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1. Introduction. The translational hull Q(S) of a weakly reductive semigroup S
plays an important role in the construction of ideal extensions of 5 (4.4 of [3], [6]),
and contains an isomorphic copy of S as a densely embedded ideal [5], [6]. The
purpose of this paper is to show that a great number of representations of semi-
groups are essentially homomorphisms into the translational hull C1(S) of a suitable
regular Rees matrix semigroup S=Jt°(G; I, A; P). In fact, a number of important
semigroups are isomorphic to £l(S) for some such S. For example, let 1 be the one
element group, / be a nonempty set, $(/) be the set of nonempty subsets of /.
Then we have

Q(ur<>(l;/,/;A))£ V(I),
D(^#°(l ; /, $(/); F)) s W(I)   with pAx = 1 if x e A, and 0 otherwise,

ü.(Ji°(l ; %(I), $(/); F)) z 3S(l)    with pAB = 1 if A n B ^ U, and 0 otherwise,

where V(I), W(I), 38(1) are the semigroups of all partial one-to-one transforma-
tions, partial transformations (written on the left), binary relations on /, respectively
(see [10] and the references listed there). It is easy to see that for S a right zero
semigroup, Í2(S) £ ys, the semigroup of all transformations on S written on the
right [3, Exercise 8 for §1.3]. For S=Jf\mF; IA, AA; [eKf,]), with the notation of
[4, §2], D(5) is isomorphic to the semigroup of all endomorphisms of the vector
space A over the division ring F [4], [11].

We will show that the Schützenberger representation associated with a regular
^-class and some other representations are closely related to homomorphisms
into either the translational hull or the semigroup of all right translations of a
regular Rees matrix semigroup. §2 has an auxiliary character; in it we introduce
the needed notation, the trace of a semigroup and the right wreath product, and
discuss the constructions to be used later. In §3 we consider the trace of a regular
i^-class, a homomorphism into its translational hull, and connections with the
Schützenberger representations and the sum thereof. At the end, we find several
embeddings of a regular semigroup. In §4 we introduce the fragment of a regular
i^-class and of a regular semigroup, perform an analysis similar to that in §3, and
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establish the connection with the results in that section and with transitive repre-
sentations by partial transformations. We introduce the contour of a semigroup
in §5, discuss its connection with the embedding of an inverse semigroup into a
symmetric inverse semigroup, and illustrate the previous constructions on the
example of a bisimple co-semigroup. Finally, in §6, we consider a representation
induced by a semilattice congruence on the semigroup and its connection with
some known representations.

2. Notation and preliminaries. We generally follow the terminology used in [3] ;
the notation is that introduced in [9] while undefined symbols have the meaning
given to them in [3] (thus our notation sometimes differs from that in [3]). Multi-
plication is usually denoted by juxtaposition. The zero of any semigroup is denoted
by 0 and the identity by 1. The functions are written either on the left or on the
right (as convenient).

Let 5 be any semigroup. The left [right] translations of S are written as operators
on the left [right] ; A(S) [P(S)] denotes the semigroup of all left [right] translations
of S under multiplication (AA')x=A(A'x) [x(pp')=(xp)p'] for all xe S. The transla-
tions A e A(S), p e P(S) are linked if x(Xy) = (xp)y for all x, y e S. The subsemigroup
of the direct product A(S) x P(S) consisting of all pairs of linked left and right
translations is the translational hull D.(S) of S.

Let K be a nonempty set. A function y on a subset of K (denoted dy) onto a
subset of K (denoted ry) is a partial transformation on K (the empty transformation
0 satisfies <f0=i-0=D). The set of all partial transformations on K written as
operators on the left [right] under the multiplication:

d(yy') = {xe K\xe dy', y'x e dy),
(yy')x = y(y'x)    if X e d(yy')

[d(yy') = {xeK\xedy,xye dy'}, x(yy') = (xy)y if x e d(yy')]

is a semigroup denoted by W(K) [ W'(K)].
The following results are taken from the author's paper [9]. Let Kbe a nonempty

set and G be a group. If D is a nonempty subset of K and >p: D -*■ G is a function,
we write d<fi — D. If i/>' is another such function, and dip n i^VG, define ^-0' by:

d(1> • f ) = # n df,      kty ■ <£') = (Jty)(*f )   if k e dtf ■ f ).
If also ß e W'(K), define V by:

dßi/j = {keK\kedß, kße#},       kßJ> = kß<f>   ifkedfy,
if dei/j^=[J. Now let F be a subsemigroup of W'(K) containing the empty trans-
formation 0. Let G wr F denote the set

{(4,,ß)\0*ßeT,+:dß-*G}vJ0
together with the multiplication

(if,, ß)(f, ß') = (í-"</>', ßß')   if ßß' ï 0, and 0 otherwise,
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and 0 acts as the zero. Then G wr T is a semigroup ; we call it the right wreath
product of G and F (more precisely, the notation should include the set K; in [9],
the notation R(M, G) is used for G wr W'(M)).

Next let S=Jt°(G; I, A; F) be a regular Rees matrix semigroup. The function b
defined by:

Pb = (i>,ß)       (peP(S)),   0b = 0
where (1; i, p,)p = (pAp; i, pß) if (1; i, p.)p^0, is an isomorphism of P(5) onto
G wr W'(A).

