A right (left) structure 9î (8) of R may be made into a

lattice in the usual way. Thus for any 7, 7' in ÍR (8), define IC\I' as the inter-

section of these ideals and 7U7' as (7+7')*. It follows from [2] that dt (8)

is a modular lattice under these operations. A consequence of [2, p. 803] is

that «,Ç8l (8,çg). Since (7+7')! = (7W7')1 by (P6), it is evident that
(7U7')' = 7!n7" for any 7, 7' in 9Í, and similarly for 8.

It is assumed in this paper that the prime ring R has both a right and

a left structure. Some properties of structures, in addition to those given in

[2], are developed in the first section. Next, atoms of these structures are

used for dual representation spaces of R. It is shown that these structures in

R have isomorphic structures in their dual representation spaces. Finally, the
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given ring is shown to be an »-fold transitive ring of transformations on these

spaces in a certain restricted sense.

1. Right-left structure relations. We assume that the prime ring R has

both a right structure 3î and a left structure 8. Each of the results of this

section has a dual obtained by interchanging the roles of 9Î and 8.

1.1 Lemma. If I is an atom of 9c and x is any nonzero element of I, then

iRx)* is an atom of 8.

To prove this, let L be any atom of 8. The primeness of R implies that

LC\xR?¿0. Select xaCZLC\xR, xa^O; since L is an atom, (xa)1 is a maximal

element of 8 by [2, 4.1l]. Now ir\(xa)lT j¿0, and therefore 7Ç7(xa)ir. Thus

(x)'=(xa)1 and iRx)* is an atom of 8 by [2, 4.1l].

The ring union of all atoms of 3Î is shown in [2, 4.2] to be an ideal of R.

The above lemma shows that this ideal is also the ring union of all atoms of 8.

1.2 Theorem. If I is an atom of SU, then I1 is a maximal element of 8, while

if I is a maximal element ofdtfor which Pt^O, then I1 is an atom of 8.

If 7 is an atom of 9?, then I' = (x)1 for any nonzero x in 7, and hence 7' is

maximal in 8 by the proof of the above lemma.

On the other hand, if 7 is maximal in 9Î and 7't^O, then (x)r = 7 for any

nonzero x in I1. Thus (xR)* is an atom of 3ï by [2, 4.1l]. Since x is in (xi?)*

[2, 1.2], we have by 1.1 that iRx)* is an atom of 8 for every nonzero x in I1.

If I' is not an atom of 8, it must contain atoms L\ and L2 such that LiC\L2

= 0 [2, 4.3]. Let Xi be any nonzero element of L\. Since (xiVLj^O due to the

primeness of R, there must exist a nonzero element x2 in L2 such that (x{)1

5¿(x2)'. Then R(xi+X2)r\Rxi^0, i=\, 2, and therefore (R(x1+xï))* = (Rx1)*

= (i?x2)*. This contradicts the assumption that L\r\L2 — 0, and proves 1.2.

It is a corollary of 1.2 that the atoms of 9Î (8) are contained in SI, (SI;).

1.3 Theorem. If I is an atom of 9î and I' is any element of 2ir, then 7W7'

also is in 2ir-

Since (7U7')ir = (7'rV")r, what we wish to prove is that (Iir\I'lY

= 7W7'. Clearly lUl'QiPfM")', so that we need only prove that (PÍM'1)*

Ç/W7'. In view of [2, 4.3], this can be accomplished by showing that every

atom 7i of 9Î contained in (Iir\I'l)T is also contained in I\JI'.

So let us assume that IiQ(Iir\In)r, I\ an atom of 9Î. If either 7i = 7 or

7iÇ7', nothing remains to be proved; henceforth we shall assume that

Iit^I and I\%I'. Then necessarily I%I' and 7'!ÇT-7!. Hence there exists an

atom L of 8 [2, 4.3] such thatLÇZ7'!, LfM' = 0. Since I1 is maximal in 8 by 1.2,
evidently LVJIl = R. From the modularity of 8 we see that LVJ(Pr\I'1) =1",
and therefore that Lrr\(Ilr\In)r = I'. Since Lr is a maximal element of 3Î and

I%IS, clearly IULr = R. Hence it follows from (P5) that 71n(7+ir)^0,

and therefore that (h+I)nLr^0. Since also 7j+7Ç:(7ifV;)r, it follows
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that (71+7)n/V0. Thus 7/^(7+7') ^0 and hÇPJI'. This proves the
theorem.

