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1. Introduction 

Limi ted  memory  quas i -Newton  methods  are known to be ef fec t ive  techniques  for solving 

certain classes o f  large-scale  unconstrained opt imizat ion problems (Buck ley  and Le Nir, 

1983; Liu and Nocedal ,  1989; Gilbert  and Lemaréchal ,  1989). They  make  simple approx- 

imations of  Hessian matrices,  which are offen good enough to provide  a fast rate o f  l inear 

convergence ,  and require min imal  storage. For  these reasons it is desirable to use l imited 

m e m o r y  approximat ions  also for solving problems that include constraints.  However ,  most  

a lgori thms for constrained opt imizat ion require the project ion of  Hessian approximat ions  

onto the subspace o f  act ive constraints and other  matrix calculat ions that can be expens ive  

when the number  o f  variables is large. This  is true even  if  l imited m e m o r y  approximat ions  

are used, unless special  care is taken in their representat ion and manipulat ion.  
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In this paper we derive new representations of limited memory quasi-Newton matrices 

and show how to use them efficiently in the kind of matrix computations required in 

constrained optimization methods. We present new expressions for both the BFGS and 

symmetric rank-one formulae for optimization, and also derive a compact expression for 

Broyden's  method for solving systems of nonlinear equations. We believe that these new 

compact representations of quasi-Newton matrices are of interest in their own right, but in 

this paper we focus on their use in limited mem0ry methods. 

To motivate the new matrix representations we begin by describing the limited memory 

BFGS method for unconstrained optimization. It is a variation of the standard BFGS method, 

which is given by 

X~+l=&--AkHkgk, k=O, 1 ,2  . . . . .  (1.1) 

where A~ is a steplength, g» is the gradient of  the objective function f :  N~ --* R at x» and 

where the inverse Hessian approximation Hk is updated at every iteration by means of the 

formula 

(1.2) 

where 

o~. = 1/yLs'» v~ = l -o~y~s~,  (1.3) 

and 

Sk = Xk + 1 - -  Xk ,  yk  = gk  + ~ - -  g» .  

( see e.g. Fletcher, 1987). We say that the matrix Hk + ~ is obtained by updating Hk using the 

pair {sk, y~}. 

The limited memory BFGS method is an adaptation of the BFGS method to large 

problems. The implementation described by Liu and Nocedal (1989) is almost identical to 

that of the standard BFGS method - -  the only difference is in the matrix update. Instead of 

storing the matrices H» one stores a certain number, say m, of pairs {s» Yi} that define them 

implicitly. The product Hx, gk is obtained by performing a sequence of inner products 

involving gk and the m most recent vector pairs {si, y~}. After computing the new iterate, 

the oldest pair is deleted from the set {s» y~}, and is replaced by the newest one. The 

algorithm therefore always keeps the m most recent pairs {sc Yi} to define the iteration 

matrix. This approach is suitable for large problems because it has been observed in practice 

that small values of m (say m ~ [ 3, 7 ] ) give satisfactory results. 

Let us describe the updating process in more detail. Suppose that the current iterate is xk 

and that we have stored the m pairs {s,, yg}, i = k -  m . . . . .  k -  1. We choose a "basic matrix" 

H~, m (usually a diagonal matrix) and update it m times using the BFGS formula and the rn 

pairs { s,, yi}, i = k -  m . . . . .  k -  1. From ( 1.2) we see that H~ can be written as 
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H ~ = ( V ~  , . . .V~ , )  ,lk~~") ( V k _ , z V ~  l) 

T T 
+pk_ù,  ( V ~  1 "''Vk_,, ,+l)  Sk ,,,Sk , (Vk , +  l ""Vk- , )  

Vk I ' " V k  m + 2 )  Sk m+lSk m + l  +p~_ù,+~ ( T v ~ (V,  m+2""V,  ,) 

+Ph lSk-lS~[-J • (1.4) 

There is a recursive formula (Nocedal, 1980) that takes advantage of the symmetry of 

this expression to compute the product H»g, efficiently. As a result, the computation of  the 

search direction in the limited memory BFGS method for unconstrained optimization can 

be performed very economically. 

It turns out, however, that in two respects this recursive formula is rauch less economical 

for some of the calculations required when constraints are present. First, when the constraints 

are sparse the recursion does not take good advantage of this sparsity. For example, if ei is 

a unit vector, the computation of H»ei is almost as expensive as the computation of H,g,. 

Second, many algorithms for constrained optimization require the direct Hessian approxi- 

mation, B» = H~. 1 instead of the inverse BFGS approximation, H» However, there appears 

to be no analogous recursion for the Hessian approximation B» and, as pointed out in Section 

4.2, a straightforward implementation turns out to be quite costly. 

After deriving our new quasi-Newton representations in Section 2, we show in Section 

3 how they can be used in limited memory methods in a way that is efficient for unconstrained 

optimization, and gets around both of these difficulties in constrained optimization calcu- 

lations. 

Notation. The number of variables in the optimization problem is n, and the number of 

correction pairs used in the limited memory methods is m. The Hessian approximation is 

denoted by Bk, and the inverse Hessian approximation is H» The/th unit vector is written 

as ei. A diagonal matrix with diagonal elements 01 . . . . .  0, is denoted by diag[ 01 . . . . .  0,]. 

2. Compact representations of BFGS matriees 

We will now describe new representations of the inverse and direct BFGS matrices, and 

show how to compute several types of matrix-vector products efficiently. In this section 

we will consider the updating process in a general setting, and will not restrict it to the case 

of limited memory methods. 

Let us define the n × k matrices Sk and Yk by 

Sk = [so . . . . .  sk- il, Y~ = [Yo . . . . .  Yk- 1]. (2.1) 

We first prove a preliminary lemma on products of projection matrices that will be useful 

in subsequent analysis and is also interesting in its own right. 
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L e m m a  2.1. The product of a set of k projection matrices of the form (1.3) satisfies 

= YkRk & ,  V o . . . V k _  I I - -  1 T 

where Rk is the k × k matrix 

(2.2) 

FR,. 
Rk + 1 = L O  

we see that 

Proof.  Proceeding by induction we note that (2.2) holds for k = 1, because in this case the 

right hand side of (2.2) is 

1 
l -  yo sTy(~ S T = Vo. (2.4) 

Now we assume that (2.2) holds for some k, and consider k + 1. If we write the matrix Rk + 

as  

s~-y~ ], 
1~ph ] 

Rk~ = [ R a T l  --PkR[~STyk] 

0 Pk ' 

This implies that 

R~ -pk » S~y~ s~ 
I-- Y»+IRk+IIsT+j =I--[Y» y»] 

Pk I S T 

=l__ Yl~R~l T T T Sk + pä YkR~ 1Sk yks« -- pky~s T 

(I-- --1 T = YkRk S~) (I--pkyksT). 

Using this with the inductive hypothesis of (2.2) we have that 

V o . . . V k = ( l _ Y , R ~ l  T T S~ ) ( I -  PkYkSk ) 

= ( I -  Yk+ ,R;+~~sT+ ,), 

which establishes the product relation (2.2) for all k. [] 

It should be pointed out that this lemma holds for the product of any sequence of 

projections onto spaces of dimension n - 1 and is a useful but little-known result. Essentially 

the same result is also mentioned by Walker (1988) in the context of products of House- 

holder transformations. The lemma can be generalized to projections onto subspaces of 

arbitrary and different dimensions, in which case the matrix Rk becomes block upper 

triangular. 

The following theorem gives a compact representation of the matrix Hk obtained after k 

(2.5) 

ifi<.%j, (2.3) 
otherwise. 
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BFGS updates. We will later see that this representation is often more convenient than 

(1.4). 