By M'(G, A) denote the semigroup of all row-monomial A x A matrices over G°
(row by column multiplication). The function d defined by :

(<l>,ß)d = (buv)       ((<!>, ß)e G ̂ rW'(A)),
where (buv) is the A x A matrix with

buv = p*p   if p, e dß, p.ß = v, and 0 otherwise,

and 0¿=0 is the A x A matrix all of whose entries are zero, is an isomorphism of
G wr W'(A) onto M'(G, A) (this is also noted on p. 85 of [1]).

One defines analogously the left wreath product ; the semigroups A(S), W(I) wl G,
and M(I, G) are isomorphic (using the obvious notation).

The projection nP: (A, p)—>p of £1(S) into P(5) is always a homomorphism,
and for S as above, it is one-to-one if and only if S is left reductive. If G= 1, the
one element group, we identify 1 wr W(M) with W'(M). To simplify the notation,
we will use trP, b, d for different semigroups S.

Let A be an index set and for every a e A, let Sa be a semigroup with zero 0a
and at least one more element, and suppose that «S« n £,, = □ if a^ß. Let 0 be
any element not contained in any Sa, and let S = [IJae.4 (Fa\0a)] u0 with the
multiplication: if x, y e Sa\0 and xy^0a in Sa, then x * y = xy, in all other cases
x * y=0. Then F is a semigroup; if F is any semigroup isomorphic to S we say
that Fis an orthogonal sum of semigroups Sa and write T=~£aeA ®Sa. If A={1, 2}
we write T=S1@S2.

Now let S be any semigroup, F be a union of some of its ^-classes, and let 0
be any element not in S. Let Tr (F) be the set F u 0 together with the multiplication

a* b = ab   if ab e Ra n Lb, and 0 otherwise,
and 0 acts as the zero. By [8, Lemma 4], Tr (F) is a semigroup ; we call it the trace
of T. When F is a single ^-class, this definition agrees with the definition of the
trace of a S-class [3, p. 92]. Let F be as above and let Da, a e A, be the ^-classes
of S contained in T. From the proof of [8, Lemma 4], it follows that Tr (F) =
laeA © Tr (Da). If Da is a regular ^-class, Tr (Da) is completely 0-simple [8,
Theorem 6], otherwise [Tr (Da)]2 = 0. Letting F be the index of regular ^-classes
in F, BzA, we obtain

Tr(F)=20Tr(Fv)©0
aeB
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if Q^B^A, Tr(F)=ß if B=fJ, where Q=QJ«eA\B ¡>a) u 0 with zero multi-
plication, and otherwise

Tr(F)= 2eTr(Z)a).
aeA

The direct product of a family of semigroups Sa, a e A, is denoted by YlaeA Sa.
When S is an inverse semigroup, the "adjoining multiplication" on the set S

defined on p. 310 of [14], agrees with the partial operation on Tr (S)\0 obtained
by removing the zero and declaring a * b undefined if ab <£ Ran Lb.

3. The trace of a regular ^-class. Fix a semigroup S and a regular ^-class D
of S. Let {R¡ | i el) be the set of ^-classes of S contained in D, {Lu | tx e A} be
the set of ^f-classes of S contained in D, and write Hilt = Rtr\ Lu. We suppose that
le/n A and that HXX = RX n Lx is a group with identity e. For every i e I, fix an
element r¡ e HiX, and for every y. e A, fix an element qß e HXu. Let

FD = ^°(ZZli;Z,A;F)

where P is a A x Z matrix over ZZii with put =qur¡ if cj^ e Hxx, and 0 otherwise.
Then F is a regular matrix and FD^Tr (D) ([8, Theorem 6], see also p. 92 of [3]),

so that TD is, up to an isomorphism, independent of the choice of Hxx, rh qu.
For each i e I, fix an idempotent et e Rt and let r{ be the unique inverse of r¡ in Lx
such that rt r{ = e¡ ; for every /x e A, fix an idempotent/, e F„ and let q'u be the unique
inverse of qu in Rx such that q'aqu=fi (note that r¡ri = e=quq¡1, see [3, p. 93]). For
every ieS, define As and p$ on FD by

Xs(a; i, ti) = (r'jsrtuij, tt) if jZZtl = /F^, and 0 otherwise,
(a; i, p)ps = (aqßsq'v; i, v) if HXas = HXv, and 0 otherwise,

A'O = 0PS = 0,

and let
Xn-s->(X\ps)       (seS).

The next theorem is of basic importance for the results of this and the next sections.

Theorem 1. xd is a homomorphism of S into fi(FD).

