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BRUCE A. BARNES

ABSTRACT.  In this paper the star representations on Hubert space of
the /'-algebra of an inverse semigroup are studied.  It is shown that the set of
all irreducible star representations form a separating family for the /'-algebra.
Then specific examples of star representations are constructed, and some theory
of star representations is developed for the /'-algebra of a number of the most
important examples of inverse semigroups.

Introduction.  Let 5 be a semigroup (as defined in [2, p.l]). If a, b E S,
we write ab for the semigroup product of a with b. Let ll(S) be the set of all
complex-valued functions fon S such that

11/11, = L  l/(a)l<~.
aGS

lif.gE /'(S), then the convolution product / * g is given by the definition

(f*gXc)= Z f(fl)s(b),      cES.
a,b with ab=c

With convolution multiplication and norm II • II1, I1 (S) is a Banach algebra. If
a E S, we identify a with the function which takes the value 1 at a and is 0 every-
where else. In this way S is embedded in /'(S). Having made this identification,
when /G P(S) we have

/= £ f(a)a.

A map a —*■ a* of S into S is called an involution on S if

(ab)* = b*a*   all a, b E S, and

(a*)* - a        all a G S.

If S has an involution *, then P(S) has an involution * defined by the rule

/* = E /(a)*«*,    feHs),
- a£5
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362 B. A. BARNES

where here the complex conjugate of a complex number X is denoted X*. In
the familiar case when S is a group, the natural involution * on S is g* = g~x,
g ES. The algebra ll(S) is the usual convolution group algebra of 5.

For a general semigroup S the algebra ll(S) was first studied by E. Hewitt
andH. Zuckerman [10]-[12] and by W. D. Munn [16]. In their fundamental
paper [12], Hewitt and Zuckerman consider Û(S) for S an abelian semigroup.
In this case ll (S) is a commutative Banach algebra, and the main problem is to
find conditions on S that insure the existence of a separating family of multiplica-
tive linear functionals on lx(S). Hewitt and Zuckerman completely solve this prob-
lem, proving in [12, Theorems 3.5 and 5.8] that there exists a separating family
of multiplicative linear functionals on ll (S) if and only if the collection of semi-
characters of iS separates the points of S if and only if S has the property that
whenever x2 = y2 = xy, x, y ES, then x = y. In terms of representation
theory, the set of nonzero multiplicative linear functionals on Z1 (5) (or equi-
valent^ the set of semicharacters of S) is in a natural one-to-one correspondence
with the set of one dimensional (irreducible) representations of /!(S). Thus,

2 *> —when S is abelian, S has the property that whenever x = y¿ = xy, x, y, E S,
then x = y if and only if the set of irreducible representations of Z1 (S) form a
separating family, i.e. lx(S) is Jacobson semisimple.

For a general semigroup S there is an extensive theory concerning the rep-
resentations of S by finite matrices over a field due to A. H. Clifford, W. D.
Munn, G. B. Preston, Hewitt and Zuckerman, and others; see [2, Chapter 5].
At least for certain types of finite (nonabelian) semigroups S, the irreducible rep-
resentations of /!(5) can be determined, and it can be shown that there exists
a separating family of irreducible representations of /!(5) [13], [2, Chapter 5].
Of course, when 5 is a group it is a standard fact that /'(S) has a separating
family of irreducible representations (in fact the set of irreducible star represen-
tations of lx(S) on Hilbert space form a separating family).

However, if the semigroup S is neither abelian, nor finite, nor a group,
little is known about the properties of the Banach algebra ll (S), about the infi-
nite dimensional representations of P(S) as bounded operators on a Banach space,
about the set of irreducible representations of l*(S), or whether P(S) is Jacobson
semisimple. In a recent paper [1], B. Barnes and J. Duncan made some progress
on these questions when S is the free semigroup with a finite or countably infi-
nite number of generators (and also, in some cases where the generators satisfied
reasonable relations). The semigroups considered in [1] all have natural involu-
tions. Barnes and Duncan determine irreducible star representations of the star
algebra l*(S) on Hilbert space, and prove that these form a separating family for
/1(5). In particular, /'(S) is Jacobson semisimple in this case.

In this paper we consider the representation theory of 5, or what is equi-
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THE /'-ALGEBRA OF AN INVERSE SEMIGROUP 363

valent, the representation theory of I (S) where S is an inverse semigroup. In
this case, if a E S, then by definition there exists a unique element b ES such
that the following two equalities hold aba = a, bab = b; see [2, p. 27]. When
a and b satisfy these equalities we write a* = b (in the usual notation a-1 = b).
Then a —► a* is an involution on S, and lifting this involution on S to an invol-
ution * on ll(S), we have that /'(S) is a Banach star algebra. A star representa-
tion of .S on a Hubert space H is a semigroup homomorphism it: S —► B(H) with
the property that it(a*) = it(a)* for a ES. Here B(H) denotes the set of all bounded
operators on H. Since aa*a = a, we have that a*a is an idempotent in S. Then
it(a*a) = it(a)*it(a) is a self adjoint idempotent in B(H). This means that it(a) is a
partial isometry on H for all a G A [8, pp. 62—63]. Thus a star representation of
5 is a representation of 5 as a semigroup of partial isometries on some Hubert space.
Groups are special examples of inverse semigroups, and this notion of star repre-
sentation is a natural extension of the idea of representing groups as groups of uni-
tary operators on a Hubert space. Every star representation it of S lifts to a star
representation it of Í1 (S) by letting

»CO = E A«M<0,    /e/'CS).
In the other direction, the restriction of a star representation of /'(S) to 5 is a
representation of S by a semigroup of partial isometries on the representation
space.

The first result we prove is that when S is an inverse semigroup then the
set of the irreducible star representations of ll(S) is a separating family (§2).
Most of the rest of the paper is devoted to the determination of irreducible star
representations of I1 (S) for some of the most interesting examples of inverse
semigroups: certain semigroups of partial transformations on a set, completely
0-simple semigroups, and the bicyclic semigroup; see §1, Examples (1.1)-(1.4).

In §3 a general theory is developed concerning star representations of /'(S)
determined by idempotents e in S with eSe a finite set. These results are applied
in §4 to the symmetric inverse semigroup on a set X (see Example 1.1). More
examples of irreducible star representations of the ll -algebra of this semigroup
are given in §5. In §6 a detailed theory of representations of completely 0-
simple inverse semigroups (Example 1.3) is presented. The last section, §7, is
concerned with the representations of the Z1-algebra of the bicyclic semigroup
(Example 1.4).

The class of inverse semigroups contains many different types of examples.
We necessarily deal with only a few types here, but even for these few we have
found the representation theory to be rich, varied, and very interesting.

Part of the research for this paper was done at Stirling University, Stirling,
Scotland. The author gratefully acknowledges the support of the Science Re-
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search Council of Great Britain, and the hospitality of Stirling University during
his stay in Great Britain. The author also thanks Professor John Duncan of Stirl-
ing University who suggested this area of study.

1. Inverse semigroups: basic facts, examples, notation. In this section we
make a brief review of some of the basic facts and terminology concerning in-
verse semigroups. Usually we use the same terminology and notation as [2] and
[3], but there are some differences. Also, we give a very brief discussion of the
examples of inverse semigroups that will most concern us here. In the last part
of this section we establish some general notation.

A semigroup S is an inverse semigroup if for any a E S, there exists a
unique element a* ES such that

aa*a = a   and   a*aa* = a*.

Then the map a —► a* is an involution on S. Throughout the remainder of this
paper S will always denote an inverse semigroup. The idempotents of S play a
crucial role in the algebraic theory of S, and in some parts of the representation
theory of ^(S). Let Es denote the set of all idempotents of 5. It is immediate
that a*a E Es for all a E S. Thus, Es is never empty. An important fact that
we use repeatedly is that ef = fe whenever e, fEEs [2, Theorem 1.17].

There are several useful relations on the set Es.  First we define an equiv-
alence relation on Es as follows:

Definition.   If e, /G Es, then e ~ / if there exists an element aES
such that e = a*a and / = aa*.

We check the transitivity of the relation ~. Assume that e, f, gE Es,
e ~ /, and / ~ g. Then by definition there exist a, cES such that e = a*a, f =
aa*,f= c*c, and g = ce*. Then e = a*aa*a = a*fa = (ca)*ca, and g = cc*cc*
= cfc* = (ca)(ca)*. Thus, e ~ g. It is not difficult to show that e ~/if and
only if ep/(see [2, pp. 47-48] and [3, p. 102]), but we make no use of this
fact.

A second relation on Es is the usual partial ordering of idempotents. If
e, fE Es, then e < / if ef = fe = e [2, pp. 23-24]. The relations >, <, >, are
defined as usual in terms of <.

An element 0 G 5 is called the zero element of S if ad = 8a = 8 for all
a G S. We reserve the notation 8 for the zero of 5 whenever S has a zero.

Let I be an ideal of S. We denote the Rees quotient semigroup of S modulo
I as 5/7 [2, p. 17]. The elements of 5/7 are the elements {a}, a E S\I (set dif-
ference), and the element I. The semigroup 5 acts on S/I in a natural way:  if
aES, then

a{b} = {ab}   iiab$I,
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THE /'-ALGEBRA OF AN INVERSE SEMIGROUP 365

a{¿>}=7        iiabEI,b$I,

al = l.

These equations define how a acts on the left on S/I. The action of a on the
right on 5/7 is defined in a similar manner.

The concept of primitive idempotent plays a role of central importance in
the algebraic theory of inverse semigroups.  An idempotent e E Es, e ¥= 8, is
primitive if whenever fEEs and /< e, then /= e, or in the case S has a zero,
either/= e or/= 8. We use a slightly more general concept in §3 to relate
the representation theory of /' (S) to the representation theory of the 71 -algebra
of certain groups. We say an idempotent e is primitive modulo an ideal 7 of 5
if {e} is a primitive idempotent of 5/7. When e is primitive modulo I, then it is
not difficult to verify that the set {eSe} in S/I is a group with zero [2, p. 5].
We let

Ge = {{eae}: {eae} E S/I, eae £/}.

When S has a zero, then we naturally identify S/{8} with S. In this case prim-
itive idempotents modulo {8} are identified with primitive idempotents of S.

In the case when S has a zero we make certain technical changes in the
terminology used in the introduction. First, /'(S) denotes the set of complex-
valued functions /on S such that 2a€S l/(a)l < °° and f(6) = 0. Second, if
it is a representation of S, we always assume that tt(8) = 0.

Now we turn to a brief description of the examples with which we are
chiefly concerned in this paper.