Theorem 2.2. Let Ho be symmetric and positit)e definite and assume that the k pairs 
k--1 {s» Yi } i=o satisfy sTyi > O. Let H~ be obtained by updating Ho k times using the inverse 

BFGS formula (1.2) and the pairs { si, Yi } ~-ò . Then 

I-I~=Ho+[S~ nord [R~ (D»+ ~n,)Y~)R~ - R ;  ~ s~ 
L - R i  0 yT Ho ' (2.6) 

where R« is as given in (2.3) and Dk is the k X k diagonal matrix 

D~ = diag[s T Yo . . . . .  sF lYk-I] '  (2.7) 

ProoL We write the BFGS formula (1.2) as 

Hk = Mk + N«, k >~ l, (2.8) 

where M~ and Nk are defined recursively by 

T M M k + l = V k  kVk, (2.9) M o  =Ho, 

and 

NL = posos ao ", Nk+l = v T  Nkvk + T p,s, sk. (2.10) 

First note, from the definition of Mk and (2.2), that 

M~=(V~_, . .V~)Ho(Vo. . .V ,  ,) 

= ( I_SkRiTy~)Ho(1 _YkR~l T sk). (2.11) 

Next, we will show by induction that 

N k _  --T --I T -SkRk D~Rk Sk. (2.12) 

This is true for k =  1, for in this case the right hand side of (2.12) is T poSoSo, which equals 
N~. Now let us assume that (2.12) is true for k. Then, by the definition (2.10) of N, 

Nk+, = vTSkRiTD~R; 'STVk +pks»sT. (2.13) 

To simplify this expression, we note from (1.3) and (2.5) that 

R i  'S F V, = R i  ~ s T ( I -  pkyks T) 

= [ R i '  --PkRi'STyk] [ ST]skT 

= [ R i  I --pkR[lSTyk] sT+I 

= [ I  0] R i ß , s T + ,  (2.14) 

Also, using (2.5) we can write sk as 
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Sh = Sb+ 1R~-TI eh+ l/Ph. 

Substituting this and (2.14) in (2.13), we have 

Nk+'=Sk+lRf+Tl [ l ] 

[ 0 '. 

+ Sk+ I R h T l  

= Sb+ i Rk-+TI [ /Ó h 

O] --1 T Rk+lSk+l 

0 ] 
1 ~Ph 

0 ] -1 T 
1/pkJRh+lSh+j 

=Sb+ ,R»T,D»+,Rh+IIsT+, 

This proves (2.12) for k+ 1. 
Finally by expanding the expression 

Ho + [S» HoYh] [ R~T(Dh + yTH°Yh)RkI 
L - R ;  l 

1 T Rh+jSh+l 

0 Y~ Ho ] 

(2.15) 

weseethatit isequaltoMh+N~,whereMhandN»aregivenby (2.11) and (2.12). 

Note that the conditions s~y~ > 0, i = 0 . . . . .  k -  l, ensure that Rk is nonsingular, so that 
(2.6) is well defined. Indeed it is well known (Fletcher, 1987) that the BFGS formula 
preserves positive definiteness if s~ry« > 0 for all i. 

Theorem 2.2 gives us a matrix representation of the inverse Hessian approximation H» 
We now present an analogous expression for the direct Hessian approximation B» The 
direct BFGS update formula, i.e. the inverse of (1.2) is given by 

T T Bkshsk Bh ~Y»Yi 
Bh+j =Bh s~Bhsk T • (2.16) 

Yh sk 

Theorem 2.3. Let Bo be symmetric and positiue definite and assume that the k patrs 
k I { si, Yi } i = o satisfy s ~Yi > O. Let B k be obtained by updating Bo k times using the direct BFGS 

k--I  formula (2.16) and the pairs { si, Yi } i= o. Then 

ITù ]1[ ] Sk oSh L« S~[Bo 
B k = B o -  [BoSk Yk] L~ --Dk y~ , (2.17) 

where L« is the k × k matrix 

(Lk) i .J={o Ti lyj-I i f i>j ,  (2.18) 
otherwise. 

Proof. Let us write (2.6) as 
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where 

and 

H~ = /4o+  U~CkU~, (2.19) 

U~=[& HoYA, 

= I R k  T(Dk+yTHoYk)Rk ' - R ;  T ] 
c~ L - R E '  0 " 

By direct multiplication we can verify that the inverse of Ck is 

C£-1= - R ~  x - ( O h + Y [ H o Y k )  ' (2.20) 

Applying the Sherman-Morrison-Woodbury formula (Ortega and Rheinboldt, 1970) to 
(2.19) we obtain 

BÆ =Bo _ BoUk( I + Ck UT BoUk) - ~ Ck ukT Bo 

Bo - Bo U«( C [  1 T = + UkBoUk) IU~[B o. (2.21) 

Now 

u~8ov~= s~ [s~8,,s~ T 
T Bo [Sk HoYk] = L  yTsk T Yk Ho Yk Yk Ho 

Therefore using (2.20) 

[ S~BoSk S~Yk--R~]  

Note that the matrix Lk defined by (2.18) can be written as 

Lk = S ~ Yk -- Rk, 

so that 

(2.22) 

Substituting this into (2.21) we obtain (2.17). D 

In the next sections we will show that the new formulae (2.17) and (2.6), which at first 
appear rather cumbersome, are actually very convenient for some calculations arising in 
constrained optimization. Before doing so we make a remark concerning the implementation 
of (2.17). 

The middle matrix in (2.17), 

S~BoS~ LÆ (2.24) 
L~ - D k 
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is indefinite. However we now show that its inversion can be carried out using the Cholesky 

factorization of  a related matrix. First we re-order the blocks of (2.24) and note that 

SkBoSk = - - L k D k  1/2 Jk 0 j~ , (2.25) Lk T 

where Jk is the lower triangular matrix that satisfies 

T T L~Dk L~. (2.26) J~J~ = Sk BoS~ + - 1 T 

The following result shows that Jk exists and is nonsingular. 

Theorem 2.4. If Bo is positive deß'nite and sTyi>O, i = 0  . . . . .  k - -1 ,  then the matrix 
T B ~ v is positive definite. Sk oSk+L«D~ Lk 

Proof .  From the definition (2.7) we see that Dk is positive definite and hence 
T I T u (SkBoSk+L~D~JL[)u=O Sk BoSk + L«Dk L« is positive semi-definite. Suppose that T T 

for some vector u. Then L T u = 0 and S~u = 0, which in turn implies that yTs k u = 0. Recalling 
(2.22) we have T v Y~S« =L~ +Rk, so that R~.u=O. Since R [  is triangular with positive 

diagonal, we conclude that u = 0. [] 

Therefore, only the Cholesky factorization of the k × k symmetric positive definite matrix 
T --I  T SkBoSk+LkDk Lk needs to be computed, to implement (2.17).  This is preferable to 

factorizing the indefinite 2 k × 2 k  matrix (2.24).  We will discuss the implementation of  

(2.17) in more detail in Section 3.2, in the context of  limited memory methods. 

3. Application to the limited memory method 

Since we know that k BFGS updates can be written in the compact forms (2.6) and (2.17),  

it is easy to describe a limited memory implementation. We keep the m most recent correction 

pairs {si, Yi} to implicit ly define the iteration matrix. This set of pairs is refreshed at every 

iteration by removing the oldest pair and adding a newly generated pair. We assume that m 

is constant, but it is not difficult to adapt all the formulae of this section to the case when m 

changes at every iteration. 