1.4 Corollary. If Iu ■ • ■ , In are atoms of 9?, then IiKJ ■ • ■ W7„ is in 2Ir.

The corollary follows by mathematical induction.

2. i?-modules. If M is a right (left) 7?-module and A is a subset of M,

we shall again use the notation Ar (A1) to denote the annihilator of A in R.

A right (left) i?-module M is called prime if Ar = 0 (yl' = 0) for every nonzero

submodule A of M. A submodule M' of M is called a prime submodule of A7

if M—M' is a prime module. If the ring R has a right (left) structure 9Î (8),

then a right (left) 7?-module M is called admissible relative to 9t (8) if M is

prime and (x)r£E9t ((x)'£8) for every xCZM. For any 7 in 9t (8), both 7 and

R — I are examples of admissible right (left) i?-modules.

It is shown in [2, p. 804] that an admissible right i?-module M has a struc-

ture much the same as R does. For any submodule N of M, define

N* = [x;xCZM, \(N:x)]* = ä}.

Here (iV:x) denotes the annihilator in R of the element x+N in M— N. Then

the set W of all submodules N* of A7 is a structure of Af in that it possesses

the properties analogous to (P1)-(P7). Naturally, similar remarks hold for

admissible left i?-modules.

Let us assume now that R is a ring with a right structure 91 and a left

structure 8, and that N is a fixed atom of 9c. Select an atom M of 8 so that

MN ^ 0.

Such an M must exist, since the ring union 5 of all atoms of 8 is an ideal of

R [2, 4.2], and S-iWO due to the primeness of R. Let

K = M r\ N,

a nonzero subring of R. Ii we consider the rings K, M, and N as modules, it

is evident that K is an (N, J7)-module, that M is an (i?, üQ-module, and

that 7/ is an ÇK, R)-module. Clearly N-MQK.

2.1 Lemma. For x in M and y in N, xy = 0 if and only if x = 0 or y = 0.

If x^O, then (x)r is an element of 9Î and therefore either (ï)'AJV=0, in

which case the desired conclusion follows immediately, or iVÇ;(x)r. In this

latter case evidently NT\M5¿0 and MÇ1N1, which is contrary to the choice

of M. This proves 2.1.

An obvious corollary of this lemma is that K is an integral domain.

2.2 Lemma. The integral domain K possesses a quotient division ring D.

If x and y are nonzero elements of K, then (xN)* = (yN)* = N in view

of 2.1 and the fact that N is an atom. Thus xNf^yN^O by (P5), and
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hence xNr\yNC\M?íO. However, xNr\yNi~\MÇZ-K so that evidently xK

i^yK^O. This proves that K has a right quotient division ring D. That D

also is the left quotient of K follows by duality.

2.3 Lemma. If x and y are nonzero elements of N, then Kxi^Ky^O if and

only if (x)r=(y)r.

If Kxi^Ky^O, then obviously (x)r=(y)r. Conversely, if (x)T=(y)r, then

x and y are in (x)rl, an atom of 8. Now Afx^O and Afy^O, and since both

Mx and My are contained in the atom (x)rl, necessarily MxC\My^0 by

(P5). Since K is a right Af-module, evidently KxCsKy^O as desired.

We shall consider K as having the trivial left and right structures, namely

the structures consisting of the set (0, K). In view of 2.2, which guarantees

that (P5) holds, it is evident that these structures satisfy (P1)-(P7).

Now N, as an admissible (Tí, R)-module, has a left structure induced by

K and a right structure induced by R. It is clear that for any TC-submodule

A of N, the closure A* of A is defined as follows:

A* = {x; x G N, x = 0 or Kxi\ A ^ 0J.

If 91 denotes the set of all closed 7£-submodules of N, then 9c is a left struc-

ture of N. Since N is an atom of 9f, the right structure of N induced by R

is the trivial one.

In an analogous way, of course, A7 has left and right structures induced by

R and K respectively. The left structure is trivial; the right structure of 17

induced by K will be denoted by 50?.

The following results, although frequently just stated for 9c, have the

obvious duals relative to SO?.

