
Mathematical Programming 63 (1994) 129-156 129
North-Holland

Representations of quasi-Newton matrices and

their use in limited memory methods

Richard H. Byrd*
Computer Science Department, University of Colorado, Boulder, CO, USA

Jorge Nocedal**
Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, USA

Robert B. Schnabel*
Computer Science Department, University of Colorado, Boulder, CO, USA

Received 14 July 1992
Revised manuscript received 9 March 1993

We derive compact representations of BFGS and symmetric tank-orte matrices for optimization. These represen-
tations allow us to efficiently implement limited memory methods for large constrained optimization problems.
In particular, we discuss how to compute projections of limited memory matrices onto subspaces. We also present
a compact representation of the matrices generated by Broyden's update for solving systems of nonlinear equations.

Key words." Quasi-Newton method, constrained optimization, limited memory method, large-scale optimization.

1. Introduction

Limi ted memory quas i -Newton methods are known to be ef fec t ive techniques for solving

certain classes o f large-scale unconstrained opt imizat ion problems (Buck ley and Le Nir,

1983; Liu and Nocedal , 1989; Gilbert and Lemaréchal , 1989). They make simple approx-

imations of Hessian matrices, which are offen good enough to provide a fast rate o f l inear

convergence , and require min imal storage. For these reasons it is desirable to use l imited

m e m o r y approximat ions also for solving problems that include constraints. However , most

a lgori thms for constrained opt imizat ion require the project ion of Hessian approximat ions

onto the subspace o f act ive constraints and other matrix calculat ions that can be expens ive

when the number o f variables is large. This is true even if l imited m e m o r y approximat ions

are used, unless special care is taken in their representat ion and manipulat ion.

Correspondence to: Prof. Jorge Nocedal, Department of Electrical Engineering and Computer Science, North-
western University, Evanston, IL 60208-3118, USA.

*These authors were supported by the Air Force Office of Scientific Research under Grant AFOSR-90-0109,
the Army Research Office under Grant DAAL03-91-0151 and the National Science Foundation under Grants
CCR-8920519 and CCR-9101795.

**This author was supported by the U.S. Department of Energy, under Grant DE-FG02-87ER25047-A001, and
by National Science Foundation Grants CCR-9101359 and ASC-9213149.

0025-5610 © 1994--The Mathematical Programming Society, Inc. All rights reserved
SSD10025-5610 (93) E0043-E

130 R.H. Byrd et al. / Representat ions o f quas i -Newton matrices

In this paper we derive new representations of limited memory quasi-Newton matrices

and show how to use them efficiently in the kind of matrix computations required in

constrained optimization methods. We present new expressions for both the BFGS and

symmetric rank-one formulae for optimization, and also derive a compact expression for

Broyden's method for solving systems of nonlinear equations. We believe that these new

compact representations of quasi-Newton matrices are of interest in their own right, but in

this paper we focus on their use in limited mem0ry methods.

To motivate the new matrix representations we begin by describing the limited memory

BFGS method for unconstrained optimization. It is a variation of the standard BFGS method,

which is given by

X~+l=&--AkHkgk, k=O, 1 ,2 (1.1)

where A~ is a steplength, g» is the gradient of the objective function f : N~ --* R at x» and

where the inverse Hessian approximation Hk is updated at every iteration by means of the

formula

(1.2)

where

o~. = 1/yLs'» v~ = l -o~y~s~, (1.3)

and

Sk = Xk + 1 - - Xk , yk = gk + ~ - - g» .

(see e.g. Fletcher, 1987). We say that the matrix Hk + ~ is obtained by updating Hk using the

pair {sk, y~}.

The limited memory BFGS method is an adaptation of the BFGS method to large

problems. The implementation described by Liu and Nocedal (1989) is almost identical to

that of the standard BFGS method - - the only difference is in the matrix update. Instead of

storing the matrices H» one stores a certain number, say m, of pairs {s» Yi} that define them

implicitly. The product Hx, gk is obtained by performing a sequence of inner products

involving gk and the m most recent vector pairs {si, y~}. After computing the new iterate,

the oldest pair is deleted from the set {s» y~}, and is replaced by the newest one. The

algorithm therefore always keeps the m most recent pairs {sc Yi} to define the iteration

matrix. This approach is suitable for large problems because it has been observed in practice

that small values of m (say m ~ [3, 7]) give satisfactory results.

Let us describe the updating process in more detail. Suppose that the current iterate is xk

and that we have stored the m pairs {s,, yg}, i = k - m k - 1. We choose a "basic matrix"

H~, m (usually a diagonal matrix) and update it m times using the BFGS formula and the rn

pairs { s,, yi}, i = k - m k - 1. From (1.2) we see that H~ can be written as

R.H. Bvrd et al. /R«pre,s'entations (?f quasi-Newton matri«es 131

H ~ = (V ~ , . . .V~ ,) ,lk~~") (V k _ , z V ~ l)

T T
+pk_ù, (V ~ 1 "''Vk_,, ,+l) Sk ,,,Sk , (Vk , + l ""Vk- ,)

Vk I ' " V k m + 2) Sk m+lSk m + l +p~_ù,+~ (T v ~ (V, m+2""V, ,)

+Ph lSk-lS~[-J • (1.4)

There is a recursive formula (Nocedal, 1980) that takes advantage of the symmetry of

this expression to compute the product H»g, efficiently. As a result, the computation of the

search direction in the limited memory BFGS method for unconstrained optimization can

be performed very economically.

It turns out, however, that in two respects this recursive formula is rauch less economical

for some of the calculations required when constraints are present. First, when the constraints

are sparse the recursion does not take good advantage of this sparsity. For example, if ei is

a unit vector, the computation of H»ei is almost as expensive as the computation of H,g,.

Second, many algorithms for constrained optimization require the direct Hessian approxi-

mation, B» = H~. 1 instead of the inverse BFGS approximation, H» However, there appears

to be no analogous recursion for the Hessian approximation B» and, as pointed out in Section

4.2, a straightforward implementation turns out to be quite costly.

After deriving our new quasi-Newton representations in Section 2, we show in Section

3 how they can be used in limited memory methods in a way that is efficient for unconstrained

optimization, and gets around both of these difficulties in constrained optimization calcu-

lations.

Notation. The number of variables in the optimization problem is n, and the number of

correction pairs used in the limited memory methods is m. The Hessian approximation is

denoted by Bk, and the inverse Hessian approximation is H» The/th unit vector is written

as ei. A diagonal matrix with diagonal elements 01 0, is denoted by diag[01 0,].

2. Compact representations of BFGS matriees

We will now describe new representations of the inverse and direct BFGS matrices, and

show how to compute several types of matrix-vector products efficiently. In this section

we will consider the updating process in a general setting, and will not restrict it to the case

of limited memory methods.

Let us define the n × k matrices Sk and Yk by

Sk = [so sk- il, Y~ = [Yo Yk- 1]. (2.1)

We first prove a preliminary lemma on products of projection matrices that will be useful

in subsequent analysis and is also interesting in its own right.

132 R.H. Byrd et al. /Representa t ions o f quasi-Newton matrices

L e m m a 2.1. The product of a set of k projection matrices of the form (1.3) satisfies

= YkRk & , V o . . . V k _ I I - - 1 T

where Rk is the k × k matrix

(2.2)

FR,.
Rk + 1 = L O

we see that

Proof. Proceeding by induction we note that (2.2) holds for k = 1, because in this case the

right hand side of (2.2) is

1
l - yo sTy(~ S T = Vo. (2.4)

Now we assume that (2.2) holds for some k, and consider k + 1. If we write the matrix Rk +

as

s~-y~],
1~ph]

Rk~ = [R a T l --PkR[~STyk]

0 Pk '

This implies that

R~ -pk » S~y~ s~
I-- Y»+IRk+IIsT+j =I--[Y» y»]

Pk I S T

=l__ Yl~R~l T T T Sk + pä YkR~ 1Sk yks« -- pky~s T

(I-- --1 T = YkRk S~) (I--pkyksT).