Example 1.1. Jx, the symmetric inverse semigroup on a set X. Let X
be a nonempty set. The elements of Jx are the one-to-one maps b defined on
a domain Db in X with values in X. The set of values of b we denote by Rb.
We also assume that the empty map 0 is in lx. By convention Ob = bO = 8
for all b E Jx.    If b, c E lx, b ¥= 8, c # 8, define Dbc = { x G X:
xEDc and c(x) E Db}. liDbc is empty, then let be-8. Otherwise, be is the
usual composition of the maps b and c defined on Dbc. With this multiplication
lx is a semigroup. If b G Tx, b ¥^9, let b* be the map with domain Rb defined
by b*(x) = y if and only if b(y) = x. It is not difficult to verify that b* is the
unique element in lx satisfying the equations bb*b = b and b*bb* = b* [2,
p. 29]. Thus Jx is an inverse semigroup. The idempotent maps in Jx are the
maps e such that e(x) = x for all x G De.

The inverse semigroup ïx is universal in the sense that if S is any inverse
semigroup, then S is isomorphic with an inverse subsemigroup of Js [2, Theorem
1.20].

Example 12.   fx, the semigroup of finite one-to-one maps on A".  Let X
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be a nonempty set. We denote by Vx the inverse subsemigroup of lx consist-
ing of those maps b E Jx such that Rb is finite and the empty map 8. In § §4
and 5 we shall mainly deal with representations of I1 (5) where 5 is some inverse
subsemigroup of íx with ¥x C 5 C Jx or where 5 C F^-.

?x is an ideal in lx. For each k > 0, let Ffc be the set of all maps b G lx
such that Rb contains at most k elements, and the empty map 8. Also let F0 =
{8}. Each of the sets Vk, k > 0, are inverse subsemigroups of Jx, and also ideals

If e is any idempotent map in r~k+ j, it is not difficult to verify that e is
primitive modulo ¥k, and that Ge is the symmetric group on k + 1 elements.

Example 13.  Completely 0-simple inverse semigroups. A semigroup 5
with zero is completely 0-simple if the only ideals of 5 are { 8} and 5, and 5
contains a primitive idempotent e [2, §2.7].  It is easy to show that Fft+ x/Ffc
is completely 0-simple for k > 0 [3, p. 223].

We give an abstract example which is in fact typical of the genre. Let 5
be an inverse semigroup with zero. Assume that J is a subset of Es with the
properties

(i) 8 EJ,eEJ for some e * 8,
(ii) if e.fEJ, e^f, then ef = 8, and
(iii) if e, fEJ, e* 8, / # 8, then e ~ /.

Then let

Sj = {aE S: a*a E J and aa* E J).

The nonzero idempotents in Sj are obviously primitive.  Let I be an ideal of Sj
such that aEI, a^d. Let b be any element of Sj. There exists cESj such
that Z>*6 = c*c and cc* = a*a. Then

b = bb*bb*b = bc*cc*c = bc*a*ac El.

This proves that { 8 } and 5, are the only ideals of Sj.
Example 1.4.   C, the bicyclic semigroup [2, pp. 43-44]. Let C be the

semigroup consisting of an identity 1 and all the words in two letters p and q
subject to the single relation qp = 1. Specifically, C = {pmqn, m>0,n>0}.
The product of pmqn and ptqk is the word pmq"p'qk simplified by the relation
qp = 1.  It is easy to verify that p* = q, and more generally, (pmqn)* = p"qm.
C is the most important specific example in the class of bisimple inverse semi-
groups. It is also the member of this class which has the simplest structure.

Some miscellaneous notation:  The scalar field involved is always the field
of complex numbers, C. If X G C, then X* denotes the complex conjugate of X.

Since we deal only with star representations of lx(S) on Hilbert space, we
take "representation" to mean automatically "star representation". Let tt be a
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representation of a star algebra on a Hilbert space K. We often use the pair (it,
K) to designate the star homomorphism it together with the representation space
K. If / is a 77-invariant subspace of K, then it \J denotes the restriction of the
representation it to the subspace J. A representation is a subrepresentation of
(it, K) if it is of the form (it \J, J) where J is some rr-invariant subspace of K. If
two representations (itv Kt) and (it2, K2) are unitarily equivalent, we use the
notation it1 « it2.

If H is a Hilbert space, we use the notation (v?, i/0 for the inner product of
<p and ^ EH unless a different notation is explicitly introduced. A pre-inner
product on a vector space is a form which satisfies all of the axioms of an inner-
product except that it may be degenerate.

If X is a set, then IA"l denotes the cardinality of X. If T and S are subsets
of X, then T\S = {xET:x$S}. If A" has a topology and 7 is a subset of A",
then cl(7) is the closure of T in X.

2. The existence of a separating family of irreducible representations for
I1 (S).  In order to prove that a Banach star algebra A has a separating family of
irreducible representations on Hilbert space, it suffices to prove that A has a
faithful representation on some Hilbert space [17, Theorem (4.6.7)]. We show
that I1 (S) has a faithful representation via the construction of the left regular
representation of /!(5) on l2(S) which we now define.

The space l2(S) is the usual Hilbert space of all complex-valued functions
/ defined on S such that Saes l/(a) I2 < °°, and with the additional convention
that f(8) = 0 if S has a zero. We let {tfa): aES.a^d} denote the standard
orthonormal basis for l2(S).

lia, bES, b ¥= 8, define

tp(ab)   if a*ab = b,

0 iia*ab*b.

If/G /1(5),/= 2Xfcafc, and gEl2(S),g = Zpfibj), we define

*(/> = Z \^(ak>P(bj).
k.i

Proposition 2.1. 77ie map f —> it(f) for fEll(S) is a representation of
l1(S)onl2(S).

Proof.   Assume that a, b, c E S. First we verify that

(1) {a*abc = be and b*bc = c «=> {b*a*abc = c.

If the left-hand side of (1) holds, then b*(a*abc) = b*bc = c. Conversely, if
b*a*abc = c, then

it(a}p(b)■
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b*bc = (b*b)b*a*abc = c,

bc = bb*a*abc = a*a(bb*b)c = a*abc.

This establishes (1).
Now suppose that a, b, cES, c¥=8. Then from the definition of ?r we

have n(ayn(b}fi(c) = tfflbc) ■*=> the left-hand side of (1) holds •*=> the right-hand
side of (1) holds <=> ■n(abyp(c) = <p(abc). Thus, it(abyp(c) = n(a)n(byp(c), so
that tt defines a homomorphism of/'(5) into the algebra of bounded linear oper-
ators on /2(5).

Next we show that when a, b, c E 5, then

(2) {a*ab = b, and ab = c <=> {aa*c = c, and a*c = b.

Suppose the left-hand side of (2) holds. Then a*ab = a*c and b = a*ab = a*c.
Also, aa*c = ab = c. Therefore the right-hand side of (2) holds. The reverse
argument is the same.

Now to prove that 7r is a representation it suffices to check that if a, b, c
G5\{0}, then

(Ti(ayp(b), rtc)) = W>), 7T(a*yp(c))

where ( • , • ) is the inner product on l2(S). Thus, it is enough to show that
(TT(àyp(b), *p(c)) = 1 if and only if (<¿>(¿>)> f(«*Mc)) = 1. We have

(TT(ayp(b), ip(c)) « 1 «■* TT(a}f(b) = <p(c) <=> a*ab = b and ab = c

*=*■ (by (2)) aa*c = c and a*c = b «=* 7r(a*)/>(c) = i^(i»)

*=* Grfô), ir(«*Mc)) = I-

This completes the proof.
Let X be a nonempty set. Until further notice we assume that 5 = lx

[Example 1.1]. Let it be the left regular representation of lx(S) on ¡2(S) as
described above. Our immediate aim is to show that in this case 7r is faithful.
Suppose on the contrary that there exists/G l1 (S) such that/^ 0 but ir(f) =
0. We write/» 2Xfcafc where Xk # 0 for all k, and ak ¥= a¡ if k ±j. If f(a) * 0,
let

W(a) = {bES: f(b) ¥=0,b*b> a*a, and ba*a = a}.

Note that a E W(a). Also let

V = [b E 5: /(ô) # 0 and ô*ô > a*a}.
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Then we have

0 = 7T(/Xa*a) =  £ f(byp(ba*a)
bBV

= (   ¿2   /(*)W)+     T     f(pye(ba*a).
\b(BW(a) I b<SV\W(a)

It follows from this equality that

(3) Z    f(b) = 0.
bGW(a)

If e and /are two idempotent maps in S, let e V /be the idempotent map
with domain the union of the domains of e and /. Set Wl = W(at). Note that
if b G W(a) and A * a, then W(b) C IV(a) and a £ W(A). Let Aj, b2,.... ¿»m
be any collection of elements in Wx with bk =£ ap 1 < k < m. Next we show
that ( m )
(4) iteienWH.
To prove (4), let ek = A*Afc for all k, and let A = el < e2 V • • • V em. Set
Z = fï j?=i W(A*)- Suppose that /(a) #0,¿éZ, a*a > A, and aA = bh. Then
a*a > efc and aek - bek = bk for 1 < * < m. Therefore a G Z.  Then

0 = tt(/XA) =£{/(aMa'0: «*« > ^}
= Z /(WO + Zi/(aM^): a*« > b, a$Z}.

bGZ

It follows that 2bGZ f(b}p(bh) = 0 which implies (4).
Again, let bx,. . . , bm be a collection of elements in Wt such that bk ^

a,, 1 < k < m.  Next we prove that

(5) Zy(b):bE (j   FV^)   = 0.

The idea of the proof of (5) is to show that (JfcLi W(bk) can be written as a
disjoint union of sets A each of which has the property that %bsA f(b) = 0. We
proceed to define the sets A involved. Let M = {1, 2,... , m}. In the context
of this proof K and / will always denote subsets of M (including possibly the
empty set <p). Also, \K\ will denote the number of elements in K. For each /,
let Bj = f)kemj W(bk). By (4) we have XbeBj W(bk) = 0 for any /. When
/ = ¥>, let Aj = Bj = H ¡?= i W(bk). Then 2ftSyl/ /(A) = 0. Now for each set
/ with 1/1 = 1, let Aj = By\A . Note that the collection {Ay. I/I < 1} is
disjoint and that for each /, l/i < 1, we have %bGA   f(b) = 0 (the elementary
principle we use here, and continue to use in the course of the proof, is that if
B and C are subsets of S such that 2fteB f(b) = 0 and 2ftecnB f(b) = 0, and
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if A = B\C, then 2bsA f(b) = 0).  For each / with l/l = 2, let A} =
Bj\(\)\k\<7 ¿k)- Again the collection {Ay. I/I < 2} is disjoint, and for l/l
< 2, ^b&Aj f(b) = 0. The proof continues in this fashion. We outline the nth
step where n<m. For each/ with l/l = «, let Aj = By\([JtK|<n AK). Then
[Ay. l/l < n} is a disjoint collection and for each /, l/l < «, 2&Gj4   /(ô) = 0.
It remains to note that

Û w(bk)=   U   4c.
fc=l liKm

This completes the proof of (5).
Now we are in a position to prove that tt is faithful in the case S = Jx.