Suppose that at the current iterate & we wish to construct the inverse limited memory 

BFGS matrix Hk. We do so by implicit ly updating H~ °~, the basic matrix, m times using 

the 2m vectors { sk-,  . . . . . . .  sk-  ~ } and { Yk-, . . . . . . .  Yk- ~ }, which have been saved. Let us assume 

that H (°~~ = ykl, for some positive scalar y» From (2.6) we see that the resulting matrix is 

I - YkY~ Yk)Rk Hk=')/kI+[Sk 3/kYk] Rk T ( D k +  T --I 

where now 

Sk = [ s k - ,  . . . . . .  sc - i ], Yk = [ Yk - ,  . . . . . . .  Yk - J ], (3.2) 
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and where Rk and Dk are the m × m matrices 

(Rk)i.j= ~ (Sk--m--l+i)T(yk m--l+j) if i~ j ,  
0 otherwise, (3.3) 

and 

D ,  = " T dlag[Sk-myk . . . . . . . .  S T- lYk-1]. (3.4) 

After the new iterate x, + ~ is generäted, we obtain Sk + ~ by deleting sk- m from S, and adding 

the new displacement s» The matrix Yk+ ~ is updated in the same fashion. 

This describes the general step when k > m. For the first few iterations, when k ~ m, we 

need only replace m by k in the formulae above. We have assumed that H~ (°) = "Ykl because 

this choice is common in practice (see Gilbert and Lemaréchal, 1989, and Liu and Nocedal, 

1989). Other formulae for the initial matrix could also be used, but would probably result 

in a more expensive computation. 

A limited memory matrix based on the direct BFGS formula is also easily obtained. Let 

the basic matrix be of  the form B k (°) = «kl, for some positive scalar er» From (2.17) we see 

that if we update B~ °~ m times using the vectors {sk . . . . . . . .  sk ~ } and {Yk-, ....... Yk 1 }, we 

obtain 

where S» Yk, Dk are given by (3.2) and (3.4), and where Lk is defined by 

ST . . . .  l+iYk m ~+j i f i > j ,  
(Lk) i.i = 0 otherwise. (3.6) 

We now describe procedures for performing computations with these compact represen- 

tations of limited memory BFGS matrices. 

3.1, Computations involving Hk 

We consider several products involving the inverse limited memory matrix Hx. To save 

computations we will store, in addition to the two n × m matrices Sk and Yk, the m × m 

matrices YT Yk, R~, and D» Since in practice m is very small, say m ~< 7, the storage space 

required by these three auxiliary matrices is negligible. In the operation counts given below 

we concentrate on multiplications since the arithmetic consists primarily of inner products, 

so that the number of additions is similar to the number of multiplications. We note that for 

the rest of this section Sk, Yk, Rk, De, Lk are defined by ( 3 .2) - (3 .4)  and (3.6). 

Computation of Hkgk 
This product defines the search direction in a limited memory method for unconstrained 

optimization. Since some of the calculations involved in the product Hkgk occur also in the 

update of H» it is efficient to consider both operations together. 

At the kth iteration of the limited memory algorithm for unconstrained optimization we 



138 R.H. Byrd et al. / Representations o f  quasi-Newton matrices 

must update our representation of  Hk ~ to get H» compute the search direction - Hege and 

perform a line search. To update HA-j we delete a column from and add a new column to 

each of the matrices Se_ 1 and Ye- J, and make corresponding updates to Ra i, Y[- ~ Y~- 

and Dk- ~. We will show that these updates can be done in O(m 2) operations by storing a 

small amount of  additional information. For example, from (3.3) we see that the new 

triangular matrix Re is formed from Re- ~ by deleting the first row and column, adding a 

new column on the right, which is given by 

T Se Ye- r = sT(& -- ge- I ), (3.7) 

and adding a new row on the bottom, which is zero in its first m -  1 components. It would 

appear that this requires mn multiplications. However, note from (3.1) that the vector 
T Scge and the first m -  1 components of  v Se ge-~ have to be calculated in the process of  

computing Hege and Ha_ Jge J. Thus we may save the first m -  1 components T of Skge 1 
from the previous iteration, and we need only compute s[_ i gA- ~, which can be obtained 

with O(m 2) work, as we will show below. Thus to compute STye- ~ by the difference (3.7) 
v y  will require only O(m 2) operations. The matrix Ye ,- can be updated in a similar way 

saving another mn multiplications. 

An updating process that implements these savings in computation is as follows. At &, 

the following data has been saved from the previous iteration: 

g~ l g k  1, 

T sigk-1, i = k - m - 1  . . . . .  k - 2 ,  (i.e. S~_ jgk_ i), 

and 

y ~ & _ ,  i = k - m - 1  . . . . .  k - 2 ,  (i.e. YT_,ge_,) .  

Now we compute the quantitites corresponding to the present iteration. We begin with 

T sT ~ge-I =--Ae--lgk-IHe-lgk--l, 

which by (3.1) is equal to 

--Ae-j yk-lgT-lge_1 

_he_,w~. [ RkT,(De-~ +%-,YT-,Ye-,)R~-'I  --R~--T, ] 
--&7'-1 0 Wk 

where 

(3.8) 

[ sT-jgk_l ] 
Wk ~ T " 

Yk--lYk--~gk--J 

This requires only O(m 2) operations since gT_lgk_j, S[_lgk_~ and YT_jgk_i have 

already been saved from the previous iteration. 

Next we compute the inner products 

g[g«, 
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T sig», i = k - m  . . . . .  k - l ,  (i.e. STgk), 

and 

yTg», i = k - m  . . . . .  k -  1, (i.e. yTg~). 

With this information, the new components of R» T Yk Y» and D» can be computed in O(m) 
work by the formulae 

s~ryk_l=sTg»--sTgk_ ~, i = k - m  . . . . .  k - l ,  (3.9) 

yTy»_l=yTgk--yTgk_ l, i = k - m  . . . . .  k - 2 ,  (3.10) 

yT_ lY~--l = --gTgk +2(gk - gk - J  )Tgk +gk T l g ~ - ,  (3.11) 

We now give a complete description of the procedure for updating Hk and computing 
Hkg» 

Algorithm 3.1 (step computationfor unconstrained minimization). Let xk be the current 

iterate. Given sk- i, Y»- ~, g», the matrices Sc 1, Yk 1, Rk_ ~, y~_V ~ Y»- l, D»_ ~, the vectors 
T T Sk_ lgk- 1, Y»- i g»- ~ and the scalar gT_ ~ gk- I : 
Step I. Update S» Y» 
Step 2. v T T Compute g» gÆ, Sk g», and YÆ g». 
Step 3. Compute s F_ lg»-i  by (3.8). 
Step 4. Update R» YTY k and Dk with the aid of (3.9)-(3.11).  
Step 5. Compute 3»; for example 

3'» =Y[- , s»_ i/Y[- lYk- , " (3.12) 

Step 6. Compute 

P= [ R:T(Dk +TkYTy»)R: ' (ST gk)--TkR:T(yT gk) " ]" 

Step 7. Compute 

Hkgk = Ykgk + [ Sk Th Yk]P. 

In this procedure, Step 2 requires (2m + 1 )n multiplications; Step 7 requires (2m + 1 )n 
multiplications; Step 5 depends on the formula used for 3'» (the choice (3.12) is free since 
both inner products have been stored); all other steps cost at most O(m 2) multiplications, 
for a total of (4m + 2)n + O(m 2) multiplications. Note, however, that when this procedure 

T is part of an algorithm using a line search procedure, the scalar sk- ~ gk- ~ is also required 
for the line search, whereas gTgk is likely to be needed to check the stopping conditions of 
the algorithm. Therefore the amount of extra work required to update H~ and compute the 
step direction is 4ran + O(m 2) in that case. Of course for large problems the term 4mn 
predominates. 