Proof. First note that if sHiX = HjX, then srt e HjX so that r'jsri e H1X; similarly,
if Hlus=HXv, then qusq'v e Hxx. Consequently, both As and ps map TD into itself.
Let s e S and (a; i, p.), (b; k, 6) e TD. lfqurk e Hxx and sHlx = HiX, then

X*[(a; i, p.)(b; k, d)] = Xs(aqurkb; i, 0) = (r'^aq^rjyj, 6)

= (r'wJ, p.)(b; k, 6) = [X°(a; i, p.)](b, k, 6);

if qfrk i HX1 or sHiX£ Rx, then X°[(a; i, n)(b; k, 0)]=O = [X°(a; i, tt)](¿?; k, 6). Hence
As is a left translation of TD ; one verifies similarly that ps is a right translation of TD.
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Further,

(1) (a; i, p.)[Xs(b; k, 9)] = (a; i, p)(r^srkb; m, 9) = (aqurmr^srkb; i, 9)

if sHkl = Hml and qßrm e Hn, and the left-hand side is 0 otherwise; also

(2) [(a; i, p.)ps](b; k, 6) = (aqßsq'v; i, v)(b; k, 9) = (aqusqiqvrkb; i, 0)

if Hus=Hlv and qvrk e Hxl, and the left-hand side is 0 otherwise.
Suppose that sHkl = Hml and qurm e HX1. Let hm=srk; then hm=srk e sHkl = Hml

so that qusrk=quhme H-L! since qurmeHn. Hence qusrke HltlsrkC\ R1 so that
Hlusrk n Fj^D, and thus by [3, Lemma 3.15(h)], we have Hus n F^D- By (i)
of the same lemma, Hllxs is an ^f-class contained in Ru and thus Hlus=Hlv.
Consequently qv e Hlv implies that qv = ti¡s for some tu e Hlß. Hence

qvrk = (tus)rk = t„.(srk) = tjim e H^

since qurm e H1X. We have proved that sHkl = Hml and qurm e HX1 imply Hlus = Hlv
and qvrkeHu; the converse implication is verified analogously. It follows that
the left-hand sides of (1) and (2) are simultaneously nonzero.

If sHkl = Hml and qurm e HX1, then taking into account that em3$hm, we obtain

(3) q„rmr^srk = qu(rmr^)(srk) = quemhm = quhm = qusrk,

and similarly

(4) qvSq'rtSk = (lus)(qiqv)rk = (qus)frK = qusrk.

Comparing (1) and (2) with (3) and (4), we see that As and ps are linked. Therefore
(As, ps) e Q.(TD) so that yD maps S into D.(TD).

Let s, teS and (a; i, p,)eTD. Suppose that tHtl = Hn and sHfl = Hki. Then
strt e sHn = Hkl so that stHn = Hkl by the dual of [3, Lemma 3.15(i)]. Also tf't=es
and trt e Hn so that e¡(tr^ = trt. We obtain

AsA'(a; i, p.) = Xs(r¡trta;j, p.) = (r^sr/jt^a; k, p.)

= (rkse¡(trí)a; k, p) = (r'st^a; k, p) = Xst(a; i, p.).

In the case that tHa nÄ1 = nor tHa = Hn but sHn n R1 = \J,we get XsX%a; i, p.)
= 0 and by the dual of [3, Lemma 3.15(h)], also that Asi(a; i, p.) = 0. Therefore
AsA'(a; i, p,) = Xst(a; i, p.), so that ASA' = As!. One shows similarly that pspl = pst, which
proves that xd is a homomorphism.

Since F is a regular ^-class and we have chosen r¡, qu in D, we can write the
Schiitzenberger representation MD of S relative to D with matrices over H°t
instead of over r(H)° (we are merely replacing an inner right translation by the
element that induces it). We call this representation the modified Schiitzenberger
representation and denote it also by MD. Thus MD: S -> M'(H1U A) is a representa-
tion of S by A x A row monomial matrices over H?u and we have the following
result.
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Proposition 1. xtí"pbd is the modified Schiitzenberger representation MD.

Proof. For any s e S, we have

SXDnPbd = (As, pVpW = p'bd = (f, ßs)d = (bsuv),

where

dßs = {tt e A | HXtls nRx¿ D},

(iß* = v   and   m/js = í7uíc7v   if HXus = ZZlv,

so that b^v=qllsq¡ if HXus = HXv, and 0 otherwise. Therefore MD = xD7Tpbd (see [3,
P-  HI]).

If 9:S->T is a homomorphism, we denote by ker 9 the congruence on S
induced by 9.

Corollary 1. ker (xd^p)={(s, t) \ ifdeD and either dsiftd or dt&td, then ds=dt).

Proof. Since both b and d are one-to-one, Proposition 1 implies that ker (xd^p)
= ker MD; the latter is given in [3, Lemma 3.18].

The "left" versions of Proposition 1 and its corollary also hold and correspond
to the dual Schiitzenberger representation. Denoting by M'D the modified dual
Schiitzenberger representation (i.e., writing elements of Hxx instead of inner left
translations), we have another consequence of the above results.

Corollary 2. For every se S, PM'D(s) = MD(s)P.

Proof. This follows easily from Proposition 1 and its dual, the linking of As and
Ps (Theorem 1), and [9, Theorem 7].

When Sisa regular semigroup, to the sum of all direct and dual (or only direct,
respectively) Schiitzenberger representations correspond the following homo-
morphisms (again the "left" versions will be omitted).