Proposition 22. When S = Tx, then the left regular representation tt is
faithful

Proof.   We assume the results and notation above. Now X, ¥= 0. There-
fore by (3)

Z{f(b):bEW1,b*a1} = -X1*Q.
Choose a collection of distinct elements Ô,, . . . , bm in W1\{a1} such that

(6) £{ 1/(0)1: b E W^b,, ...,bm, a,}} < IX, I.

Let C/ = Uk=i w(bk)- Then

iXi»~ (£{/(&): ¿eR'jNi«,}}!
< |£{/(ô): ¿ G £/}| +£{ 1/0)1: b G W/,\(t/U {a,})}.

By (5) we have 2 {/(£): b E U] = 0, so that the inequality above contradicts
(6).

Theorem 2.3. Let S be an inverse semigroup. Then there exists a faith-
ful representation ofl1(S) on a Hilbert space. In particular, the set of irreduci-
ble representations of I1 (5) on Hilbert space is a separating family.

Proof.  By [2, Theorem 1.20] 5 can be embedded as an inverse subsemi-
group of 5' =I,s. It follows that there exists a star monomorphism 7 of/'(5)
into /1(5').  Let tt be the left regular representation of /!(5') on l2(S'). By
Proposition 2.2 tt is faithful. Then rr ° y is a faithful representation of /!(5)
on l2(S').  It follows immediately from [17, Theorem (4.6.7)] that the irreduci-
ble representations of /!(5) form a separating family.

By Theorem 2.3 and [17, Theorem (4.1.19)] we have the next result.

Corollary 2.4.   7/5 is an inverse semigroup, then ll(S) is Jacobson
semisimple.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE /'-ALGEBRA OF AN INVERSE SEMIGROUP 371

Corollary 25. Let S be an inverse semigroup, and let I be an ideal of
S.  Then I1 (5/7) is star isomorphic to I1 (5)//1 (I), and thus I1 (5)//1 (7) is Jacobson
semisimple.

Proof.   By definition 5/7 = {{a}, 7: a G 5\7}. Since 5 is an inverse semi-
group, then 5/7 is an inverse semigroup. Define \p: l*(S) —* ll(S/I) by

¥>(ZV*)= Z \{<*k}-
v '    °k&

Then ^ is a star homomorphism of I1 (5) onto I1 (5/7), and the kernel of ip is
exactly ll (I). This proves that ll(S/I) is star isomorphic to /^//'(T). It follows
from Corollary 2.4 that ll(S)/ll(I) is Jacobson semisimple.

Remark. Let it be the left regular representation of /J(5) on l2(S). For
the special case where 5 = Tx, we proved that it was faithful [Proposition 2.2].
It would be interesting to know whether it is always faithful. The proof of
Proposition 2.2 establishes that it is faithful when 5 is an inverse semigroup with
the following property:

If e, /G Es, then there is an element g (=e M f) in Es such that g > e,
g> f, and whenever hEEs with A > e, A > f, then h> g.

3. Representations of ll(S) determined by finite idempotents of 5. In
this section we consider representations of I1 (5) which are determined by the
idempotents in 5 which have the property that eSe is a finite set. We call idempo-
tents of 5 with this property finite idempotents. The results of this section apply
to inverse subsemigroups 5 of Tx, since in this case, every idempotent in 5 which
is also in Fx is finite.

Assume that e E Es is finite. An important fact concerning e is that e is
primitive modulo some ideal of 5. We prove this below. Let

Ke = {fEEs: 3gEEsmthf~g<e}.
Then define

Ie = {aES:a*aEKe).

Proposition 3.1. Let e EES be finite, and let Ie be as above.  Then Ie
is an ideal of S, and e is primitive modulo Ie.

Proof. Assume that a G Ie and A G 5. There exists gEEs such that
a*a ~ g < e. Then there exists c ES such that a*a = c*c and g = ce*. We
have

b*a*ab = b*c*cb ~ cbb*c* <g <e.

Thus b*a*ab G Ke, so that ab G Ie. Therefore Ie is a right ideal of 5. But also
if a G 7e, then aa* ~ a*a E Ke, so that a* EIe. It follows that Ie is an ideal
of 5.
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Now suppose that /G Es and f < e. Then/G7e.  This proves that e is
primitive modulo Ie.

Let e G Es be finite. As we proved in the previous proposition, e is primi-
tive modulo Ie. In this case the group Ge (= {{eae}: eae E S\Ie}) is a finite
group.  Later in this section we use the representation theory of the finite dimen-
sional group algebra /' (Ge) to give information concerning the representations of
ll(S). A crucial role in this presentation is played by the representation theory
of Banach star algebras with minimal left ideals. We now very briefly review
parts of this theory, and then proceed to apply it to the case at hand.

Let A be a Banach algebra with proper involution * (i.e. if /G A and /*/
= 0, then / = 0). If L is a minimal left ideal of A, then there exists a unique
selfadjoint (abbreviated in the future as s.a.) idempotent h G A such that L =
Ah [17, Lemma (4.10.1)]. Furthermore, A is a minimal idempotent of A [17,
p. 45] which means in this case that hAh = [Xh: X G C}. Following [17, p.
261], we define a conjugate linear form <•, •> on Ah x Ah by the rule

<fh, gh)h = hg*fh,     f.gEA.

If {ß,ß)~0 for some /G A, then hf*fh = 0, so that fh = 0. Thus <• , •> is
nondegenerate. Also, this form is positive definite. Then as in [17, p. 261] we
define for /G A an operator TTn(f) acting on Ah by

*„(/>« = fgh,      gEA.

The map / —+ iTn(f) is a star representation on the inner product space (Ah,
<• , •>). This representation extends to a representation of A on the completion
Hn of the inner product space [17, Theorem (4.10.3)]. We denote this extended
representation again by tth. The representation (tt„, Hh) is irreducible. This can
be verified as follows. Let K be a closed ît,,-invariant subspace of Hn. As usual,
we consider Ah to be a dense subspace of Hn. If bh E Ah, then TTn(h)bh = Xh
for some scalar X. Since Ah is dense in Hn, for every xEHn there exists a
scalar X such that nh(h)x = Xh. It follows that either TTh(h)K = {0} or « G K,
and either TTh(h)KL = {0} or « G KL. But Tin(h) is not the zero operator, so
either hEK oi h EKL. In the former case Ah C K, so that K = Hn, while in
the latter case, Ah C KL, so that K = {0}.

Now let A be, as before, a Banach algebra with proper involution *. Let /
be a closed star ideal of A such that the natural involution on A/J is also proper.
Denote by Qj the natural quotient map Qy A —*■ A/J. If / is a s.a. mini-
mal idempotent of A/J, then / determines the representation ny of A/J on Hf.
Then the map a —* W/(ö/(«))> aEA, extends ny to an irreducible representation
of A on Hf. We denote this extension by ny ° Qj.
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Theorem 32.   Let A and J be as in the discussion above. Let (it, H) be
a representation of A with J C ker(7r). Let h be a s.a. minimal idempotent of
A/J and choose h' s.a. such that Qj(h') = A.

7/x0 EHandK = cl{it(Ah')x0} ±{0},then (it\K) « ith ° Qr

Proof. Let ( • , • ) denote the inner product on H.   Let y0 = it(h')x0.
We may assume that (y0, y0) = 1. If a, A G A and Qj(a - b)h = 0, then
(a - A)A' G /, so that ;r(aA') = tt(AA'). Define U: (A/J)h -> K by U(Qj(a)h) =
it(ah')yQ. By the previous argument we have that (/is well defined. Also U
maps onto a dense subspace of K.

UaEA,

Qj(h'a*ah' - <Qj(a)h, Qj(a)h)ti)

= h(Qj(a)*Qj(a))h - <Qj(a)h, Qj(a)h)h = 0.

Therefore
it(h'a*ah') = {Qj(a)h, Qj(a)h>n(h').

Note also that it(h')yQ = y0. UaEA, then

(U(Qj(a)h), U(Qj(a)h)) = Or(aA>0, rr(aA>0) = Or(A'a*aA>0, v0)

= <ôy(a)A, ôy(a)AX77(A>0, J\>) = <&(«)». Ö»A>-

Thus U extends to a unitary transformation of Hh onto K. If a, A G A, we have

*(bW(Qj(a)b) = *(AaA>0 = UQj(b)Qj(a)h

= tf(*„ • Qj)(b)(Qj(a)h).

Therefore, (it\K) « itn ° Qj.

Corollary 33. Let A, J, and A be as above. Let (it, H) be an irreduci-
ble representation of A.  Then it =» itn ° Qj if and only ifkei(it) = ker(ith ° Qy).

Proof.  Assume that ker(7r) = ker(?rft ° Qy). Choose A' s.a. in A such
that Qj(h') = A. Since (itn ° Qy)(ti) = it„(h) ± 0, we have tt(A') ± 0. The re-
sult now follows from Theorem 3.2.

For the remainder of this section we assume that e is a finite idempotent
of 5 and that I is an ideal of 5 such that e is primitive modulo 7. As mentioned
in §1,5 acts on 5/7 in a natural way. Thus, if a, A G 5 and c G 5/7, then the
product acb makes sense as an element of 5/7.

Let A = l1 (S) and / = I1 (I). Then / is a closed star ideal of A and A/J is
isomorphic to lx(S/I) [Corollary 2.5]. By Theorem 2.3 both A and A/J have a
faithful representation on Hilbert space.  In particular both A and A/J have prop-
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er involution.  As before, we use the notation Qj for the natural quotient map of
A onto A/J.

We use the notation B for the algebra ll(Ge) = ¡1(e(S/I)e) = e(A/J)e. B is
finite dimensional and Jacobson semisimple. This means that all of the Wedder-
burn theory for such algebras is available to us; see [5, pp. 163-190]. In parti-
cular, B contains minimal left ideals each of which is of the form Bh, h a s.a.
minimal idempotent of B; B is the direct sum of its minimal ideals; and every
irreducible representation of B is equivalent to the left regular representation of
B on some minimal left ideal. We use these facts and other results from the Wed-
derburn theory freely in what follows.

Let h be a s.a. minimal idempotent of B. Since he = eh = h, we have

«04//)« = h(e(A/J)e)h = {Xh: X G C}.