As will be seen in Section 4.1 this is the same amount of work per iteration as required 
by the two-loop recursion described by Nocedal (1980), and as rar as we know there is no 
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more efficient way to implement the unconstrained limited memory BFGS method. Thus 

the two approaches are equally efficient for unconstrained problems, but, as pointed out in 

Section 4.1, the compact matrix representations derived in this paper are more economical 

when computing certain quantities arising in sparse constrained optimization calculations. 

The product Hkv 
Let us consider the computation of the product Hku, where v is an arbitrary vector. From 

(3.1) we see that this product is given by 

HkV=T~v+[Sk TkYk] [ R~T(Dk+TkYTYk)R~I_R~I 
0 ykYTv 

(3.13) 

To carry out the computation we first compute the products S[v and T Y« v, wbich together 

require 2mn multiplications. To multiply the resulting 2m vector by the middle 2m X 2m 

matrix involves 3 solutions of triangular systems and one multiplication by an m X m matrix. 

Finally, it takes 2mn multiplications to multiply [Sk ykYk] with the resulting 2m vector. 

Thus, if we include the product ykv and ignore O(m) operations, the whole computation 

requires (4m + 1)n + 5m2 multiplications. 

Products of the form vTHkv and u TH~v 
Consider the weighted scalar product vTHkv where v is an arbitrary vector, and where we 

assume that the vector H«v is not needed. Using (3.1) we have 

vTHkL,=y~L, T v A _ ( R ~ - I s T v ) T ( D k +  T --1 T T --1 T ykYkYk)(Rk Skv) -2Tkv  YkRk Skv. 
(3.14) 

We first compute sTv and Y~v, which requires 2ran multiplications. Next we solve a 
triangular system to get Rk -x T , T Sk C, which we save, multiply by the matrix D k + TYk Yk, 

compute vTv and do some order m inner products. Thus the total cost of this computation 

is (2m + 1 )n + ~m2+ O(m): roughly half of what the cost would be if we first computed 

H~v and then v T Hkv. 
If we wish to compute the product uTHkv for two arbitrary vectors u and v the cost is 

more, since 

IATHk l) = ~/k uTU + (R~' STu)T(Dk + T« yT Yk) (R~I S~ v) 

ykuTYkR[~S[v T --T T - --Tku SkRk Ykv 

can be seen to require (4m + 1 )n + 2m 2 + O(m) multiplications. This is only slightly less 

expensive than computing Hkv and then taking the inner product of the result with u, which 

would cost (4m + 2)n + O(m 2) multiplications. 

The product A T HkA 
A related computation is the problem of computing the matrix ATHkA where A is an n × t 

matrix with t ~< n. This computation occurs when solving the constrained nonlinear optim- 

ization problem, 
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minimize f ( x )  (3.15) 

subject to c(x)  = 0  (3.16) 

with n variables and t constraints. This problem is frequently solved by the sequential 
quadratic programming method, which at every iteration solves a subproblem of the form 

minimize g~d+ ldTB A 5 A-- (3.17) 

subject to A ~ d =  - c k ,  (3.18) 

where A~ is the matrix of constraint gradients at the current iterate x» c~ is a vector of length 
t, and Bh = H~ -~ is an approximation to the Hessian of the Lagrangian of the problem. If Ak 
has full rank, the solution to (3.17)-(3.18) can be expressed as 

d= -H«(g»  +A»h) (3.19) 

where the Lagrange multiplier A satisfies 

(A ~H»Ak) h = - A THkgk + ck. (3.20) 

Let us suppose that Hk is a limited memory matrix represented in the compact form (3.1). 
Then the matrix ATH»Ak may be efficiently computed by first computing S~A« and T Yk AÆ, 
which require 2mnt multiplications, then Rk-lcTAo/« k, requiring {m2t. multiplications, and 
then computing 

y«ATAk+(Rk-ISTAA~)T(Dk+ykYTYÆ)(R~, ~STAk) -- 2 ykAkYkRA.T ~ skTA k, 

(3.21) 

which requires m 2t + 3 mt ~ + ½ ( t 2 + t) n + 0 ( ( max { m, t } ) z) multiplications. Ignoring lower 

order terms, this is a total of 

(2m+ ½t+ ½ ) tn+ ~ ( m + t ) m t  

multiplications. As long as m and t are fairly small this is not extremely expensive and is 
rauch less than the cost of computing the matrix HkAk first, and then multiplying by A T. To 

of A«HkAk which requires ~t 3 multipli- solve (3.20) requires the Cholesky factorization T 

cations. The other matrix vector products required in (3.19) and (3.20) cost about 
(2t + 4ra)n, if certain quantities computed in other parts of the procedure are saved and 
reused appropriately. 

Operations with H» and sparse constraints 

We now consider computations similar to those in the previous section but where the vectors 

and matrices multiplying HA are sparse (but recall that HA is dense). This is an important 
case because, even though g», Sk, and Yk are not likely to be sparse, it is very common to 

have constrained optimization problems where the gradients of the constraints, and thus the 
matrix A in (3.18) are sparse. A special case in which we are very interested is the case of 

a minimization subject to bound constraints, where the matrices dealt with are actually 
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submatrices of  the identity. Significant reductions in computational cost result in such 

problems if efficient sparse storage is used. 
The product Hkei requires 2mn + 0 (m 2) multiplications. This is easy to see from ( 3.13 ), 

since T T Yk ei Sh ei and require only O(m)  indexing operations. For the same reason, we see 
from (3.14) that eTHkei can be computed with O(m 2) multiplications. 

Consider now A THhA in the case where A is an n × t sparse matrix with n A nonzeros. We 
perform this computation by (3.21). The products S[A and Y[A together require 2mnA 
multiplications. The back-solve R~ ~ STA requires ½mt 2 multiplications, and the rest of the 
operations require 2rot 2 + m 2t + 0 ( (max { m, t } ) 2 multiplications plus the operations of  

ATA which cost at most tna multiplications. Thus the total is O(max{m,t})n A 
+ ( 2 t +  3m)mt+O((max{m,  t})2). Thus we see that, while in the previous section the 

computational effort in most tasks was roughly proportional to the number of variables n, 
in the sparse case it is proportional to the nurnber of  non-zeros in the sparse array under 

consideration. 

3.2. Operations with Bk 

We now consider the direct Hessian approximation Bh. To take advantage of the decom- 

position (2.25), we rewrite (3.5) as 

I ~1/2 Bh = o-kl-- [ Yk °'hSh] -- ~'k 
0 jT - L h D ~  ~/z Jh °-A ST ' 

(3.22) 

where Jk is defined by (2.26). We use this expression, both in the sparse and dense case, to 
compute several products involving B». 

Update of Bk and the product Bhv 
This computation is required when applying limited memory methods to solve constrained 
optimization problems. It occurs, for example, in the algorithm for nonlinearly constrained 
problems developed by Mahidhara and Lasdon (1990),  and in the primal limited memory 
algorithm for bound constrained optimization described by Byrd, Lu and Nocedal (1993). 

The following procedure, which is based on the representation (3.22), describes in detail 
the kth step of an iteration that first updates Bh and then computes the product Bhv for an 

arbitrary vector v. 

Algorithm 3.2. Let xk be the current iterate, and assume that the matrices Sk- l, Y«- 1, Lk l, 
T Sk- j S»_ 1, and Dk-  ~ have been stored, The vectors sk- ~, y» ~ have just been computed, 

and the vector v is given. 
Step 1. Obtain Sk, Y» by updating SÆ_ j and Yk- 1. 
Step 2. Compute Lk, sT sk and D». 