Proposition 2. Let S be a regular semigroup and let A be an index set of its
^-classes. Then the mapping x defined by :

X- s -*- (sxd)de&       (seS),

is an isomorphism of S into FloeA &(TD). The mapping xF defined by:

Xp : s -> (sxDTtF)Df¡A       (s e S)

is a homomorphism of S into \~[DeA f(TD) with

ker xP = {(s, t)\ifxeS and either xs8&x or xt@tx, then xs—xt}.

Moreover, if S is an inverse semigroup, xF is one-to-one.

Proof. This follows easily from Theorem 1, Proposition 1, and Theorems 3.19
and 3.21 of [3].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1969] REPRESENTATIONS OF SEMIGROUPS 309

We will next establish that for a regular semigroup S, x is related to an isomorph-
ism of S into the translational hull of the trace of S. We need an auxiliary result
which seems to be of independent interest.

Lemma 1. Let Sa, aeA, be a disjoint family of semigroups with zero satisfying
S2a = Sa. Then UaeA ^(Sa)^^(IaeA ® Sa).

Proof. Define 9 by

0 : ((Xa, Pa))asA -> (A, p)       ((X", p«) e Q.(Sa)),

where A0 = 0p = 0 and Aa=Aaa, ap = apa if a e Sa\0a. The proof that 9 is an iso-
morphism of YlaeA Q(Sa) mto ^Œ.aeA ® Sa) is straightforward and is omitted (it
does not require the restriction S2 = Sa). To prove that 9 is onto, let

(ï, f) e fig e Sa\

and ae Sa such that <j>a^0. Then a = xy for some x, ye Sa, so that (<f>x)y=<f>(xy)
=<f>a t^O. Since y e Sa, it follows that <f>x e Sa, and hence also <f>a e Sa. Consequently
(/> maps each Sa into itself; similarly </j maps each Sa into itself. Letting Xa=<j>\Sa,
Pa=i/>\Sa, we get ((Aa, ptt))aeA9=(<f>, tfi) and hence 8 is onto.

The next theorem provides two embeddings of a regular semigroup.

Theorem 2. Every regular semigroup can be embedded both in the direct product
of the translational hulls of the traces of its different ^-classes and in the translational
hull of its trace.

Proof. Taking into account that for a regular semigroup S every ^-class D is
regular and that then Tr (D)^TD, the first statement of the theorem follows from
the first statement of Proposition 2. We have seen in §2 that Tr (S)^ 2DeA © Tr (£>)
if S is regular and A is an index set of its ^-classes. Hence by Lemma 1,

£i(Tr(S))s II ß(Tr(Z>))
DgA

which together with the first statement of the theorem establishes the second.

4. The fragment of a regular ^-class. Let D he a regular ^-class of a semigroup
S, and let Lx, Rx, e, I, A etc. have the meaning given to them at the beginning of §3.
We define the fragment FD of D by FD=Jf°(l;L1, Rx; P) where P=(prl) with
Pn = l if rl=e, and 0 otherwise. Then F is a regular matrix since D is a regular
^-class.

Proposition 3. FD is (up to an isomorphism) independent of the choice of the
SC-class Lx and the Si-class Rx in D.

Proof. Let FD, Lx, Rx, and e be as above, let F2 and R2 be an & and an ^-class
in D with an idempotent / in H22=L2C\R2, and let F'D=Ji0(l;L2, R2; T),
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F= (tri), be the corresponding fragment of D. Fix an element a in Rx n L2 and let
a' be its unique inverse in F2 n Lx. Then by [3, Lemma 2.2] (Green's lemma),

<f>:l->la   (leLJ,       <p:r^a'r   (reRJ

are one-to-one mappings of Fj onto F2 and of Rx onto F2, respectively. By [3,
Theorem 2.2], the mappings x -*■ a'xa and y -*■ aya' are mutually inverse iso-
morphisms of H1X onto H22 and of H22 onto H1U respectively. Hence, if prl=l,
then rl=e so that (nji)(l<p) = (a'r)(la) = a'ea=f; conversely, if tJllfM=l, then a'(rl)a
= (a'r)(la) = (ri/))(l(p)=f so that r/=e. Consequently/?r¡ = 1 if and only if tr^M=l.
By [3, Theorem 3.11], it follows that FD^F'D.

Note that the corresponding statement is also true for TD which follows from
the fact that for any choice of Hu, rt, qß, TD is isomorphic to Tr (D). For every
se S, define As and ps on FD by

As(l ;/,/•) = (1 ; si, r)   if si e Lu and 0 otherwise,

(1 ; /, r)ps = (1 ; /, rs)    if rs e Ru and 0 otherwise,
As0 = 0ps = 0,

and let

iD:s-+(X;P')      (seS).

Theorem 3. ¿;D is a homomorphism of S into Í2(FD).