Thus, A is a s.a. minimal idempotent of A/J. Then we can construct the irreduci-
ble star representation (jrh ° QJt Hn) as indicated previously. The algebra B is
the direct sum of minimal ideals Mk, 1 < k < «, where MkM¡ = { 0} if k #/.
Then there are exactly « inequivalent irreducible representations of B. These
representations can be determined by minimal idempotents of B (which are then
also minimal idempotents of A/J). Two minimal idempotents determine equiva-
lent representations if and only if they belong to the same minimal ideal of B.
If « and / are s.a. minimal idempotents of B contained in different minimal
ideals of 5, then «£/= {0}. By definition B = e(A/J)e. Thus, h(A/J)f =
h(e(A/J)e)f = hBf = {0}. It follows that n G kerfy), and similarly,/G kei(TTn).
Therefore ny » Qj and tth ° Qj must be inequivalent representations of A. We
summarize the previous discussion in the next result.

Proposition 3.4.  Let e and J be as above. If {«,,..., «„} is a collec-
tion of s.a. minimal idempotents ofl1(Ge) which determines a complete set of
inequivalent irreducible representations ofl1(Ge), then {7rftfc ° Qj, 1 < k < «}
is a collection of inequivalent irreducible representations of /' (5).

A s.a. minimal idempotent « of I1 (Ge) determines the irreducible represen-
tation TTh ° Qj of Z1 (5). The problem of finding the minimal idempotents (or
equivalently, the irreducible representations) of a group algebra such as I1 (Ge)
can be a very difficult problem.  However, the irreducible representations of
I1 (5) determined by s.a. minimal idempotents of I1 (Ge) are each contained in a
representation of /'(5) which is very simply described, the left regular represen-
tation of /*(5) on l2((S/I)e). We define this representation next.

The space l2((S/I)e) is the usual Hilbert space of complex-valued functions
/on the set (S/I)e such that2{l/(a)l2: a E (5/7)e}< °° with the additional
convention that /(/) = 0. We denote the standard orthonormal basis of this
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Hubert space by {<p(a): a E (5/7>, a±I}. If A G 5 and aE (S/I)e, a* I, then
define

Iy(ba)   if A*Aa = a,
0 ifA*Aa*a.

Then if/G l\s),f= 2XfcAfc, and \p = Vpfffaj) E l2((S/I)e), let

"(0* = Z hW(bk) <*«/)■
Just as in the proof of Proposition 2.1, we have that /—* it(f) is a representa-
tion of /!(5) on l2((S/I)e). For convenience of notation we let H = ¡2((S/I)e).

Proposition 3.5. 7/A is a s.a. minimal idempotent ofl1(Ge), then itn °
Qj is equivalent to some subrepresentation of it.

Proof. There exist distinct elements akES, 1 < k < n, and nonzero
scalars Xk such that Qj(h') = h where A' = 2k=1 Xfcak and a%ak = e for all k.
Then it(akyp(e) = *tfik), and v>(afc) # tfa,) tf * * /• Thus,

Kh'ym = Z \«(akyp(e) = z W*) * o.
fc=i )t=i

Then the result follows from Theorem 3.2.

Proposition 3.6.   The representation (it, H) is a finite orthogonal direct
sum of representations of the form (itf ° QJt H¡) where f is chosen from the set
of s.a. minimal idempotents of I1 (Ge).

Proof.   Let Mk, 1 < k < n, be the set of all the distinct minimal ideals
of B = I1 (Ge). Each of the algebras Mk has an identity uk, and we have e =
Uj +■•■+«„ and ukUj - 0 if k # /.  For each k choose u'k G A, u'k s.a., such
that Qj(uk) = uk. For each i, let

Kt = cl{*(gu'¿p(e):geAh

Suppose / ^ /. Then ufA/J)u¡ = {0}, so if /, g E A, (it(fu¡}p(e), it(gu'¡yf{e)) = 0.
Thus, K¡ i K¡. Furthermore, since (¿?(e) is a cyclic vector for it, H is the orthogo-
nal sum of the rr-invariant  subspaces K¡.

Now fix /'. Choose A a s.a. minimal idempotent of B with A G M¡. Choose
A' s.a. in A such that Qj(h') = A. it(h') is a s.a. projection, and as in the proof
of Proposition 3.5,7r(A') * 0. Note that nQi'yK.j = {0} if i #/. Thus the range
of tt(A') is contained in K¡. Let {Xj, . . . , xm } be an orthonormal basis for the
range of it(h').  For each /, 1 </ < m, let

Lj = cl{it(A)xj}.

If / j= k, then x;-1 xk, and
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(*•(/>,, * GO*,) = (*(/«>,, irf>A>() = (*(« W)*,, **)
= X(jc;-, x^)   for some scalar X,

= 0.

Set L = Lj + ■ • • + Lm. We show that L is dense in Kt, and it will follow that
K¡ = L. Since u¡ EM¡ = BhB, we can choose /, g G A such that u\ = fh'g mod-
ulo /. Then if k G ¿4, we have

Hku'^e) = TT(kfyTT(h'gyp(e).

Now Tr(h'gyp(e) G span{Xj, .. . , xm}, so that Tr(]íu¡yp(e) ELx + • • • + Lm ■
¿. Therefore Jf; is the orthogonal sum of L,, L2, . . . , Z,m. By Theorem 3.2,
each of the representations (rr\Lj) is equivalent to 7rft ° Qj. This proves the re-
sult.

Proposition 3.7. If K is a closed ir-invariant subspace of H and (tt \K) is
irreducible, then there exists a s.a. minimal idempotent h of I1 (Ge) such that
(TT\K) * TT„  ° Qj.

Proof.   Assume that x E K, x ¥= 0. As shown in Proposition 3.6, H is
the orthogonal direct sum of ^-invariant subspaces /,-, 1 < i < p, with the prop-
erty that each representation (tt I/,) is equivalent to some representation of the
form ny ° QJt fa s.a. minimal idempotent of B.  Let x = xx + • • • + xp where
xk EJk, 1 < k < p. Suppose x¡ =£ 0, and let A be a s.a. minimal idempotent of
B such that (tt\J¡) « irA ° Qj. Choose A' s.a. in A such that Qj(h') = A.  Then
iT(h'A)x¡ * {0}, so that Tr(h'A)x # {0}. Since tt(A)x C K, we have Tr(h')K #
{0}. Then the result follows from Theorem 3.2.

Now assume that / is also in Es and that / is primitive modulo I. Let y
be the left regular representation ofl1(S) on K = /2((5/7)/).

Proposition 3.8. Ife~f, then (tt, H) is equivalent to (y, K). In parti-
cular every irreducible subrepresentation of (y, K) is equivalent to some irreduci-
ble subrepresentation of (tt, H).

Proof.   We denote the elements of 5/7 as {a}, a G 5\7, and I. There
exists b E S such that e = b*b and /= bb*. If ae E S\I, then ab*fE S\I, and
we have {a}eb* - {ab*bb*} = {ab*}f Therefore (S/I)eb* C (S/I)f.

Define U: H —*■ K as follows.  If \¡/ = XXk<f>(ake), let ty = 2Xk^(afceè*).
Note that if akeb*, a¡eb* G 5\7 and akeb* = a¡eb*, then ake, a¡e E S\I and
ake = a.e. This implies that U is an isometry. Since U maps H onto K, U is
unitary. Let i// be as above and assume a G 5. Let M = {k: a*aake = ake}.
Note that a*aake - ake if and only if a*aakeb* = akeb*. Then
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7(a)W = Z  h^aakeb*) = U( Z \^aake)\ = Uit(a)^.
fcQtf * k&M /

Therefore 7 « it.
Define F = [a ES: a* a is finite}. It is easy to verify that F is an ideal

of 5. In fact F is the smallest ideal of 5 that contains every finite idempotent
in^.

Proposition 3.9.  Assume that (7, K) is a representation ofl1(S) such
that ^(F) Cf. ker(7>  Then there exists e E Es, e finite, and a s.a. minimal idem-
potent ofl1(S)lJ, where J = ll(Ie), such that itn ° Qj is equivalent to some sub-
representation off.

Proof.   Since lx(F) <£ ker(7), there exists e EES, e finite, such that
7(e) ¥= 0. Furthermore, we may assume that e is minimal with respect to the
partial order < in the set {fEEs: /is finite and y(f) =£ 0}. With this assump-
tion we now verify that 7(a) = 0 for all a E Ie. For suppose aEIe. Then by
definition a*a ~ g < e for some gE Es. There exists cES such that a*a =
c*c and g = ce*. By the choice of e we have 7(g) = 0, so that 7(c)7(c*) = 0.
It follows that y(c) = 0, and thus, 7(a) = 0. Therefore 7 = 0 on Ie.

Let / = lx(Ie). The algebra ll(Ge) is a finite sum of minimal left ideals.
Since 7(e) ¥= 0, there must exist a minimal left ideal L of I1 (Ge) such that
Q~}l(L) <7- ker(y). The left ideal L is generated by a s.a. minimal idempotent A
of ll(Ge). Then A is also a s.a. minimal idempotent of ll(S)¡J. Choose a s.a.
elementA'G/H^suchtfiatO/íA'^A. Then Q}l(L) CAh' +/.  If7(A') = 0,
then since 7 is 0 on /, we have Ah' + J C ker(7). This is impossible by the
choice of L. Thus 7(A') =£ 0, and the result follows from Theorem 3.2.

Now we prove a structure theorem for representations.

Theorem 3.10. Let (it, H) be a representation of I1 (5). Then there exist
it-invariant subspaces of H, Hr and H2, with H2 = H\, such that

(1) ll(F)Ckei(it\H2),
(2) ifK is a nonzero it-invariant subspace of Hv then (it\K) contains an

irreducible subrepresentation equivalent to a representation of the form (itn ° QJt
Hn), and

(3) ifHl ± {0}, then (itlH^ is the orthogonal direct sum of irreducible
representations each of which is equivalent to some representation of the form

(«h ° Qj> Hh).

Proof.  First let

Hl = span{it(e}p: eEEs, e finite, y EH},

and
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H2={tjjEH: Tt(e)\p = 0 for ail e EEs, e finite}.

Then

\¡jEH¡<=^ (TT(eyp, \¡j) = 0,eE Es, e finite, <p G H

<=> (<a TT(e)\p) = 0, e GEs, e finite, y EH

**ii)EH2.

Thus, //2 = H\. Suppose ir(e)v3 G //j where e G F5, e finite, y EH. If a E F,
then there exists a finite idempotent / G 5 such that /âe = ae. Therefore

TT(a)(TT(eyp) = TT(f)(TT(aé)sp) G Hx.

It follows that Hx and /72 = 7/j are n-invariant.
This establishes the basic decomposition of tt into an orthogonal direct sum

of (7rl//j) and (tt\H2). Now we verify properties (l)-(3) of these two subrepre-
sentations. By the definition of H2 we have that (n\H2)(e) = 0 for every finite
idempotent e. It follows that F C kei(ir\H2), so that ll(F) C ket(Tr\H2). This
proves (1).