Using this with the inductive hypothesis of (2.2) we have that

V o . . . V k = (l _ Y , R ~ l T T S~) (I - PkYkSk)

= (I - Yk+ ,R;+~~sT+ ,),

which establishes the product relation (2.2) for all k. []

It should be pointed out that this lemma holds for the product of any sequence of

projections onto spaces of dimension n - 1 and is a useful but little-known result. Essentially

the same result is also mentioned by Walker (1988) in the context of products of House-

holder transformations. The lemma can be generalized to projections onto subspaces of

arbitrary and different dimensions, in which case the matrix Rk becomes block upper

triangular.

The following theorem gives a compact representation of the matrix Hk obtained after k

(2.5)

ifi<.%j, (2.3)
otherwise.

R.H. Byrd et al. / Represenmtions of quasi-N«wton matri«es 133

BFGS updates. We will later see that this representation is often more convenient than

(1.4).

Theorem 2.2. Let Ho be symmetric and positit)e definite and assume that the k pairs
k--1 {s» Yi } i=o satisfy sTyi > O. Let H~ be obtained by updating Ho k times using the inverse

BFGS formula (1.2) and the pairs { si, Yi } ~-ò . Then

I-I~=Ho+[S~ nord [R~ (D»+ ~n,)Y~)R~ - R ; ~ s~
L - R i 0 yT Ho ' (2.6)

where R« is as given in (2.3) and Dk is the k X k diagonal matrix

D~ = diag[s T Yo sF lYk-I] ' (2.7)

ProoL We write the BFGS formula (1.2) as

Hk = Mk + N«, k >~ l, (2.8)

where M~ and Nk are defined recursively by

T M M k + l = V k kVk, (2.9) M o =Ho,

and

NL = posos ao ", Nk+l = v T Nkvk + T p,s, sk. (2.10)

First note, from the definition of Mk and (2.2), that

M~=(V~_, . .V~)Ho(Vo. . .V , ,)

= (I_SkRiTy~)Ho(1 _YkR~l T sk). (2.11)

Next, we will show by induction that

N k _ --T --I T -SkRk D~Rk Sk. (2.12)

This is true for k = 1, for in this case the right hand side of (2.12) is T poSoSo, which equals
N~. Now let us assume that (2.12) is true for k. Then, by the definition (2.10) of N,

Nk+, = vTSkRiTD~R; 'STVk +pks»sT. (2.13)

To simplify this expression, we note from (1.3) and (2.5) that

R i 'S F V, = R i ~ s T (I - pkyks T)

= [R i ' --PkRi'STyk] [ST]skT

= [R i I --pkR[lSTyk] sT+I

= [I 0] R i ß , s T + , (2.14)

Also, using (2.5) we can write sk as

134 R.H. Byrd et al. / Representations c f quasi-Newton matri«es

Sh = Sb+ 1R~-TI eh+ l/Ph.

Substituting this and (2.14) in (2.13), we have

Nk+'=Sk+lRf+Tl [l]

[0 '.

+ Sk+ I R h T l

= Sb+ i Rk-+TI [/Ó h

O] --1 T Rk+lSk+l

0]
1 ~Ph

0] -1 T
1/pkJRh+lSh+j

=Sb+ ,R»T,D»+,Rh+IIsT+,

This proves (2.12) for k+ 1.
Finally by expanding the expression

Ho + [S» HoYh] [R~T(Dh + yTH°Yh)RkI
L - R ; l

1 T Rh+jSh+l

0 Y~ Ho]

(2.15)

weseethatit isequaltoMh+N~,whereMhandN»aregivenby (2.11) and (2.12).

Note that the conditions s~y~ > 0, i = 0 k - l, ensure that Rk is nonsingular, so that
(2.6) is well defined. Indeed it is well known (Fletcher, 1987) that the BFGS formula
preserves positive definiteness if s~ry« > 0 for all i.

Theorem 2.2 gives us a matrix representation of the inverse Hessian approximation H»
We now present an analogous expression for the direct Hessian approximation B» The
direct BFGS update formula, i.e. the inverse of (1.2) is given by

T T Bkshsk Bh ~Y»Yi
Bh+j =Bh s~Bhsk T • (2.16)

Yh sk

Theorem 2.3. Let Bo be symmetric and positiue definite and assume that the k patrs
k I { si, Yi } i = o satisfy s ~Yi > O. Let B k be obtained by updating Bo k times using the direct BFGS

k--I formula (2.16) and the pairs { si, Yi } i= o. Then

ITù]1[] Sk oSh L« S~[Bo
B k = B o - [BoSk Yk] L~ --Dk y~ , (2.17)

where L« is the k × k matrix

(Lk) i .J={o Ti lyj-I i f i>j , (2.18)
otherwise.

Proof. Let us write (2.6) as

R.H. Byrd et al. /Representations of quasi-Newton matrices 135

where

and

H~ = /4o+ U~CkU~, (2.19)

U~=[& HoYA,

= I R k T(Dk+yTHoYk)Rk ' - R ; T]
c~ L - R E ' 0 "

By direct multiplication we can verify that the inverse of Ck is

C£-1= - R ~ x - (O h + Y [H o Y k) ' (2.20)

Applying the Sherman-Morrison-Woodbury formula (Ortega and Rheinboldt, 1970) to
(2.19) we obtain

BÆ =Bo _ BoUk(I + Ck UT BoUk) - ~ Ck ukT Bo

Bo - Bo U«(C [1 T = + UkBoUk) IU~[B o. (2.21)

Now

u~8ov~= s~ [s~8,,s~ T
T Bo [Sk HoYk] = L yTsk T Yk Ho Yk Yk Ho

Therefore using (2.20)

[S~BoSk S~Yk--R~]

Note that the matrix Lk defined by (2.18) can be written as

Lk = S ~ Yk -- Rk,

so that

(2.22)

Substituting this into (2.21) we obtain (2.17). D

In the next sections we will show that the new formulae (2.17) and (2.6), which at first
appear rather cumbersome, are actually very convenient for some calculations arising in
constrained optimization. Before doing so we make a remark concerning the implementation
of (2.17).

The middle matrix in (2.17),

S~BoS~ LÆ (2.24)
L~ - D k

136 R.H. Byrd et al. / Representations of quasi-Newton matrices

is indefinite. However we now show that its inversion can be carried out using the Cholesky

factorization of a related matrix. First we re-order the blocks of (2.24) and note that

SkBoSk = - - L k D k 1/2 Jk 0 j~ , (2.25) Lk T

where Jk is the lower triangular matrix that satisfies

T T L~Dk L~. (2.26) J~J~ = Sk BoS~ + - 1 T

The following result shows that Jk exists and is nonsingular.

Theorem 2.4. If Bo is positive deß'nite and sTyi>O, i = 0 k - -1 , then the matrix
T B ~ v is positive definite. Sk oSk+L«D~ Lk

Proof . From the definition (2.7) we see that Dk is positive definite and hence
T I T u (SkBoSk+L~D~JL[)u=O Sk BoSk + L«Dk L« is positive semi-definite. Suppose that T T

for some vector u. Then L T u = 0 and S~u = 0, which in turn implies that yTs k u = 0. Recalling
(2.22) we have T v Y~S« =L~ +Rk, so that R~.u=O. Since R [is triangular with positive

diagonal, we conclude that u = 0. []

Therefore, only the Cholesky factorization of the k × k symmetric positive definite matrix
T --I T SkBoSk+LkDk Lk needs to be computed, to implement (2.17). This is preferable to

factorizing the indefinite 2 k × 2 k matrix (2.24). We will discuss the implementation of

(2.17) in more detail in Section 3.2, in the context of limited memory methods.

3. Application to the limited memory method

Since we know that k BFGS updates can be written in the compact forms (2.6) and (2.17),

it is easy to describe a limited memory implementation. We keep the m most recent correction

pairs {si, Yi} to implicit ly define the iteration matrix. This set of pairs is refreshed at every

iteration by removing the oldest pair and adding a newly generated pair. We assume that m

is constant, but it is not difficult to adapt all the formulae of this section to the case when m

changes at every iteration.