Any A of 9Î is actually a left A^-module. For if x£7Vand aCZA with xa^O,

then (xa)r=(a)r since both of these right ideals are maximal elements of 9t

by [2, 4.11], and K(xa)r\Ka9^0 by 2.3. Thus K(xa)C\A ¿¿0 and xa£^4 since

A*=A.
If 7, is in 8 and kx is a nonzero element of LC\N, kCZK and xCZ~N, then

(Rx)*í\L¿¿0 and, since (Rx)* is an atom of 8 by 1.1, evidently (i?x)*ÇL.

Thus x is in LC\N and we have proved that Li~\N is in 9t. Furthermore, if

L is an atom of 8, then LC\N is an atom of 91. This is so since for any non-

zero elements x and y of LC\N, (x)r= (y)r = Lr, and hence Kx(~\Ky¿¿0 by 2.3.

On the other hand, if A is an atom of 9Í, then KxHsKy^O for any nonzero

x, yCZ-A. Hence ATl= (x)rl=L, an atom of 8, and A =L(~\N.

The above remarks constitute part of the proof of the following theorem.

2.4 Theorem. The K-submodule A of N is in 9Î if and only if A =Li~\N

for some L in 8.

To complete the proof of this theorem, let A be any nonzero element of 9Î

and let L = (RA)*&. We shall prove that¿=LrW. ULiÇlL.Li an atom of
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8, then L^RA^Q so that N- (L^RA) ^0 and LiC\NRA^0. Since NRA
QNAQA, we have proved that L^A^O. Now LiC\N is an atom of 9c

and therefore LANCIA. It follows that LC\NQA, and the proof of the

theorem is completed.

2.5 Theorem. The lattices {8; Q, W, H\] and {9?; Q, W, P\} are iso-

morphic under the correspondence L^>LC\N. Dually, the lattices {9c; ÇZ, \J, f~\ }

awa" {SK; Ç, U, P\} are isomorphic under the correspondence I—*I(~\M.

It is sufficient to prove that the mapping L—>LC\N of 8 onto 91 is a 1-1

order-preserving mapping in order to prove that these lattices are iso-

morphic. Clearly the mapping is order-preserving. In order to show that it

is a 1-1 mapping, we need only note that if L\%.L2, 7,,G8, then there exists

an atom L of 8 such that L'Oit, 7,f\L2 = 0 by [2, 4.3]. Hence Lr\NC£L2r\N
and therefore 7,ifWçj;7,2r\A7'. This proves 2.5.

In case R is a primitive ring with nonzero socle S, and N and M are

simple conjugate right and left i?-modules respectively with common cen-

tralizer D, this theorem yields the well known isomorphism existing between

the lattice of left (right) ideals of S and the lattice of 7>-submodules of

N (M). This application to primitive rings is obtained by letting 9c (8) be the

set of all prime right (left) ideals of R.

If A G9Î, say A =LC\N for 7,(E8, then obviously .407/. Since, however,
Arl& and ArlZL\A, evidently LÇZArl and ArQLv. Thus Ar = LT. If, in par-

ticular, 7,621;, then A=ArlC\N. Let us denote by 9c i (5Dcr) the set of all

K -submodules of N (M) that are annihilators of right (left) ideals of R.

Then 9h = {A ; ̂ G9c, A =LC\N for some LCZ%i}, and similarly for 9Jcr.

In view of the isomorphism existing between 8 and 9Î, Theorem 1.3 has

the following counterpart in 9Í.

2.6 Theorem. If A is an atom of 9c and B is any element of 9í¡, then A VJB

also is in 9Î ¡.

A corollary of this theorem is as follows (1.4):

2.7 Corollary. If Au ■ ■ • , An are atoms of 9c, then AiKJ • ■ ■ \JAn is

in 9Í/.

For a primitive ring R, analogues of Theorem 2.6 and its corollary can

be found in a recent paper by Artin [l, pp. 68, 69]. His results are more gen-

eral than ours in that his ring R is not assumed to have minimal right ideals.

Of course, they are also less general in that they are restricted to apply to

primitive rather than prime rings.