Let K be as in the statement of (2). If ll(F) C ker(d£), then 7r(e)uV = 0
whenever eEEs, e finite, and \¡i EK.  Then if e G Es is finite, \¡¿ EK, and <¿> G
#, we have (>, 7r(e)¿>) = (7r(e)uV, «p) = 0. This implies that K C T^j, so that K -
{0}, a contradiction. Thus, lx(F) <? ker(7rl/T).  Then (2) follows from Proposi-
tion 3.9.

To prove (3), assume that Hx * {0}. By (2) it follows that (tt\Hx) has
an irreducible subrepresentation equivalent to a representation of the form (7rA °
Qj, Hn). Then a Zorn's Lemma argument shows that there exists a maximal
(with respect to inclusion) n-invariant subspace M C Hx such that (tt \M) is an
orthogonal direct sum of the sort described in (3). Let K = M1 n Hx. By the
maximal property of/, (tt\K) contains no irreducible subrepresentation equiva-
lent to a representation of the form (7rft ° QJt Hn). Then by (2), K = {0}.
Thus Hx = M which proves (3).

4. Applications to the representation theory of lx. Let X be an infinite
set. We adopt the notation of Examples 1.1 and 1.2. The aim of this section
is to apply the results of §3 to the case where the semigroup 5 is Tx.

First we consider some basic facts concerning lx, all of which are easily
verified. The finite idempotents of Jx are exactly the idempotent maps in r~x,
and the ideal F = {a G Jx: a*a is finite} is the ideal ¥x. Let F be the set of
idempotent maps in lx. If e, f E E, then e ~ / if and only if l7J>e I = \D¡I. If
e E E and e is finite, then the ideal Ie defined just prior to Proposition 3.1 is
F„_i where n — \De\. Then e is primitive modulo F„_( [Proposition 3.1], and
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the group Ge is the symmetric group on n elements. Thus, for each positive in-
teger n, the group algebra of the symmetric group on n elements can be used to
determine irreducible representations of /'(T^-) as in §3.  A technique is avail-
able for explicitly constructing minimal left ideals of the group algebra of the
symmetric group; see [5, pp. 190—198]. Therefore specific examples of irredu-
cible representations of the form (itn ° QJt Hh) can be constructed. What we do
next is consider a collection of representations of ^(1^ of this form.

Fix a positive integer n, and let e be any idempotent map in 1X with
\De\ = n. Let

It is easy to check that A is a s.a. minimal idempotent of I1 (Ge), and hence of
''(IaO/^ÍF,,-.,). For convenience let A = l\lx) and / = ¿(F«.,). We have
that (itn ° Qj, Hn) is an irreducible representation of A. In this case it is very
easy to write down an elementary equivalent form of this representation. Let
Pn be the collection of all subsets TCX with 171 = n. Let {«¿<7): 7 G P„ } be
the standard orthonormal basis of l2(P„). If b E lx and TEPn, define

Ub(T))   if TCDb,
7„(AM7) - I

(0 ifT$Db

(here b(T) denotes the set of values the map A takes on 7). If/= 2XkAfc G A
and i/» = XpjifiÇTj) G l2(P„), then we extend y„ by the usual rule

7„(/)^=ZV/7«(^)^)-*./
It is easy to verify that / —► y „(f) is a representation of A on the Hubert space
l2(Pn). Also, it is interesting to note that y„ i>ym if m ¥= n.

Proposition 4.1. Let A Ae as above.  Then yn « itn ° Qj.

Proof. Let G denote the symmetric group of permutations on {1, 2,
. . . , n}. Write De = {xv . . ., x„}. For each a EG, let aa be the map in
lx with domain De defined by

ao(xk) ~xo(k)>      Kk<n.

Then A' = (1/«!) 2aeGa0 G l\lx) and QJfii) = A. Note that 7»Pe) =
*(a0(De)) = tfPe) for all a G G. Thus yn(h'}p(De) = tfZ>e). Let X„ .... \m
be scalars, and T1, . . . , Tm be in P„. Choose bx, . . . ,bmE\x such that bk
has domain De and range Tk, 1 < k < m. Then

%,«Mi + • • • + Kbm)b'MDe) - X,^) + • • • + \mv(Tm).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



380 B. A. BARNES

This proves that

l2(Pn) = d{yn(Atiyç(De)}.

Then a direct application of Theorem 3.2 completes the proof that yn « Tth °
Qj-

As we have just shown, the representation (■*„ ° QJt Hn) for certain A has
an elementary equivalent form in terms of a natural representation of ll(Tx) on
I2 of a certain collection of subsets of X. It may be true that all the irreducible
representations y of /'(I^-) with ll(r~x) <? kerfr) have some equivalent form of
this type where the subsets of X involved are allowed certain orderings. However,
we have not been able to prove such a result in general.

Let e be a finite idempotent map in 1X, and assume that n = \De I. It
was shown in §3 that the left regular representation of ll(lx) on '2((I*/Fn_i)e)
contains all the irreducible representations of ¡l(îx) determined by s.a. minimal
idempotents of I1 (Ge). Now we construct an elementary equivalent form of
this representation.  This construction can be done for each positive integer n.
Let Xn be the set of all ordered «-tuples of distinct elements in X, i.e.

Xn = {(yx,... ,yn): yk G X, yk *y} if k */}.

Form l2(Xn) with the standard orthonormal basis of this space denoted by
í^0i....»7»): Oi»..-»J'n)eAr„}. If A G îxand(yx,.. . ,yn) E Xn, let

^     f^iy! ),.-., %„))   ifykEDb,Kk<n,
(0   if some yk $Db.

Then 7r„ extends in the usual way to a representation of ll(lx~) on l2(Xn).

Theorem 42.   Let e be any idempotent map in Jx with n = \De\.  Then
(1) (îi„, l2(Xn)) is equivalent to the left regular representation ofll(lx)

onl2((Jxlh_x)e).
(2) (tt„, l2(Xn)) is a finite direct sum of the irreducible representations

determined by s.a. minimal idempotents ofl1(Ge).
(3) 7/(7T, K) is an irreducible representation ofll(Fx) <jt kerin), fAe« (tt,

K) is equivalent to some subrepresentation of'(irn, l2(Xn)) for some n.

Proof.  Let {jCj, . . . , xn] be the elements of De. The elements of
(I;r/F„_,)e are {ae} where ae E Jx\ F„_j and F„_,. For convenience let Qn =
(Txlr~n-i)e- Denote by {^¡(ae): ae E Jx\ F„_, } the standard orthonormal basis
for ¡2(Qn). If ae G Jx\ F„_,, define

Utfae) = <tfa(Xi\ • • •. a(xn))-

Then U maps the basis of l2(Qn) onto the basis of l2(X„). Note that when ae,
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Ae G Jx\ F„_!, then ae = Ae if and only if (a(Xj),. . . , a(x„)) = (A(Xj),.. .,
A(x„)). Thus the mapping U is one-to-one on the basis of l2(Qn). It follows
that the extension of U to all of l2(Qn) onto l2(Xn) given by

^Z\fcrta*o)=L\krt**(*i). • • •»**(*»))
is a unitary operator. The fact that U intertwines the left regular representation
of /'(I*) on l2(Q„) with the representation (itn, l2(Xn)) is easily verified. There-
fore these two representations are equivalent. This proves (1). Then (2) follows
immediately from Proposition 3.6, and (3) follows from Proposition 3.9 and
Proposition 3.5.

Now we turn to some results that concern the dimension of the representa-
tions of ll(lx)- If (it, H) is a representation of a star algebra, then the dimension
of (jt, H) is dim(/7) (= the cardinality of any orthonormal basis of H). Let (itn,
l2(X„)) be the representations constructed in the previous paragraph n > 1.

Proposition 4.3. Let K be a nonzero itn-invariant subspace ofl2(Xn).
Thendim(K)= \X\.

Proof.   Choose <pEK, ip^O. Then y has the form <p = Tikky(Tk) where
each scalar Xfc ̂ 0 and each TkEX„. Assume Tt = (y¡,. .. ,y„), y¡ E X.
Let A be an index set with lAl = I AM. Choose a collection of mutually disjoint
subsets of A", { Wx: X G A}, with the properties that each Wx contains exactly n
elements.  For each X G A, choose ax G 1X with domain {yl3..., yn} and
range Wx. Then itn(axyp ̂  0 for all X G A, and the collection {it„(axyp: X G A}
is a mutually orthogonal subset of K. Thus, àim(K) > I Al = I Al. The reverse
inequality is obvious since dim(/2(A"„)) = lAl.

Corollary 4.4. If (it, H) is irreducible representation ofll(lx) and
ll(Tx) <?ker(7r), then dim(/Y) = lAl.

Proof.   By Theorem 4.2(3) such a representation (it, H) is equivalent to
a subrepresentation of (it„, l2(X„)) for some n. Then Proposition 4.3 implies
the result.

In two of the next results we assume that X is countably infinite. It is
very likely that these results generalize with no restriction on the cardinality of
X (except that X be infinite), but the tools to prove the general case do not
seem to be readily available in the literature.

Theorem 4.5. Assume that X is countably infinite. If (it, H) is a nonzero
representation ofll(lx) with ll(Fx) C ker(it), then dim(H) > \X\.

Proof.  Let E be the collection of idempotent maps in 1X. Let d = lA"l.
By hypothesis we have e E ker(?r) whenever eEE and Re is finite. Also, if/and
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g are in E and \R¡\ = \Rg\ = d, then /~ g. Suppose that / = c*c and g = ce*,
c G Jx. If TT(f) = 0, then tt(c)*tt(c) = 0, so that tt(c) = 0.  Therefore n(g) = 0.
This proves that if any / G E with \R¡\ =d is in ker(îr), then every g G E is in
ker(7r). Thus tt would be the zero representation, a contradiction.

We have that e E E is in ker(7r) if and only if Re is finite. Now by [15,
Lemma 2] there exists a subset T of E with the properties

(i) eer+\Re\ = d,
(ii) e,fET,ei=f=>Refis finite,
(iii)   lrl>rf.

Thus by (i) rr(e) # 0 for all e E Y, while by (ii), Tr(ef) = 0 whenever e,fET,e
=É/. Therefore {Tr(e): e E T} is a mutually orthogonal set of nonzero projections
on H. Then dim(H) > I Tl > d.

Theorem 4.6. The basic structure theorem for representations [Theorem
3.10] holds wifA 5 = lxand F = Fx.

Corollary 4.7.   7/ X is countably infinite and (tt, H) is a separable repre-
sentation of ll(lx) (i.e. dim(H) = IXl), fAe« (tt, H) is the orthogonal direct sum
of irreducible representations each of which is equivalent to some representation
of the form (tth ° Qj, H„).

Proof. By Theorem 3.10, tt is the direct sum of two subrepresentations
(tt\Hx) and (tt\H2). Furthermore, ^(Fy) C ker(7rl//2). Therefore by Theorem
4.5, H2 ={0}. Then the result follows from Theorem 3.10(3).