Suppose that at the current iterate & we wish to construct the inverse limited memory

BFGS matrix Hk. We do so by implicit ly updating H~ °~, the basic matrix, m times using

the 2m vectors { sk-, sk- ~ } and { Yk-, Yk- ~ }, which have been saved. Let us assume

that H (°~~ = ykl, for some positive scalar y» From (2.6) we see that the resulting matrix is

I - YkY~ Yk)Rk Hk=')/kI+[Sk 3/kYk] Rk T (D k + T --I

where now

Sk = [s k - , sc - i], Yk = [Yk - , Yk - J], (3.2)

R.H. Byrd et al. / Represenmtions of quasi-Newton matrices 137

and where Rk and Dk are the m × m matrices

(Rk)i.j= ~ (Sk--m--l+i)T(yk m--l+j) if i~ j ,
0 otherwise, (3.3)

and

D , = " T dlag[Sk-myk S T- lYk-1]. (3.4)

After the new iterate x, + ~ is generäted, we obtain Sk + ~ by deleting sk- m from S, and adding

the new displacement s» The matrix Yk+ ~ is updated in the same fashion.

This describes the general step when k > m. For the first few iterations, when k ~ m, we

need only replace m by k in the formulae above. We have assumed that H~ (°) = "Ykl because

this choice is common in practice (see Gilbert and Lemaréchal, 1989, and Liu and Nocedal,

1989). Other formulae for the initial matrix could also be used, but would probably result

in a more expensive computation.

A limited memory matrix based on the direct BFGS formula is also easily obtained. Let

the basic matrix be of the form B k (°) = «kl, for some positive scalar er» From (2.17) we see

that if we update B~ °~ m times using the vectors {sk sk ~ } and {Yk-, Yk 1 }, we

obtain

where S» Yk, Dk are given by (3.2) and (3.4), and where Lk is defined by

ST l+iYk m ~+j i f i > j ,
(Lk) i.i = 0 otherwise. (3.6)

We now describe procedures for performing computations with these compact represen-

tations of limited memory BFGS matrices.

3.1, Computations involving Hk

We consider several products involving the inverse limited memory matrix Hx. To save

computations we will store, in addition to the two n × m matrices Sk and Yk, the m × m

matrices YT Yk, R~, and D» Since in practice m is very small, say m ~< 7, the storage space

required by these three auxiliary matrices is negligible. In the operation counts given below

we concentrate on multiplications since the arithmetic consists primarily of inner products,

so that the number of additions is similar to the number of multiplications. We note that for

the rest of this section Sk, Yk, Rk, De, Lk are defined by (3 .2) - (3 .4) and (3.6).

Computation of Hkgk
This product defines the search direction in a limited memory method for unconstrained

optimization. Since some of the calculations involved in the product Hkgk occur also in the

update of H» it is efficient to consider both operations together.

At the kth iteration of the limited memory algorithm for unconstrained optimization we

138 R.H. Byrd et al. / Representations o f quasi-Newton matrices

must update our representation of Hk ~ to get H» compute the search direction - Hege and

perform a line search. To update HA-j we delete a column from and add a new column to

each of the matrices Se_ 1 and Ye- J, and make corresponding updates to Ra i, Y[- ~ Y~-

and Dk- ~. We will show that these updates can be done in O(m 2) operations by storing a

small amount of additional information. For example, from (3.3) we see that the new

triangular matrix Re is formed from Re- ~ by deleting the first row and column, adding a

new column on the right, which is given by

T Se Ye- r = sT(& -- ge- I), (3.7)

and adding a new row on the bottom, which is zero in its first m - 1 components. It would

appear that this requires mn multiplications. However, note from (3.1) that the vector
T Scge and the first m - 1 components of v Se ge-~ have to be calculated in the process of

computing Hege and Ha_ Jge J. Thus we may save the first m - 1 components T of Skge 1
from the previous iteration, and we need only compute s[_ i gA- ~, which can be obtained

with O(m 2) work, as we will show below. Thus to compute STye- ~ by the difference (3.7)
v y will require only O(m 2) operations. The matrix Ye ,- can be updated in a similar way

saving another mn multiplications.

An updating process that implements these savings in computation is as follows. At &,

the following data has been saved from the previous iteration:

g~ l g k 1,

T sigk-1, i = k - m - 1 k - 2 , (i.e. S~_ jgk_ i),

and

y ~ & _ , i = k - m - 1 k - 2 , (i.e. YT_,ge_,) .

Now we compute the quantitites corresponding to the present iteration. We begin with

T sT ~ge-I =--Ae--lgk-IHe-lgk--l,

which by (3.1) is equal to

--Ae-j yk-lgT-lge_1

he,w~. [RkT,(De-~ +%-,YT-,Ye-,)R~-'I --R~--T,]
--&7'-1 0 Wk

where

(3.8)

[sT-jgk_l]
Wk ~ T "

Yk--lYk--~gk--J

This requires only O(m 2) operations since gT_lgk_j, S[_lgk_~ and YT_jgk_i have

already been saved from the previous iteration.

Next we compute the inner products

g[g«,

R.H. Byrd et al. /Representations of quasi-Newton matrices 139

T sig», i = k - m k - l , (i.e. STgk),

and

yTg», i = k - m k - 1, (i.e. yTg~).

With this information, the new components of R» T Yk Y» and D» can be computed in O(m)
work by the formulae

s~ryk_l=sTg»--sTgk_ ~, i = k - m k - l , (3.9)

yTy»_l=yTgk--yTgk_ l, i = k - m k - 2 , (3.10)

yT_ lY~--l = --gTgk +2(gk - gk - J)Tgk +gk T l g ~ - , (3.11)

We now give a complete description of the procedure for updating Hk and computing
Hkg»

Algorithm 3.1 (step computationfor unconstrained minimization). Let xk be the current

iterate. Given sk- i, Y»- ~, g», the matrices Sc 1, Yk 1, Rk_ ~, y~_V ~ Y»- l, D»_ ~, the vectors
T T Sk_ lgk- 1, Y»- i g»- ~ and the scalar gT_ ~ gk- I :
Step I. Update S» Y»
Step 2. v T T Compute g» gÆ, Sk g», and YÆ g».
Step 3. Compute s F_ lg»-i by (3.8).
Step 4. Update R» YTY k and Dk with the aid of (3.9)-(3.11).
Step 5. Compute 3»; for example

3'» =Y[- , s»_ i/Y[- lYk- , " (3.12)

Step 6. Compute

P= [R:T(Dk +TkYTy»)R: ' (ST gk)--TkR:T(yT gk) "]"

Step 7. Compute

Hkgk = Ykgk + [Sk Th Yk]P.

In this procedure, Step 2 requires (2m + 1)n multiplications; Step 7 requires (2m + 1)n
multiplications; Step 5 depends on the formula used for 3'» (the choice (3.12) is free since
both inner products have been stored); all other steps cost at most O(m 2) multiplications,
for a total of (4m + 2)n + O(m 2) multiplications. Note, however, that when this procedure

T is part of an algorithm using a line search procedure, the scalar sk- ~ gk- ~ is also required
for the line search, whereas gTgk is likely to be needed to check the stopping conditions of
the algorithm. Therefore the amount of extra work required to update H~ and compute the
step direction is 4ran + O(m 2) in that case. Of course for large problems the term 4mn
predominates.

As will be seen in Section 4.1 this is the same amount of work per iteration as required
by the two-loop recursion described by Nocedal (1980), and as rar as we know there is no

140 R.H. Byrd et al. / Representations of quasi-Newton matrices

more efficient way to implement the unconstrained limited memory BFGS method. Thus

the two approaches are equally efficient for unconstrained problems, but, as pointed out in

Section 4.1, the compact matrix representations derived in this paper are more economical

when computing certain quantities arising in sparse constrained optimization calculations.

The product Hkv
Let us consider the computation of the product Hku, where v is an arbitrary vector. From

(3.1) we see that this product is given by

HkV=T~v+[Sk TkYk] [R~T(Dk+TkYTYk)R~I_R~I
0 ykYTv

(3.13)

To carry out the computation we first compute the products S[v and T Y« v, wbich together

require 2mn multiplications. To multiply the resulting 2m vector by the middle 2m X 2m

matrix involves 3 solutions of triangular systems and one multiplication by an m X m matrix.