3. Transitivity of R over N. As usual, the elements X\, ■ ■ ■ , x„ of N are

called 7f-linearly independent if and only if &iXi+ • • • +&„x„ = 0 implies all

ki = 0, kiCZ-K. An alternate lattice-theoretic definition is given by the follow-

ing lemma.
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3.1 Lemma. The elements xx, • ■ • , x„ of N are K-linearly independent if

and only if

n

(*j)rî     D     (xi)r, j = 1, • • • , n.

imtl.it* j

To prove this lemma, note first that all Ai= (Xi)rlC\N= (Kxî)* are atoms

of 9Ï (assuming, of course, that x.-^O). If kxx\+ • • • +knx„=0 with kj^O,

then

n

A,- Ç    U    Ai,

and, since Aï=(xi)r,

n

(x,y 2   n   (x,)r.

Conversely, if the above inclusion relation holds for some j, then

n

Ai Q     U    Ai,
i'= 1, tV j

n

Kxj r\   21    Kxí ̂  0.
¿=1,1^;'

Thus the elements Xi, ■ • • , xn are 7Â%linearly dependent, and 3.1 follows.

3.2 Lemma. Let I be any right ideal of R and K' be any left N-submodule of

K. Then for any x and y in N such that xI^O and K'yy^O, also xli^K'yy^O.

To prove this lemma, let k be any nonzero element of K'. Then, by the

primeness of N, xaky^O for some a in 7. Now x(aky) = (xak)y where akyCZI

and xakCZK', and therefore the lemma is proved.

We now are in a position to prove the main result of our paper, namely

that R acts almost as an w-fold transitive ring of TT-linear transformations on

N for any integer n not exceeding the TC-dimension of N. To be more precise,

we shall prove the following theorem.

3.3 Transitivity Theorem. 7/ xu • • ■ , x„ is any set of n K-linearly inde-

pendent elements of N and if y\, • • • , yn is any set of n elements of N, then

there exist an element a of R and a nonzero element k of K such that

Xjfl = kyi, i = 1, • • • , n.

To aid in the proof of this theorem, let

n

i i =   n  (x,y.
t-l.iVi

4
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In view of 3.1, evidently 7yÇr=(xi-)r for any j. Hence, by 3.2, there exist ele-

ments a¡CZIj and k¡CZK, kj^Q, such that x3-aí = feJ-y,?íO for all j such that

y,?^0. If yy = 0, select a, = 0. Now for all yy^O, kjyjK is a right ideal of K,

and fl j k¡yjK9¿0 by 2.2. Select &Gfly h^y¡K, k¿¿0; k = kfffj for each j such
that y/^O. Then x^afiff,) = kyj, and if we let a = aiCiyi+ • • • +ancnyn, evi-

dently x¡a = ky¡ as desired.

We give now an example of a prime ring of the type considered in this

paper. Denote by 7 the ring of integers and by 72 the ring of all 2X2 matrices

over 7. We use the notation E¡j for the matrix with 1 in its (i, j) position and

zeros elsewhere. Now denote by R the set of all matrices of 72 having all even

or all odd integers for components. It is easily established that R is a prime

ring.

The right ideal N = 2IE\i + 2IEi2 is a minimal prime right ideal and the

left ideal A7=27£u + 27E2i is a minimal prime left ideal. Clearly K = Mt~\N

= 2IEn is an integral domain. The sets of prime right and left ideals of R

form right and left structures of J?.

As an illustration of the transitivity theorem, let Xi = 2£n, x2 = 47ii2,

yi = 0, and y2 = 2£n. Then for a = 2Eu and k=4En we have Xia = kyx and

x2a = ky2. We note that there is no a in R such that Xia=yi and x2a = y2.

In the case of a primitive ring R, the minimal right ideals are all iso-

morphic as right i?-modules. That such is not the case in general for a prime

ring follows from this example. To show this, let N'= [7(En+7¿2i)

+7(Ei2+7i22)]'^7í. It is not too difficult to show that N' is a minimal prime

right ideal of R. If N and N' were isomorphic, then we would have 2a£n

—>c(7¿u+7Í2i), 2bEi2—>a'(7ii2+7i22) for some integers a, b, c, d in order for the

annihilators of corresponding elements of N and N' to be the same. But then

c and d would have to be even integers, and nothing in N would correspond

to the matrices in N' having odd integers for elements.
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