5. Some Calkin-type irreducible representations.  Let X be an infinite set.
We assume throughout this section that 5 is an inverse subsemigroup of Tx such
that 5 contains every idempotent map in 1X. The aim of this section is to con-
struct a collection of irreducible representations of I1 (5) each of which annihilates
every finite idempotent of 5.

First we represent ll(S) on l2(X). Let B = {<p(x): x G X} be the standard
orthonormal basis of l2(X). If aES, define

Utix))   if:
(0 if;

xEDa,
v(a}p(x) = .

'x$Da.

Then tt extends in the usual fashion to a representation of ll(S) on l2(X). For
convenience we use the notation H = l2(X). Let A be the uniformly closed
algebra of operators on H generated by ir(ll (5)). Let V be the algebra of all
operators T on H such that every element of the basis B is an eigenvector of T.
Let y be a nonempty subset of X. If e is the idempotent map in 5 with De =
Y, then 7r(e) is the projection on the subspace of H spanned by {<p(y): y E Y}.
Then it is easy to verify that V is the uniformly closed algebra of operators on
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H generated by {it(e): e G Es}.   Thus, V C A.   If T E V, let fT(x) =
(Ttp(x), <p(x)), x E X. The map 7—>fT is an isometric isomorphism of V onto
l°°(X), the algebra of all bounded functions on X with the sup norm. We identify
V with l°°(X) in what follows.

Now we proceed to construct a collection {jra} of irreducible representa-
tions of A. Then {ita ° it} is a collection of irreducible representations of ll(S).
Denote by {A^} a set of vectors in H indexed by the set of all xEX.  Let
W be the set of all such sets {A^} which have the property that given any e > 0
and any g EH, then

(1) {x G X: \(hx, g)\ > e} is finite.

W is a vector space with the obvious definitions of scalar multiplication and vec-
tor addition, e.g. {hx } + {gx } = {hx + gx }. In the particular case when X is
countably infinite, W can be identified with the set of all sequences in H which
converge weakly to zero. If TE A, let Tact on W by the definition T{hx} =
{Thx}.

Fix a a pure state (equivalently, a multiplicative linear functional) on
r°(X). Using a we define a pre-inner product on W as follows:  If {hx}, {gx}
E W, then the function f(x) = (hx, gx), x E X, is in T(A). Then define

<{hx},{gx}) = <*(f).

It is not difficult to verify that <• , •> is a pre-inner product on W. Let K' be the
inner product space obtained by factoring W by the linear subspace of all vectors
{A^} G W such that ({A^ }, {A^}) = 0. We denote the natural quotient projec-
tion of W onto K' by Q. LstK be the Hilbert space completion of K'. We de-
note the inner product on K by <A, g), h,gEK. Let T E A. If { hx } E W and
<{AJt},{A;t}> = 0,then

0 < <{ Thx}, i Thx}) = a((Thx, Thx)) < a(ll 7ll2 IIAXII2) = B7ll2a(llAJt II2) = 0.

Thus if k E W and Q(k) = 0, then Q(Tk) = 0. This implies that the following
definition makes sense. If { hx } E W, let y'(T)(Q({hx })) = Q({ Thx }). Then
7 —> y'(T) is a representation of A on K1. This representation extends uniquely
to a representation 7 of A on K. Note that the element {<p(x)} € W. Denote
this element by <p. Then Q(tp) is a nonzero vector in K. Let Ha be the closed
subspace of K generated by {y(T)Q(<p): TEA}. Finally, let ita be the restric-
tion of the representation y to Ha. In what follows we derive some of the prop-
erties of the representations (ita ° it, Ha). We start by establishing the irreduci-
bility of these representations.

Theorem 5.1.   7Ae representation (ita, Ha) is an irreducible representation
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of k, and therefore (rra ° 7r, Ha) is an irreducible representation ofl1(S).

Proof. Define a positive functional a on A by

a(T) = <TQ(p), Q(p)) = a((T<p(x), <p(x))),      TEA.

If TE V, we have a(T) = a(fT) where as before fT(x) = (Ttfx), tfx)). We
identify T and fT, so that a coincides with a on V, i.e. a is an extension of a
to A. Now we show using a result of R. Kadison and I. Singer that a is the
unique positive extension of a to A. If a G 5, ip(x) G B, then by definition
TT(ayp(x) is either 0 or the element <p(a(x))EB. Therefore by [14, Theorem 3]
and the remarks following the proof of Theorem 3, all the states on A that co-
incide with a on I? must coincide with a on {7t(a): a G 5}. (Note. The result
quoted [14, Theorem 3] is proved only in the case where H is separable. How-
ever, the proof can be extended to work in Hilbert spaces of arbitrary dimen-
sion.) Then since f.7r(a): a G 5} generates the algebra A, a must be the unique
state on A that coincides with a on I? [14, Remark 6, p. 396]. It now follows
from [6, Lemma (2.10.1)] that a is a pure state of A, so that the representation
of A determined by a is irreducible. Finally, by [17, Lemma (4.5.8)] this
representation is equivalent to (7ra, Ha), and this completes the proof.

As before, let F = {a G 5: a*a is finite}. There is a simple condition on
a which insures that /'(F) C ker(jra ° ir). We verify this condition next. We
need one bit of notation. Let c0(X) be the set of all complex-valued functions
fonX such that given any e > 0, the set {x E X: \f(x)\ > e} is finite. Then
c0(X) is an ideal in l°°(X).

Proposition 52. Ifa(f) = 0 for allf E cQ(X), then l*(F) C ker(7ra o tt).

Proof.   It is enough to show that if e is any finite idempotent map in
Jx, then TTa(Ti(e)) - 0. To prove this it suffices to show that whenever {hx} E
W, then <TT(e){hx}, Tr(e){hx}) = 0.   Fix {hx} E W, and let g(x) =
(TT(e)hx, TT(e)hx), xEX. We verify that g E cQ(X), so that (Tr(e)hx, n(e)hx) =
a(g(x)) = 0. Note that the range of ir(e) is span{<fi(x): x EDe}. For each
x G X, hx has the Hilbert space expansion in terms of the basis B,

K=Z (hx,^y)>P(y).
Then

*(e)hx= Z    (V-POOVO)-
yeDe

Now x —* (hx, <f(y)) is in c0(X) by (1). Therefore

g(x) = \\TT(e)hx II2 = Z   KK, *<y))\2 e c0(X).
y(=De

This completes the proof.
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We note the next result without proof. It can be established by arguments
similar to those in [18, pp. 524-526].

Proposition 53. 7Aere are at least exp(exp(lA"l)) inequivalent irreducible
representations of I1 (5) in the collection {(ita ° it, Ha): a a pure state ofV°(X)}
with the property that ll (F) C ker(7ra ° it).

6. Representation of completely 0-simple semigroups. Unless explicitly
stated otherwise, 5 will denote a completely 0-simple semigroup throughout this
section (see Example 13). Every idempotent in 5 is primitive [2, Exercise 5, p.
83]. A simple fact we need in what follows is

(1) if e, /G Es, e*f, then e/= 8

(Proof,  ef < / and ef < e; since e and / are primitive and e ¥= f, then ef= 6).
Assume that e E Es. Then e is primitive, so that Ge = eSe\{8} is a group.

The aim of this section is to show how the cyclic representations of I1 (5) can be
induced from the cyclic representations of ll(Ge). (Note. If (it, K) is a representa-
tion of ll(Ge), then we automatically assume that 7r(e) is the identity operator on
K.) The technique involved is similar to (and is motivated by) the one used to in-
duce representations of a group from those of a subgroup. In our case, the fact
that 5 is completely 0-simple is crucial. This is clear from the proof of the follow-
ing important lemma.

Lemma 6.1. Assume that eEEs,e&6. Let A = ll(S), and assume that
(it, K) is a representation ofeAe. If fk E A, <pk E K, 1 < k < n, then

Z     (Hef*fkeypk,'Pp)>0.
p=l,k=l

Proof.   First we prove that when a, b ES, then

(2) eb*ae ± 8 <=> a*a = A*A = e,   and   aa* = AA*.

Assume that the right-hand side of (2) holds. Then ae = a, eA* = A*, and so
A*a = eA*ae. If A*a = 8, then a = AA*a = ô, a contradiction. Therefore eA*ae
¥= 8. Conversely, assume that eA*ae ¥= 6. Then ae =£ 8, so that ea*ae = e(a*a)
# 8. It follows from (1) that a*a = e. Similarly, A*A = e.  Therefore A*a =
eA*ae i=- 9. Then AA*aa* ¥= 8, so that AA* = aa*. This proves (2).

Now assume that/fce = 2X;ka/fc, 1 < k < n, where each ajk E Se\{8}, ajk
=£ aik if i =£/, and each X/fc #0. Let {em } be the collection of distinct idempo-
tents in the set {aJkalk*}, subscripted so that em ¥= e   if m ¥= p. Let

Km = {(/, k): ajkafk =em}.
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Then/fte = ^m(^(flk)eKm \jkajk) and by (2) we have

(3) ef*fke = Z(       Z        N&VWV
m \ (j,p),(i,k)eKm J

For each m choose some bmE{aik: (i, k) EKm}. Define

bmk =       Z        *jkbmajk-
U,k)<BKm

Note that hmk E eAe. Also, if (j, p), (i, k)EKm, then afpbmbmaik = afpemaik
= afpaik. Thus,

hmpbmk = Z \p\**/W-
(/,p),(/,fc)eA:w

From this equality and (3) we have

efpfke=¿Zhmphmk-
m

Therefore,

Z     Wef¿fk*)Pk.'eP)ssT.(     Z     Wb*mphmkypk,<ppy\
p=i,k=i m yp=i,*=i y

= Zf       Z       «A«*V*.»(AmpVp)\
m \p=l,*=l /

= Zft <bmkypk,z it(hmpypp\>o.
m \fc=l p=l /

Now fix e G ¿Ts, and assume that (it, K) is a cyclic representation of
/1(Ge) = eAe. We use the representation (it, K) to induce a representation Tt of
/I on some Hubert space that contains K in such a way that (n \K, K) * (it, K).
The construction of the induced representation involves the formation of the
tensor product of modules over an algebra. We use the notation and terminol-
ogy of [5, §12].   We shall assume that the reader is familiar with this portion
of [5] rather than reproducing a summary of it here. Although [5, §12] deals
with the tensor product of modules over a ring, the process generalizes to the
case where the modules are also vector spaces and the rings involved are algebras.
In this case, the resulting tensor product is a vector space and the action of the
algebra on this vector space is a linear operation.