Step 3. Compute o'k; for example 

cr«=y T ISk_I/sT_~s«_I. (3.23) 
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Step 4. Compute the Cholesky factorization of o'~Sf Sk - ~ T + L»Dk Lk to obtain j j T  
Step 5. Compute 

P= T • o-~Sk v 

Step 6. Perform a forward and then a backward solve to obtain 

Step 7. Compute 

Bkv=cr, v-- [Y~ T (r,S,]p. 

The first step of this procedure, in which the oldest columns of the matrices Sk 1, Y, 1 
are replaced by the vectors s»_ ~, and y~_ 1, does not require any arithmetic, Step 2 requires 
2m inner products to form the new columns of matrices L» S~S~ and D», which cost 2mn 
multiplications. The choice of o-~ in Step 3 costs only one multiplication since both 

v have been calculated in Step 2. In Step 4 the Cholesky factorization y~" 1Sk--I ands~-Lsk i 
of the positive definite matrix T LkD~- ~ L,T o-»SkS, + costs O(m 3) multiplications. Step 5 
costs 2mn multiplications. The forward and the backward solves of 2m × 2m triangular 
systems in Step 6 cost O(m 2) multiplications. Step 7 costs (2m + l )n  multiplications. In 
summary, this procedure costs 2mn + O(m 3) multiplications from Step 1 to Step 4, where 
the matrix Bh is defined; and costs (4m + 1 )n + O(m 2) multiplications from Step 5 to Step 
7, where the product B~v is calculated. 

The weighted scalar product vVBkv 
This product occurs, for example, in the conjugate gradient inner-iteration as weil as in the 
Cauchy point computation of the primal algorithm described by Byrd, Lu and Nocedal 
(1993). Using (3.22) we have 

uTBk U = O-kuTu 

[ -/31/2 0 ] -I 
_uTW T *Jk Wku, 

o 4 

Dff'/2LT ] - '  [ D~ le 
d T -- LkDff I/2 

(3.24) 

where 

o-~s~ 

We first compute and store the matrix vector products Y~ v, T tYkSk V, which determine Wkv, 
and which require 2mn multiplications. Then we solve two 2m × 2m triangular systems, and 
compute the scalar product of two 2m-vectors; all of these cost at most O(m 2) multiplica- 
tions. The last part is to compute ~rkvVv, and subtract the previously computed scalar from 
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it. The total cost of this computation is (2m + 1 ) n + O (th 2) multiplications. Of course in 
the case v = g» which is offen required, using previously computed quantities from the 
computation of Hk would allow this to be reduced to O (m 2). 

Sparse computations with Bk 
Calculations involving the product of Bh and sparse vectors involve savings similar to tbose 
involving Hk; for example, computing Bkei requires 2mn + 0 (m 3) multiplications. A special 

but important sparse case concerns minimization problems subject to bound constraints, in 
which the constraint gradients are submatrices of the identity matrix. Minimizing over a 
subspace in that case involves computations with the reduced Hessian approximation 
1)~ = Z"rBkZ, where Z is an n × t" matrix whose columns are unit vectors. Thus the subspace 

problem is of size i. 
To express/)k we use (3.22) to obtain 

I Fll/2 ~~ = o - k i -  i ~?~ o'k5A - ~'k 
0 Ja" -LkD[, -1le Jé O-k g f  ' 

where ]=z~Z is the identity matrix of size/`, and fZk=zTYk and S«=zVsk are / 'Xm sub- 

matrices of Yk and S~. The procedure of multiplying the reduced Hessian/)» by an arbitrary 
t'-vector 0 is similar to S teps 5 to 7 of Algorithm 3.2 and costs (4m + 1 )/`+ O (m 2) multi- 
plications. S imilarly, the weighted scalar product 0T/~kg costs (2m + 1 )/`+ O(m 2) multi- 

plications. 
In this case we see significant reductions in computational cost, resulting in work pro- 

portional to/` rather than to n. 

4. Alternative formulae 

For the sake of completeness we now review two other known approaches for handling 
limited memory matrices. The first approach exploits the symmetry and structure of (1.4), 
giving rise to an efficient two-loop recursion for computing products using the inverse 
Hessian approximation. The second approach is for the direct BFGS update and consists of 
a straightforward sequence of multiplications. 

4.1. The two-loop recursion 

The following recursive formula computes the step direction Hkgk for unconstrained mini- 
mization. It is given in Nocedal (1980) and is based on the recursion developed by Matthies 
and Strang (1979) for the standard BFGS method. As before, Hk represents a limited 

memory BFGS approximation of the inverse Hessian. It is obtained by applying m updates 
to a basic matrix H~ °) using the m most recent correction pairs, which we label for simplicity 

(&» Yo) . . . . .  (Sm--1, Ym--1)' 

Step 1. q = g» 
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Step 2. For i = m - 1 . . . . .  O, 

a i -= pisTq (store ai), 

q := q -- oziYi. 

Step 3. r = H(~ °~ q. 

S tep4.  For i = 0 ,  1 . . . . .  m -  1, 

f l  = p i y  T r, 

r:= r + si( ai - t~). 

Step 5. Hkgk = r. 

Excluding Step 3, this algorithm requires 4mn multiplications; if H~ °~ is diagonal then n 

additional multiplications are needed. When used for unconstrained minimization the com- 

putation and storage cost is thus essentially the same as using formula (2.6) implemented 

as described in Section 3.1, as long as H~ °~ is a scalar multiple of the identity. However, 

the two loop recursion has the advantage that the multiplication by the basic matrix H~ °~ is 

isolated from the rest of the computations. As a result the two-loop recursion will be less 

expensive than (2.6) in the case when H~ °~ differs from H~°~l by more than a simple scalar 

multiplication, since the entire matrix vv u (k "k •• 0 Yk would then have to be updated. 

However, the two-loop recursion cannot be efficiently adapted for sparse projections. Let 

us consider for example the product H»e» which can be obtained by replacing gk with ei in 

the two-loop recursion. Since the vectors si and Yi are in general not sparse, we see that only 

the computation of a, ,_  1 in Step 2 results in savings. Thus Steps 2 and 4 require (4m - 1 ) n 

multiplications - -  almost the same as in the dense case. 

We should also mention that while the compact form (2.6) has an analog (2.17) for the 

direct update, we know of no procedure analogous to the two loop recursion that can compute 

o~o~ S» and Yk in O ( m n )  operations. the direct update f r o m ,  ~ , 

Mathematically, the relation of the two-loop recursion to (2.6) can be seen if we note 

that (2.6) can be expressed 

H k = ( I -  S k R k  T yT)H~° '  ( 1 -  Y~R~ 'S T) + S k R k T D k R k  IsT.  

The vector made up of the coefficients a i can then be seen to be R~- 1 T Sk gk, and the final 
value of the vector q is ( I -  i T YkRk Sk)gk .  Note that in the two-loop procedure everything 

is computed afresh at each iteration, thus making it eäsier to change parameters such as 

H~ °) , while implementing (2.6) involves saving and updating more computed quantities, 

thus making information such as sparse projections of  H more immediately äccessible. 

A close examination of the two-loop recursion reveals that it is similar in structure to 

computations of gradients by means of the adjoint method (or the reverse mode of automatic 

differentiation; Griewank, 1989). In fact Gilbert and Nocedal (1993) show that there is a 

precise relationship between these two algorithms: the two-loop recursion can be obtained 

by applying the adjoint method to compute the gradient of  the function h (g)  = ½ g THkg with 

respect to its argument g, where Hk is the limited memory BFGS matrix. The scalars ai, 
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which are saved during the first loop, correspond to the quantities referred to as the adjoint 

variables in the optimal control literature. 