Proof. Let se S and (1 ; x,y), (1 ; z, w) eFD. If yz=e and sxeLu then

As[(l ; x, y)(l ; z, w)] = X*(l ; x, w) = (1 ; sx, w) = (1 ; sx, y)(l ; z, w)
= [X°(l;x,y)](l;z,w);

if either yz^e or sx $ Lu then As[(l; x,y)(l;z, w)] = 0=[As(l; x, y)](l,z, w). Hence
As is a left translation of FD ; one shows similarly that ps is a right translation of FD.
Further,

(5) (1 ; x, y)[X°(l ; z, w)] = (1 ; x, v)(l ; sz, w) = (1 ; x, w)

if 5z e Fj and jíz = e, and

(6) [(1 ; x, y)ps](l ; z, w) = (1 ; x, ji)(l ; z, w) = (1 ; x, w)

if ys e Fj and ysz = e. Since ze^, z = ve for some » e S1. Thus, if j*z=e, we have
e=y(sz), sz=(sv)e, that is jzJSfe and szeL-^. Hence ysz = e implies szeLx, and
similarly also ys e Rx. It then follows from (5) and (6) that As[(l ; x, y)(l ; z, w)]
= [Xs(l ; x, y)](l ; z, w) if ysz = e; if ysz=£e, then both sides are zero. Hence As and
ps are linked.

Let s, te S. If stx e Lu then tx e Lx and we have

A*A!(1 ; x, y) = A*(l ; 7x, y) = (1 ; ¿7x, y) = Asi(l ; x, y),
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while if stx i Lx, then ASA((1 ; x, y) = 0 = Asi(l ; x, y). Thus AsA' = Asi and similarly
pspt=pst, which proves that ÇD: s -*■ (As, ps) is a homomorphism.

Definition 1. We call the representation <&D:S^ W'(RX), defined by <S>D =
iDnFb, the Ponizovski representation of S relative to the regular ¿^-class D. Explicitly

<5>D:s^ßs       (seS)

where dßs={x e Rx \ xs e Rx} and xßs=xs if x e dßs.

Proposition 4. Oc is (up to equivalence) independent of the choice of the Si-class
Rx in D.

Proof. Let R2 be another ^-class contained in D. For any .Sf-class F2, we let
a, a', and <p be as in the proof of Proposition 3. We also let s -> ■/ be the corre-
sponding representation relative to R2. We must show that (dßs)<p = dys and
(xßs)<jß=(xt/j)ys if x 6 dßs. If ye (dßs)<p, then letting x=yp"1, we have x e dßs so that
xí e Rx, and thus (xs)tp e R2. But (xs)ip=a'(xs) = (a'x)s=(x</))s and hence y,yse R2
which implies that yedys. Consequently (dßs)4>^dys; a similar argument shows
that dys<=(dßs)4>, so (dßs)>fi = dys. If x e dßs, then

(xßs)ip = a'(xs) = (a'x)s = (x0)ys,

which then establishes the equivalence of the two representations.
The next result shows the connection between the Schiitzenberger and the

Ponizovski representations. We note that the Ponizovski representation and its
connection with the Schiitzenberger representation were found independently by
E. J. Tully, Jr. [15]. Define £ by

£ : (auv) -» (cxy)       ((auv) e M'(H1X, A))

where (cxy) is an Rx x Rx matrix with

cxy = 1    if x = uqu, y = vqv, uauv = v, u, v e Hxx, and 0 otherwise.

Theorem 4. £ is an isomorphism of M'(HXX, A) into M'(l, Rx) and MDl = <&Dd.

Proof. First observe that every element in Rx n LH can be written in the form
uqu for a unique ue Hxx. Thus every element of Rx can be uniquely written in the
form uqu with u e Hxx, /x e A, which implies that i is single-valued. If cxy = cxz= 1,
where x = uqu, y=vqv, z = tqe, then uauv = v, uauB = t and hence auv^0, auB^0. But
then v = 9 since (awv) is a row monomial matrix, which implies that v — uauv = uauB = t
and thus y=z. Therefore (cxy) is a row monomial matrix and £ maps M'(HXX, A)
into M'(l, Ru-

het (auv)l = (cxy), (bu,)l = (dxy), (0(Av) = (0, (0£ = (/*J, (cxy)(dxy) = (gxy),
x=uqu,y=vqv, u,ve H1X. lhenfxy = 1 o ueuv = vo u(£BeA auBbBv) = vo uauBbBv = v
for some 8 e Ao uaßB = t, tbBv = v for some 8 e A, t e Hxx o cxs = dsy — 1 for some
ze Rxo 22eBl cxzdzy = logxy = l. It follows that (fxy) = (gxy) which proves that
I is a homomorphism.
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With the same notation suppose that (cxy) = (dxy). Then cxy=l if and only if
dxy=l, whence uaßV = v if and only if ubuv = v. It follows that aMV^0 if and only if
buvj^0 and if so then a„v = ¿>av. Consequently (auv) = (buv) and thus £ is one-to-one.

Let se S and let x = uqu, y = vqv with u,veHxl- Then s(MDÇ) = (auv)£ = (cxy)
where atíV=q¡lsq'v if Hlus=Hlv, and 0 otherwise, so that

(7) cxy = 1    if uqusq'v = v, and 0 otherwise.

On the other hand, s(<S>Dd)=ßd=(bxy) where

dß = {x e R1 | xs e Fx}   and   xß = xs   if x e ¿¡8,

so that
(8) bxy = 1    if xs = y, and 0 otherwise.