The space K is a left e/le-module where / G e/le acting on y E K is given
by it(fyp. Also A is in the obvious way a left and right e/le-module. Thus we
can form the .4-module A ® eAeK; see [5, p. 66]. We simplify this notation
to A ® je.  If /G A and y E A ® gK, we denote by ?(/)y the module product
of/ with y. Our first tasks are to introduce a pre-inner product on A ® eK and
to verify that / —*■ ît(f) is a representation of A on this pre-inner product space.
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(6.2) The construction of the pre-inner product on A ® JK.. For the
present fix / G A and \p EK.  Define a map W': A x K —*• C by

W'(g, <p) = (TT(ef*geyp, n      gEA.ipE K.

If A, g E A, y E K, we have

W'(gehe, <p) = (TT(ef*geheyp, \¡j) = (Ti(ef*ge)Ti(eheyp, \p) = W'(g, Tr(eheyp).

Thus, W' is a balanced map. It follows from [5, Theorem (12.3)] that there is
a homomorphism (depending on / and $) W(f, ^): A ® JÍ —> C such that

(4) W(f, ̂  ® v> = W'(g, <p) = (TT(ef*geyp, $).

IffEA, ipEK.andyEAQJC, define l'y: A x K —► C by

iy(f, <i>) = w. *yy-
IfhEA and /, ty, y are as above, then

Iyifehe, «//) = W(fehe, $y, = W(f, Tr(ehe)^)y = l\(f Tr(ehe)^).

Thus, I' is a balanced map, so that by [5, Theorem (12.3)] there exists a homo-
morphism Iy: A ® je ~*■ C such that

(5) /7(/ ® >//)=/;(/; w = w. tyy-
If 7,0 G 4®^, define

<T, /3> = Iy(ß).

By the construction it follows that <• , •) is linear in the first variable and conju-
gate linear in the second.  Also, using (4) and (5) we have for fgEA.tp, \jj E K,

(6)       (g®<p,f®*) = IgzJf ®^)=W(f.^)8®<P = (n(efgeyp, i//).
Then

is ® f. /® if) = (n(ef*ge}p, i/O = (ir(eg*fe)i¡/, <p)* = <f®\¡/,g® spy*.

Therefore <y, t> = <t, y)* whenever y, t E A ® eK.    Suppose that y =
?.nk=zXfk®ipkEA ®eK.   Then

n
<7,7> =      £      <fk**k'fp**p>

p = l,k=\

=     t     M*/?/*«**.*,)   by (6)p=i,/t=i
>0   by Lemma 6.1.
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To summarize, we have shown
(6.3) The form (• , •> is a pre-inner product on A ® eK with the property

that when g, fEA and <p,\¡)EK, then

(g ® <P, f ® ii > = (it(ef*ge)K>, i//).

(6.4) The construction of the induced representation. Recall that we
denote the result of the induced module operation of fEA on y EA ® gK by
7r(/)7.  In particular, it follows from [5, p. 66] that if/, g E A and yEK, then
ît(f)g ® >p = fg ® <p.  First we verify that if y, t E A ® gK and fEA, then
(*(f)Y> t) — (y, Tt(f*)r). It is enough to check this equality in the case where
7 = g ® «¿> and r = A ® i//. Then

(?(/> ® <p, h ® \¡i) = <fg ® <?, h <2> \¡i) = (it(eh*fgeyp, ty)   by (6.3)

= fa, it(eg*f*he)ii) = </*A ® ̂ , s ® <¿>>*   by (6.3)
= <£ ®y?, 7T(/*)A ®i//>.

Thus / —► 7r (/) is a star representation of A on the pre-inner product space
A<ègK.

Before proving that Tt is a bounded operator, we prove a necessary lemma.

Lemma 65.   IfipEKisa cyclic vector for it, then e ® <p is a cyclic vector
for ît on A ® gK.

Proof.   If/® i> is considered a function oí fEA and ^ EK with values
in the pre-inner product space A ® eAT, then using (6) it is not difficult to verify
that this function is continuous in both variables separately.  Let 7 = Aj® \ji1 +
' • ' + hn ® ^ be given. Since <¿> is a cyclic vector for it, we can choose gk E
eAe such that II \Jik - it(gkyp\\ is as small as we wish for each k. Thus, since
ii —> f® \ji is continuous, we can arrange by an appropriate choice of gk E eAe
that r = A, ® it(gí )¡p + • • • + hn ® it(g„yp is as close to 7 as we wish in the
topology on A ® gK determined by the pre-inner product. But

t = (hlgl +•■■ + hngn) ® ip = 7r(Aj^ + • • • + hngn)e ® <p.

This proves the lemma.
Let <p G K be a cyclic vector for ;r. Define F on A by

Fi/) = <*(/> ® ¥>. « ® ¥>>,     /e ii.

F is a positive functional on A. Let II7II = (7, y)'A for 7 G A ® g/f. Note that
if g, fEA, we have

F(g*f*fg) = II?(/> ® v? II2,   and   F(s*s) = Ils ® <p II2.
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Then by [17, Theorem (4.5.2)] F is admissible on A so that there exists M > 0
with

F(g*f*fg) < MF(g*g)   fot all g E A.

This inequality and Lemma 6.5 imply that lt(f),fEA, is a bounded operator
on A ® gK.

Now let Z be the set of all 7 in A ® ¿S. such that II7II = 0. Then
(A ® gK)/Z is an inner product space.  Let pz be the natural quotient map of
A ® JC onto this inner product space.  For the present fix 7 G Z. We deal with
the case that A has no identity (otherwise, A = eAe). Let Ax be the algebra A
with an identity 1 adjoined. Define a on Ax by

a(X\ +f) = (Xy + -TT(fyy,y)

where fEA, X G C. Then a is a positive functional on A x. By the usual general
Cauchy-Schwarz inequality for a we have for / G A

ll?(/>ll2 = c*(/*/) < a(l)*c<(/*./02)*.

Since a(l) = II7B2 = 0, we have UvrX/yyll = 0. Therefore Z is invariant under
Tt. Thus, if fEA, TT(f) determines a bounded linear operator on (A ® JCjIZ by
the rule Tr(f)pz(y) = Pz(jT(fyy), yEAQJC.  Let AT be the Hilbert space com-
pletion of (A ® gK)\Z. Then if fEA, K(f) extends to a bounded operator on
K which we also denote by tt. Furthermore, it follows from the construction
that /—► Tr(f) is a representation of A on K.

In what follows we follow the usual practice of considering pz(A ® gK) as
a subspace of its completion K.

(6.6) Verification that (tt, K) is equivalent to 7?\eAe restricted to some
closed subspace of K. Let K0 be the subspace {pz(e ® <p): <p E K) of K.  Define
U0: KQ-*K and W0: K -* K0 by

U0(pz(e ® <p)) = V,    W0(<p) = pz(e ® v),      «p G K.

(Note. It is easy to verify that UQ is well defined.) Then for all tp E K,
^0^0^) " ^> and WQU0(pz(e ® <¿>)) - pz(e ® <¿>).   Also, if <p, ̂ G tf, then

(U0pz(e®<p), *) = &>,*)

= <pz(e ® ip), pz(e ® i//)>   by (6)

= <Pz(e ® <p), W0W>-

Thus, W0 = t/¿*. It follows W0 maps AT isometrically onto K0. Therefore K0 is
a closed subspace of a'. The argument above implies that U0 is a unitary opera-
tor from A',, onto K.
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If/G eAe, then

U0ît(f)Pz(e ® V) = U0pz(e ® 7T(/>) = it(fyp = it(f)U0pz(e ® <p).

Let tt0 denote the representation Tt\gAe restricted to K0. We have shown that
(it0, K0) « (it, K).

We call the representation (It, K) constructed in (62) and (6.4) the repre-
sentation of A induced by (it, K).

The next several results develop some of the properties of induced repre-
sentations.

Proposition 6.7.   Let (itv Kx) and (it2, K2) be two cyclic representations
of eAe. If the corresponding induced representations (jtv Kt) and (5r2, K2) are
equivalent, then itl »it2.

Proof.  Let U: Kt —* K2 be a unitary operator that intertwines ît1 and
ñ2. For/ = 1, 2, let Zf = {y EA ® JL¡: II7II = 0}, and let pf be the natural
projection of A ®<rK;- onto (A ® gK^/Z^.    Again for / =  1, 2, let 77;- =
{p;(e ® ¡p): <p E KA, and let y.- be ^¡\eAe restricted to H., By (6.6) we have
that 7j « it1 and y2 **it2.

Now we prove that 7j « y2. First we show that U maps 77j into //2. If
fEA, il EK2, we have

(7) »r^W ® ̂ ) = ^(^ ® ̂ ) = Piie ® ̂ feWi-

Then for v? G ATj

i/p^e ® ̂ ) = Unftyp^e ® ̂ )
= *2{e)Upi(e9v)eHi   (by (7)).

A similar argument shows that £/* maps H2 into //j. It follows that U maps
H1 isometrically onto H2. Also, since U intertwines ltx and Tt2, C/yj = 72i/on
/7j. This completes the proof that it j « 7t2.

Theorem 6.8.  Assume that it is an irreducible representation of eAe on
a Hilbert space K. Then (it, K) is irreducible.

Proof.   Fix <¿> G K, Ml = 1. By Lemma 6.5,pz(e ® y) is a cyclic vector
for Tt on K (here Z is as in (6.4)).  Let

<*CD = (*(/>> <¿0>     fEeAe,
and

«CO = <*(f)pz(e ® „). pz(e ® ¿)>,     / G .4.
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Then if/ G A
a(efe) = <?(e/e)pz(e ® ¡p), pz(e ® <p))

(8) = (*(efeyp, ¥>)   by (6.3)

= a(efe).

Suppose a = ^(0 + y) where ß and y are states on A (here S is a state means
that 6 is a positive functional on A with 8(g*) = 8(g)*, and l5(g)l2 < 8(g*g),
g E A). Since ß and 7 are states of A, we have ß(e)2 < 0(e) and 7(e)2 < 7(e).
Thus, 0(e) < 1 and 7(e) < 1. Now

1 = a(e) = %(0(e) + 7(e)) < 1.

Therefore 0(e) = 7(e) = 1. Since a determines the irreducible representation
(tt, /:), we have by [9, Theorem 21.34)] that

(9) <*(e/e) = 0(e/e) = y(efe),     fEA.

If S is a state and 5(e) = 1, then it follows from the general Cauchy-Schwarz
inequality for 5 that S(g(\ - e)) = 6((1 - e)g) = 0 for any g G A. Thus, in
this case 5(g) = 8(ege) for all g G A. Applying this fact to 0 and 7, we have
that

ß(f) = 7(f) - Tiefe),      fEA.
Then (8) and (9) imply that a = 0 = 7.  If follows from [9, Theorem (21.34)]
that (tt, K) is irreducible.

Proposition 6.9.  Lei (tt', H) be an irreducible representation of A. As-
sume that Ti'(e) ¥= 0 where e E Es. Define a representation (tt, K) of eAe in the
natural way where K = ir'(e)H.   Then K « tt'.