4.2. A straightforward approach 

The direct BFGS formula (2.16) can be written as 

T _[_ bhb~, Bh+~ =Bh- -aka  ~ 

where 

(4.]) 

B~sh Yh 
ah ~ Tn T\ 1/2' bh -- tsh t~hSk ) (y~'sh) I/2" 

A straightforward implementation of the limited memory method consists of saving these 

intermediate vectors ai and bi to define the iteration matrix. It has been used by several 

authors including Mahidhara and Lasdon (1990). 

In a typical iteration k, the matrix Bh is obtained by updating a starting matrix B~ °) m 

times using the m most recent pairs, which we denote for simplicity, 

(so, Yo) . . . . .  (Sm- l, Ym-I ). 

From (4.1) we see that Bh can be written as 

m--  1 

Bk =B~ °) + ~ [bib~-aiaTF], (4.2) 
i - -  ( )  

where the vectors a» bi can be computed by means of  the following formula: 

F o r k = 0 ,  1 . . . . .  m -  1: 

Step 1. 

T 1/2 bk =yÆ/(yÆsk) (4.3) 

Step 2. 

k--I  
a _n(o~~ + ~  [ (b l r sk )b i_ (a[sk )a i ]  (4.4) k -- t~'k 'Jk 

i--O 

Step 3. 

T l / 2  ak :=ah/(skak)  • (4.5) 

At the next iteration we repeat this process, except that the pair (So, Yo) is replaced by 

the new pair (Sm, Ym)- The vectors ai need to be recomputed from scratch since they all 

depend on the deleted pair (So, Yo). On the other hand, the vectors bi and the inner products 

b~sk can be saved from the previous iteration, and only the new values bm and b~s,~ need 

to be computed. Taking this into account, and assuming that ,,« » (o~ = I we find that approx- 

imately 
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3 m2n multiplications, 

are needed to determine the limited memory matrix. 

To compute BmU, for some vector L' ~ ~", using (4.2) requires 4mn multiplications. This 
approach is therefore less efficient than that based on the compact matrix representation 

described in Section 3.2. Indeed, whereas the product Bku costs the same in both cases, 
updating the representation of the limited memory matrix using the compact form requires 
only 2mn multiplications, compared to 3m2n multiplications needed by the approach 

described in this section. 

5. Compact representation of SR1 matrices 

In this section we develop compact representations of matrices generated by the symmetric 
tank-orte (SR 1 ) formula. These representations are similar to the ones derived for the BFGS 
formula, but under some conditions require less storage. 

The SR1 update formula is given by 

(Yk - Bksk) (Yk -- Bks~) v 
Bk+j =Bh + (Yk --B~sk)Tsk ' (5.1) 

see for example Fletcher (1987). Note that this update is well defined only ifthe denominator 
(Bksk--yk)Tsk  is nonzero. In recent implementations of the SR1 method, the update is 
simply skipped if this denominator is very small relative to [I sk I I l[ Bksk -- y~ I[ (Conn, Gould 
and Toint, 1988; Khalfan, Byrd and Schnabel, 1993). Since the SRI update does not have 
the property of hereditary positive definiteness, there is no reason to enforce the curvature 
condition s~y~ > 0 as with BFGS updating, and we will thus consider a sequence of updates 
to an arbitrary matrix Bo subject only to the assumption that the update is well defined. 

Theorem 5.1. Let  the symmetr ic  matrix  Bo be updated k t imes by means  o f  the SR1 fo rmu la  

(5.1) using the pairs {si, Yi}~=ò, and assume that each update is well  defined, i.e. 

s f  ( Bfii - yj) 4= 0, j = 0 . . . . .  k - 1. Then the result ing matr ix  Bh is giL, en by 

+ Lk -- S~BoSk)  - 1 ( Yk - BoSk) T, (5.2) B k = B o + ( Y k _ B o S k ) ( D k + L  k T 

where  Sk, Yk, Dk, and Lk are as defined in (2.1), (2.7) and (2.18), and the matr ix  

M~=--( Dk + Lk + L~, - S~, BoSk ) is nonsingular.  

ProoL We proceed by induction. When k =  1 the right hand side of (5.2) is 

1 
Bo + (Yo - Boso) (Yo - Boso) v = Bi .  

(Yo -- BoSo) T so 

Let us now assume that (5.2) holds for some k. Define 

Qk = [qo . . . . .  qk-l]  = Y k - B o S k ,  (5.3) 



148 R.H. Byrd et al. / Representations o f  quasi-Newton matrices 

and 

M» = Dk + Lh + L T - S~BoSh. (5.4) 

Therefore 

{]1 M I { ) T  B h = B o + ~ k  h ~h-  

Applying the SR 1 update (5.1) to B h we have 

Bh+l =Bo +QhMk j Q~ 

(Yh - Bo sh - 1 T -- I T T --QhMh Qksh)(yh--Bosh--QhMh Qksh) 
T --I T (Yh--Bosk) T Sk--Sh QhMh Qh sh 

=Bo +QhM[ -jQhT + (qh--QhM~lwh)(qh--QhM~ lwh)T 
T I qT sh__whMh Wh 

= B o +  [qhq T w T -1 wh)qh --qh( hMh )QT--Qh(MkJ T 

+Qh(ÔkM~l +Mk-~ T 1)  WhWh Mh Q[]/6h, 

where we have defined 

wh = Q~ s »  (5.5) 

and where the denominator 

~h=qh-- T Sh --w~'M~lwh = ( y h - - B k S k ) T  Sh (5.6) 

is non-zero by assumption. We may express this as 

Mh (6fl+WhWhMh ) - -M~lwh QT 
B h + l = B o + ~ -  k [Qh qh] , - 

(5.7) 

Now, from definitions (5.3), (5.4) and (5.5) we see that the new matrix Mh+~ is given by 

[ Mk wh ] 
M k + l  = T wh q~ sh 

and by direct multiplication, using (5.3), (5.5) and (5.6), we see that 

[ ] I  ~ ] 
Mh wk M h (6 f l+wkwhMh ) --M[Jwh 1 

- - = I .  (5.8) T wT qk Sh _ w T M ~ I  1 6h 

Therefore Mb+ ~ is invertible, with Mk-+J~ given by the second matrix in (5.8), but this is 

the matrix appearing in (5.7). Thus, we see that (5.7) is equivalent to equation (5.2) with 

k replaced by k +  1, which observation establishes the result. [] 

Since the SR1 method is self dual, the inverse formula can be obtained simply by replacing 

B, s, y by H, y, s respectively (see Dennis and Schnabel, 1983). Alternatively, if Bh is 
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invertible, application of the Sherman-Morrison-Woodbury formula to (5.2) shows the 

inverse of Bh is given by 

Ht =Ho + (St - H o Y D ( R t  +R~[ - D t  - yTHoYt) - l (Sk  -HoYk )  T. (5.9) 

However, in the context of unconstrained optimization, since the SR1 update is not always 

positive definite this formula is not as likely to be useful in step computation as is the inverse 

BFGS update. 

It should be clear how to develop limited memory SR1 methods. In (5.2) we replace Bo 

with the basic matrix at the kth iteration, which we denoted earlier by Bk (°) , and S~ and Yt 

should now contain the m most recent corrections, as in (3.2). Savings in storage can be 

achieved if B~ (°) is kept fixed for all k, for in this case the only n-vectors one needs to store 

are the m columns of Q» This would result also in some savings in the cost of updating the 

matrix Mk, depending on the step computation strategy used. On the other hand, if B~ °~ is 

a scalar multiple of the identity and, as is often the case, one wants to change the scalar at 

each iteration, then both St and Yk taust be stored separately, and the storage and updating 

costs of the limited memory SRI and BFGS methods are similar. 