If uqus = vqv, then uqßsq'v = vqvq^ = v since qvq'y = e and v e Hn- Conversely, suppose
that uqßsq'v = v. Then Hllls = Hlv and thus h<7w e 7/lH implies that «çaj e zYlv. Con-
sequently uq^sáCfy (see the beginning of §3) with q,qv =/v and we have

uqus = (uqus)fv = uq^q'^q,) = vqv.

Using this and (7), (8), we obtain bxy = 1 o xs=y o uqus=vqv o uqusq'v = vo cxy
= 1, which proves that (bxy) = (cxy). Therefore s(MDÇ)=s(<S>Dd).

Roughly speaking, the effect of £ on (auv) e M'(H1U A) is obtained by sub-
stituting every nonzero entry auv by the Hn x Hn matrix which is its incidence
matrix of the right regular representation of Hn and every zero entry auv by the
Hn x Hn zero matrix and then omitting all the parentheses.

Corollary 1. ker (£D7rP) = ker (xd^p), ker £D = ker xd-

Proof. By the theorem, í¡D-n-Pbd=XD7rpbdr, where b, d, and £ are one-to-one
(warning : -nP on the left is in general different from ttp on the right, the same for
b, d), which proves the first part. Since ker £D = ker (fdtta) n ker (i;D-nP) and the
same kind of formula holds for ker yb, the first part of the corollary and its left
dual imply the second assertion.

Corollary 2. Ft?7 S be a regular semigroup and A be an index set of its ^-classes,
then the mapping f defined by:

Ç:s^(s£D)DeA       (se S)

is an isomorphism of S into YIdea ^(Fd). The mapping £p defined by

e:s->(siDnP)       (seS)

is a homomorphism of S into FIdea P(Fd) with ker £p = ker yp; £p is an isomorphism
if S is an inverse semigroup (cf. Proposition 2).

Proof. That f is a homomorphism is obvious. Further, using Corollary 1 we
obtain

ker i =  f) ker £d =  H ker Xd = ker x,
DeA DeA
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which by Proposition 2 implies that f is one-to-one. The remaining statements
follow directly from Corollary 1 and Proposition 2.

We will use £ to embed a regular semigroup into the translational hull of a
rectangular 0-band (a rectangular 0-band is a regular Rees matrix semigroup over
a one element group). For this we need a new "sum" of rectangular 0-bands and
two lemmas.

Lemma 2. Let Sa=^°(l ; Ia, Aa; Pa) with Pa = (paud, ae A, be a disjoint family of
rectangular 0-bands and suppose that Ia n Ie = □ = Aa n Ae ifa=£ß. Let I=\JasA Ia,
A=(JaeA Aa, and define the sum ^a€A Sa by

2 Sa = Jt\l;I,A;P)
aeA

where P=(pud is a Ax I matrix with

Pm = 1    if f- e Aa, i e I a for some aeA and paai = I, and 0 otherwise.

Then 2a<=x Sa is a rectangular 0-band and is (up to an isomorphism) independent of
the particular Rees matrix representation of different Sa.

Proof. The regularity of F follows from the regularity of each Pa. Straightforward
reasoning, using [3, Corollary 3.12], shows that if Sa^S'a for all a e S, and S'a
satisfy the conditions of the lemma, then ~2aeA Sa s ~ï,aeA S'a.

Lemma 3. With the notation of Lemma 2, let S=~2aeA® Sa and T=^aeASa.
Then S is a subsemigroup of T and Q(S) can be embedded in fi(F).

Proof. The first statement is obvious. Define 8 by

8:(X,p)^(X',p')       ((X,p)eQ(S))

where 08=0, and if p^O, 0/ = 0,

(1 ; i, tx)p' = (1 ; i, f,ß)   if tx e Ae, (P\Sa)b = 0 e W'(Aa),   tt edß,

and 0 otherwise; A' is defined dually. We have seen in the proof of Lemma 1 that
P maps each Sa into itself so that indeed (p\sJbe vV'(Aa). One shows without
difficulty that 8 is an isomorphism of Q.(S) into fi(F); we omit the details.

Let S be a regular semigroup and let A be an index set of its ^-classes. We call
F=2d£a Fd the fragment of S.

Theorem 5. Every regular semigroup can be embedded in (i) the direct product of
the translational hulls of the fragments of its different ^-classes, (ii) the translational
hull of the orthogonal sum of the fragments of its different 2-classes, (iii) the
translational hull of its fragment.

Proof. Part (i) is a restatement of the first statement of Corollary 2 to Theorem 4.
By Lemma 1, (i) implies (ii). Finally, (ii) together with Lemma 3 implies (iii)
(Lemma 2 assures that the fragment is well defined).
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The following remarks concern transitive representations by partial transforma-
tions on a set. Ponizovski [12] proved that for a large class of semigroups S
(including the class of finite semigroups) every transitive representation is equivalent
to a representation which acts on the set R¡p where F is an á?-class of S contained
in a nonnull principal factor and p is a right stable equivalence relation on F.
He also established when two such representations are equivalent for a smaller
class of semigroups (still large enough to include all finite semigroups). If we restrict
ourselves to finite semigroups S, then it follows easily from his results that every
transitive representation of S factors through 3>D for some regular ^-class D of S
(hence the name for 0D). Furthermore, Lallement and the author [7] proved that
every irreducible representation of a finite semigroup S by n x « matrices over a
field, roughly speaking, factors through MD for some regular ^-class D of S. It
follows from MDt. = <PD¿ (Theorem 4) that also every transitive representation of a
finite semigroup factors through MD for some regular ^-class D of S. We illustrate
these remarks by the following diagram. In it each loop is a commutative diagram,
9Jl„(F) denotes the semigroup of « x « matrices over a field K, X is any nonempty
set, the broken lines mean "can be completed to a commutative diagram" and
concern mainly finite semigroups.