Finally, it takes 2mn multiplications to multiply [Sk ykYk] with the resulting 2m vector.

Thus, if we include the product ykv and ignore O(m) operations, the whole computation

requires (4m + 1)n + 5m2 multiplications.

Products of the form vTHkv and u TH~v
Consider the weighted scalar product vTHkv where v is an arbitrary vector, and where we

assume that the vector H«v is not needed. Using (3.1) we have

vTHkL,=y~L, T v A _ (R ~ - I s T v) T (D k + T --1 T T --1 T ykYkYk)(Rk Skv) -2Tkv YkRk Skv.
(3.14)

We first compute sTv and Y~v, which requires 2ran multiplications. Next we solve a
triangular system to get Rk -x T , T Sk C, which we save, multiply by the matrix D k + TYk Yk,

compute vTv and do some order m inner products. Thus the total cost of this computation

is (2m + 1)n + ~m2+ O(m): roughly half of what the cost would be if we first computed

H~v and then v T Hkv.
If we wish to compute the product uTHkv for two arbitrary vectors u and v the cost is

more, since

IATHk l) = ~/k uTU + (R~' STu)T(Dk + T« yT Yk) (R~I S~ v)

ykuTYkR[~S[v T --T T - --Tku SkRk Ykv

can be seen to require (4m + 1)n + 2m 2 + O(m) multiplications. This is only slightly less

expensive than computing Hkv and then taking the inner product of the result with u, which

would cost (4m + 2)n + O(m 2) multiplications.

The product A T HkA
A related computation is the problem of computing the matrix ATHkA where A is an n × t

matrix with t ~< n. This computation occurs when solving the constrained nonlinear optim-

ization problem,

R.H. Byrd et al. / Representations of quasi-Newton matri«es 141

minimize f (x) (3.15)

subject to c(x) = 0 (3.16)

with n variables and t constraints. This problem is frequently solved by the sequential
quadratic programming method, which at every iteration solves a subproblem of the form

minimize g~d+ ldTB A 5 A-- (3.17)

subject to A ~ d = - c k , (3.18)

where A~ is the matrix of constraint gradients at the current iterate x» c~ is a vector of length
t, and Bh = H~ -~ is an approximation to the Hessian of the Lagrangian of the problem. If Ak
has full rank, the solution to (3.17)-(3.18) can be expressed as

d= -H«(g» +A»h) (3.19)

where the Lagrange multiplier A satisfies

(A ~H»Ak) h = - A THkgk + ck. (3.20)

Let us suppose that Hk is a limited memory matrix represented in the compact form (3.1).
Then the matrix ATH»Ak may be efficiently computed by first computing S~A« and T Yk AÆ,
which require 2mnt multiplications, then Rk-lcTAo/« k, requiring {m2t. multiplications, and
then computing

y«ATAk+(Rk-ISTAA~)T(Dk+ykYTYÆ)(R~, ~STAk) -- 2 ykAkYkRA.T ~ skTA k,

(3.21)

which requires m 2t + 3 mt ~ + ½ (t 2 + t) n + 0 ((max { m, t }) z) multiplications. Ignoring lower

order terms, this is a total of

(2m+ ½t+ ½) tn+ ~ (m + t) m t

multiplications. As long as m and t are fairly small this is not extremely expensive and is
rauch less than the cost of computing the matrix HkAk first, and then multiplying by A T. To

of A«HkAk which requires ~t 3 multipli- solve (3.20) requires the Cholesky factorization T

cations. The other matrix vector products required in (3.19) and (3.20) cost about
(2t + 4ra)n, if certain quantities computed in other parts of the procedure are saved and
reused appropriately.

Operations with H» and sparse constraints

We now consider computations similar to those in the previous section but where the vectors

and matrices multiplying HA are sparse (but recall that HA is dense). This is an important
case because, even though g», Sk, and Yk are not likely to be sparse, it is very common to

have constrained optimization problems where the gradients of the constraints, and thus the
matrix A in (3.18) are sparse. A special case in which we are very interested is the case of

a minimization subject to bound constraints, where the matrices dealt with are actually

142 R.H. Byrd et al. / Representations of quasi-Newton matrices

submatrices of the identity. Significant reductions in computational cost result in such

problems if efficient sparse storage is used.
The product Hkei requires 2mn + 0 (m 2) multiplications. This is easy to see from (3.13),

since T T Yk ei Sh ei and require only O(m) indexing operations. For the same reason, we see
from (3.14) that eTHkei can be computed with O(m 2) multiplications.

Consider now A THhA in the case where A is an n × t sparse matrix with n A nonzeros. We
perform this computation by (3.21). The products S[A and Y[A together require 2mnA
multiplications. The back-solve R~ ~ STA requires ½mt 2 multiplications, and the rest of the
operations require 2rot 2 + m 2t + 0 ((max { m, t }) 2 multiplications plus the operations of

ATA which cost at most tna multiplications. Thus the total is O(max{m,t})n A
+ (2 t + 3m)mt+O((max{m, t})2). Thus we see that, while in the previous section the

computational effort in most tasks was roughly proportional to the number of variables n,
in the sparse case it is proportional to the nurnber of non-zeros in the sparse array under

consideration.

3.2. Operations with Bk

We now consider the direct Hessian approximation Bh. To take advantage of the decom-

position (2.25), we rewrite (3.5) as

I ~1/2 Bh = o-kl-- [Yk °'hSh] -- ~'k
0 jT - L h D ~ ~/z Jh °-A ST '

(3.22)

where Jk is defined by (2.26). We use this expression, both in the sparse and dense case, to
compute several products involving B».

Update of Bk and the product Bhv
This computation is required when applying limited memory methods to solve constrained
optimization problems. It occurs, for example, in the algorithm for nonlinearly constrained
problems developed by Mahidhara and Lasdon (1990), and in the primal limited memory
algorithm for bound constrained optimization described by Byrd, Lu and Nocedal (1993).

The following procedure, which is based on the representation (3.22), describes in detail
the kth step of an iteration that first updates Bh and then computes the product Bhv for an

arbitrary vector v.

Algorithm 3.2. Let xk be the current iterate, and assume that the matrices Sk- l, Y«- 1, Lk l,
T Sk- j S»_ 1, and Dk- ~ have been stored, The vectors sk- ~, y» ~ have just been computed,

and the vector v is given.
Step 1. Obtain Sk, Y» by updating SÆ_ j and Yk- 1.
Step 2. Compute Lk, sT sk and D».

Step 3. Compute o'k; for example

cr«=y T ISk_I/sT_~s«_I. (3.23)

R.H. Byrd et al. /Representations q[quasi-Newton matrices 143

Step 4. Compute the Cholesky factorization of o'~Sf Sk - ~ T + L»Dk Lk to obtain j j T
Step 5. Compute

P= T • o-~Sk v

Step 6. Perform a forward and then a backward solve to obtain

Step 7. Compute

Bkv=cr, v-- [Y~ T (r,S,]p.

The first step of this procedure, in which the oldest columns of the matrices Sk 1, Y, 1
are replaced by the vectors s»_ ~, and y~_ 1, does not require any arithmetic, Step 2 requires
2m inner products to form the new columns of matrices L» S~S~ and D», which cost 2mn
multiplications. The choice of o-~ in Step 3 costs only one multiplication since both

v have been calculated in Step 2. In Step 4 the Cholesky factorization y~" 1Sk--I ands~-Lsk i
of the positive definite matrix T LkD~- ~ L,T o-»SkS, + costs O(m 3) multiplications. Step 5
costs 2mn multiplications. The forward and the backward solves of 2m × 2m triangular
systems in Step 6 cost O(m 2) multiplications. Step 7 costs (2m + l)n multiplications. In
summary, this procedure costs 2mn + O(m 3) multiplications from Step 1 to Step 4, where
the matrix Bh is defined; and costs (4m + 1)n + O(m 2) multiplications from Step 5 to Step
7, where the product B~v is calculated.