We will not give detailed algorithms for computing products involving limited memory 

SR1 matrices because the ideas are very similar to those described in the previous section. 

One point, however, that is worth discussing is how to compute the denominator in (5.1), 

at each stage of the limited memory updating, to determine if the update should be skipped. 

The condition 

s f ( B « s j - y j )  4=0, j = 0  . . . . .  k -  1, (5.10) 

can be expensive to test. Note however that (5.10) is equivalent to the nonsingularity of 

the principal minors of M» Thus, when using the form (5.2) in a limited memory method, 

the condition (5.10) could be tested when computing a triangular factorization ofMk without 

pivoting, with the test for a zero on the diagonal of the factor being made relative to the 

magnitude of Qk and S» Skipping an update would correspond to deleting the corresponding 

row and column of M» 

6. Representation of Broyden matrices for nonlinear equations 

A widely used secant approximation to the Jacobian matrix of a system of nonlinear 

equations, 

F(x) = 0, F: ~" --> ~", (6.1) 

is the Broyden update (Broyden, 1965), 

Ak+ 1 =Ak + (Yk --Aksk) sT (6.2) 
S T A'k 

Here s~ =x~ + i - x »  Yk = F(xk + j ) -- F(xk), and Ak is the approximation to the Jacobian of F. 
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In this section we describe compact expressions of  Broyden matrices that are similar to 

those given for BFGS and SR1. As before, we define 

S, = [ So . . . . .  sk_ l ], Yh = [Yo . . . . .  Yh- 1 ], (6.3) 

and we assume that the vectors si are non-zero. 

Theorem 6.1. Let Ao be a nonsingular starting matrix, and let Ah be obtained by updating 
r S I k - - I  A o k times using Broyden'sformula (6.2) and thepairs I i, Yi]i=o. Then 

A , = A o + ( Y k  I T -AoSk)Nk  Sb, (6.4) 

where Nh is the k × k matrix 

{s T_jsj_, ifi<~j, (6.5) 
(Nk)ij = 0 otherwise. 

Proof.  It is easy to show (using induction) that Ah can be written as 

Ak = Bh + C», (6 .6)  

where Bk and Ch are defined recursively by 

Bo =Ao, Bk+ 1 =Bh(l--phshs~) Vk>~O, (6.7) 

and 

_ T Co =0 ,  Ch+j --Ch(l--phshsh) +phyks T Vk>~0, (6.8) 

and where 

Ph = 1~sT Sb. 

Considering first Bh we note that it can be expressed as the product of Bo with a sequence 

of projection matrices, 

Bh=Bo(I- -pososT) '"( I - -ph jsh isT-I) .  (6.9) 

Now we apply Lemma 2.1, with y := s in the definition ( 1.3), to this product of projections 

to yield the relation 

Bh = Ao - AoShN~ ~ S T, (6.10) 

for all k >~ 1. 

Next we show by induction that Ch has the compact representation 

C k  - I T =Y,  Nh Sb. (6.11) 

By the definition (6.8), we have that C~ =yoPoS T, which agrees with (6.11) for k =  1. 

Assume now that (6.11 ) holds for k. Then by (6.8), 

_ _  - - 1  T T Ch+l - Y k N h  Sh(l--pkshsh) +phyh sT (6.12) 

--l T Shshsk +phyksh =yhN h Sh_phY~N~-I T T T 
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=[Yk Yh] [ N~IO 

+[Y~ yA[: 

=Yh+! [ N~IO 

Note, however, that 

m s~ ] 

--PkNkIS[ShPh ] Sh+l. 

Shsk =1, (6.13) 
0 Ph 1 / Ph 

which implies that the second matrix on the right hand side of (6.12) is N h+ ~ ~. By induction 
this establishes (6.11). Finally, substituting (6.10) and (6.11) in (6.6), we obtain 
(6.4). [] 

We now derive a compact representation of the inverse Broyden update which is given 
by 

A l " T A l  
Ak+l I =A[j_~ ( sb -  h yh~sh h (6.14) 

T 1 skAh Yh 

(see for example Dennis and Schnabel, 1983). 

Theorem 6.2. Let Aõ ~ be a nonsingular starting matrix, and let A~ 1 be obtained by 
updating A õ i k times using the inverse Broyden formula (6.14) and the pairs { si, Yi } h- 1 i = 0 '  

Then 

A~-I = A ö l  _ (Aõ lYh_Sh ) (Mk  T -I +ShAo Yh) - l eTa  l ~,h,~o , (6.15) 

where Sh and Yh are given by (6.3) and M h is the k × k matrix 

(Mh) i , j=  f - -sT_ISj  l i f i>j ,  (6.16) 
0 otherwise. 

Proof. Let 

U=Yk -AoSh, V T = N k l S  T, 

so that (6.4) becomes 

Ah =Ao + UV T. 

Applying the Sherman-Morrison-Woodbury formula we obtain 

A ~ I = A õ I - - A õ I U ( I + V T A ö I U )  I V T A õ  J 

= A ö '  - A õ ~ (  Yh -AoSh) (I+ N y l S [ A  õ ' (  Yh -AoSh) ) - ~N ~-'S[Aõ ' 
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= A ö J - ( A ö l Y h - S h ) ( N k  +S~AoT --1 Yh --  akT Sk ) - 1  SkAoT 1 

--SkSh =Mb, which gives (6.15). [] By (6.5) and (6.16) we have Nh T 

Note that since we have assumed that all the updates given by (6.14) exist, we have 
implicitly assumed the nonsingularity of Ab. This nonsingularity along with the Sherman- 
Morrison formula ensures that (Mh+SkAoT ~ Yk) is nonsingular. 

These representations of Broyden matrices have been used by Biegler, Nocedal and 
Schmid (1993) to approximate a portion of the Hessian of the Lagrangian in a successive 
quadratic programming method for constrained optimization. 

7. Relation to multiple secant updates 

There is a close algebraic correspondence, and in certain special cases an equivalence, 
between the representations of a sequence of quasi-Newton updates that have been discussed 
in this paper, and multiple secant updates that have previously been discussed by several 
authors including Barnes (1905), Gay and Schnabel (1978), Schnabel (1983), and Khalfan 
(1989). In this section we briefly discuss this correspondence, for the BFGS, SR1, and 
Broyden updates. We also make a few comments about the tradeoffs between using these 
two types of updates. In addition to the notation of the preceding sections, we use the 
notation that ,0 k is the k × k matrix that is the strict upper triangle T of Sk Yk, i.e./~Æ = R~- Dh 
where R~ and Dk are defined by (2.3) and (2.7). Thus 

T Sh Yk =Lk +Db +/~h (7.1) 

where Lk is defined in (2.18). 
Multiple secant updates are updates that enforce the last k secant equations, i.e. in the 

notation of Section 1, BhSk = Y~ or HhYk = S» While the papers mentioned above generally 
consider using multiple secant update to update B~ to Bh+ l, analogous updates to those 
considered in this paper would arise from using multiple secant updates to update Bo to Bh 
or/4o to H» This is the context in which we consider rnultiple secant updates in this section. 