">^eSe                              -Uete^6^

Ü(FD) <-^- S -*5-„ Q(TD)

Ml(l,Ri) * M'(H1UA)

We have considered so far only regular ^-classes. If F is a nonregular ¿^-class
of a semigroup S, then the Schiitzenberger representation is a homomorphism of S
into M'(r(Hn), A), with the usual notation. The latter semigroup is isomorphic
to P(J?°(r(Hn); I, A; F)) for any regular matrix F over T(Hn)° (similarly for the
dual Schiitzenberger representation); however, there seems to be no natural
candidate for F!
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5. The contour of a semigroup. Let 5 be any semigroup and define the contour
C of S by

C - uT°(l ; S, S; P)
where P=(pab) in an 5x5 matrix with pab= 1 if abe Ran Lb, and 0 otherwise.
It is easy to see that P is a regular matrix if and only if 5 is a regular semigroup
(use [3, Theorem 2.17]). The next theorem provides yet another embedding of a
regular semigroup into the translational hull of a rectangular 0-band. For an
arbitrary semigroup S, we define As and ps for s e S by:

As(l ; x, v) = (1 ; sx, y)   if xä'sx, and 0 otherwise,

(1 ; x, y)ps = (1 ; x, ys)   if yâiys, and 0 otherwise,
As0 = 0PS = 0,

and let
V:s-*(XS, p*)       (seS).

Theorem 6. r¡ is a homomorphism of S into fi(C) and

ker (777TP) = {(s, t) | if x e S and either xsStx or xtâîx, then xs = xt).

If S is a regular semigroup, then ker (r/np) = ker xF and r¡ is one-to-one.

Proof. The proof that As is a left translation and ASA' = Ast is almost the same as
the proof of the corresponding statements in Theorem 3 and is omitted ; the case
of right translations is dual. It remains to show that As and ps are linked. For any
x, v, z,w e S, we have

(9) (1 ; x, y)[X%l ; z, w)] = (1 ; x, y)(l ; sz, w) = (1 ; x, w)

if z^Csz and ysz e Ry n Lsz, and

(10) [(1 ; x, y)ps](l ;z,w) = (l; x, ys)(l ;z,w) = (l; x, w)

if y&tys and ysz e Rys n Lz. By (9) and (10), to show that As and ps are linked, it
remains to show that zJifsz and ysz e Ry n Lsz if and only if y&ys and ysz e Rys n Lz.
It is easy to see that both of these conditions are equivalent to ysz e Ry n Lz.
Therefore -q is a homomorphism of S into fi(C).

For any s, t e S, we have P$ = pto for every (1 ; y, x) e C, (1 ; y, x)t?s=(l ; y, x)p*
o for every x e S, xsSix if and only if xt0lx and if so then xs=xt o if xe S and
either xí^x or xtStx, then xs=xt. This proves the second statement of the theorem.
The third statement follows from Proposition 2. Taking into account that for á
regular semigroup, by symmetry, we also have a corresponding statement for
ker (r¡TTA), the last statement now follows from Proposition 2.

Definition 2. We call the representation T: S^ W'(S), defined by Y=7?7rPé,
the Vagner representation of S. Explicitly

V-.s^ß"       (seS)
where dßs={x e S \ xSixs} and xßs=xs if x e dßs.
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This representation was proposed by Vagner [17, formula (22)], with different
notation. The next proposition also follows from the theorem in [17] and [16,
Theorem 6].

Proposition 5. If S is an inverse semigroup, then the Vagner representation Y
of S is essentially the embedding of S into the symmetric inverse semigroup V'(S)
due to Vagner [16], and pab=l if and only ifa~1a = bb'1.

Proof. First observe that Y = -q-nPb maps S into W'(S) while Vagner's embedding
is a function on S into V'(S), the symmetric inverse semigroup on S, whence
"essentially" in the statement of the proposition. We have y.s^ßs where
dßs={x e S | x^xí} and xßs = xs if x e dßs. It takes only little consideration to see
that dßs = Ss~1, so that the assertion follows from Theorem 1.20 [3]. Alternatively,
it follows from Theorem 6 that Y is a homomorphism, and from Theorem 6 and
Proposition 2 that Y is one-to-one. One verifies without difficulty that ßs and
frs~1} are mutually inverse partial transformations which proves that ßs is one-to-
one. This establishes the first statement. For the second statement, first note that
in S, abata and abSCb are respectively equivalent to a = abb'1 and b=a~1ab. If
Pab = I, then abe Ran Lb so that a = abb~1 and b = a~1ab, and thus

a-^a = a-^abb'1) = (a^ab^-1 = bb'1.