The weighted scalar product vVBkv
This product occurs, for example, in the conjugate gradient inner-iteration as weil as in the
Cauchy point computation of the primal algorithm described by Byrd, Lu and Nocedal
(1993). Using (3.22) we have

uTBk U = O-kuTu

[-/31/2 0] -I
_uTW T *Jk Wku,

o 4

Dff'/2LT] - ' [D~ le
d T -- LkDff I/2

(3.24)

where

o-~s~

We first compute and store the matrix vector products Y~ v, T tYkSk V, which determine Wkv,
and which require 2mn multiplications. Then we solve two 2m × 2m triangular systems, and
compute the scalar product of two 2m-vectors; all of these cost at most O(m 2) multiplica-
tions. The last part is to compute ~rkvVv, and subtract the previously computed scalar from

144 R.H. Bvrd et al. / Representations of quasi-Newton matrices

it. The total cost of this computation is (2m + 1) n + O (th 2) multiplications. Of course in
the case v = g» which is offen required, using previously computed quantities from the
computation of Hk would allow this to be reduced to O (m 2).

Sparse computations with Bk
Calculations involving the product of Bh and sparse vectors involve savings similar to tbose
involving Hk; for example, computing Bkei requires 2mn + 0 (m 3) multiplications. A special

but important sparse case concerns minimization problems subject to bound constraints, in
which the constraint gradients are submatrices of the identity matrix. Minimizing over a
subspace in that case involves computations with the reduced Hessian approximation
1)~ = Z"rBkZ, where Z is an n × t" matrix whose columns are unit vectors. Thus the subspace

problem is of size i.
To express/)k we use (3.22) to obtain

I Fll/2 ~~ = o - k i - i ~?~ o'k5A - ~'k
0 Ja" -LkD[, -1le Jé O-k g f '

where]=z~Z is the identity matrix of size/`, and fZk=zTYk and S«=zVsk are / 'Xm sub-

matrices of Yk and S~. The procedure of multiplying the reduced Hessian/)» by an arbitrary
t'-vector 0 is similar to S teps 5 to 7 of Algorithm 3.2 and costs (4m + 1)/`+ O (m 2) multi-
plications. S imilarly, the weighted scalar product 0T/~kg costs (2m + 1)/`+ O(m 2) multi-

plications.
In this case we see significant reductions in computational cost, resulting in work pro-

portional to/` rather than to n.

4. Alternative formulae

For the sake of completeness we now review two other known approaches for handling
limited memory matrices. The first approach exploits the symmetry and structure of (1.4),
giving rise to an efficient two-loop recursion for computing products using the inverse
Hessian approximation. The second approach is for the direct BFGS update and consists of
a straightforward sequence of multiplications.

4.1. The two-loop recursion

The following recursive formula computes the step direction Hkgk for unconstrained mini-
mization. It is given in Nocedal (1980) and is based on the recursion developed by Matthies
and Strang (1979) for the standard BFGS method. As before, Hk represents a limited

memory BFGS approximation of the inverse Hessian. It is obtained by applying m updates
to a basic matrix H~ °) using the m most recent correction pairs, which we label for simplicity

(&» Yo) (Sm--1, Ym--1)'

Step 1. q = g»

R.H. Byrd et al. / Represenmtions of quasi-Newton matrices 145

Step 2. For i = m - 1 O,

a i -= pisTq (store ai),

q := q -- oziYi.

Step 3. r = H(~ °~ q.

S tep4. For i = 0 , 1 m - 1,

f l = p i y T r,

r:= r + si(ai - t~).

Step 5. Hkgk = r.

Excluding Step 3, this algorithm requires 4mn multiplications; if H~ °~ is diagonal then n

additional multiplications are needed. When used for unconstrained minimization the com-

putation and storage cost is thus essentially the same as using formula (2.6) implemented

as described in Section 3.1, as long as H~ °~ is a scalar multiple of the identity. However,

the two loop recursion has the advantage that the multiplication by the basic matrix H~ °~ is

isolated from the rest of the computations. As a result the two-loop recursion will be less

expensive than (2.6) in the case when H~ °~ differs from H~°~l by more than a simple scalar

multiplication, since the entire matrix vv u (k "k •• 0 Yk would then have to be updated.

However, the two-loop recursion cannot be efficiently adapted for sparse projections. Let

us consider for example the product H»e» which can be obtained by replacing gk with ei in

the two-loop recursion. Since the vectors si and Yi are in general not sparse, we see that only

the computation of a, ,_ 1 in Step 2 results in savings. Thus Steps 2 and 4 require (4m - 1) n

multiplications - - almost the same as in the dense case.

We should also mention that while the compact form (2.6) has an analog (2.17) for the

direct update, we know of no procedure analogous to the two loop recursion that can compute

o~o~ S» and Yk in O (m n) operations. the direct update f r o m , ~ ,

Mathematically, the relation of the two-loop recursion to (2.6) can be seen if we note

that (2.6) can be expressed

H k = (I - S k R k T yT)H~° ' (1 - Y~R~ 'S T) + S k R k T D k R k IsT.

The vector made up of the coefficients a i can then be seen to be R~- 1 T Sk gk, and the final
value of the vector q is (I - i T YkRk Sk)gk . Note that in the two-loop procedure everything

is computed afresh at each iteration, thus making it eäsier to change parameters such as

H~ °) , while implementing (2.6) involves saving and updating more computed quantities,

thus making information such as sparse projections of H more immediately äccessible.

A close examination of the two-loop recursion reveals that it is similar in structure to

computations of gradients by means of the adjoint method (or the reverse mode of automatic

differentiation; Griewank, 1989). In fact Gilbert and Nocedal (1993) show that there is a

precise relationship between these two algorithms: the two-loop recursion can be obtained

by applying the adjoint method to compute the gradient of the function h (g) = ½ g THkg with

respect to its argument g, where Hk is the limited memory BFGS matrix. The scalars ai,

146 R.H. Byrd et a l . / Representations o f quasi-Newton matrices

which are saved during the first loop, correspond to the quantities referred to as the adjoint

variables in the optimal control literature.

4.2. A straightforward approach

The direct BFGS formula (2.16) can be written as

T _[_ bhb~, Bh+~ =Bh- -aka ~

where

(4.])

B~sh Yh
ah ~ Tn T\ 1/2' bh -- tsh t~hSk) (y~'sh) I/2"

A straightforward implementation of the limited memory method consists of saving these

intermediate vectors ai and bi to define the iteration matrix. It has been used by several

authors including Mahidhara and Lasdon (1990).

In a typical iteration k, the matrix Bh is obtained by updating a starting matrix B~ °) m

times using the m most recent pairs, which we denote for simplicity,

(so, Yo) (Sm- l, Ym-I).

From (4.1) we see that Bh can be written as

m-- 1

Bk =B~ °) + ~ [bib~-aiaTF], (4.2)
i - - ()

where the vectors a» bi can be computed by means of the following formula:

F o r k = 0 , 1 m - 1:

Step 1.

T 1/2 bk =yÆ/(yÆsk) (4.3)

Step 2.

k--I
a _n(o~~ + ~ [(b l r sk)b i_ (a[sk)a i] (4.4) k -- t~'k 'Jk

i--O

Step 3.

T l / 2 ak :=ah/(skak) • (4.5)

At the next iteration we repeat this process, except that the pair (So, Yo) is replaced by

the new pair (Sm, Ym)- The vectors ai need to be recomputed from scratch since they all

depend on the deleted pair (So, Yo). On the other hand, the vectors bi and the inner products

b~sk can be saved from the previous iteration, and only the new values bm and b~s,~ need

to be computed. Taking this into account, and assuming that ,,« » (o~ = I we find that approx-

imately

R.H. Byrd et «tl./Repr«sentations of quasi-N«wton matrices 147

3 m2n multiplications,

are needed to determine the limited memory matrix.