In this context, the multiple secant version of the direct BFGS update applied to Bo is 
given by 

Bh=B ° T --1 T T --1 T + Yh(Y~Sk) Y~ -BoSh(SkBoSD SkBo (7.2) 

or using a representation analogous to (2.17), 

SkBo (7.3) Bk =Bo - [BoSk Yk] S~BoSh 0 T 
0 T 

- Yk Sh yT 

(assuming k<~n). The matrix Bh given by (7.2) always obeys the k secant equations 
BhSh = Y» Schnabel (1983) shows that, assuming Bo is symmetric and positive definite, Bh 
is symmetric if and only if Y[Sk is symmetric, and in addition Bh is positive definite if and 

if Yk St is positive definite. These conditions are satisfied i f f (x)  is a positive definite only ' T 
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quadratic, but not in general otherwise. Schnabel (1983) discusses ways to perturb Y~ to f'~ 
so that I?~'S~ is symmetric and positive definite, at the cost of no longer exactly satisfying 

the original secant equations other than the most recent. These perturbations have some 
relation to the comparisons of this section, and we will return to them shortly. 

B y comparing the multiple secant update (7.3) and the representation for k consecutive, 
standard BFGS updates (2.17), it is clear that these two formulas are very similar algebra- 

if Y~ S~ = Dk, the multiple BFGS update to Bo is equivalent ically. It is also immediate that " T 

to performing k standard BFGS updates. This condition, which means that s~yj  = 0 for all 
i ~j ,  is satisfied i f f (x)  is quadratic and the step directions are mutually conjugate, but not 
in general otherwise. In general, the two formulas (2.17) and (7.3) result in different 
matrices B» 

Identical comments are true regarding the BFGS update to the inverse Hessian. The 
inverse form of the multiple BFGS update (7.3) is 

H ~ = H o + [ S ~  HoYk] W k T  + W ~ r  T - T  T 
W E  v 0 v - Y~ Ho 

(7.4) 

where _ v W~-Y~ SÆ. Again, assuming Ho is positive definite, this matrix is symmetric and 
positive definite if and only if v Y~ Sk is symmetric and positive definite. Again, the algebraic 
forms for (7.4) and (2.6) are very similar, and by comparing these equations and recalling 

Yk Sk = Dk, and definitions (2.3) and (2.7), it is immediate that the updates are identical if v 
in general are different otherwise. 

From these comparisons, one can see that in the context of limited memory methods, the 
multiple BFGS updates (7.3) or (7.4) would offer similar algebraic efficiencies to the 
representations ( 2.17 ) or (2.6) for a sequence of standard BFGS updates, that are discussed 
in this paper. The multiple BFGS updates have the disadvantage, however, that Bh or Hk is 
not in general symmetric and positive definite even ifthe condition s [y i  > O, i = 0 . . . . .  k -  1, 

that guarantees that the matrix produced by k consecutive, standard BFGS updates is 
symmetric and positive definite, is satisfied. Instead, the multiple secant updates require the 
rauch stronger condition that YVkS» be symmetric and positive definite, and there does not 
appear to be a practical way to enforce this condition computationally. Schnabel (1983) 
has instead considered ways to perturb Yk to I? k so that I?~SÆ is symmetric and positive 
definite, and the most recent secant condition (i.e. the last column of Yk) is unchanged. In 
addition, if the columns of Sk are not strongly linear independent, the updates ( 7.3 ) or (7.4) 
may be numerically unstable so some secant pairs taust be dropped from Sk and Y«. Due to 
the additional computations required by these perturbations, and the lack of symmetry and 
positive definiteness in the unperturbed multiple secant BFGS update, it does not seem 
advantageous to use the multiple secant BFGS update rather than k consecutive, standard 
BFGS updates in the context of limited memory methods. An interesting related question 
is whether there is a natural perturbation of Yk that causes the multiple secant update to be 

equivalent to (2.17 ) ; this does not seem to be the case, but as mentioned below the situation 
is different for the SR1 update. 
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Now we turn to the SRl update. The multiple secant SR1 update, which to our knowledge 
was first discussed in Schnabel (1983), if applied to B0 is given by 

Bk =Bo + (Yk -BoSD ( (Yk - BoS~)vsD - l (Yk  -- BoSk) T- (7.5) 

The matrix Bh given by (7.5) always obeys the k secant equations BkSc = Y«. Assuming Bo 
is symmetric, Bh is symmetric if and only if T Yk Sc is symmetric, which is true i f f (x)  is 
qnadratic but not necessarily otherwise. Like the standard SR1 update, Bh given by (7.5) 
is not necessarily positive definite even if the necessary conditions for the standard BFGS 
or multiple BFGS update to be positive definite are met. 

Comparing the multiple SR 1 update (7.5) to the formula (5.2) for k consecutive, standard 
SR1 updates, it is clear that the only difference between these two formulae is that (7.5) 
contains the term yTs  c as part of the middle, inverse expression, instead of the symmetric 
t e r m D c + L k + L  [ in (5.2). Recalling that Y[Sc =ÆT + D c + L  T, it is immediate that (7.5) 
and (5.2) are identical if/~c = L» i.e. if s Ty i = sTyi for all 0 ~< i, j ~ k - 1. This condition is 

true forf(x) quadratic, and in this case the multiple SR 1 update is the same as k consecutive, 
standard SRI updates. This should come as no surprise, because the quadratic termination 
result for the standard SR1 update also implies that the update preserves all past secant 
equations, as does the multiple secant form of the SRI. Note that the condition for the 
equivalence of the multiple SRI to k consecutive, standard SRI updates is far milder than 
the assumption of conjugate directions required for the equivalence of k standard BFGS 
updates to the multiple BFGS in the quadratic case. 

For non-quadraticf(x), however, the standard and multiple SR1 updates will generally 
be different. Again, the algebraic costs associated with using the updates are very similar, 
while the multiple SR 1 has the disadvantage that it does not, in general, preserve symmetry, 
while a sequence of standard SR1 updates does. Also, it is easier to monitor stability of the 

standard SR 1, since this only involves considering each individual terrn (yj - Bist) • Si rather 
than the matrix ( Y c -  BoSc) T S» For this reason, a sequence of standard SR1 updates would 
seem preferable to the multiple SR1 update in the context of limited memory methods. It is 
interesting to note that if Yc is perturbed to the i? c that one obtains by multiplying Bh given 
in (5.2) by S» then the multiple secant update becomes identical to (5.2). The same 
relationship is not true for the multiple BFGS update. 

Finally we consider the Broyden update for nonlinear equations. A multiple secant version 
of Broyden's update has been considered by several autbors including Barnes (1965), Gay 
and Schnabel (1978), and Schnabel (1983). In a limited context using the notation of 
Section 6, it is given by 

Ak =Ao + (Yc T IsT ' -AoSc)  (Sc Sc) (7.6) 

This update is well defined as long as Sc has full column tank, and obeys the k secant 
equations AcSc = Y» 

Comparing (7.6) to the formula (6.4) for k consecutive, standard Broyden updates, one 
sees that the only difference is in the matrix in the middle of the formula that is inverted. In 
the multiple secant update it is sTsc,  while in (6.4) it is the upper triangular portion of this 
matrix, including the main diagonal. Therefore, the two updates are the same if the directions 
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in Sk are orthogonal. The preference between these two formulas does not appear to be clear 

cut. The formula (6.4) has the advantage that it is well defined for any Sk, while (7.6) is 

only well defined numerically if the k step directions that make up Sk are sufficiently linearly 

independent. (If they are not, only some subset of them can be utilized in a numerical 

implementation of the multiple Broyden method; this is the approach that has been taken 

in implementations of this update.) On the other hand, (7.6) always enforces the k prior 

secant equations while (6.4) generally only enforces the most recent equation. Thus it 

would probably be worthwhile considering either method (or their inverse formulations) 

in a limited memory method for solving nonlinear equations. Note that the key difference 

between this comparison and the preceding comparisons of the BFGS and SR1 based 

forrnulae is that symmetry, which in general is inconsistent with satisfying multiple secant 

equations, is not a factor in the nonlinear equations case but is a factor for updates for 

optimization problems. 
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