Conversely, if a~1a = bb~1, then a = aa~1a = abb~1 and b = bb~1b = a~1ab so that
abe Ra n Lb and hence pab = I.

In comparison with Proposition 5, we have the following situation with the trace
and the fragment of a regular ^-class D of any semigroup. It is a simple argument
to show that the statements (i) every 3? and every ^-class in D contains exactly
one idempotent, (ii) TD is a Brandt semigroup, (iii) FD is a Brandt semigroup, are
equivalent. In such a case, according to [9, Theorem 1], the image of Ü(FD) under
TTpb is Hn wr V'(A), and the image of Ü(FD) under -¡rPb is V'(RX) (with the notation
used previously). Consequently ydwp6 is a homomorphism of S into the inverse
semigroup r/u wr K'(A), and the Ponizovski representation i>D = fD77-P6 is a
homomorphism of 5* into the symmetric inverse semigroup I"(Fi). In particular,
a bisimple inverse semigroup S can be embedded in G wr F'(A) and also in V'(Rx)
where G is a maximal subgroup of S, A is an index set of its =S?-classes, and Fx is
any J'-class of S. We see that in this case the Ponizovski representation is "more
economical" than the Vagner representation since the former embeds S into
V'(R{) and the latter into V'(S). We illustrate the concepts studied in §§2, 3, and 4
with the example of a bisimple «j-semigroup S [13].

A bisimple co-semigroup is a bisimple inverse semigroup whose idempotents
constitute a chain of the form e1 > e2 > ■ ■ ■. Let N denote the set of nonnegative
integers, G be a group, and a be an endomorphism of G. On S=Nx Gx N define
the multiplication

(m, g, n)(p, h, q) = (m+p-r, (gap-r)(han-r), n+q-r)
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where r = min {n, p] and a0 is the identity mapping on G. Then S is a bisimple
cu-semigroup, and conversely, every bisimple cu-semigroup is isomorphic to a
semigroup so constructed. Since S is bisimple, D = S is its only S-class, and since
it is an inverse semigroup, both TD and FD are Brandt semigroups. Let e = ex
= (0, 1, 0), r¡ = (i, 1, 0), c7; = (0, 1,7'); a simple computation shows that the following
assertions are valid,

(i) TD=Jt\G;N,N;A),

¿fiv.h.ti = {n e N \ n ^ p},
nßo-*-«) = n+q-p,       nfv-%-<ù = han~v   if n edßiF'h-'I);

(ii) FD=Jf°(l;NxG, GxN; A),

0p.k.<o = {fa n)eGxN\n^p],
(g, fi)j8<»-»-« = (g(han-*), n+q-p)   if (g, n) e dß'"-h^;

(iii) C=Jf°(l;NxGxN,NxGxN;P) where

P(m,9,nx.p,h,o) =1    if n = p, and -2- otherwise,

¿^(P.ft.«) = {(W) 9, „) e 5 | n ^ /?},

(m, g, n)ßip-h-'1) = (m, gíncc"-"), n+q-p)   if (m, g, n) e ^•"•^

6. A representation determined by a semilattice congruence. Let S he a semi-
group and er be a semilattice congruence on S (that is, S/a is a semilattice). Let
gff=.^0(l ; S, S; P) where P=(pxy) is an Sx S matrix with pxy = l if xoy, and 0
otherwise. The matrix F is regular since o is reflexive. For every se S, define As
and ps on Qa by :

As(l ; x, j>) = (1 ; sx, y)    if xcrsx, and 0 otherwise,

(1 ; x, y)ps = (1 ; x, jí)   if yoys, and 0 otherwise,
As0 = 0PS = 0,

and let

S„:s^(\*,p»)       (seS).

The proof of the assertions that follow is carried out by methods similar to those
in the preceding three sections and is omitted.

Theorem 7. 8„ is a homomorphism of S into fi(ö„). Furthermore, S„ is one-to-one
if every a-class is weakly reductive, S^wp is one-to-one if every a-class is left reductive.

Let A0 = 8aiipb; then A„: S^ W'(S) is a homomorphism and is an isomorphism
if every a-class is left reductive (by Theorem 7).

Proposition 6. For o the universal relation on S, Aa is the right regular representa-
tion of S. For S a "weakly cancellative" semigroup and a the maximal semilattice
congruence on S all of whose classes are cancellative, Aa and its left dual are the
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representations introduced by Burmistrovich [2] (the proof of 2) => 4) in [2, Theorem
H).

If S is a regular (inverse) semigroup and a is a semilattice congruence on S,
then each cr-class is a regular (inverse) semigroup (this is immediate if one observes
the obvious fact that 2<^a). Hence Theorem 7 provides the embedding 8a of a
regular semigroup S into the translational hull of a rectangular 0-band, and the
embedding Aa of an inverse semigroup S into W'(S) (for every semilattice con-
gruence a on S). If 5 is a union of groups, then 2 is a semilattice congruence,
Qb = C where C is the contour of S, and 8 = r¡.
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