Proof. Choose tp E K with Ml = 1. By Lemma 6.5 pz(e ® <p) is cyclic
for It on K. For fEA let

<*'(/) = (*'(/>> V)   and    a(f) = <Tr(f)pz(e ® 0, pz(e ® „)>.

By [17, Lemma (4.5.8)] it is enough to show that a = a. If fEA, then

«(f) = <*(f)pz(e ® vj), pz(e ® tp))

= (TT(efeyp,v)   by (6.3)

- (n'(efe}p, V) - (/(/>, <P) = <*'(/).

For some inverse semigroups 5, the irreducible representations of /1(5) can
be determined from the irreducible representations of the Í1 -algebras of a collec-
tion of completely 0-simple factors of 5. This is true when 5 has a composition
series.
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Definition.   Let 5 be a semigroup with zero. A composition series for
5 is an increasing family of ideals of 5, {7a}, 0 < a < y, where 7 is a fixed ordi-
nal and the indices are all ordinals a such that 0 < a < y, having the properties
that

(i) 7O={0} and 7^=5, and
(ii) if a is a limit ordinal, a < 7, then Ia = U^<a7^.
If whenever a is a nonlimit ordinal, a < 7, we have 7a+1/7a is completely

0-simple, then we say the composition series has all completely 0-simple factors.
The semigroup ¥x has composition series { F„ }, 0 < n < 0, cj the first

limit ordinal, where Fw = r~x, and F„ for 0 < n < w has the usual definition.
The factors of this composition series are completely 0-simple. More generally,
we have the following result.

Proposition 6.10. Assume that S has a zero. Assume that every nonempty
subset ofEs has a minimal element with respect to the partial order < . Then S
has a composition series with completely 0-simple factors.

Proof.   Let7o={0}. Assume that an increasing family of ideals, {Ia},
0 < a < ß, has been chosen with 7a/7a'_1 completely 0-simple for all nonlimit
ordinals 1 < a < ß. If ß is a limit ordinal, let Iß = \J a<ßIQ. Now assume that
ß is a nonlimit ordinal. Choose e a minimal element of {/G Es: /^7p_j}. Let

Iß = {aES: a*a~e}UIß_l.

If a G Iß, then a* G Iß. Next we prove that Iß is a right ideal, hence an ideal.
Suppose A G 5 and a G 7^\ Iß_x.   Then there exists c G 5 such that a*a =
c*c and e = cc*. Then b*a*ab = b*c*cb ~ cbb*c*, and also, (cbb*c*)e =
(cbb*c*)cc* = cbb*c*. Thus, cbb*c* < e, so that by the choice of e either
cbb*c* = e or cbb*c* G 7«_j. In the first case b*a*ab ~ e, so that aA G Iß. In
the second case,

ac*(cbb*c*)cb G 7p_,  =* (ac*c)(bb*b) G 7^,

=> aA = (aa*a)(AA*A) G Iß_x C Iß.

Note that by the choice of e, we have e G Iß and e is primitive modulo
7o_j. Now we verify that IßIIß-i is 0-simple. Let I be an ideal of Iß with 7^
C 7. Suppose that A G I\Iß_x. We prove that I = 7p. We have A*A ~ e. As-
sume a GIß\Iß^i. Then a*a ~ e ~ A*A, so there exists cES with A*A = c*c
and cc* = a*a. Therefore

c*cEl =* c = cc*c G 7 =>a*a = ce* El => a G7.

This proves that I = Iß- We have shown that Iß/Iß-i is completely 0-simple.
Therefore by transfinite induction we can construct a composition series for 5
with completely 0-simple factors.
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Let A be a star algebra and let J2 and Jx be star ideals of A with Jx C /2.
Now we describe a procedure for lifting a cyclic representation of the quotient
algebra/2//j to a representation of ,4. Denote the residue class of J2/Jx that
contains g E J2 by g + Jx. The space J2/Jx is a module over A where / G A
acts on g + /j,g G/2, by the rule f(g + Jx)=fg + Jx. Let (ir, //) be a cyclic
representation of J2/Jx with </> a cyclic vector for tt. Let

K = {TT(g + Jxyp:gEJ2}.

If fEA, define ?(/) on yjj = Ti(g + Jx}pE K by

ñ(f)^=^(fg + Jiyp.
Since A' is dense in H, tt extends uniquely to a cyclic representation tt of A on
H.  Clearly, if tt is irreducible, then the extension F is irreducible. If (tt, H) is a
cyclic representation of /2//,, we use the notation (if, //) for the representation
of A constructed above for some choice of cyclic vector <p.

Theorem 6.11. Let {Ia}, 0 < a < y, be a composition series for 5 vvi'fA
completely Q-simply factors. Let Ja = I1 (Ia) for 0 < a < y.

(1) If a> 1 is a nonlimit ordinal and (tt, H) is a cyclic representation of
Ja/Ja-i. fAen (tt, H) extends to a cyclic representation (if, H) ofl1(S).

(2) If(j, K) is an irreducible representation ofl1(S), then there exists a
nonlimit ordinal a > 1 and an irreducible representation (tt, K) ofJjJa_x such
that the extension Çn,K) = (r, K).

Proof. (1) follows immediately by the preceding construction. We prove
(2). Let (t, K) be an irreducible representation of /1(5). Let a be the smallest
ordinal with r(/J + {0}. Then r(Jp) = {0} for all 0 < a. If a were a limit
ordinal, then

Thus in this case, r(/a) = {0}, a contradiction. Therefore a is a nonlimit ordinal
and r(/a_,) = {0}. Define a representation ir of Ja/Ja_x on K by

Kf + Ja-0 = r(f),     fEJa.

Then (tt, K) is an irreducible representation of Ja/Ja_x. Let v? be a cyclic vector
for jr. Form the extension (?, K) as indicated previously. Then if/G /'(5) and
*e/a,

ñ(f)TT(g + ja_xyp = TT(fg + ja_xyp = r(fgyp = t(/>(^ = t(/>o + /„_,*>.
Thus ñ = tt on K.
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7. Representations of the bicyclic semigroup.  The simplest example of a
simple inverse semigroup that contains no primitive idempotent is the bicyclic
semigroup. As in Example 1.4, we use the notation C for this semigroup, and
let p, q denote the generators of C with relation qp = 1 (recall that p* = q).
As we shall see, by applying well-known results from operator theory concerning
the structure of an isometry on a Hubert space, it is possible to describe explicitly
the irreducible representations of I1 (C).

Let it be a representation of /'(C) on a Hubert space H. We assume here
and throughout this section that it(l) = I, the identity operator on H. Let V =
it(p). Then it(q) = it(p*) = V*, and V*V = it(qp) = jt(1) = I. Therefore V is
an isometry on H. Conversely, given a Hubert space H and an isometry V on H,
let it(p) = V, it(q) = V*, and 7t(l) = 7. Since C is generated by p, q and 1, there
is a unique representation it of ll(Q on H satisfying these equations. Thus:

(7.1) Every representation of/1(C) is completely determined as above by
a Hubert space H and an isometry V on 77.

Important particular examples of isometries are the unilateral shifts.  Let
a be a cardinal, and let K be a Hilbert space of dimension a. Let Ha be the
Hubert space direct sum of a countably infinite number of copies of K, and let
Sa be the unilateral shift on Ha; see [7, p. 15] where the notation l\(K) and
U+ is used in place of Ha and Sa. We denote by ita the representation of /'(C)
on Ha determined by the choice ita(p) = Sa. If ^ is a vector in Ha, then \¡i is
determined by its coordinates {\¡in } where each ii„EK and 2II <//„ II2 < °°.  Fix
¥> G K, y ¥= 0. For each / > 1, let i/j7 be the vector in Ha with coordinates

(<p   if j = n,(AH
(0   if/*n.

Let / be the closed linear span of {^: j > 1} in Ha. Since

W) = */+1,     />!.
and

S*(<p') = ̂ -\     />1,     5*V) = 0,
we have / is invariant under Sa and 5*. If a > 1, we can choose \¡j EK such
that V ^ 0 and |//1 >p. Then the vector in Ha with first coordinate "/* and all
other coordinates 0 is orthogonal to /. Therefore when a > 1, / is a proper
closed 7ra-invariant subspace of Ha. On the other hand, for the case a = 1, we
have that (itl,Hl) is irreducible by [4, Corollary 1.2]. Thus, the following re-
sult holds.

(7.2) The representation (ita, Ha) of ^(C) is irreducible if and only if
Q= 1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE l'-ALGEBRA OF AN INVERSE SEMIGROUP 395

Now let tt be a representation of /(C) on a Hilbert space H, and let V =
■trip). Since Fis an isometry, it follows from [7, pp. 15-16] that there exists
a subspace M of H that reduces V and has the property that V\M is unitary and
V\ML is equivalent to a unilateral shift. Therefore tt = (tt\M) (B TTa where
(tt\M)(p) is unitary on M and a is the multiplicity of V\ML. Thus:

(7.3) A representation of /'(C) is a direct sum of a representation of
I1 (C) determined by a unitary operator and TTa for some a.

Now we can easily identify all the irreducible representations of lx (C). First
note that a representation of I1 (C) determined by a unitary operator on a Hilbert
space H is irreducible if and only if H is one dimensional.  Also, to identify the
one-dimensional representations of I1 (C) it is sufficient to identify the semicharac-
ters of C.  For each X G C, IXl = 1, let <pK(p) = X, <px(q) = X*, and <¿\(1) = 1.
Then <px extends to a semicharacter on C (which we again denote by <px). In
fact it is easy to see that {ipx: IXl = 1} is the set of all semicharacters of C.

Proposition 7.4.   77ie set of all irreducible representations of I1 (C) con-
sists of the one-dimensional representations determined by the semicharacters
{¡px: IXI = 1} and the representation (nx, 77,).

Proof.   The result follows immediately from (12), (7.3), and the remarks
above concerning semicharacters of C.

Added in proof. (1) Part of the proof of Proposition 3.1 has been
omitted. It should be verified that e $. Ie. This can be proved as follows. Sup-
pose on the contrary that e EIe. Then there exists gEEs such that e ~ g < e.
Choose a G 5 such that e = a*a and g = aa*. For A G Es, define the set Mn =
{kE Es: k<h}. Observe that since g < e, the finite sets Mg and Me have dif-
ferent cardinalities. But k —► aka* is a one-to-one map of Me onto Mg (the in-
verse of this map is k —► a*ka). This contradiction proves that e $ Ie.

(2) We have recently submitted a paper concerned with some of the topics
treated here. It contains an easier proof of Theorem 2.3, and a complete solu-
tion to the problem mentioned in the remarks immediately following the proof
of Proposition 4.1.
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