To compute BmU, for some vector L' ~ ~", using (4.2) requires 4mn multiplications. This
approach is therefore less efficient than that based on the compact matrix representation

described in Section 3.2. Indeed, whereas the product Bku costs the same in both cases,
updating the representation of the limited memory matrix using the compact form requires
only 2mn multiplications, compared to 3m2n multiplications needed by the approach

described in this section.

5. Compact representation of SR1 matrices

In this section we develop compact representations of matrices generated by the symmetric
tank-orte (SR 1) formula. These representations are similar to the ones derived for the BFGS
formula, but under some conditions require less storage.

The SR1 update formula is given by

(Yk - Bksk) (Yk -- Bks~) v
Bk+j =Bh + (Yk --B~sk)Tsk ' (5.1)

see for example Fletcher (1987). Note that this update is well defined only ifthe denominator
(Bksk--yk)Tsk is nonzero. In recent implementations of the SR1 method, the update is
simply skipped if this denominator is very small relative to [I sk I I l[Bksk -- y~ I[(Conn, Gould
and Toint, 1988; Khalfan, Byrd and Schnabel, 1993). Since the SRI update does not have
the property of hereditary positive definiteness, there is no reason to enforce the curvature
condition s~y~ > 0 as with BFGS updating, and we will thus consider a sequence of updates
to an arbitrary matrix Bo subject only to the assumption that the update is well defined.

Theorem 5.1. Let the symmetr ic matrix Bo be updated k t imes by means o f the SR1 fo rmu la

(5.1) using the pairs {si, Yi}~=ò, and assume that each update is well defined, i.e.

s f (Bfii - yj) 4= 0, j = 0 k - 1. Then the result ing matr ix Bh is giL, en by

+ Lk -- S~BoSk) - 1 (Yk - BoSk) T, (5.2) B k = B o + (Y k _ B o S k) (D k + L k T

where Sk, Yk, Dk, and Lk are as defined in (2.1), (2.7) and (2.18), and the matr ix

M~=--(Dk + Lk + L~, - S~, BoSk) is nonsingular.

ProoL We proceed by induction. When k = 1 the right hand side of (5.2) is

1
Bo + (Yo - Boso) (Yo - Boso) v = Bi .

(Yo -- BoSo) T so

Let us now assume that (5.2) holds for some k. Define

Qk = [qo qk-l] = Y k - B o S k , (5.3)

148 R.H. Byrd et al. / Representations o f quasi-Newton matrices

and

M» = Dk + Lh + L T - S~BoSh. (5.4)

Therefore

{]1 M I {) T B h = B o + ~ k h ~h-

Applying the SR 1 update (5.1) to B h we have

Bh+l =Bo +QhMk j Q~

(Yh - Bo sh - 1 T -- I T T --QhMh Qksh)(yh--Bosh--QhMh Qksh)
T --I T (Yh--Bosk) T Sk--Sh QhMh Qh sh

=Bo +QhM[-jQhT + (qh--QhM~lwh)(qh--QhM~ lwh)T
T I qT sh__whMh Wh

= B o + [qhq T w T -1 wh)qh --qh(hMh)QT--Qh(MkJ T

+Qh(ÔkM~l +Mk-~ T 1) WhWh Mh Q[]/6h,

where we have defined

wh = Q~ s » (5.5)

and where the denominator

~h=qh-- T Sh --w~'M~lwh = (y h - - B k S k) T Sh (5.6)

is non-zero by assumption. We may express this as

Mh (6fl+WhWhMh) - -M~lwh QT
B h + l = B o + ~ - k [Qh qh] , -

(5.7)

Now, from definitions (5.3), (5.4) and (5.5) we see that the new matrix Mh+~ is given by

[Mk wh]
M k + l = T wh q~ sh

and by direct multiplication, using (5.3), (5.5) and (5.6), we see that

[] I ~]
Mh wk M h (6 f l+wkwhMh) --M[Jwh 1

- - = I . (5.8) T wT qk Sh _ w T M ~ I 1 6h

Therefore Mb+ ~ is invertible, with Mk-+J~ given by the second matrix in (5.8), but this is

the matrix appearing in (5.7). Thus, we see that (5.7) is equivalent to equation (5.2) with

k replaced by k + 1, which observation establishes the result. []

Since the SR1 method is self dual, the inverse formula can be obtained simply by replacing

B, s, y by H, y, s respectively (see Dennis and Schnabel, 1983). Alternatively, if Bh is

R.H. Byrd et al. /Representations of quasi-Newton matrices 149

invertible, application of the Sherman-Morrison-Woodbury formula to (5.2) shows the

inverse of Bh is given by

Ht =Ho + (St - H o Y D (R t +R~[- D t - yTHoYt) - l (Sk -HoYk) T. (5.9)

However, in the context of unconstrained optimization, since the SR1 update is not always

positive definite this formula is not as likely to be useful in step computation as is the inverse

BFGS update.

It should be clear how to develop limited memory SR1 methods. In (5.2) we replace Bo

with the basic matrix at the kth iteration, which we denoted earlier by Bk (°) , and S~ and Yt

should now contain the m most recent corrections, as in (3.2). Savings in storage can be

achieved if B~ (°) is kept fixed for all k, for in this case the only n-vectors one needs to store

are the m columns of Q» This would result also in some savings in the cost of updating the

matrix Mk, depending on the step computation strategy used. On the other hand, if B~ °~ is

a scalar multiple of the identity and, as is often the case, one wants to change the scalar at

each iteration, then both St and Yk taust be stored separately, and the storage and updating

costs of the limited memory SRI and BFGS methods are similar.

We will not give detailed algorithms for computing products involving limited memory

SR1 matrices because the ideas are very similar to those described in the previous section.

One point, however, that is worth discussing is how to compute the denominator in (5.1),

at each stage of the limited memory updating, to determine if the update should be skipped.

The condition

s f (B « s j - y j) 4=0, j = 0 k - 1, (5.10)

can be expensive to test. Note however that (5.10) is equivalent to the nonsingularity of

the principal minors of M» Thus, when using the form (5.2) in a limited memory method,

the condition (5.10) could be tested when computing a triangular factorization ofMk without

pivoting, with the test for a zero on the diagonal of the factor being made relative to the

magnitude of Qk and S» Skipping an update would correspond to deleting the corresponding

row and column of M»

6. Representation of Broyden matrices for nonlinear equations

A widely used secant approximation to the Jacobian matrix of a system of nonlinear

equations,

F(x) = 0, F: ~" --> ~", (6.1)

is the Broyden update (Broyden, 1965),

Ak+ 1 =Ak + (Yk --Aksk) sT (6.2)
S T A'k

Here s~ =x~ + i - x » Yk = F(xk + j) -- F(xk), and Ak is the approximation to the Jacobian of F.

1 5 0 R.H. B y r d et al. / Represen ta t ions o f quas i -Newton matr ices

In this section we describe compact expressions of Broyden matrices that are similar to

those given for BFGS and SR1. As before, we define

S, = [So sk_ l], Yh = [Yo Yh- 1], (6.3)

and we assume that the vectors si are non-zero.

Theorem 6.1. Let Ao be a nonsingular starting matrix, and let Ah be obtained by updating
r S I k - - I A o k times using Broyden'sformula (6.2) and thepairs I i, Yi]i=o. Then

A , = A o + (Y k I T -AoSk)Nk Sb, (6.4)

where Nh is the k × k matrix

{s T_jsj_, ifi<~j, (6.5)
(Nk)ij = 0 otherwise.

Proof. It is easy to show (using induction) that Ah can be written as

Ak = Bh + C», (6 .6)

where Bk and Ch are defined recursively by

Bo =Ao, Bk+ 1 =Bh(l--phshs~) Vk>~O, (6.7)

and

_ T Co =0 , Ch+j --Ch(l--phshsh) +phyks T Vk>~0, (6.8)

and where

Ph = 1~sT Sb.

Considering first Bh we note that it can be expressed as the product of Bo with a sequence

of projection matrices,

Bh=Bo(I- -pososT) '"(I - -ph jsh isT-I) . (6.9)

Now we apply Lemma 2.1, with y := s in the definition (1.3), to this product of projections

to yield the relation

Bh = Ao - AoShN~ ~ S T, (6.10)

for all k >~ 1.

Next we show by induction that Ch has the compact representation

C k - I T =Y, Nh Sb. (6.11)

By the definition (6.8), we have that C~ =yoPoS T, which agrees with (6.11) for k = 1.

Assume now that (6.11) holds for k. Then by (6.8),

_ _ - - 1 T T Ch+l - Y k N h Sh(l--pkshsh) +phyh sT (6.12)

--l T Shshsk +phyksh =yhN h Sh_phY~N~-I T T T

R.H. Byrd et al. / Representations ~?ß quasi-Newton matrices 151

=[Yk Yh] [N~IO

+[Y~ yA[:

=Yh+! [N~IO

Note, however, that

m s~]

--PkNkIS[ShPh] Sh+l.

Shsk =1, (6.13)
0 Ph 1 / Ph

which implies that the second matrix on the right hand side of (6.12) is N h+ ~ ~. By induction
this establishes (6.11). Finally, substituting (6.10) and (6.11) in (6.6), we obtain
(6.4). []

We now derive a compact representation of the inverse Broyden update which is given
by

A l " T A l
Ak+l I =A[j_~ (sb - h yh~sh h (6.14)

T 1 skAh Yh

(see for example Dennis and Schnabel, 1983).

Theorem 6.2. Let Aõ ~ be a nonsingular starting matrix, and let A~ 1 be obtained by
updating A õ i k times using the inverse Broyden formula (6.14) and the pairs { si, Yi } h- 1 i = 0 '

Then

A~-I = A ö l _ (Aõ lYh_Sh) (Mk T -I +ShAo Yh) - l eTa l ~,h,~o , (6.15)

where Sh and Yh are given by (6.3) and M h is the k × k matrix

(Mh) i , j= f - -sT_ISj l i f i>j , (6.16)
0 otherwise.

Proof. Let

U=Yk -AoSh, V T = N k l S T,

so that (6.4) becomes

Ah =Ao + UV T.

Applying the Sherman-Morrison-Woodbury formula we obtain

A ~ I = A õ I - - A õ I U (I + V T A ö I U) I V T A õ J

= A ö ' - A õ ~ (Yh -AoSh) (I+ N y l S [A õ ' (Yh -AoSh)) - ~N ~-'S[Aõ '

152 R.H. Byrd et al. / Representations of quasi-Newton matrices

= A ö J - (A ö l Y h - S h) (N k +S~AoT --1 Yh -- akT Sk) - 1 SkAoT 1

--SkSh =Mb, which gives (6.15). [] By (6.5) and (6.16) we have Nh T

Note that since we have assumed that all the updates given by (6.14) exist, we have
implicitly assumed the nonsingularity of Ab. This nonsingularity along with the Sherman-
Morrison formula ensures that (Mh+SkAoT ~ Yk) is nonsingular.

These representations of Broyden matrices have been used by Biegler, Nocedal and
Schmid (1993) to approximate a portion of the Hessian of the Lagrangian in a successive
quadratic programming method for constrained optimization.

7. Relation to multiple secant updates

There is a close algebraic correspondence, and in certain special cases an equivalence,
between the representations of a sequence of quasi-Newton updates that have been discussed
in this paper, and multiple secant updates that have previously been discussed by several
authors including Barnes (1905), Gay and Schnabel (1978), Schnabel (1983), and Khalfan
(1989). In this section we briefly discuss this correspondence, for the BFGS, SR1, and
Broyden updates. We also make a few comments about the tradeoffs between using these
two types of updates. In addition to the notation of the preceding sections, we use the
notation that ,0 k is the k × k matrix that is the strict upper triangle T of Sk Yk, i.e./~Æ = R~- Dh
where R~ and Dk are defined by (2.3) and (2.7). Thus

T Sh Yk =Lk +Db +/~h (7.1)

where Lk is defined in (2.18).
Multiple secant updates are updates that enforce the last k secant equations, i.e. in the

notation of Section 1, BhSk = Y~ or HhYk = S» While the papers mentioned above generally
consider using multiple secant update to update B~ to Bh+ l, analogous updates to those
considered in this paper would arise from using multiple secant updates to update Bo to Bh
or/4o to H» This is the context in which we consider rnultiple secant updates in this section.

In this context, the multiple secant version of the direct BFGS update applied to Bo is
given by

Bh=B ° T --1 T T --1 T + Yh(Y~Sk) Y~ -BoSh(SkBoSD SkBo (7.2)

or using a representation analogous to (2.17),

SkBo (7.3) Bk =Bo - [BoSk Yk] S~BoSh 0 T
0 T

- Yk Sh yT

(assuming k<~n). The matrix Bh given by (7.2) always obeys the k secant equations
BhSh = Y» Schnabel (1983) shows that, assuming Bo is symmetric and positive definite, Bh
is symmetric if and only if Y[Sk is symmetric, and in addition Bh is positive definite if and

if Yk St is positive definite. These conditions are satisfied i f f (x) is a positive definite only ' T

R.H. Byrd et al./ Representations of quasi-Newton matrices 153

quadratic, but not in general otherwise. Schnabel (1983) discusses ways to perturb Y~ to f'~
so that I?~'S~ is symmetric and positive definite, at the cost of no longer exactly satisfying

the original secant equations other than the most recent. These perturbations have some
relation to the comparisons of this section, and we will return to them shortly.

B y comparing the multiple secant update (7.3) and the representation for k consecutive,
standard BFGS updates (2.17), it is clear that these two formulas are very similar algebra-

if Y~ S~ = Dk, the multiple BFGS update to Bo is equivalent ically. It is also immediate that " T

to performing k standard BFGS updates. This condition, which means that s~yj = 0 for all
i ~j , is satisfied i f f (x) is quadratic and the step directions are mutually conjugate, but not
in general otherwise. In general, the two formulas (2.17) and (7.3) result in different
matrices B»

Identical comments are true regarding the BFGS update to the inverse Hessian. The
inverse form of the multiple BFGS update (7.3) is

H ~ = H o + [S ~ HoYk] W k T + W ~ r T - T T
W E v 0 v - Y~ Ho

(7.4)

where _ v W~-Y~ SÆ. Again, assuming Ho is positive definite, this matrix is symmetric and
positive definite if and only if v Y~ Sk is symmetric and positive definite. Again, the algebraic
forms for (7.4) and (2.6) are very similar, and by comparing these equations and recalling

Yk Sk = Dk, and definitions (2.3) and (2.7), it is immediate that the updates are identical if v
in general are different otherwise.

From these comparisons, one can see that in the context of limited memory methods, the
multiple BFGS updates (7.3) or (7.4) would offer similar algebraic efficiencies to the
representations (2.17) or (2.6) for a sequence of standard BFGS updates, that are discussed
in this paper. The multiple BFGS updates have the disadvantage, however, that Bh or Hk is
not in general symmetric and positive definite even ifthe condition s [y i > O, i = 0 k - 1,

that guarantees that the matrix produced by k consecutive, standard BFGS updates is
symmetric and positive definite, is satisfied. Instead, the multiple secant updates require the
rauch stronger condition that YVkS» be symmetric and positive definite, and there does not
appear to be a practical way to enforce this condition computationally. Schnabel (1983)
has instead considered ways to perturb Yk to I? k so that I?~SÆ is symmetric and positive
definite, and the most recent secant condition (i.e. the last column of Yk) is unchanged. In
addition, if the columns of Sk are not strongly linear independent, the updates (7.3) or (7.4)
may be numerically unstable so some secant pairs taust be dropped from Sk and Y«. Due to
the additional computations required by these perturbations, and the lack of symmetry and
positive definiteness in the unperturbed multiple secant BFGS update, it does not seem
advantageous to use the multiple secant BFGS update rather than k consecutive, standard
BFGS updates in the context of limited memory methods. An interesting related question
is whether there is a natural perturbation of Yk that causes the multiple secant update to be

equivalent to (2.17) ; this does not seem to be the case, but as mentioned below the situation
is different for the SR1 update.

154 R.H. Byrd et al. / Repr«sentations ~f quasi-Newton matrices

Now we turn to the SRl update. The multiple secant SR1 update, which to our knowledge
was first discussed in Schnabel (1983), if applied to B0 is given by

Bk =Bo + (Yk -BoSD ((Yk - BoS~)vsD - l (Yk -- BoSk) T- (7.5)

The matrix Bh given by (7.5) always obeys the k secant equations BkSc = Y«. Assuming Bo
is symmetric, Bh is symmetric if and only if T Yk Sc is symmetric, which is true i f f (x) is
qnadratic but not necessarily otherwise. Like the standard SR1 update, Bh given by (7.5)
is not necessarily positive definite even if the necessary conditions for the standard BFGS
or multiple BFGS update to be positive definite are met.

Comparing the multiple SR 1 update (7.5) to the formula (5.2) for k consecutive, standard
SR1 updates, it is clear that the only difference between these two formulae is that (7.5)
contains the term yTs c as part of the middle, inverse expression, instead of the symmetric
t e r m D c + L k + L [in (5.2). Recalling that Y[Sc =ÆT + D c + L T, it is immediate that (7.5)
and (5.2) are identical if/~c = L» i.e. if s Ty i = sTyi for all 0 ~< i, j ~ k - 1. This condition is

true forf(x) quadratic, and in this case the multiple SR 1 update is the same as k consecutive,
standard SRI updates. This should come as no surprise, because the quadratic termination
result for the standard SR1 update also implies that the update preserves all past secant
equations, as does the multiple secant form of the SRI. Note that the condition for the
equivalence of the multiple SRI to k consecutive, standard SRI updates is far milder than
the assumption of conjugate directions required for the equivalence of k standard BFGS
updates to the multiple BFGS in the quadratic case.

For non-quadraticf(x), however, the standard and multiple SR1 updates will generally
be different. Again, the algebraic costs associated with using the updates are very similar,
while the multiple SR 1 has the disadvantage that it does not, in general, preserve symmetry,
while a sequence of standard SR1 updates does. Also, it is easier to monitor stability of the

standard SR 1, since this only involves considering each individual terrn (yj - Bist) • Si rather
than the matrix (Y c - BoSc) T S» For this reason, a sequence of standard SR1 updates would
seem preferable to the multiple SR1 update in the context of limited memory methods. It is
interesting to note that if Yc is perturbed to the i? c that one obtains by multiplying Bh given
in (5.2) by S» then the multiple secant update becomes identical to (5.2). The same
relationship is not true for the multiple BFGS update.

Finally we consider the Broyden update for nonlinear equations. A multiple secant version
of Broyden's update has been considered by several autbors including Barnes (1965), Gay
and Schnabel (1978), and Schnabel (1983). In a limited context using the notation of
Section 6, it is given by

Ak =Ao + (Yc T IsT ' -AoSc) (Sc Sc) (7.6)

This update is well defined as long as Sc has full column tank, and obeys the k secant
equations AcSc = Y»

Comparing (7.6) to the formula (6.4) for k consecutive, standard Broyden updates, one
sees that the only difference is in the matrix in the middle of the formula that is inverted. In
the multiple secant update it is sTsc, while in (6.4) it is the upper triangular portion of this
matrix, including the main diagonal. Therefore, the two updates are the same if the directions

R.H. Byrd et al. I Representalions «{/'quasi-N«wton matrices 155

in Sk are orthogonal. The preference between these two formulas does not appear to be clear

cut. The formula (6.4) has the advantage that it is well defined for any Sk, while (7.6) is

only well defined numerically if the k step directions that make up Sk are sufficiently linearly

independent. (If they are not, only some subset of them can be utilized in a numerical

implementation of the multiple Broyden method; this is the approach that has been taken

in implementations of this update.) On the other hand, (7.6) always enforces the k prior

secant equations while (6.4) generally only enforces the most recent equation. Thus it

would probably be worthwhile considering either method (or their inverse formulations)

in a limited memory method for solving nonlinear equations. Note that the key difference

between this comparison and the preceding comparisons of the BFGS and SR1 based

forrnulae is that symmetry, which in general is inconsistent with satisfying multiple secant

equations, is not a factor in the nonlinear equations case but is a factor for updates for

optimization problems.

Acknowledgement

We would like to thank Peihuang Lu for considerable help in the preparation of this paper.

References

J. Barnes, "An algorithm for solving nonlinear equations based on the secant method," Computer Journal 8
(1965) 66-67.

L. Biegler, J. Nocedal and C. Schmid, "Reduced Hessian methods for large scale constrained optimization,"
Technical Report, Department of Electrical Engineering and Computer Science, Northwestern University
(Evanston, IL, 1993).

C.G. Broyden, "A class of methods for solving nonlinear simultaneous equations," Mathematics of Computation
19 (1965) 577-593.

A. Buckley and A. LeNir, "QN-like variable storage conjugate gradients,' ' Mathematical Programming 27 (1983)
103-119.

R.H. Byrd, P. Lu and J. Nocedal, "A limited memory algorithm for bound constrained optimization," Technical
Report, Department of Electrical Engineering and Computer Science, Northwestern University (Evanston, IL,
1993).

A.R. Conn, N.1.M. Gould and Ph.L. Toint, "Testing a class of methods for solving minimization problems with
simple bounds on the variables," Mathematics of Computation 50/182 (1988) 399-430.

J.E. Dennis Jr. and R.B. Schnabel, Numerical Methods (~br Unconstrained Optimization and Nonlinear Equations
(Prentice-Hall, Englewood Cliffs, NJ, 1983).

R. Fletcher, Practical Methods of Optimization (Wiley, Chichester, 1987, 2nd ed.).
D.M. Gay and R.B. Schnabel, "Solving systems of nonlinear equations by Broyden's method with projected

updates," in: O.L. Mangasarian, R.R. Meyer and S,M. Robinson, eds., Nonlinear Programming 3 (Academic
Press, New York, 1978) pp. 245-281.

J.C. Gilbert and C. Lemaréchal, "Some numerical experiments with variable storage quasi-Newton algorithms,"
Mathematical Programming 45 (1989) 407-436.

J.C. Gilbert and J. Nocedal, "The limited memory step computation and automatic differentiation," Applied Math
Letters 6(3) (1993) 47-50.

A. Griewank, "On automatic differentiation," in: M. lri and K. Tanabe, eds., MathematicalProgramming (Kluwer
Academic Publishers, Tokyo, 1989) pp. 83-107.

150 R.H. Byrd et al. /Representations q]'quasi-Newton matrices

H. Fayez Khalfan, "Topics in quasi-Newton methods for unconstrained optimization," Ph.D. thesis, Department
of Mathematics, University of Colorado (Boulder, CO, 1989).

H. Fayez Khalfan, R.H. Byrd, and R.B. Schnabel, "A theoretical and experimental study of the symmetric rank
orte update," SIAMJournal on Optimization 3 (1993) 1-24.

D.C. Liu and J. Nocedal, "On the limited memory BFGS method for large scale optimization," Mathemätical
Programming 45 (1989) 503-528.

D.Q. Mahidhara and L. Lasdon, "An SQP algorithm for large sparse nonlinear programs," Technical report,
MSIS Department, School of Business Administration, University of Texas (Austin, TX, 1990).

H. Matthies and G. Strang, "The solution of nonlinear finite element equations," International Journal of
Numerical Methods in En gineerin g 14 (1979) 1013-1626.

J. Nocedal, "Updating quasi-Newton matrices with limited storage," Mathematics of Computation 35 (1980)
773-782.

J.M. Ortega and W.C. Rheinboldt, lterative Solution of Nonlinear Equations in Several Variables (Aeademic
Press, New York, 1970).

R.B. Schnabel, "Quasi-Newton methods using multiple secant equations," Technical Report CU-CS-247-83,
Department of Computer Science, University of Colorado (Boulder, CO, 1983).

H.F. Walker, "Implementation of the GMRES method using Householder transformations," SIAM Journal on
Scientißc and Statistical Computing 9 (1) (1988) 152-163.

